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ABSTRACT

As an analog to the Jacquet-Rallis fundamental lemma that appears in the relative trace
formula approach to the Gan-Gross-Prasad conjectures, the arithmetic fundamental lemma
was proposed by Wei Zhang and used in an approach to the arithmetic Gan-Gross-Prasad
conjectures. The Jacquet-Rallis fundamental lemma was recently generalized by Spencer
Leslie to a statement holding for the full spherical Hecke algebra. In the same spirit, there is
a recent conjectural generalization of the arithmetic fundamental lemma to the full spherical
Hecke algebra. This paper formulates another analogous conjecture for the semi-Lie version
of the arithmetic fundamental lemma proposed by Yifeng Liu. Then this paper produces
explicit formulas for particular cases of the weighted orbital integrals in the two conjectures
mentioned above.
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Chapter 1

Introduction

Throughout this whole paper, p > 2 is a prime, F is a finite extension of Qp, and E/F is an

unramified quadratic field extension.

1.1 Brief history and motivation for the arithmetic fun-

damental lemma

The primary motivation for this paper arises from the study of conjectured variants of the

arithmetic fundamental lemma for spherical Hecke algebras proposed in [LRZ24]. This section

briefly provides an overview of the historical context that led to the formulation of these

conjectures. This history is also summarized in Figure 1.1.

Because this subsection is meant for motivation only, in this survey we do not give

complete definitions or statements, being content to outline a brief gist. A more detailed

account can be found in [Zha24a].
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[Wal85]
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GGP [GGP12] FL [JR11] [Les23]

Arith. GGP [GGP12] AFL [Zha12] [LRZ24]

[YZZ13]
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used to prove

analog analog

used to prove

Figure 1.1: The history behind the fundamental lemma and its arithmetic counterpart.
Unlabeled arrows denote generalizations.

1.1.1 The GGP conjectures, and the fundamental lemma of Jacquet-

Rallis

In modern arithmetic geometry, a common theme is that there are deep connections between

geometric data with the values of related L-functions.

This story begins with a result of Waldspurger [Wal85] which showed a formula relating the

nonvanishing of an automorphic period integral to the central value of the same L-functions.

Later, a conjecture that generalizes Waldspurger’s formula was proposed by Gross-Prasad

in [GP92; GP94]. This was further generalized to a series of conjectures now known as

the Gan-Gross-Prasad (GGP) conjectures, which were proposed in 2012 in [GGP12]; they

generalize the Gross-Prasad conjecture to different classical groups. Specifically, the GGP

conjecture predict the nonvanishing of a period integral based on the values of the L-function

of a certain cuspidal automorphic representation.

In 2011, Jacquet-Rallis [JR11] proposed an approach to the Gross-Prasad conjectures

for unitary groups via a relative trace formula (RTF). The idea is to compare an RTF for
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the general linear group to one for a unitary group. This approach relies on a so-called

fundamental lemma, which links values of certain orbital integrals over two reductive groups

over a non-Archimedean local field.

Let’s be a bit more precise about what this fundamental lemma says. Let V+
n denote the

split E/F -Hermitian space of dimension n (unique up to isomorphism), fix a unit vector w0

in it, and let (V+
n )

♭ be the orthogonal complement of the span of w0. Let (G′)♭ := GLn−1(E),

G′ := GLn(E), G♭ := U((V+
n )

♭)(F ) and G := U(V+
n )(F ). For certain

γ ∈ (G′)♭ ×G′, g ∈ G♭ ×G

the Jacquet-Rallis fundamental lemma proposes a relation between two orbital integrals.

Specifically, it supplies a relation between

• the orbital integral of γ with respect to the indicator function 1(K′)♭×K′ of the natural

hyperspecial compact subgroup

(K ′)♭ ×K ′ ⊂ (G′)♭ ×G′ = GLn−1(E)×GLn(E);

and

• the orbital integral of g with respect to the indicator function 1K♭×K of the natural

hyperspecial compact subgroup

K♭ ×K ⊂ G♭ ×G = U((V+
n )

♭)(F )× U(V+
n )(F ).

In other words, it states that

Orb(γ,1(K′)♭×K′) = ω(γ)Orb(g,1K♭×K) (1.1)

where ω(γ) is a suitable transfer factor. The fundamental lemma has since been proved
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completely; a local proof was given by Beuzart-Plessis [Beu21] while a global proof was given

for large characteristic by W. Zhang [Zha21b].

1.1.2 The arithmetic GGP conjectures, and the arithmetic funda-

mental lemma

At around the same time Waldspurger’s formula was published, Gross-Zagier [GZ86] proved

a formula relating the height of Heegner points on certain modular curves to the derivative

at s = 1 of certain L-functions. The Gross-Zagier formula was then generalized over several

decades, culminating in [YZZ13] where the formula is established for Shimura curves over

arbitrary totally real fields.

An arithmetic analogue of the original Gan-Gross-Prasad conjectures, which we hence-

forth refer to as arithmetic GGP [GGP12], can then be formulated, further generalizing

Gross-Zagier’s formula. Here the modular curves in Gross-Zagier are replaced with higher

dimensional Shimura varieties. Rather than the period integrals considered previously, one

instead takes intersection numbers of cycles on some Shimura varieties. Specifically, if one

considers the Shimura variety associated to a classical group, the arithmetic GGP conjecture

predicts a relation between intersection numbers on this Simura variety with the central

derivative of automorphic L-functions.

By analogy to the work Jacquet-Rallis [JR11], the arithmetic GGP conjectures should

have a corresponding arithmetic fundamental lemma (henceforth AFL), which was proposed

by W. Zhang [Zha12, Conjecture 2.9]. The arithmetic fundamental lemma then relates the

derivative of the weighted orbital integral with respect to the indicator function 1(K′)♭×K′ ∈

H((G′)♭ ×G, (K ′)♭ ×K ′), that is

∂

∂s

∣∣∣∣
s=0

Orb(γ,1(K′)♭×K′ , s)

for γ ∈ (G′)♭ × G′, to arithmetic intersection numbers on a certain Rapoport-Zink formal
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moduli space. The AFL in [Zha12] has since been proven over p-adic fields for any large

prime p in Mihatsch-Zhang [MZ24], W. Zhang [Zha21b], and then for any odd prime p by Z.

Zhang [Zha23].

1.1.3 The semi-Lie version of the AFL proposed by Liu

There is another different version of the AFL, proposed by Yifeng Liu in [Liu21, Conjecture

1.12], which is often referred to as the semi-Lie version of the AFL. Its statement has been

shown to be equivalent to AFL, see [Liu21, Remark 1.13] and is thus now proven. In contrast,

the original AFL proposed by Zhang in [Zha12, Conjecture 2.9] is sometimes referred to as

the group version.

A more detailed account of this equivalence is described in [Liu21, §1.4].

1.1.4 Generalizations of FL and AFL to the full spherical Hecke

algebra

Recently it was shown by Leslie [Les23] that in fact (1.1) holds in greater generality where

the indicator function 1K♭×K can be replaced by any element in the spherical Hecke algebra

φ ∈ H((G′)♭×G′, (K ′)♭×K ′). In that case, 1(K′)♭×K needs to be replaced by the corresponding

element φ′ under a certain base change homomorphism

H((G′)♭ ×G′, (K ′)♭ ×K ′)→ H(G♭ ×G,K♭ ×K)

φ′ 7→ φ

In that case, the identity (1.1) still hold as

Orb(γ, φ′) = ω(γ)Orb(g, φ). (1.2)

To complete the analogy illustrated in Figure 1.1, there should thus be a generalization of the
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AFL in which 1(K′)♭×K is replaced by any element of the Hecke algebraH((G′)♭×G, (K ′)♭×K).

This conjectural generalization (for the group version of the AFL) is [LRZ24] and we discuss

it momentarily; while the analogous conjectural generalization for the semi-Lie version of the

AFL is our Conjecture 1.2.2 also discussed in the next section.

1.2 Formulation of AFL conjectures to the full spherical

Hecke algebra

1.2.1 The inhomogeneous version of the arithmetic fundamental

lemma for spherical Hecke algebras proposed by Li-Rapoport-

Zhang

In contrast to the vague motivational cheerleading in the previous section, starting in this

section we will give more precise statements, even though we will necessarily need to reference

definitions appearing in later sections.

Retain the notation G′ := GLn(E), and G := U(V+
n )(F ), with K ′ ⊂ G′ and K ⊂ G the

natural hyperspecial compact subgroups. Also, let q denote the residue characteristic of F .

Moreover, define the symmetric space

Sn(F ) := {g ∈ GLn(E) | gḡ = idn} .

Finally, let V−
n be the non-split Hermitian space of dimension n (unique up to isomorphism),

while V+
n continues to denote the split one (again unique up to isomorphism).

For concreteness, we focus on the inhomogeneous version of the arithmetic fundamental

lemma, which is [LRZ24, Conjecture 6.2.1]. This allows us to deal with just G′ instead of

(G′)♭ ×G′, etc., so that the Hecke algebra H((G′)♭ ×G′, (K ′)♭ ×K ′) can be replaced by the

simpler one H(GLn(E)) := H(G′, K ′). Similarly, H(G♭ ×G,K♭ ×K) can be replaced by the
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simpler H(U(V+
n )) := H(G,K).

The AFL conjecture provides a bridge between a geometric left-hand side (given by an

intersection number) and an analytic right-hand side (given by a weighted orbital integral).

Stating it requires several pieces of data. We only mention these pieces by name here, with

definitions given later:

• On the geometric side, we have an intersection number. It uses the following ingredients.

– We choose a regular semisimple element g ∈ U(V−
n )rs. (The notation U(V−

n )rs

denotes the regular semisimple elements of U(V−
n ), etc. The notion of regular

semisimple is defined in Definition 3.1.4.)

– We choose a function f ∈ H(U(V+
n )) from the spherical Hecke algebra, defined in

Chapter 2.

– We define a certain intersection number Int(g, f) in Definition 13.3.2. These

intersection numbers take place in a Rapoport-Zink space described in Chapter 13.

• On the analytic side, we have a weighted orbital integral. It uses the following ingredi-

ents.

– We choose a regular semisimple element γ ∈ Sn(F )rs.

– We choose a test function ϕ which comes from a certain H(GLn(E))-module that

we will denote H(Sn(F )). This module H(Sn(F )) is defined in Chapter 2.

– The weighted orbital integral Orb(γ, ϕ, s) is itself defined in Definition 5.1.1. (It

is connected to an unweighted orbital integral on the unitary group according to

Theorem 5.1.3.) We abbreviate

∂Orb(γ, ϕ) :=
∂

∂s

∣∣∣∣
s=0

Orb(γ, ϕ, s).

– There is also an extra transfer factor ω ∈ {±1} which we define in Chapter 12.
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• We need a way to connect the inputs between the two parts of our conjecture. Specifically,

f and ϕ need to be linked, and g and γ need to be linked. This is done as follows.

– Once the regular semisimple element g ∈ U(V−
n )rs is chosen, we require γ ∈ Sn(F )rs

to be a matching element. This matching is defined in Definition 3.2.1. (Alterna-

tively, one could imagine picking γ ∈ Sn(F )rs first and finding corresponding g.

It turns out γ will match an element of U(V±
n )rs in general, and the conjecture is

only formulated in the case where g ∈ U(V−
n ).)

– Once f ∈ H(U(V+
n )) is chosen, we select

ϕ = (BCηn−1

Sn
)−1(f)

to be the image of f under a base change. This base change is defined and then

calculated explicitly for n = 3 in Chapter 4.

With all our protagonists now having names and references, we can now state the conjecture

proposed in [LRZ24].

Conjecture 1.2.1 (Inhomogeneous version of the AFL for the full spherical Hecke algebra,

[LRZ24, Conjecture 6.2.1]). Let f ∈ H(U(V+
n )) be any element of the Hecke algebra, and let

ϕ = (BCηn−1

Sn
)−1(f) ∈ H(Sn(F ))

be its image under base change as defined in Chapter 4. Then for matching (as defined in

Definition 3.2.1) regular semisimple elements

g ∈ U(V−
n )rs ←→ γ ∈ Sn(F )rs

we have

Int ((1, g),1K♭ ⊗ f) = −ω(γ)
log q

∂Orb(γ, ϕ) (1.3)
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where the weighted orbital integral Orb(. . . ) is defined in Definition 5.1.1, the transfer factor

ω is defined in Chapter 12, and the intersection number Int(. . . ) is defined in Chapter 13.

At present, the (inhomogeneous) AFL is the case where f = 1K , and is thus proven. Note

that in the case of interest where γ ∈ Sn(F )rs matches an element of U(V−
n )rs (rather than

U(V+
n )rs), the actual value of Orb(γ, ϕ, s) at s = 0 is always zero by Theorem 5.1.3; so the

conjecture instead looks at the first derivative at s = 0.

The generalized conjecture is also proved in full for n = 2 in [LRZ24, Theorem 1.0.1] (in

that reference, our n denotes the n+ 1 in loc. cit.). The part of the calculation involving the

weighted orbital integral has two parts:

• The calculation makes BCηn−1

Sn
completely explicit in a natural basis for n = 2. The

result is [LRZ24, Lemma 7.1.1].

• The calculation makes explicit the value of the weighted orbital integral

Orb(γ, ϕ, s)

for any γ ∈ Sn(F )rs and ϕ ∈ H(Sn(F )), in terms of invariants of γ and a decomposition

of ϕ in a natural basis. The result is [LRZ24, Proposition 7.3.2].

Combining these two (hence obtaining the right-hand side of (1.3)) with a calculation of

intersection numbers in [LRZ24, Corollary 7.4.3] (which is the left-hand side of (1.3)) shows

that Conjecture 1.2.1 holds for n = 2, cf. [LRZ24, Theorem 7.5.1].

1.2.2 A proposed arithmetic fundamental lemma for spherical Hecke

algebras in the semi-Lie case

The primary focus of this paper is an analogous conjecture to Conjecture 1.2.1 for the semi-Lie

version (also called the Fourier-Jacobi case). It serves to complete the analogy given in

Table 1.1.
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Version AFL for 1 (now proven) Full spherical Hecke

Group [Zha12, Conjecture 2.9] [LRZ24, Conjecture 6.2.1]
Semi-Lie [Liu21, Conjecture 1.12] Conjecture 1.2.2

Table 1.1: Table showing the analogy between the proposed Conjecture 1.2.2 and the existing
conjectures.

In this variation, as in [Liu21], rather than matching g ∈ U(V−
n )rs to γ ∈ Sn(F )rs, we

consider an augmented space larger than U(V−
n ) and Sn(F ). Specifically, one considers a

matching between tuples of regular semisimple elements

(g, u) ∈ (U(V−
n )× V−

n )rs ←→ (γ,u,v⊤) ∈ (Sn(F )× V ′
n(F ))rs

where V ′
n(F ) = F n × (F n)∨ (defined in Definition 3.3.1) consists of pairs of column vectors

and row vectors of length n, and the space V−
n is defined in Definition 13.2.2. The notion of

matching is defined in Definition 3.3.1 as well.

Meanwhile, we still use the same test functions f and ϕ, as we did for [LRZ24, Conjecture

6.2.1]. The derivative of interest will be denoted

∂Orb((γ,u,v⊤), ϕ) :=
∂

∂s

∣∣∣∣
s=0

Orb((γ,u,v⊤), ϕ⊗ 1On
F×(On

F )∨ , s).

Finally, we also update the definition of intersection number to accommodate the new term

u in Definition 13.4.3.

Conjecture 1.2.2 (Semi-Lie version of the AFL for the full spherical Hecke algebra). Let

f ∈ H(U(V+
n )) be any element of the Hecke algebra, and let

ϕ = (BCηn−1

Sn
)−1(f) ∈ H(Sn(F ))

be its image under base change defined in Chapter 4. Then for matching (as defined in

30



Definition 3.3.1) regular semisimple elements

(g, u) ∈ (U(V−
n )× V−

n )rs ←→ (γ,u,v⊤) ∈ (Sn(F )× V ′
n(F ))rs

we have

Int ((g, u), f) = −ω(γ,u,v
⊤)

log q
∂Orb((γ,u,v⊤), ϕ⊗ 1On

F×(On
F )∨) (1.4)

where the orbital integral Orb(. . . ) is defined in Definition 8.1.1, the transfer factor is defined

in Chapter 12, and the intersection number Int(. . . ) is defined in Chapter 13.

Note that in this version the new orbital integral Orb((γ,u,v⊤), ϕ ⊗ 1On
F×(On

F )∨ , s) is

defined similarly. However, as far as we know, no analog of Theorem 5.1.3 (linking it to an

unweighted orbital integral on the unitary side) appears in the literature. Thus we record

the corresponding statement as Conjecture 8.1.3. Like before, Conjecture 8.1.3 predicts that

Orb((γ,u,v⊤), ϕ⊗1On
F×(On

F )∨ , 0) = 0 in the case of interest, which in this case can be checked

independently.

Remark 1.2.3. For n = 1, the Hecke algebra H(Sn(F )) is trivial and therefore Conjec-

ture 1.2.2 becomes a special case of the known result [Liu21]. Therefore n = 2 is the first

case of Conjecture 1.2.2 worth examining.

1.2.3 A proposed large image conjecture

We let Sn(F )
−
rs (resp. (Sn(F )×V ′

n(F ))
−
rs) denote the subsets of Sn(F )rs (resp. (Sn(F )×V ′

n(F ))rs)

consisting of regular semisimple elements that also match with an element of U(V−
n )rs (resp.

(U(V−
n )× V−

n )rs), i.e. those for which Conjecture 1.2.1 and Conjecture 1.2.2 apply.

In [LRZ24], it was observed that for n = 2 there was a rather large space of ϕ ∈ H(S2(F ))

such that

∂Orb (γ, ϕ) = 0
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held identically across all γ ∈ S2(F )
−
rs. If we consider the map

∂Orb: H(S2(F ))→ C∞(S2(F )
−
rs)

ϕ 7→ (γ 7→ ∂Orb (γ, ϕ))

then [LRZ24, Theorem 8.2.3] in fact shows this map has a kernel of codimension 2 (equivalently,

the image of the map was only two-dimensional). They thus stated [LRZ24, Conjecture 1.0.2]

which asserts that for n ≥ 2, a similarly defined map (albeit for more than one Hecke algebra)

has a large kernel.

It is therefore natural to ask whether a similar large kernel result could hold for the

analogous orbital integral in the semi-Lie case. We instead propose the following large image

conjecture, which we have proved for n = 2.

Conjecture 1.2.4 (Large image conjecture for (Sn(F )× V ′
n(F ))

−
rs). Let n ≥ 2. The map

∂Orb: H(Sn(F ))→ C∞
(
(Sn(F )× V ′

n(F ))
−)

ϕ 7→
(
(γ,u,v⊤) 7→ ∂Orb

(
(γ,u,v⊤), ϕ

))
is injective.

In fact for n = 2 we have a more precise result showing that the injectivity essentially

comes from v(uv⊤) alone in this case. See Theorem 1.3.5 and Theorem 1.3.6 momentarily.

1.3 Results

Most of the results here are dedicated toward the semi-Lie version of the AFL, which is the

new contribution provided by this paper. But in Section 1.3.4 we mention some other results

we proved for the group version of the AFL.
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1.3.1 Formulas for the orbital side of the semi-Lie AFL conjecture

for n = 2

The main case of interest in this thesis is the new conjectured AFL for the spherical Hecke

algebra in the semi-Lie situation in the specific case n = 2 where one can provide evidence

for the conjecture. On the orbital side, the various ingredients can be described concretely in

the following way:

• The Hecke algebra H(S2(F )) has a natural basis of indicator functions 1K′,≤r for each

r ≥ 0; see Chapter 8 for a definition.

• Suppose (γ,u,v⊤) ∈ (S2(F )×V ′
2(F ))

−
rs. Then under the action GL2(F ) we may assume

(γ,u,v⊤) is of the form

(γ,u,v⊤) =


a b

c d

 ,

0

1

 ,

(
0 e

) ∈ (S2(F )× V ′
2(F ))

−
rs

(that is, we can find a GL2(F )-orbit representative of this form). The parameters a, b,

c, d need to satisfy certain dependencies for the matching to hold; these requirements

are documented in Lemma 8.4.2.

Then we were able to derive the following fully explicit formula in terms of the represen-

tative detailed in Lemma 8.4.2. See Section 10.3 for some concrete examples and illustrations

of Theorem 1.3.1.

Theorem 1.3.1 (Explicit orbital integral on S2(F )× V ′
2(F )). Let

(γ,u,v⊤) =


a b

c d

 ,

0

1

 ,

(
0 e

) ∈ (S2(F )× V ′
2(F ))

−
rs

satisfy the requirements in Lemma 8.4.2. Let r ≥ 0.
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If v(e) < 0 or v(b) + v(c) < −2r, then

Orb((γ,u,v⊤),1K′
S,≤r
⊗ 1On

F×(On
F )∨ , s) = 0

holds identically for all s ∈ C.

Otherwise define

n(γ,u,v⊤)(k) := min
(⌊

k+(v(b)+r)
2

⌋
,
⌊
(2v(e)+v(c)+r)−k

2

⌋
, N
)

where

N := min
(
v(e), v(b)+v(c)−1

2
+ r, v(d− a) + r

)
.

Also, if v(d− a) < v(e)− r and v(b) + v(c) > 2v(d− a), then additionally define

c(γ,u,v⊤)(k) = min
(
k − (2v(d− a)− v(b) + r),

(2v(e) + v(c)− 2v(d− a)− r)− k, v(e)− v(d− a)− r
)
.

Otherwise define c(γ,u,v⊤)(k) = 0. Then we have

Orb((γ,u,v⊤),1K′
S,≤r

, s) =

2v(e)+v(c)+r∑
k=−(v(b)+r)

(−1)k
(
1 + q + q2 + · · ·+ qn(γ,u,v⊤)

(k)
)
(qs)k

+

2v(e)+v(c)−2v(d−a)−r∑
k=2v(d−a)−v(b)+r

(−1)kc(γ,u,v⊤)(k)q
v(d−a)+r(qs)k.

Differentiating this yields the following result:

Corollary 1.3.2 (Derivative at s = 0 for S2(F )×V ′
2(F )). Retain the setting of Theorem 1.3.1.

Also define κ := v(e)− (v(d− a) + r). If both κ ≥ 0 and v(b) + v(c) > 2v(d− a), then we

have the formula

(−1)v(c)+r

log q
∂Orb((γ,u,v⊤),1K′

S,≤r
)
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=
N∑
j=0

(
2v(e) + v(b) + v(c) + 1

2
+ r − 2j

)
· qj

− qv(d−a)+r ·


κ
2

if κ ≡ 0 (mod 2)(
v(e) + v(b)+v(c)

2
− 2v(d− a)− r

)
− κ

2
if κ ≡ 1 (mod 2).

Otherwise we instead have the formula

(−1)v(c)+r

log q
∂Orb((γ,u,v⊤),1K′

S,≤r
) =

N∑
j=0

(
2v(e) + v(b) + v(c) + 1

2
+ r − 2j

)
· qj.

The formula simplifies even further if one considers instead 1K′
S,≤r

+ 1K′
S,≤(r−1)

; and indeed

we will see that this particular combination comes up naturally in Chapter 15 with a special

role as the base change mentioned in [LRZ24, Lemma 7.1.1].

Corollary 1.3.3 (The special case ∂Orb((γ,u,v⊤),1K′
S,≤r

+ 1K′
S,≤(r−1)

)). Retain the setting

of Theorem 1.3.1. Also define κ := v(e)− (v(d− a) + r). For r ≥ 1 define

C :=



κ−1
2

if κ > 0 is odd and v(b) + v(c) > 2v(d− a)
κ+v(b)+v(c)−2v(d−a)−1

2
if κ ≥ 0 is even and v(b) + v(c) > 2v(d− a)

v(e)−N if v(e) ≥ v(b)+v(c)−1
2

+ r and 2v(d− a) > v(b) + v(c)

0 otherwise

C ′ :=


C + 1 if κ ≥ 0 and v(b) + v(c) > 2v(d− a)

0 otherwise.

Then

(−1)v(c)+r

log q
∂Orb((γ,u,v⊤),1K′

S,≤r
+ 1K′

S,≤(r−1)
)

= (qN + qN−1 + · · ·+ 1) + CqN + C ′qN−1
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Example 1.3.4 (Examples of Corollary 1.3.3). We show some examples of Corollary 1.3.3:

• When r = 5, v(b) = −20, v(c) = 37, v(e) = 35 and v(d − a) > v(b)+v(c)
2

= 8.5 the

derivative in Corollary 1.3.3 equals

log q · (23q13 + q12 + q11 + q10 + q9 + · · ·+ q + 1).

• When r = 6, v(b) = 10, v(c) = 5, v(e) = 7, v(d− a) > v(e)− r = 1, the derivative in

Corollary 1.3.3 equals

− log q · (q7 + q6 + q5 + · · ·+ q + 1).

• When r = 8, v(b) = −101, v(c) = 1000, v(e) = 29, v(d − a) = 11, the derivative in

Corollary 1.3.3 equals

log q · (444q19 + 445q18 + q17 + q16 + q15 + · · ·+ q + 1).

1.3.2 Kernel and image results for the semi-Lie orbital integral when

n = 2

As we mentioned our earlier conjecture Conjecture 1.2.4 is true for n = 2. More precisely, we

have the following two theorems.

Theorem 1.3.5 (∂Orb is injective even for fixed γ ∈ S2(F )). Fix any (γ,u,v⊤) ∈ (S2(F )×

V ′
2(F ))

−
rs. Then there doesn’t exist any nonzero function ϕ ∈ H(S2(F )) such that

∂Orb
(
(γ,u, ϖiv⊤), ϕ

)
= 0

holds for every integer i. Thus Conjecture 1.2.4 holds for n = 2.
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In particular, for n = 2 the map

∂Orb: H(S2(F ))→ C∞
(
(S2(F )× V ′

2(F ))
−)

ϕ 7→
(
(γ,u,v⊤) 7→ ∂Orb

(
(γ,u,v⊤), ϕ

))
is indeed injective.

Theorem 1.3.6 (The kernel of ∂Orb is large for fixed (u,v⊤) ∈ V ′
2(F )). Let N ≥ 0 be an

integer. Consider all (γ,u,v⊤) ∈ (S2(F )× V ′
2(F ))

−
rs for which v(uv⊤) ≤ N . Then the space

of ϕ ∈ H(S2(F )) for which

∂Orb
(
(γ,u,v⊤), ϕ

)
= 0

holds for all such (γ,u,v⊤) is a Q-vector subspace of H(S2(F )) whose codimension is at most

N + 2.

Moreover, this subspace of H(S2(F )) is not contained in any maximal ideal of H(S2(F ))

when H(S2(F )) is viewed as a ring under the isomorphism of Chapter 4.

Remark 1.3.7 (On formalizing large kernels). In each case the Hecke algebra is isomorphic as

a Q-algebra to Q[T ] for a single variable T = Y + Y −1. So actually it’s mildly surprising that

we get a result on finite codimension. In general, a finite codimension vector subspace of Q[T ]

could be contained in a maximal ideal, such as the codimension one subspace TQ[T ] ⊂ Q[T ].

Conversely, a finite dimension vector subspace might still not be contained in any maximal

ideal, such as the one-dimensional space Q ⊆ Q[T ].

Thus neither finite codimension nor generating all of Q[T ] as an ideal imply each other.

It might be interesting to consider other different ways of formalizing the notion of “large

kernel”.
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1.3.3 The geometric side of the semi-Lie AFL conjecture for n = 2

On the geometric side, we were also able to determine the intersection numbers subject to

the provisionsal Conjecture 14.4.4.

Theorem 1.3.8 (Semi-Lie AFL for the full Hecke algebra for n = 2). Assume Conjec-

ture 14.4.4. Then our generalized AFL conjecture, Conjecture 1.2.2, holds for n = 2.

The proof of Theorem 1.3.8 is built up gradually throughout the paper, culminating in

Chapter 15.

We comment briefly on the strategy of the proof. The proof is made possible because the

intersection numbers for n = 2 are easier to work with for a few reasons.

• First, one can identify V−
2 with an E/F -quaternion division algebra, equipped with a

compatible Hermitian form defined via quaternion multiplication. This makes it possible

to describe U(V−
2 ) concretely as transformations obtained via left multiplication by an

element of E and right multiplication by a quaternion.

• Secondly, it becomes possible to replace the so-called Rapoport-Zink spaces N2 used

in the definition of the intersection number with a Lubin-Tate space M2. Thus the

problem of computing the intersection number Int ((g, u), f) log q can be reduced to

calculating the intersection of certain special Kudla-Rapoport divisors on the space

M2.

However, on the Lubin-Tate spaceM2, there is a result known as the Gross-Keating

formula [GK93] which allows one to make this intersection number fully explicit. One

can then match the resulting equation to the formulas described in Corollary 1.3.2 and

verify that, under the base change Chapter 4 and the matching condition described in

Chapter 3, the two obtained formulas are identical.

The hypothesis Conjecture 14.4.4 is a stipulation that the pullback of two of the divisors

behaves in the way one would expect.
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1.3.4 Results for n = 3 for the group AFL

For the group AFL, we were able to fully compute the orbital integral as well. The result is

too involved to state in the introduction, but we give the following summary.

Theorem 1.3.9 (Summary of the weighted orbital integral for S3(F )). Let γ ∈ S3(F )
−
rs.

Then the weighted orbital integral Orb(γ, ϕ, s) takes the form

∑
k

Pk(q)(−qs)k

for some polynomials Pk(q) ∈ Z[q], where

• the summation variable k is some contiguous range of integers,

• the polynomials Pk ∈ Z[q] are nonzero and satisfy the property that every coefficient of

Pk besides possibly the leading coefficient is 1;

• both degPk and leading coefficient of Pk are the integer parts of piecewise linear functions

in k with slopes in {0,±1
2
,±1}.

The range of the summation, and the aforementioned piecewise linear function(s), can be

written explicitly in terms of a particular representative in the orbit of γ.

For a full statement, see Theorems 5.5.2, 5.5.7 and 5.5.10. The calculation corresponds

directly to the earlier results [LRZ24, Lemma 7.1.1 and Proposition 7.3.2] which were the

case n = 2 of the inhomogeneous group version of the AFL (note what [LRZ24] calls n is

n+ 1 in our notation). The methods, which are local in nature, are rather similar to those

employed in [Zha12], which can be thought of as the case r = 0.

Remark 1.3.10 (Theorem 1.3.9 applies to Theorem 1.3.1). Interestingly, the formula Theo-

rem 1.3.1 for (γ,u,v⊤) ∈ (S2(F )×V ′
2(F ))rs actually fits the same template as Theorem 1.3.9,

although the semi-Lie formula is more pleasant. We do not have a good explanation why the

shapes of the orbital integrals end up being so similar.
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We were also able to determine the relevant base changes in Chapter 4. However, we did

not complete the comparison on the geometric side in this situation. Thus we do not claim a

proof of n = 3 of Conjecture 1.2.1, although we imagine such a proof could be completed

once a method for determining the intersection numbers explicitly is devised. On the other

hand, the orbital data is enough to prove the following result, which serves as an analog to

Conjecture 1.2.4.

Theorem 1.3.11 (∂Orb: H(S3(F ))→ C∞(S3(F )
−
rs) has large image). There is no nontrivial

ϕ ∈ H(S3(F )) such that

∂Orb (γ, ϕ) = 0

holds for every γ ∈ S3(F )
−
rs. In other words, the map

∂Orb: H(S3(F ))→ C∞(S3(F )
−
rs)

ϕ 7→ (γ 7→ ∂Orb (γ, ϕ))

is injective, i.e., has image as large as possible, for n = 3.

Remark 1.3.12 (Comparison to [LRZ24, Conjecture 1.0.2]). Note that Theorem 1.3.11 does

not falsify [LRZ24, Conjecture 1.0.2], because the conjecture in loc. cit. is formulated for a

larger Hecke algebra H(Sn−1(F ))⊗H(Sn(F )). Meanwhile, here we have only considered an

inhomogeneous version of the AFL where the first component is 1K′ .

1.4 Roadmap

The rest of the paper is organized as follows.

1.4.1 Background information

The paper begins with some general background information.
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• In Chapter 2 we provide some preliminary background on the spaces appearing in the

overall paper and the Hecke algebras H(U(V+
n )) and H(Sn(F )).

• Further background is stated in Chapter 3, where we describe the matching of regular

semisimple elements so that we may speak of Sn(F )
−
rs and (Sn(F )× V ′

n(F ))
−
rs.

• In Chapter 4 we provide reminders on the Satake transform. We also derive concrete

formulas for base change when n = 3 (in comparison, the analogous results for n = 2 are

[LRZ24, Lemma 7.1.1]); but these formulas are only used towards the end of Chapter 11

later.

1.4.2 Introduction and calculation of the orbital integrals

We then proceed to introduce the orbital integrals.

• In Chapter 5 we introduce the weighted orbital integral for the group version of the

AFL for full spherical Hecke algebra, and state the parameters to be used for concrete

calculation in Lemma 5.3.3. In Chapters 6 and 7 we prove Theorem 1.3.9 by providing

the full formulas Theorems 5.5.2, 5.5.7 and 5.5.10.

• In Chapter 8 we introduce the weighted orbital integral for the semi-Lie version of

the AFL for full spherical Hecke algebra, and state the parameters to be used in

Lemma 8.4.2. The analogous calculation is in Chapters 9 and 10, which is used to prove

Theorem 1.3.1 and its corollaries.

1.4.3 Large kernel and image

Having completely computed the orbital integrals in these cases, we take a side trip in

Chapter 11 to prove the large image results asserted. We establish Conjecture 1.2.4 for

n = 2 by proving the asserted Theorem 1.3.5 and Theorem 1.3.6 for the orbital integral on

(S2(F )× V ′
2(F ))

−
rs. We also prove Theorem 1.3.11 for the orbital integral on S3(F )

−
rs.
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1.4.4 Geometric side

We then turn our attention to the other parts of the two versions of the AFL. In addition to

stating the relevant definitions, the subsequent chapters aim to prove Theorem 1.3.8.

• In Chapter 12 we briefly define the transfer factors ω ∈ {±1}.

• In Chapter 13, we describe the Rapoport-Zink spaces Nn that the geometric side is

based on, and define the intersection numbers Int((1, g), 1K♭ ⊗ f) and Int((g, u), f) that

appear in the two version of the generalized AFL. The main ingredients are the Hecke

operator introduced in [LRZ24] and the KR-divisor Z(u) introduced in [KR11].

• In Chapter 14, we specialize to the situation n = 2 for the intersection numbers in the

semi-Lie AFL only. The Rapoport-Zink space N2 become replaced with Lubin-Tate

spaceM2, and we introduce the Gross-Keating formula that will be our primary tool

for the calculation.

Finally, in Chapter 15 we tie everything together and establish Theorem 1.3.8.

An approximate dependency chart between the chapters is given in Figure 1.2.
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2. Background

4. Base change 3. Matching 12. Transfer

5. Group orbital 11. Large kernel 8. Semi-Lie orbital

6+7. Group orbital proof 9+10. Semi-Lie orbital proof

13. Int numbers

14. Gross-Keating 15. Prove Theorem 1.3.8

Figure 1.2: Dependency chart of the chapters in this paper, arranged to loosely resemble the
Batman logo.
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Chapter 2

General background

2.1 Notation

We provide a glossary of notation that will be used in this paper. As mentioned in the

introduction, p > 2 is a prime, F is a finite extension of Qp, and E/F is an unramified

quadratic field extension.

• For any a ∈ E, we let ā denote the image of a under the nontrivial automorphism of

Gal(E/F ). (Hence a = ā exactly when a ∈ F .)

• Fix ε ∈ O×
F such that E = F [

√
ε].

• Denote by ϖ a uniformizer of OF , such that ϖ̄ = ϖ.

• Let q := |OF/ϖ| be the residue characteristic. (Hence |OE/ϖ| = q2.)

• Let v be the associated valuation for ϖ.

• Let η be the quadratic character attached to E/F by class field theory, so that

η(x) = −1v(x).

• V+
n denotes a split E/F -Hermitian space of dimension n (unique up to isomorphism).
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• Let β denote the n× n antidiagonal matrix

β :=


1

. .
.

1


and pick the basis of V+

n such that the Hermitian form on V+
n is given by

V+
n × V+

n → E (x, y) 7→ x∗βy.

• Set

U(V+
n ) = {g ∈ GLn(OE) | g∗βg = β}

the unitary group over V+
n . Note that β is antidiagonal, in contrast to the convention

β = idn that is often used for unitary matrices with entries in C. The natural

hyperspecial maximal compact subgroup is

U(V+
n ) ∩GLn(OE).

In some parts of the paper we abbreviate G = U(V+
n ) and K = U(V+

n ) ∩ GLn(OE)

following the convention in [LRZ24].

• Let K ′ := GLn(OE) denote the hyperspecial maximal compact subgroup of G′ :=

GLn(E).

• Let V−
n denote the non-split E/F -Hermitian space of dimension n (unique up to

isomorphism), and U(V−
n ) the corresponding unitary group. This space will be realized

in Chapter 13.
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2.2 Intersection of disks in an ultrametric space

The following two lemmas will be useful for both versions of the orbital integral. It is a slight

rephrasing of [Zha12, Lemma 4.4].

Lemma 2.2.1 (One-disk volume lemma). Let ξ ∈ O×
E , ρ ∈ Z, and n ≥ max(ρ, 1) an integer.

Then

Vol ({x ∈ E | v(1− xx̄) = n, v(x− ξ) ≥ ρ})

=


0 if v(1− ξξ̄) < ρ

q−n(1− q−2) if ρ ≤ 0

q−(n+ρ)(1− q−1) if v(1− ξξ̄) ≥ ρ ≥ 1.

Proof. When ρ ≤ 0, the condition v(x− ξ) ≥ ρ is vacuously true, so we just are computing

Vol ({x ∈ E | v(1− xx̄) = n}) .

However, in general for any Schwartz function ψ on E we have an identity

∫
E

ψ(x) dx =
1

1− q−1

∫
y∈F

∫
t∈O×

E

ψ

(
xt ·

y

ȳ

)
dy dt (2.1)

where xt is any choice of element xt ∈ E such that t = xtx̄t (see the proof of [Zha12, Lemma

4.4]). Note the measures here are additive despite t ∈ O×
E . So if one selects

ψ(x) = 1v(1−N(x))=n

then we get

Vol ({x ∈ E | v(1− xx̄) = n}) = 1

1− q−1

∫
t∈F

∫
y∈O×

E

1v(1−N(xt· yȳ ))=n dy dt
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=
1

1− q−1

∫
t∈F

∫
y∈O×

E

1v(1−t)=n dy dt

=
VolE(O

×
E)

1− q−1
· VolF (1 +ϖ−nO×

F )

=
1− 1

q2

1− q−1
·
(
q−n ·

(
1− 1

q

))
= q−n(1− q−2).

The case ρ > 0 is proved in [Zha12, Lemma 4.4] using the same method of using (2.1).

We also comment on the well-known fact that in an ultrametric space, any two disks are

either disjoint or one is contained in the other. See Figure 2.1.

Lemma 2.2.2 (No ultrametric MasterCard logo). Choose ξ1, ξ2 ∈ E and ρ1 ≥ ρ2. Consider

the two disks:

D1 = {x ∈ E | v(x− ξ1) ≥ ρ1}

D2 = {x ∈ E | v(x− ξ2) ≥ ρ2} .

Then, if v(ξ1 − ξ2) ≥ ρ2, we have D1 ⊆ D2. If not, instead D1 ∩D2 = ∅.

Proof. Because E is an ultrametric space and Vol(D1) ≤ Vol(D2), we either have D1 ⊆ D2

or D1 ∩D2 = ∅. The latter condition checks which case we are in by testing if ξ1 ∈ D2, since

ξ1 ∈ D1.

We package both of these results together in this lemma that will be used repeatedly.

Lemma 2.2.3 (Two-disk volume lemma). Let ξ1, ξ2 ∈ O×
E and let ρ1 ≥ ρ2 be integers. Also

let n ≥ max(ρ1, 1) be an integer. Then the set of points x ∈ E satisfying all of the equations

v(x− ξ1) ≥ ρ1

v(x− ξ2) ≥ ρ2
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ξ1

ξ2

q−ρ1

q−ρ2

Figure 2.1: Figure corresponding to Lemma 2.2.2.

v(1− xx) = n

has positive volume if and only if

v(1− ξ1ξ̄1) ≥ ρ1, ρ2 ≤ v(ξ1 − ξ2).

In that case, the volume is equal to


q−(n+ρ1)(1− q−1) if ρ1 ≥ 1

q−n(1− q−2) if ρ1 ≤ 0.

In the situation where ξi /∈ O×
E , the quantity v(x−ξi) = min(0, v(ξi)) becomes independent

of the value of x, and so Lemma 2.2.3 becomes unnecessary (Lemma 2.2.1 will suffice). We

will deal with this situation when it arises; it turns out this will only occur when v(b) ̸= 0.
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2.3 The spaces Sn(F ) and Sn(F ) × V ′
n(F )

For the analytic side of the two AFL conjectures we investigate, the following two spaces will

be used as inputs to our weighted orbital integrals.

Definition 2.3.1 (Sn(F ); [Zha24a, (4.10)]). We define the symmetric space

Sn(F ) := {g ∈ GLn(E) | gḡ = idn} .

It has a natural left action of GLn(E) by

GLn(E)× Sn(F )→ Sn(F )

g · γ := gγḡ−1.

Definition 2.3.2 (V ′
n(F ); [Zha24a, (4.11)]). We set

V ′
n(F ) := F n × (F n)∨

where −∨ denotes the F -dual space, i.e., (F n)∨ = HomF (F
n, F ). Then we may also consider

the augmented space

Sn(F )× V ′
n(F ).

If we identify F n with column vectors of length n− 1 and (F n)∨ with row vectors of length n

then we have a left action of GLn(F ) by

GLn(F )× (Sn(F )× V ′
n)(F )→ Sn(F )× V ′

n(F )

h · (γ,u,v⊤) := (hγh−1, hu,v⊤h−1).
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Note that according to the embedding

Sn(F )× V ′
n(F ) ↪→ Matn+1(E)

(γ,u,v⊤) 7→

 γ u

v⊤ 0


we can consider elements of Sn(F )× V ′

n(F ) as elements of Matn+1(E) too. In that case the

action of h ∈ GLn+1(F ) coincides with h · g 7→ hgh̄−1 as well.

Definition 2.3.3 (K ′
S). For brevity, let

K ′
S := Sn(F ) ∩GLn(OF ).

2.4 Definition of Hecke algebra

We reminder the reader the definition of a Hecke algebra. For this subsection, G will denote

any unimodular locally compact topological group, and K any closed subgroup of G.

Definition 2.4.1 (H(G,K)). The Hecke algebra

H(G,K) := Q[K\G/K]

is defined as the space of compactly supported K-bi-invariant locally constant functions on

G. (The adjective spherical Hecke algebra refers to the special case where K is a maximal

compact subgroup of G, which is the main case of interest for us.)

Given two such functions f1 and f2 in H(G,K), one can consider define the convolution

(f1 ∗ f2)(g) :=
∫
G

f1(g
−1x)f2(x) dx

which makes H(G,K) into a Q-algebra, whose identity element is 1K .
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In other sources, this may be denoted HK(G) or even just HK . (So what is written in

HK′♭⊗K′ in other places will be written as H(G′♭ ⊗G′, K ′♭ ⊗K ′) here).

In the case where G is a reductive Lie group and K is the maximal compact subgroup (or

more generally whenever (G,K) is a Gelfand pair), this Hecke algebra is actually commutative.

2.5 The specific Hecke algebras H(GLn(E)) and H(U(V+
n ))

and the module H(Sn(F ))

For our purposes, we define shorthands for two specific Hecke algebras that will come up

consistently:

H(GLn(E)) := H(GLn(E),GLn(OE))

H(U(V+
n )) := H(U(V+

n ),U(V+
n ) ∩GLn(OE)).

Note that GLn(OE) and U(V+
n ) ∩GLn(OE) are the natural hyperspecial maximal compact

subgroups of GLn(E) and U(V+
n ), respectively.

Now the symmetric space Sn(F ) is not a group, so it does not make sense to define the

same thing here. Nevertheless, we introduce

H(Sn(F )) := C∞c (Sn(F ))
K′

as the set of smooth compactly supported functions on Sn(F ) which are invariant under the

action of K ′ ⊆ G′; this is an H(GLn(E))-module, where the action of f ∈ H(GLn(E)) on

ϕ ∈ H(Sn(F )) is given by

(f · ϕ)(γ) :=
∫
G

f(g)ϕ(g · γ) dg

for γ ∈ Sn(F ). This does not have a multiplication structure at the moment, a priori.

However, we will later (in Chapter 4) give an isomorphism from H(Sn(F )) to H(U(V+
n )) as
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Q-vector spaces; since the latter is a Q-algebra, this induces a multiplication structure on

H(Sn(F )) and consequently we may speak of H(Sn(F )) as a ring under this isomorphism.

Throughout this paper, to be consistent with the notation, we denote

• elements of H(U(V+
n )) using f or fi or similar (i.e. lowercase Roman letters);

• elements of H(GLn(E)) by f ′ or f ′
i or similar (i.e. lowercase Roman letters with

apostrophes);

• elements of H(Sn(F )) by ϕ or ϕi (i.e. lowercase Greek letters).
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Chapter 3

Regular semi-simplicity and matching

3.1 Regular semi-simple elements

We first recall the notion of regularity that first appeared in [RS07, §6].

Definition 3.1.1 (Regular semisimple in Matn(E)). Consider a n× n matrix

 A u

v⊤ d

 ∈ Matn(E)

where A is an (n− 1)× (n− 1) matrix. Then we say this matrix is regular semi-simple if

〈
u, Au, . . . , An−2u

〉
and 〈

v⊤,v⊤A, . . . ,v⊤An−2
〉

are each a basis of En−1. Equivalently, the matrix

[
v⊤Ai+j−2u

]n−1

i,j=1
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should be nonsingular.

Remark 3.1.2 (Equivalent definition of regular semisimple). In [RS07, Theorem 6.1], this

definition is shown to be equivalent to requiring that, under the action of conjugation by

GLn−1(E):

• the matrix has trivial stabilizer; and

• the GLn−1(E)-orbit is a Zariski-closed subset of GLn(E).

Here E is as usual an algebraic closure of E.

Remark 3.1.3 (Invariants under GLn−1(E) conjugation; [RS07, Proposition 6.2]). It turns

out we can detect whether two regular semisimple elements

A1 u1

v⊤
1 d1

 ,

A2 u2

v⊤
2 d2

 ∈ Matn(E)

are conjugate by an element of GLn−1(E). This happens if and only if the following conditions

all hold:

• The matrices A1 and A2 have the same characteristic polynomial;

• We have

v⊤
1 A

i
1u1 = v⊤

2 A
i
2u2

for every i = 0, 1, . . . , n− 2; and

• We have d1 = d2.

Thus, this gives a set of invariants that completely classify the orbits under the action of

GLn−1(E).

Put another way, the invariants of

 A u

v⊤ d

 ∈ Matn(E)
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are the (monic) characteristic polynomial of A (which has n − 1 coefficients besides the

leading coefficient), the values of v⊤Aiu for i = 0, . . . , n− 2 and the number d, for a total of

2n− 1 numbers.

We can now speak of regular-simplicity in each of the four particular cases relevant to

this paper.

Definition 3.1.4 (Regular semisimple). In the group version of the AFL:

• We say γ ∈ Sn(F ) is regular semisimple if its image under the inclusion Sn(F ) ⊆

Matn(E) is regular semisimple. We write γ ∈ Sn(F )rs.

• For g ∈ U(V±
n ), we say g is regular semisimple if its image under the inclusion U(V±

n ) ⊆

Matn(E) is regular semisimple. We write g ∈ U(V±
n )rs.

In the semi-Lie version of the AFL:

• We say (γ,u,v⊤) ∈ Sn(F )×V ′
n(F ) is regular semisimple if its image under the embedding

Sn(F )× V ′
n(F ) ↪→ Matn+1(E)

(γ,u,v⊤) 7→

 γ u

v⊤ 0

 (3.1)

is regular semisimple. In other words, we require that both of the sets (u, γu . . . , γn−1u)

and
(
v⊤,v⊤γ, . . . ,v⊤γn−1

)
are bases of En. In this case we write (γ,u,v⊤) ∈ (Sn(F )×

V ′
n(F ))rs.

• For (g, u) ∈ U(V±
n ) × V±

n we say (g, u) is regular semisimple if its image under the

embedding

U(V±
n )× V±

n ↪→ Matn+1(E)

(g, u) 7→

 g u

u∗ 0

 (3.2)

57



is regular semisimple. Here u∗ is the conjugate transpose.

This is equivalent to the set (u, gu, . . . , gn−1u) being linearly independent (i.e. form a

basis of V±
n ); in this case the independence of (u∗, u∗g, . . . , u∗gn−1) is redundant, so it’s

enough to verify one condition. We write (g, u) ∈ (U(V±
n )× V±

n )rs.

3.2 Matching in the group version of the inhomogeneous

AFL

We now describe the matching condition used in the group version of AFL.

Definition 3.2.1 (Matching Sn(F )rs ←→ U(V±
n )rs; [Zha12, p. 202]). We say γ ∈ Sn(F )rs

matches the element g ∈ U(V±
n )rs if g is conjugate to γ by an element of GLn−1(E). By

Remark 3.1.3, this is an assertion that the invariants for γ and g coincide.

In that case, we have the following result.

Proposition 3.2.2 ([Zha12, Lemma 2.3]; see also [LRZ24, (3.3.2)]). This definition of

matching gives a bijection of regular semisimple orbits

[Sn(F )]rs
∼−→ [U(V+

n )]rs ⨿ [U(V−
n )]rs.

Moreover, we can detect whether γ ∈ Sn(F )rs matches an orbit of U(V+
n )rs or U(V−

n )rs as

follows. Suppose we write γ in the format of Definition 3.1.1 and consider

∆ := det
[
v⊤Ai+j−2u

]n−1

i,j=1
̸= 0.

Then

• γ matches an orbit in U(V+
n )rs if v(∆) is even;
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• γ matches an orbit in U(V−
n )rs if v(∆) is odd.

In this paper, Conjecture 1.2.1 requires that γ should match an element of U(V−
n )rs and

consequently we will usually only be interested in the latter case. We write the following

abbreviation:

Definition 3.2.3 (Sn(F )
±
rs). We let

Sn(F )
−
rs ⊂ Sn(F )rs

denote the subset of elements in Sn(F )rs that match with an element in U(V−
n )rs. Define

Sn(F )
+
rs similarly. Hence Sn(F )rs = Sn(F )

−
rs ⨿ Sn(F )

+
rs.

3.3 Matching in the semi-Lie version of the AFL

For the semi-Lie version matching is defined analogously:

Definition 3.3.1 (Matching (Sn(F )× V ′
n(F ))rs ←→ (U(V±

n )× V±
n )rs; [Liu21, §1.3]). We say

(γ,u,v⊤) ∈ (Sn(F )× V ′
n(F ))rs matches the element (g, u) ∈ (U(V±

n )× V±
n )rs if their images

under the embeddings (3.1) and (3.2) are conjugate by an element of GLn(E).

Unwrapping this with Remark 3.1.3, an equivalent definition is to require both of the

following conditions:

• As elements of GLn(E), both g and γ have the same characteristic polynomial.

• We have v⊤γiu = ⟨giu, u⟩ for all 0 ≤ i ≤ n− 1, where ⟨−,−⟩ is the Hermitian form on

V±
n .

We have the following analogous criteria for matching.

Proposition 3.3.2 ([Liu21]). This definition of matching gives a bijection of regular semisim-

ple orbits

[Sn(F )× V ′
n(F )]rs

∼−→ [U(V+
n )× V+

n ]rs ⨿ [U(V−
n )× V−

n ]rs.
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Moreover, we can detect whether (γ,u,v⊤) ∈ Sn(F )rs matches an orbit of (U(V+
n )×V+

n )rs or

(U(V−
n )× V−

n )rs as follows: consider the determinant

∆ := det
[
v⊤γi+j−2u

]n
i,j=1
̸= 0.

Then

• γ matches an orbit in (U(V+
n )× V+

n )rs if v(∆) is even;

• γ matches an orbit in (U(V−
n )× V−

n )rs if v(∆) is odd.

In this paper, Conjecture 1.2.2 requires that (γ,u,v⊤) should match an element of

(U(V−
n ) × V−

n )rs and consequently we will usually only be interested in the latter case.

Accordingly we write the following shorthand:

Definition 3.3.3 ((Sn(F )× V ′
n(F ))

±
rs). We let

(Sn(F )× V ′
n(F ))

−
rs ⊂ (Sn(F )× V ′

n(F ))rs

denote the subset of those elements in (Sn(F ) × V ′
n(F ))rs that match with an element

of (U(V−
n ) × V−

n )rs. Define (Sn(F ) × V ′
n(F ))

+
rs analogously. Hence (Sn(F ) × V ′

n(F ))rs =

(Sn(F )× V ′
n(F ))

−
rs ⨿ (Sn(F )× V ′

n(F ))
+
rs.
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Chapter 4

Base change

This section introduces necessary background material on the base change

BCηn−1

Sn
: H(Sn(F ))→ H(U(V+

n )).

Throughout this section we let Sym(n) denote the symmetric group in n variables with

order n! (since Sn(F ) ⊆ GLn(E) is already reserved for the symmetric space).

4.1 Background on the Satake transform in general

We recall a general form of the Satake transform, which will be used later.

For this subsection, G will denote an arbitrary connected reductive group over some

non-Archimedean local field F . We will not distinguish between G and G(F ) when there is

no confusion.

To simplify things, we will assume G is unramified; but we do not assume G is split.

Introduce the following notation:

• Let K be a hyperspecial maximal compact subgroup of G (it exists because G is

unramified).
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• Let A denote a maximal F -split torus in G. All the maximal F -split tori in G are

conjugate; let A denote one of them.

• Let M be the centralizer of A; this is itself a maximal torus in G.

• Let ◦M :=M(F ) ∩K be the maximal compact subgroup of M .

• Let P denote a minimal F -parabolic containing A.

• Let δ denotes the modulus character of P . It can be describes as follows. Let ϖ denote

a uniformizer for F and q the residue characteristic. Then if ρ is the Weyl vector and µ

is a positive cocharacter, then

δ(µ(ϖ)) = q−⟨µ,ρ⟩.

• Let N denote the unipotent radical of P .

• Let W be the relative Weyl group for the pair (G,A), which acts on H(M, ◦M).

We can now state the Satake isomorphism.

Definition 4.1.1 (Satake transform). The Satake transform is a canonical isomorphism of

Hecke algebras

Sat : H(G,K)→ H(M, ◦M)W

which is given by defining

(Sat(f))(t) := δ(t)
1
2

∫
N

f(nt) dn

for each t ∈M .

We are going to apply this momentarily in two situations: once when G is the general

linear group (which is split), and once when G is a unitary group.
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4.2 The Satake transform for the particular Hecke alge-

bras H(GLn(E)) and H(U(V+
n ))

To take the Satake transform of H(U(V+
n )), we define the following abbreviations.

• Let T denote the split diagonal torus of GLn.

• Let

N ′ :=





1 ∗ . . . ∗

1 . . . ∗
. . .

...

1




⊆ GLn(E)

denote the unipotent upper-triangular matrices.

Similarly for H(U(V+
n )):

• Set m := ⌊n/2⌋ for brevity.

• Let

A :=
{
diag(x1, . . . , xm, 1n−2m, x

−1
m , . . . , x−1

1 )
}

so that A(F ) is a maximal F -split torus of U(V+
n ).

• Let N := N ′ ∩G denote the unipotent upper triangular matrices which are also unitary.

• For brevity, let Wm := (Z/2Z)m ⋊ Sym(m) be the relative Weyl group of (G,A).

We can now introduce the Satake transform for our two bona fide Hecke algebras, using

the data in Table 4.1.

Hence, the Satake transforms obtained can be viewed as

Sat : H(GLn(E))
∼−→ Q[T (E)/T (OE)]

Sym(n)
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Group G′ = GLn(E) G = U(V+
n )

Local field E F
Hyperspecial compact K ′ = GLn(OE) K = G ∩GLn(OE)
Max’l split torus T (E) A(F )
Centralizer of split torus T (OE) A(OF )
Parabolic (Borel) Upper tri in G′ Upper tri in G
Unipotent rad. of parabolic N ′ (unipot. upper tri) N (unipot. upper tri)
Relative Weyl group Sym(n) Wm = (Z/2Z)m ⋊ Sym(m)

Table 4.1: Data needed to run the Satake transform.

Sat : H(U(V+
n ))

∼−→ Q[A(F )/A(OF )]
Wm

(In both cases, the modular character δ1/2 gives rational values, so it is okay to work over Q.)

To make this further concrete, we remark that the cocharacter groups involved are free

abelian groups with known bases. This identification lets us rewrite the right-hand sides

above as concrete polynomials. Specifically, we identify

Q[T (E)/T (OE)]
Sym(n) ∼−→ Q[X±

1 , . . . , X
±
n ]

Sym(n)

by identifying Xi with the cocharacter corresponding to injection into the ith factor. Similarly,

we identify

Q[A(F )/A(OF )]
Wm ∼−→ Q[Y ±

1 , . . . , Y
±
m ]Wm

by identifying Yi + Y −1
i with the cocharacter corresponding to

x 7→ diag(1, . . . , x, . . . , x−1, . . . , 1)

where x is in the ith position and x−1 is in the (n− i)th position, and all other positions are

1. Here Q[Y ±
1 , . . . , Y

±
m ]Wm denotes the ring of symmetric polynomials in Yi + Y −1

i .
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So, henceforth, we will consider

Sat : H(GLn(E))
∼−→ Q[X±

1 , . . . , X
±
n ]

Sym(n)

Sat : H(U(V+
n ))

∼−→ Q[Y ±
1 , . . . , Y

±
m ]Wm .

4.3 Relation of Satake transform to base change

Let

BC: H(GLn(E))→ H(U(V+
n ))

denote the stable base change morphism from GLn(E) to the unitary group U. The relevance

of the Satake transform is that (see e.g. [Les23, Proposition 3.4]) it gives a way to make this

BC completely explicit: we have a commutative diagram

H(GLn(E)) Q[X±
1 , . . . , X

±
n ]

Sym(n)

H(U(V+
n )) Q[Y ±

1 , . . . , Y
±
m ]Wm

∼
Sat

BC BC

∼
Sat

Here the right arrow is also denoted BC following [LRZ24] (although it is denoted ν in [Les23]).

This gives a way in which we can concretely calculate the map BC in some situations.

4.4 The map BCηn−1

Sn

Before we can define the map BCηn−1

Sn
we need one more piece of notation. Consider the

following map.

Definition 4.4.1 (proj). Denote by proj : GLn(E) ↠ Sn(F ) the projection defined by

proj(g) := gḡ−1.
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Then proj induces a map

proj∗ : H(GLn(E))→ H(Sn(F ))

proj∗(f
′)
(
gḡ−1

)
=

∫
GLn(F )

f ′(gh) dh

by integration on the fibers. A similar twisted version by η

projη∗ : H(GLn(E))→ H(Sn(F ))

projη∗(f
′)
(
gḡ−1

)
=

∫
GLn(F )

f ′(gh)η(gh) dh

is defined analogously, where as before η(g) = (−1)v(det g) in a slight abuse of notation.

Then Leslie [Les23] shows the following result.

Theorem 4.4.2 ([Les23, Theorem 3.2 and Proposition 3.4]). Both maps proj∗ and projη∗

induce isomorphisms

BCSn : H(Sn(F ))
∼−→ H(GLn(E))

BCηn−1

Sn
: H(Sn(F ))

∼−→ H(GLn(E))

such that

BC = BCSn ◦ proj∗

BC = BCηn−1

Sn
◦ projηn−1

∗ .

We take these isomorphisms promised by this theorem as the definition of BCSn and

BCηn−1

Sn
in our conjectures (noting when n is odd they coincide, as ηn−1 = 1).

When combined with the Satake information we have, we get the following diagram.
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H(GLn(E)) Q[X±
1 , . . . , X

±
n ]

Sym(n)

H(U(V+
n )) Q[Y ±

1 , . . . , Y
±
m ]Wm

H(Sn(F ))

projη
n−1

∗

∼
Sat

BC BC

∼
Sat

∼ BCηn−1

Sn

4.5 Calculation of BCSn when n = 3

The goal of this section is to make the base change fully known in the special case n = 3,

where m = ⌊n/2⌋ = 1. (In this case BCηn−1

Sn
= BCSn as η2 = 1.) The completed result is

Proposition 4.5.4.

This calculation parallels the n = 2 case that was done in [LRZ24, Lemma 7.1.1]. However,

we will not use these results again later on. When it is not more difficult, some of the results

will be stated for all n, rather than n = 3 specifically.

4.5.1 Overview

Throughout this subsection, we use the shorthand

ϖ(n1,n2,n3) := diag(ϖn1 , ϖn2 , ϖn3).

As a Q-module, the spaces H(U(V+
n )) and H(Sn(F )) have a canonical basis of indicator

functions indexed by Z:

• H(Sn(F )) has Q-module basis 1K′
S,j

for j ≥ 0.

• H(U(V+
n )) has a Q-module basis given by the indicator functions

1ϖ−r Mat(OE)∩U(V+
n )

for r ≥ 0.
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On the other hand, the natural Q-module basis for H(GLn(E)), namely

1K′ϖ(n1,n2,n3)K′

is given by triples of integers n1 ≥ n2 ≥ n3 ≥ 0, and is much larger. So explicit calculations

for the proj∗ or the Satake transforms viewed in C[X1, X2, X3]
Sym(n) are nontrivial if one

works with the entire basis.

Hence the overall strategy, to reduce the amount of work we have to do, is to focus on

only the Z-indexed elements

1Mat3(OE),v◦det=r =
∑

n1≥n2≥n3
n1+n2+n3=r

1K′ϖ(n1,n2,n3)K′ ∈ H(GLn(E))

for r ≥ 0. This aggregated indicator function is easier to compute, because given an explicit

matrix it is somewhat easier to evaluate

1Mat3(OE),v◦det=r

at it (one only needs to check it has OE entries and that the determinant has valuation r,

rather than determining the exact coset K ′ϖ(n1,n2,n3)K ′).

4.5.2 Satake transform of the determinant characteristic function

on the top arrow

This is the easiest calculation, and we do it for all n rather than just n = 3.

Proposition 4.5.1 (Satake transform for v ◦ det = r). For every integer r ≥ 0, we have

Sat(1Matn(OE),v◦det=r) = q(n−1)r
∑

e1···+en=r

Xe1
1 . . . Xen

n .
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Proof. We evaluate the coefficient Xe1
1 . . . Xen

n . Choose a cocharacter µ, and suppose µ(ϖ) =

ϖ(e1,...,en) with n1 ≥ n2 ≥ n3. Let qE = q2 be the residue characteristic of E. Take the upper

triangular matrices as our Borel subgroup as usual, so the unipotent radical of this Borel

subgroup are the unipotent upper triangulars N ′ which we describe as

N ′ :=





1 y12 y13 . . . y1n

1 y23 . . . y2n

1 . . . y3n
. . .

...

1


| y12, . . . , y(n−1)n ∈ E


and with additive Haar measure is dy12 dy23 . . . dy(n−1)n. Recall also the Weyl vector for

GLn(E) is just

ρGLn(E) =

〈
n− 1

2
,
n− 3

2
, . . . ,−n− 1

2

〉
.

Compute

Sat(1Matn(OE),v◦det=r)(µ(ϖ))

= δ(µ(ϖ))
1
2

∫
n′∈N ′

1Matn(OE ,v◦det=r)(µ(ϖ)n′) dn′

= q
−⟨µ,ρ⟩
E

∫
y12∈E

∫
y13∈E

. . .

∫
y(n−1)n∈E︸ ︷︷ ︸

(n2) integrals

1Mat3(OE),v◦det=r





ϖe1 ϖe1y12 ϖe1y13 . . . ϖe1y1n

ϖe2 ϖe2y23 . . . ϖe2y2n

ϖe3 . . . ϖe3y3n
. . .

...

ϖen




dy12 dy23 . . . dy(n−1)n
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= q
−(n−1

2
e1+

n−3
2

e2+···+−n−1
2

en)
E 1e1+···+en=r

∫
y12∈E

∫
y13∈E

. . .

∫
y(n−1)n∈E︸ ︷︷ ︸

(n2) integrals∏
1≤i<j≤n

1OE
(ϖeiyij) dyij

= q
−(n−1

2
e1+

n−3
2

e2+···+−n−1
2

en)
E 1e1+···+en=r

∏
1≤i<j≤n

qeiE

= q
−(n−1

2
e1+

n−3
2

e2+···+−n−1
2

en)
E 1e1+···+en=r

∏
1≤i≤n

q
(n−i)ei
E

= 1e1+···+en=r

n∏
1≤i≤n

q
n−1
2

ei
E

= q
n−1
2

r

E 1e1+···+en=r

=


q

n−1
2

r if e1 + · · ·+ en = r

0 otherwise.

This gives the sum claimed earlier.

4.5.3 Satake transform of the indicator on the bottom arrow

Proposition 4.5.2 (Satake transform for ϖ−r Mat3(OE) ∩ U(V+
3 )). For each r ≥ 0 we have

Sat
(
1ϖ−r Mat3(OE)∩U(V+

3 )

)
=

r∑
i=0

q2r−1r≡i mod 2Y ±i
1

where we adopt the shorthand

Y ±i
1 :=


Y i
1 + Y −i

1 i > 0

1 i = 0.

Proof. We first need to describe

N = N ′ ∩ U(V+
3 )
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a little more carefully. For n ∈ N ′ we have

n∗βn =


1

ȳ1 1

ȳ2 ȳ3 1

 β


1 y1 y2

1 y3

1

 =


1

1 y3 + ȳ1

1 y1 + ȳ3 y2 + ȳ2 + y3ȳ3

 .

So n ∈ N if and only if the above matrix equals β, which means

0 = y3 + ȳ1 = y2 + ȳ2 + y3ȳ3.

Then we can re-parametrize by z1, z2, z3 ∈ F according to

y3 = z1 + z2
√
ε

y2 = −
z21 + z22ε

2
+ z3
√
ε

y1 = −z1 + z2
√
ε.

Back to the original task. For each i ≥ 0 we can evaluate the Satake transform at the element

ν(ϖ) = diag(ϖi, 1, ϖ−i), for the cocharacter ν corresponding to Y i
1 + Y −i

1 :

Sat
(
1ϖ−r Mat3(OE)∩U(V+

3 )

)
(ν(ϖ))

= δ(ν(ϖ))
1
2

∫
n∈N

1ϖ−r Mat3(OE)∩U(V+
3 ) (ν(ϖ)n′) dn

= δ(ν(ϖ))
1
2

∫
n∈N

1ϖ−r Mat3(OE)∩U(V+
3 )



ϖi ϖiy1 ϖiy2

1 y3

ϖ−i


 dn

The matrix itself is always in U(V+
3 ), because it’s the product of two unitary matrices. So

the indicator needs to check whether all the entries have valuation at least −r. If we switch

characterization to the coordinates z1, z2, z3 we described earlier, we see that the conditions
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are

i ≤ r,

v(z1) ≥ −r,

v(z2) ≥ −r,

v(z3) ≥ −(r + i),

v(z21 + z22ε) ≥ −(r + i).

Assume i ≤ r henceforth. The condition for z1 and z2 then really says

min(v(z1), v(z2)) ≥ −
⌊
r + i

2

⌋
.

So the integral factors as a triple integral

∫
z1∈F

∫
z2∈F

∫
z3∈F

1
ϖ

−⌊ r+i
2 ⌋OF

(z1)1
ϖ

−⌊ r+i
2 ⌋OF

(z2)1ϖ−(r+i)OF
(z3) dz1 dz2 dz3

which is equal to

q2⌊ r+i
2 ⌋+r+i.

Meanwhile, δ(ν(ϖ))
1
2 = q−2i. In summary,

Sat
(
1ϖ−r Mat3(OE)∩U(V+

3 )

)
(ν(ϖ)) =


q2⌊ r+i

2 ⌋−i+r i ≤ r

0 i > r

Finally, since

2

⌊
r + i

2

⌋
− i+ r =


2r r + i is even

2r − 1 r + i is odd

we get the formula claimed.
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4.5.4 Integration over fiber

Proposition 4.5.3 (Integration over fiber). For every integer r ≥ 0, we have

proj∗(1Mat3(OE),v◦det=r)

=
r∑

j=0

2(r−j)∑
i=0

min

(
1 +

⌊
i

2

⌋
, 1 +

⌊
2(r − j)− i

2

⌋)
qi

1K′
S,j
.

Proof. The coefficient of 1K′
S,j

will be equal to the evaluation of the integral at any g such

that gḡ ∈ K ′
S,j. Fixing j ≥ 0, we are going to take the choice

g =


1 ϖ−j

√
ε

1

1

 .

We need to check this choice of g indeed satisfies gḡ−1 ∈ K ′
S,j. This follows as

ḡ =


1 −ϖ−j

√
ε

1

1

 =⇒ ḡ−1 =


1 ϖ−j

√
ε

1

1


and therefore

gḡ−1 =


1 2ϖ−j

√
ε

1

1

 ∈ K ′
S,j

as needed.

Having chosen the representative g, we aim to calculate the right-hand side of

proj∗(1Mat3(OE),v◦det=r)(gḡ) =

∫
h∈GL3(F )

1Mat3(OE),v◦det=r(gh) dh.
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We take (non-Archimedean) Iwasawa decomposition of h ∈ GL3(F ) to rewrite it as

h =


x1

x2

x3



1 y1 y2

1 y3

1

 k

for k ∈ GL3(OF ) ⊆ K ′, which does not affect the indicator function. Here x1, x2, x3 ∈ F×

and y1, y2, y3 ∈ F . In that case, note that

gh =


1 ϖ−j

√
ε

1

1



x1

x2

x3



1 y1 y2

1 y3

1

 k

=


1 ϖ−j

√
ε

1

1



x1 x1y1 x1y2

x2 x2y3

x3

 k

=


x1 x1y1 x1y2 + x3ϖ

−j
√
ε

x2 x2y3

x3

 k.

Hence, we can rewrite the proj∗(1Mat3(OE),v◦det=r) as a six-fold integral

proj∗(1Mat3(OE),v◦det=r)

=

∫
x1∈F×

∫
x2∈F×

∫
x3∈F×

∫
y1∈F

∫
y2∈F

∫
y3∈F

1Mat3(OE),v◦det=r



x1 x1y1 x1y2 + x3ϖ

−j
√
ε

x2 x2y3

x3




d×x1 d
×x2 d

×x3 dy1 dy2 dy3.
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Apparently the indicator function only depends on the valuations, so accordingly we rewrite

the six-fold integral as a discrete sum over the valuations αi := v(xi). Then the conditions

are that

α1 ≥ 0, α2 ≥ 0, α3 ≥ j

v(y1) ≥ −α1, v(y2) ≥ −α1, v(y3) ≥ −α2.

We have Vol(ϖαiO×
F ) = 1 and Vol(ϖ−αiOF ) = qαi . Hence the integral can be rewritten as

the discrete sum

∑
α1+α2+α3=r

α1≥0
α2≥0
α3≥j

qα1 · qα1 · qα2 =
∑

α1+α2≤r−j
α1≥0
α2≥0

q2α1+α2

=

2(r−j)∑
i=0

min

(
1 +

⌊
i

2

⌋
, 1 +

⌊
2(r − j)− i

2

⌋)
qi

as desired.

4.5.5 Base change from H(U(V+
3 )) to H(S3(F ))

We first need to determine an element of H(U(V+
n )) which is in the pre-image of

1ϖ−r Mat3(OE)∩U(V+
3 )

under BC: H(GL3(E))→ H(U(V+
3 )).

For convenience, we define the shorthand

H(GL3(E)) ∋ f ′
r :=


1Mat3(OE),v◦det=r r ≥ 0

0 r < 0
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for every integer r. We start with the following intermediate calculation.

BC
(
Sat
(
f ′
r − q2f ′

r−1

))
= BC

q2r ∑
n1+n2+n3=r

Xn1
1 Xn2

2 Xn3
3 − q2 · q2(r−1)

∑
n1+n2+n3=(r−1)

Xn1
1 Xn2

2 Xn3
3


= q2r

 ∑
n1+n2+n3=r

Y n1−n3
1 −

∑
n1+n2+n3=(r−1)

Y n1−n3
1


= q2r

( ∑
n1+n3=r

Y n1−n3
1

)

= q2r
(
Y r
1 + Y r−2

1 + · · ·+ Y −r
1

)
.

Replacing r with r − 1 gives

BC
(
Sat
(
f ′
r−1 − q2f ′

r−2

))
= q2r−2

(
Y r−1
1 + Y r−3

1 + · · ·+ Y
−(r−1)
1

)
.

Adding the former equation to q times the latter gives

BC
(
Sat
(
f ′
r + (q − q2)f ′

r−1 − q3f ′
r−2

))
= q2r

(
Y r
1 + Y r−2

1 + · · ·+ Y −r
1

)
+ q2r−1

(
Y r−1
1 + Y r−3

1 + · · ·+ Y
−(r−1)
1

)
= Sat(1ϖ−r Mat3(OE)∩U(V+

3 )).

This shows that

BC(f ′
r + (q − q2)f ′

r−1 − q3f ′
r−2) = 1ϖ−r Mat3(OE)∩U(V+

3 )

so indeed f ′
r+(q−q2)f ′

r−1−q3f ′
r−2 lies in the desired pre-image of the map BC: H(GL3(E))→

H(U(V+
3 )).
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On the other hand, it is easy to check that

proj∗(f
′
r − q2f ′

r−1)

=
r∑

j=0

[
2(r−j)∑
i=0

min

(
1 +

⌊
i

2

⌋
, 1 +

⌊
2(r − j)− i

2

⌋)
qi

−
2(r−1−j)∑

i=0

min

(
1 +

⌊
i

2

⌋
, 1 +

⌊
2((r − 1)− j)− i

2

⌋)
qi+2

]
1K′

S,j

=
r∑

j=0

[
1 + q + q2 + · · ·+ qr−j

]
1K′

S,j

so

proj∗(f
′
r − q2f ′

r−1 + q
(
f ′
r−1 − q2f ′

r−3

)
)

=
r∑

j=0

[
(1 + q + q2 + · · ·+ qr−j) + (q + q2 + · · ·+ qr−j)

]
1K′

S,j

=
r∑

j=0

[
1 + 2q + 2q2 + · · ·+ 2qr−j

]
1K′

S,j
.

To summarize, the completed commutative diagram can be written in full as

f ′
r + (q − q2)f ′

r−1

−q3f ′
r−2 ∈ H(GL3(E))

· · · ∈ Q[X±
1 , X

±
2 , X

±
3 ]

Sym(3)

1ϖ−r Mat3(OE)∩U(V+
3 )

∈ H(U(V+
3 ))

q2r
(
Y ±r
1 + · · ·+ Y ∓r

1

)
+q2r−1

(
Y

±(r−1)
1 + · · ·+ Y

∓(r−1)
1

)
∈ Q[Y ±

1 ]W1

∑r
j=0

[
1 + 2q + 2q2

+ · · ·+ 2qr−j
]
1K′

S,j

∈ H(S3(F ))

proj∗

Sat

BC

BC

Sat

∼ BCS3
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Thus, we arrive at the following:

Proposition 4.5.4 (Base change BCS3). For n = 3, we have

BCS3

(
r∑

j=0

[
1 + 2q + 2q2 + · · ·+ 2qr−j

]
1K′

S,j

)
= 1ϖ−r Mat3(OE)∩U(V+

3 )

BCS3

(
1K′

S,r
+

r−1∑
j=0

2qr−j1K′
S,j

)
= 1Kϖ(r,0,−r)K

for every integer r ≥ 0.

Proof. The first equation is the one we just proved. The second one follows by noting that

1Kϖ(r,0,−r)K = 1ϖ−r Mat3(OE)∩U(V+
3 ) − 1ϖ−(r−1) Mat3(OE)∩U(V+

3 )

so one merely subtracts the left-hand sides evaluated at r and r − 1 for r ≥ 1 to get

r∑
j=0

[
1 + 2q + 2q2 + · · ·+ 2qr−j

]
1K′

S,j
−

r−1∑
j=0

[
1 + 2q + 2q2 + · · ·+ 2q(r−1)−j

]
1K′

S,j

= 1K′
S,r

+
r−1∑
j=0

[
1 + 2q + 2q2 + · · ·+ 2qr−j

]
1K′

S,j
−

r−1∑
j=0

[
1 + 2q + 2q2 + · · ·+ 2q(r−1)−j

]
1K′

S,j

= 1K′
S,r

+
r−1∑
j=0

[
2qr−j1K′

S,j

]
.

as claimed.
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Chapter 5

Synopsis of the weighted orbital integral

Orb(γ, ϕ, s) for γ ∈ S3(F )rs and

ϕ ∈ H(S3(F ))

This section defines the weighted orbital integral and describes the parameters which we will

use to express our answer.

5.1 Initial definition of the weighted orbital integral for

general Sn(F )

Let H = GLn−1(F ). Then H has a natural embedding into GLn(E) by

h 7→

h 0

0 1


which endows it with an action Sn(F ). Then our weighted orbital integral is defined as

follows.
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Definition 5.1.1 ([LRZ24, Equation (3.2.3)]). For brevity let η(h) := η(deth) for h ∈ H.

For γ ∈ Sn(F ), ϕ ∈ H(Sn(F )), and s ∈ C, we define the weighted orbital integral by

Orb(γ, ϕ, s) :=

∫
h∈H

ϕ(h−1γh)η(h) |det(h)|−s
F dh.

Definition 5.1.2 (The abbreviation ∂Orb(γ, ϕ)). From now on we will abbreviate

∂Orb(γ, ϕ) :=
∂

∂s

∣∣∣∣
s=0

Orb(γ, ϕ, s).

We remark that this weighted orbital integral is related to an (unweighted) orbital integral

on the unitary side by the so-called relative fundamental lemma. Specifically, for g ∈ U(V+
n )

and f ∈ H(U(V+
n )), we define the (unweighted) orbital integral by

OrbU(V+
n )(g, f) :=

∫
U(V+

n )

f(x−1gx) dx.

Then the following result is true.

Theorem 5.1.3 (Relative fundamental lemma; [Les23, Theorem 1.1]). Let ϕ ∈ H(Sn(F ))

and γ ∈ Sn(F )rs.

ω(γ)Orb(ϕ, γ, 0) =


0 if γ ∈ Sn(F )

−
rs

OrbU(V+
n )(g,BCηn−1

Sn
(ϕ)) if γ ∈ Sn(F )

+
rs

where the transfer factor ω is defined in Chapter 13.

5.2 Basis for the indicator functions in H(S3(F ))

From now on assume n = 3. We have the symmetric space

S3(F ) := {g ∈ GL3(E) | gḡ = id3}
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which has a left action under GL3(E) by g · s 7→ gsḡ−1.

Then S3(F ) admits the following decomposition, which we will use:

Lemma 5.2.1 (Cartan decomposition of S3(F )). For each integer r ≥ 0 let

K ′
S,r := GL3(OE) ·


0 0 ϖr

0 1 0

ϖ−r 0 0



denote the orbit of


0 0 ϖr

0 1 0

ϖ−r 0 0

 under the left action of GL3(OE). Then we have a

decomposition

S3(F ) =
∐
r≥0

K ′
S,r.

Proof. See [Off04, §3].

The r = 0 case will be given a special shorthand, and can be expressed in a few equivalent

ways:

K ′
S := K ′

S,0

= GL3(OE) ·


1

1

1


= GL3(OE) · id3 = S3(F ) ∩GL3(OE).

One can equivalently define K ′
S,r to be the part of S3(F ) for which the most negative valuation

among the nine entries is −r.

For r ≥ 0, define

K ′
S,≤r := S3(F ) ∩ϖ−r GL3(OE).
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We can re-parametrize the problem according to the following.

Corollary 5.2.2. We have a decomposition

K ′
S,≤r = K ′

S,0 ⊔K ′
S,1 ⊔ · · · ⊔K ′

S,r.

Then an integral over each K ′
S,≤r lets us extract the integrals over K ′

S,r.

Corollary 5.2.3 (Basis for H(S3(F ))). For r ≥ 0, the indicator functions 1K′
S,≤r

form a

basis of H(S3(F )).

Then, our goal is to compute for ∂Orb(γ, 1K′
S,≤r

) at s = 0 for any r > 0 as well; note that

the r = 0 case is already done in [Zha12].

5.3 Parametrization of γ

Again, assume n = 3. Further assume γ ∈ S3(F )rs is regular semisimple. We identify some

parameters for the orbit of γ that we can use for our explicit calculations.

5.3.1 Rewriting the weighted orbital integral as a double integral

over E via the group H ′ ∼= GL2(F )

Our weighted orbital integral is at present a quadruple integral over F , owing to H = GL2(F )

being a four-dimensional F -vector space.

It will be more economical to work with the weighted orbital integral as a double integral

with two coefficients in E, in the following sense. As in [Zha12, §4.1] define

H ′ :=


t1 t2

t̄2 t̄1

 | t1, t2 ∈ E

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which is indeed a four-dimensional F -algebra. As before H ′ ↪→ U(V+
n ) according to the same

embedding GL2(E) ↪→ GL3(E) and so H ′ also acts on Sn(E) by conjugation.

As an F -algebra, we have an isomorphism (see [Zha12, §4.1])

ι2 : H = GL2(F )
∼=−→ H ′a11 a12

a21 a22

 7→
t1 t2

t̄2 t̄1


t1 =

1

2

(
a11 + a22 +

a12√
ε
+ a21

√
ε

)
t2 =

1

2

(
a11 − a22 +

a12√
ε
− a21

√
ε

)
.

Under this isomorphism, we have

hγh−1 = ι2(h)γι2(h)−1.

This allows us to rewrite the weighted orbital integral over H ′ instead. If we write

h′ = ι2(h)−1, then the following integral formula is obtained.

Proposition 5.3.1 ([Zha12, §4.2]). For brevity let η(h′) := η(deth′) for h′ ∈ H ′. For

γ ∈ S3(F ), ϕ ∈ H(S3(F )), and s ∈ C, the weighted orbital integral can instead be written as

Orb(γ, ϕ, s) =

∫
h′∈H′

ϕ(h̄′
−1
γh′)η(h′) |det(h′)|sF dh′

where

dh′ = κ · dt1 dt2

|t1t̄1 − t2t̄2|2F
for the constant

κ :=
1

(1− q−1)(1− q−2)
.

83



5.3.2 Identifying a representative in the H ′-orbit

Write γ H′
∼ γ′ to mean that γ and γ′ are in the same H ′-orbit. Evidently the weighted orbital

integral Orb(γ, ϕ, s) in Proposition 5.3.1 only depends on such an orbit. So it makes sense to

pick a canonical representative for the H ′-orbit to compute the weighted orbital integral in

terms of.

Since we assumed γ ∈ S3(F )rs is regular semisimple, we can invoke [Zha12, Proposition

4.1] to assume that γ that under the orbit of H ′ we have

γ
H′
∼


a 0 0

b −d̄ 1

c 1− dd̄ d

 ∈ S3(F )rs; where c = −ab̄+ bd

over all a ∈ E1, b ∈ E, d ∈ E for which (1−dd̄)2− cc̄ ̸= 0. In other words, the representatives

described here cover all the regular H ′-orbits in S3(F )rs.

5.3.3 Simplification due to the matching of non-quasi-split unitary

group

In this calculation, we restrict attention to the case where our regular γ matches an element

in the non-quasi-split unitary group U(V−
n )rs (rather than U(V+

n )rs). As we described in

Proposition 3.2.2, this is controlled by the parity of the invariant

v
(
(1− dd̄)2 − cc̄

)
being odd. Hence, we only have to consider this case:

Assumption 5.3.2. We will assume that

v
(
(1− dd̄)2 − cc̄

)
≡ 1 (mod 2).

84



This is the same assumption made in [Zha12, Equation (4.3)].

To summarize everything we’ve said.

Lemma 5.3.3 (Parametrization for S3(F )
−
rs via H ′-orbit). Let γ ∈ S3(F )

−
rs. Then there exists

a ∈ E1, b ∈ E, d ∈ E such that

γ
H′
∼


a 0 0

b −d̄ 1

c 1− dd̄ d

 ∈ S3(F )rs; where c = −ab̄+ bd.

Moreover, v
(
(1− dd̄)2 − cc̄

)
is odd.

We will mostly be interested in the case where v(b) = v(d) = 0. In fact, few other cases

even occur at all given Assumption 5.3.2; we will see momentarily that either v(b) = v(d) < 0,

or one of {v(b), v(d)} is zero and the other is nonnegative.

5.4 Parameters used in the calculation of the weighted

orbital integral

We now evaluate the orbital integral in terms of

a ∈ E1, b, d ∈ E, r ≥ 0.

To simplify the notation in what follows, it will be convenient to define several quantities

that reappear frequently. From Assumption 5.3.2, we may define

δ := v(1− dd̄) = v(c) ̸= −∞. (5.1)
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Following [Zha12, Equation (4.3)] we will also define

u :=
c̄

1− dd̄ ∈ O
×
E (5.2)

so that ν(1− uū) ≡ 1 (mod 2) and

b = −au− d̄ū. (5.3)

Note that this gives us the following repeatedly used identity

b2 − 4ad̄ = (au− d̄ū)2 − 4ad̄(1− uū). (5.4)

Finally, define

ℓ := v(b2 − 4ad). (5.5)

We will also define one additional parameter which is useful when ℓ is even (but as we will

see, redundant for odd ℓ):

λ := v(1− uū) ≡ 1 (mod 2). (5.6)

Just as many pairs (v(b), v(d)) do not occur (given Assumption 5.3.2) and v(b) = v(d) = 0

is the main case of interest, the parameters (δ, ℓ, λ) satisfy some additional relations. We will

now describe them.

Lemma 5.4.1 (Constraints between ℓ, δ, λ). Let a, b, c, d be as in Lemma 5.3.3, and let δ,

ℓ, and λ be as defined in (5.1), (5.5), (5.6). Then exactly one of the following situations is

true:

• v(b) = v(d) = 0, ℓ ≥ 1 is odd, ℓ < 2δ, and λ = ℓ.

• v(b) = v(d) = 0, ℓ ≥ 0 is even, ℓ ≤ 2δ, and λ > ℓ is odd.

• v(b) = 0, v(d) > 0, ℓ = δ = 0, and λ > 0 is odd.
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• v(b) > 0, v(d) = 0, ℓ = 0, δ ≥ 0, and λ > 0 is odd.

• v(b) = v(d) < 0, ℓ = δ = 2v(d) < 0, and λ > 0 is odd.

See Table 5.1. Moreover, whenever ℓ is even, the quantity b2 − 4ad̄ is a square of some

element in E.

v(b) = 0 v(b) > 0 v(b) < 0

v(d) = 0 0 ≤ ℓ ≤ 2δ ℓ = 0, δ ≥ 0 never
v(d) > 0 ℓ = δ = 0 never never
v(d) < 0 never never v(b) = v(d) = ℓ

2
= δ

2
< 0

Table 5.1: A table showing the five cases in Lemma 5.4.1.

Before proving the lemma in full we first prove the following lemmas.

Lemma 5.4.2 (v(au− d̄ū)). Assume v(d) ≥ 0. For odd ℓ, we have

2v(au− d̄ū) > ℓ = λ

while for even ℓ we instead have

2v(au− d̄ū) = ℓ < λ.

Proof. If v(d) = 0, this follows from (5.4) directly, since v
(
(au− d̄ū)2

)
is even, and hence

can never equal v(4ad̄(1− uū)) = λ ≡ 1 (mod 2).

Meanwhile, if v(d) > 0, then from (5.3) it follows v(b) = 0, and hence ℓ = 0. And

v(au− d̄ū) = 0 in this case as well. Since λ is a positive odd integer, the lemma is proved.

Lemma 5.4.3 (ℓ ≤ 2δ). If v(b) = v(d) = 0 and ℓ ≥ 0, then ℓ ≤ 2δ.

Proof. If ℓ = 0 there is nothing to prove so assume ℓ > 0. Let us write

O×
E ∋

adu

ū
= x+ y

√
ε x, y ∈ F (5.7)
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which has norm

O×
F ∋ x2 + y2ε =

adu

ū
· ād̄ū
u

= dd̄. (5.8)

Now, according to Lemma 5.4.2 we have that

0 < ℓ ≤ 2v(au− d̄ū) = 2v

(
adu

ū
− dd̄

)
= 2v

(
(x− dd̄) + y

√
ε.
)

and since dd̄ ∈ F , it follows that

v
(
x− dd̄

)
>
ℓ

2
(5.9)

v(y) >
ℓ

2
. (5.10)

In particular, (5.10) implies v(y) > 0 which has two consequences:

• From (5.7) we get v(x) = 0.

• From v(y2) > 0 and (5.8) we conclude

v(x2 − dd̄) = v(y2) > ℓ.

Putting (5.9) together with the previous two bullets,

ℓ

2
≤ v

(
x2 − dd̄− x(x− dd̄)

)
= v(x) + v(1− dd̄) = 0 + δ

and this proves ℓ ≤ 2δ.

Now we can prove Lemma 5.4.1.

Proof of Lemma 5.4.1. It’s clear the five bullets above are disjoint.

• First assume ℓ is odd. We assert in this case we have v(b) = v(d) = 0. Indeed if v(d) ̸= 0,

then b = −au − d̄ū is a unit, and hence so is b2 − 4ad̄, causing ℓ = 0, contradiction.
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And if d is a unit, ℓ ≠ 0 means v(b) = 0 too. In particular, ℓ > 0. The rest of the

claims follow by Lemma 5.4.2 and Lemma 5.4.3.

For the rest of the proof we only consider even ℓ. Because b = −au− d̄ū, it cannot be the case

that v(b) > 0 and v(d) > 0; moreover if either v(b) < 0 or v(d) < 0, then in fact v(b) = v(d).

We consider each of the four possibilities.

• Suppose and v(b) = v(d) = 0. Then Lemma 5.4.2 and Lemma 5.4.3 imply the results.

• If v(b) = 0 and v(d) > 0, then b2 − 4ad̄ is a unit and 1 − dd̄ are both units, ergo

ℓ = δ = 0.

• If v(b) > 0 and v(d) = 0 then b2 − 4ad̄ is a unit, and there is nothing left to prove.

• Finally suppose v(b) = v(d) < 0. Then v(b2) < v(4ad̄) < 0, so indeed ℓ = 2v(d) < 0.

And v(1− dd̄) = 2v(d) < 0 as well.

We now verify the last assertion that b2− 4ad̄ is a square whenever ℓ is even. The proof in all

cases uses (5.4) to show b2 − 4ad̄ is equal to ϖℓ times a quadratic residue in O×
E . Indeed we

need only verify that v(4ad̄(1− uū)) = v(d) + λ has larger valuation than v
(
(au− d̄ū)2

)
= ℓ.

In the case v(b) = 0 this follows from λ > ℓ. Whereas if v(d) > 0 we have ℓ = 0 and if

v(b) = v(d) < 0 then ℓ = −2v(d); so in all these cases the claim is obvious too.

In the case where ℓ is odd (and hence ℓ ≥ 1 and v(b) = v(d) = 0), we get (5.4) implying

λ = ℓ and thus λ will never be used — the weighted orbital will be computed as a function

of ℓ and δ (and r).

However for even ℓ these numbers are never equal and our weighted orbital integral will

be stated in terms of ℓ, δ, and λ (and r). We just saw that in these situations b2 − 4ad̄ is a

square; moving forward, we need to fix the choice of the square root τ . We do so as follows.

Definition 5.4.4 (Fixing the choice of τ). Assuming ℓ is even, using (5.4) in the form

(au− d̄ū)2 − τ 2 = 4ad̄(1− uū)
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we agree now to fix the choice of the square root of τ such that

v(au− d̄ū+ τ) = λ+ v(d)− 1

2
ℓ > 0,

v(au− d̄ū− τ) = 1

2
ℓ.

(5.11)

Here λ+ v(d)− 1
2
ℓ > 0 is obvious when v(d) ≥ 0 (since λ = ℓ > 0 for odd ℓ and otherwise

λ > ℓ), and for v(d) < 0 we have v(d) = 1
2
ℓ anyway.

Lemma 5.4.5 (v(4− N(b± τ)). With this choice of τ , we have

v (4− N(b+ τ)) = λ+ δ − ℓ

v (4− N(b− τ)) = δ.

(5.12)

Proof. We consider several cases.

• If v(b) = v(d) = 0 then from (5.4) we have

ℓ = 2v(τ) = 2v(au− d̄ū) < λ

and thus [Zha12, Lemma 4.7] applies to give (5.12), verabtim.

• Now suppose v(d) > 0 but still v(b) = v(τ) = 0. We begin with the observation that

4ad̄ = b2 − τ 2 = (b+ τ)(b− τ) (5.13)

and so {v(b+ τ), v(b− τ)} = {0, v(d)}. We need to determine which is which. However,

note that we may write

au− d̄ū− τ = −(b+ τ)− 2d̄ū.

Since v(au− d̄ū− τ) = 0 and v(d) > 0, it follows we must have v(b+ τ) = 0. And thus
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v(b − τ) = v(d). Hence v(4 − N(b − τ)) = 0 = δ, and we have obtained the bottom

equation of (5.12).

It remains to show that v(4− N(b+ τ)) = λ to complete the proof. We quote [Zha12,

Lemma 4.6] which states more generally that

2δ + λ = v(4− N(b+ τ)) + v(4− N(b− τ))

+ v(16 + 16dd̄− 8bb̄+ 8τ τ̄).

In our case δ = 0, v(4−N(b−τ)) = 0. Moreover since v(τ−b) > 0 we get v(τ τ̄−bb̄) > 0.

(Indeed, if τ = xτ +εyτ and b = xb+εyb, then τ τ̄−bb̄ = (x2τ−x2b+ε(y2τ−y2b ))+ε(xτyτ−

yτyb). Since xτ ≡ xb (mod ϖ) and yτ ≡ yb (mod ϖ), the conclusion is immediate.)

Hence the final term on the right-hand side is 0 too.

• Consider v(b) > 0. As mentioned on [Zha12, p. 242], the identity (5.12) is still true in

this situation too.

• Finally assume v(τ) = v(b) = v(d) < 0. Again from (5.13) we know {v(b+τ), v(b−τ )} =

{0, v(d)} and need to determine which is which. This time we write

au− d̄ū+ τ = −(b− τ)− 2d̄ū.

Since v(au − d̄ū + τ) = λ > 0, but v(2d̄ū) = v(d) < 0, it follows we must have

v(b − τ) < 0, so in fact v(b − τ) = v(d) and v(b + τ) = 0. So, in this case, we get

v(4− N(b− τ)) = 2v(b) = δ, which is the bottom equation of (5.12).

Then it remains to show that v(4− N(b+ τ)) = λ, which is done in the same way as

v(d) > 0 earlier.
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5.5 Statement of the full orbital integral

We now show the full orbital integrals that were previously only summarized as Theorem 1.3.9.

The proof of these formulas is carried out in Chapters 6 and 7.

5.5.1 Arches

We introduce one piece of notation to compress the particular shape our formulas are about

to take.

Definition 5.5.1. Suppose {a0, a0 + 1, . . . , a1} is an interval of integers for some a0 ≤ a1,

and consider two more integers w1 and w2 such that w1 + w2 ≤ a1−a0
2

. Then we can define a

piecewise linear function

ARCH
[a0,a1]

(w1, w2) : {a0, a0 + 1, . . . , a1} → Z≥0

according to the following definition:

k 7→



k − a0 if a0 ≤ k ≤ a0 + w1

w1 +
⌊
k−(a0+w1)

2

⌋
if a0 + w1 ≤ k ≤ a0 + w1 + w2

w1 +
⌊
w2

2

⌋
if a0 + w1 + w2 ≤ k ≤ a1 − (w1 + w2)

w1 +
⌊
(a1−w1)−k

2

⌋
if a1 − (w1 + w2) ≤ k ≤ a1 − w1

a1 − k if a1 − w1 ≤ k ≤ a1.

The nomenclature is meant to be indicative of the shape of the graph, which looks a little

bit like an arch. It is a function symmetric around a0+a1
2

defined piecewise. The function

grows linearly with slope 1 at the far left for w1 steps, then changes to slope 1/2 for w2 steps

(rounding down), before stabilizing, then doing the symmetric descent on the right half.
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w1 = 3 w2 = 4 w2 = 4 w1 = 3
(0, 0)

(3, 3)

(7, 5) (12, 5)

(16, 3)

(19, 0)

Sl
op
e
+
1

Slo
pe

+
1
2

Slope − 1
2

Slope −
1

Slope 0

Figure 5.1: A plot of ARCH[0,19](3, 4).

5.5.2 Full explicit weighted orbital integral for the case where ℓ odd

If ℓ is odd, so λ = ℓ, then the weighted orbital integral can be expressed succinctly in the

following way.

Theorem 5.5.2 (Weighted orbital integral for odd ℓ). Let r ≥ 0. Let γ ∈ S3(F )
−
rs and let b,

d, δ, ℓ, be as in Lemma 5.3.3 and Lemma 5.4.1. If ℓ is odd, define

nγ := ARCH
[−2r,ℓ+2δ+2r]

(r, ℓ).

Then for any r ≥ 0 we have the formula:

Orb(γ,1K′
S,≤r

, s) =
ℓ+2δ+2r∑
k=−2r

(−1)k
(
1 + q + q2 + · · ·+ qnγ(k)

)
(qs)k.

Remark 5.5.3. To make nγ fully explicit, one could also expand the arch shorthand to

nγ(k) :=



k + 2r if −2r ≤ k ≤ −r⌊
k+r
2

⌋
+ r if −r ≤ k ≤ ℓ− r

ℓ−1
2

+ r if ℓ− r ≤ k ≤ 2δ + r⌊
(ℓ+2δ+r)−k

2

⌋
+ r if 2δ + r ≤ k ≤ ℓ+ 2δ + r

(ℓ+ 2δ + 2r)− k if ℓ+ 2δ + r ≤ k ≤ ℓ+ 2δ + 2r.
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From the identity

Orb(γ,1K′
S,r
, s) = Orb(γ,1K′

S,≤r
, s)−Orb(γ,1K′

S,≤(r−1)
, s)

we can then write the following equivalent formulation.

Corollary 5.5.4. Retaining the setting of the previous theorem, we have for any r ≥ 1 the

formula

Orb(γ,1K′
S,r
, s) =

ℓ+2δ+2r∑
k=−2r

(−1)kqnγ(k)(1 + q−1)1[k∈Iγ,r](qs)k

where Iγ,r is the set of indices defined by

Iγ,r := {−(2r − 1),−(2r − 2),−(2r − 3), . . . ,−(r + 1)}

⊔ {−r,−r + 2,−r + 4 . . . ,−r + ℓ− 1}

⊔ {2δ + r + 1, 2δ + r + 3, . . . , 2δ + r + 1, 2δ + r + 3, . . . , 2δ + ℓ+ r}

⊔ {ℓ+ 2δ + r + 1, ℓ+ 2δ + r + 2, . . . , ℓ+ 2δ + 2r − 1}.

Example 5.5.5. If r = 3, ℓ = 5, and δ = 100, the formulas above read

Orb(γ,1K′
S,≤3

, s) = q−6s

− (q + 1) · q−5s

+ (q2 + q + 1) · q−4s

− (q3 + q2 + q + 1) · q−3s

+ (q3 + q2 + q + 1) · q−2s

− (q4 + q3 + q2 + q + 1) · q−s

+ (q4 + q3 + q2 + q + 1) · q0

− (q5 + q4 + q3 + q2 + q + 1) · qs

+ (q5 + q4 + q3 + q2 + q + 1) · q2s
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...

+ (q5 + q4 + q3 + q2 + q + 1) · q204s

− (q4 + q3 + q2 + q + 1) · q205s

+ (q4 + q3 + q2 + q + 1) · q206s

− (q3 + q2 + q + 1) · q207s

+ (q3 + q2 + q + 1) · q208s

− (q2 + q + 1) · q209s

+ (q + 1) · q210s

− q211s.

In the ellipses, all the omitted terms have the same coefficient q5 + q4 + q3 + q2 + q + 1 and

alternate sign.

Example 5.5.6. Continuing the previous example with r = 3, ℓ = 5, and δ = 100, we have

Orb(γ,1K′
S,3
, s) = q−6s

− (q + 1) · q−5s

+ (q2 + q) · q−4s

− (q3 + q2) · q−3s

+ q3 · q−2s

− (q4 + q3) · q−s

+ q4 · q0

− (q5 + q4) · qs

+ q5 · q2s

− q5 · q3s

+ q5 · q4s
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...

+ q5 · q202s

− q6 · q203s

+ (q5 + q4) · q204s

− q4 · q205s

+ (q4 + q3) · q206s

− q3 · q207s

+ (q3 + q2) · q208s

− (q2 + q) · q209s

+ (q + 1) · q210s

− q211s.

5.5.3 Full explicit weighted orbital integral for the case where ℓ ≥ 0

is even

When ℓ is even the formula has a change to the leading coefficient as well.

Theorem 5.5.7 (Weighted orbital integral for even ℓ ≥ 0). Let r ≥ 0. Let γ ∈ S3(F )
−
rs and

let b, d, δ, ℓ, λ be as in Lemma 5.3.3 and Lemma 5.4.1. Suppose also ℓ ≥ 0 is even. Define

nγ := ARCH
[−2r,λ+2δ+2r]

(r, ℓ)

cγ := ARCH
[ℓ−r,λ−ℓ+2δ+r]

(δ − ℓ/2,min(2r, λ− ℓ)).

Then for any r ≥ 0 we have:

Orb(γ,1K′
S,≤r

, s) =
λ+2δ+2r∑
k=−2r

(−1)k
(
1 + q + q2 + · · ·+ qnγ(k)

)
(qs)k
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+
2δ+λ−ℓ+r∑
k=ℓ−r

cγ(k)(−1)kq
ℓ
2
+r(qs)k.

Example 5.5.8. We provide an example for r = 2, ℓ = 2, δ = 4, λ = 9 for concreteness, In

this case min(2r, λ− ℓ) = min(4, 7) = 4 and we have

Orb(γ,1K′
S,≤r

, s) = q−4s

− (q + 1)q−3s

+ (q2 + q + 1)q−2s

− (q2 + q + 1)q−s

+ (q3 + q2 + q + 1)q0

− (2q3 + q2 + q + 1)qs

+ (3q3 + q2 + q + 1)q2s

− (4q3 + q2 + q + 1)q3s

+ (4q3 + q2 + q + 1)q4s

− (5q3 + q2 + q + 1)q5s

+ (5q3 + q2 + q + 1)q6s

− (6q3 + q2 + q + 1)q7s

+ (6q3 + q2 + q + 1)q8s

− (6q3 + q2 + q + 1)q9s

+ (6q3 + q2 + q + 1)q10s

− (5q3 + q2 + q + 1)q11s

+ (5q3 + q2 + q + 1)q12s

− (4q3 + q2 + q + 1)q13s

+ (4q3 + q2 + q + 1)q14s

− (3q3 + q2 + q + 1)q15s
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+ (2q3 + q2 + q + 1)q16s

− (q3 + q2 + q + 1)q17s

+ (q2 + q + 1)q18s

− (q2 + q + 1)q19s

+ (q + 1)q20s

− q21s.

Example 5.5.9. We provide an example for r = 5, ℓ = 2, δ = 4, λ = 9 for concreteness,

where min(2r, λ− ℓ) = min(10, 7) = 7:

Orb(γ,1K′
S,≤r

, s) = q−10s

− (q + 1) · q−9s

+ (q2 + q + 1) · q−8s

− (q3 + q2 + q + 1) · q−7s

+ (q4 + q3 + q2 + q + 1) · q−6s

− (q5 + q4 + q3 + q2 + q + 1) · q−5s

+ (q5 + q4 + q3 + q2 + q + 1) · q−4s

− (q6 + q5 + q4 + q3 + q2 + q + 1) · q−3s

+ (2q6 + q5 + q4 + q3 + q2 + q + 1) · q−2s

− (3q6 + q5 + q4 + q3 + q2 + q + 1) · q−s

+ (4q6 + q5 + q4 + q3 + q2 + q + 1) · q0

− (4q6 + q5 + q4 + q3 + q2 + q + 1) · qs

+ (5q6 + q5 + q4 + q3 + q2 + q + 1) · q2s

− (5q6 + q5 + q4 + q3 + q2 + q + 1) · q3s

+ (6q6 + q5 + q4 + q3 + q2 + q + 1) · q4s
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− (6q6 + q5 + q4 + q3 + q2 + q + 1) · q5s

+ (7q6 + q5 + q4 + q3 + q2 + q + 1) · q6s

− (7q6 + q5 + q4 + q3 + q2 + q + 1) · q7s

+ (7q6 + q5 + q4 + q3 + q2 + q + 1) · q8s

− (7q6 + q5 + q4 + q3 + q2 + q + 1) · q9s

+ (7q6 + q5 + q4 + q3 + q2 + q + 1) · q10s

− (7q6 + q5 + q4 + q3 + q2 + q + 1) · q11s

+ (6q6 + q5 + q4 + q3 + q2 + q + 1) · q12s

− (6q6 + q5 + q4 + q3 + q2 + q + 1) · q13s

+ (5q6 + q5 + q4 + q3 + q2 + q + 1) · q14s

− (5q6 + q5 + q4 + q3 + q2 + q + 1) · q15s

+ (4q6 + q5 + q4 + q3 + q2 + q + 1) · q16s

− (4q6 + q5 + q4 + q3 + q2 + q + 1) · q17s

+ (3q6 + q5 + q4 + q3 + q2 + q + 1) · q18s

− (2q6 + q5 + q4 + q3 + q2 + q + 1) · q19s

+ (q6 + q5 + q4 + q3 + q2 + q + 1) · q20s

− (q5 + q4 + q3 + q2 + q + 1) · q21s

+ (q5 + q4 + q3 + q2 + q + 1) · q22s

− (q4 + q3 + q2 + q + 1) · q23s

+ (q3 + q2 + q + 1) · q24s

− (q2 + q + 1) · q25s

+ (q + 1) · q26s

− q27s.
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5.5.4 Full explicit weighted orbital integral for the case ℓ < 0

In this case, ℓ = δ = 2v(b) = 2v(d) < 0. We will just state the relevant theorem in terms of

v(b) and v(d), omitting ℓ and δ.

Theorem 5.5.10 (Weighted orbital integral when v(b) = v(d) < 0). Let r ≥ 0. Let γ ∈

S3(F )
−
rs and let b, d, λ be as in Lemma 5.3.3 and Lemma 5.4.1. Suppose also v(b) = v(d) < 0.

Then if |v(d)| > r, the entire orbital integral is zero. Otherwise define

nγ := ARCH
[−2r,λ+2r−4|v(d)|]

(r − |v(d)|, 0)

cγ := ARCH
[−r−|v(d)|,λ+r−3|v(d)|]

(0,min(2r − 2|v(d)|, λ)).

Then for any r ≥ 0 we have the formula:

Orb(γ,1K′
S,≤r

, s) =

λ+2r−4|v(d)|∑
k=−2r

(−1)k
(
1 + q + q2 + · · ·+ qnγ(k)

)
(qs)k

+

λ+r−3|v(d)|∑
k=−r−|v(d)|

cγ(k)(−1)kqr−|v(d)|(qs)k.

Example 5.5.11. In the case where r = |v(d)|, the orbital simplifies to just

Orb(γ,1K′
S,≤r

, s) =
λ−2r∑
k=−2r

(−1)k(qs)k.

Example 5.5.12. If λ = 7, v(d) = −5 and r = 12 we have

Orb(γ,1K′
S,≤r

, s) = q−24s

− (q + 1) · q−23s

+ (q2 + q + 1) · q−22s

− (q3 + q2 + q + 1) · q−21s
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+ (q4 + q3 + q2 + q + 1) · q−20s

− (q5 + q4 + q3 + q2 + q + 1) · q−19s

+ (q6 + q5 + q4 + q3 + q2 + q + 1) · q−18s

− (q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q−17s

+ (2q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q−16s

− (2q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q−15s

+ (2q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q−14s

− (2q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q−13s

+ (3q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q−12s

− (3q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q−11s

+ (4q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q−10s

− (4q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q−9s

+ (4q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q−8s

− (4q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q−7s

+ (4q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q−6s

− (4q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q−5s

+ (4q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q−4s

− (4q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q−3s

+ (4q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q−2s

− (3q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q−s

+ (3q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q0

− (2q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · qs

+ (2q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q2s

− (q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q3s
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+ (q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q4s

− (q6 + q5 + q4 + q3 + q2 + q + 1) · q5s

+ (q5 + q4 + q3 + q2 + q + 1) · q6s

− (q4 + q3 + q2 + q + 1) · q7s

+ (q3 + q2 + q + 1) · q8s

− (q2 + q + 1) · q9s

+ (q + 1) · q10s

− q11s.

Example 5.5.13. If λ = 2025, v(d) = −5 and r = 12 we have

Orb(γ,1K′
S,≤r

, s) = q−24s

− (q + 1) · q−23s

+ (q2 + q + 1) · q−22s

− (q3 + q2 + q + 1) · q−21s

+ (q4 + q3 + q2 + q + 1) · q−20s

− (q5 + q4 + q3 + q2 + q + 1) · q−19s

+ (q6 + q5 + q4 + q3 + q2 + q + 1) · q−18s

− (q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q−17s

+ (2q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q−16s

− (2q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q−15s

+ (2q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q−14s

− (2q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q−13s

+ (3q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q−12s

− (3q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q−11s

102



+ (4q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q−10s

− (4q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q−9s

+ (5q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q−8s

− (5q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q−7s

+ (6q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q−6s

− (6q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q−5s

+ (7q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q−4s

− (7q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q−3s

+ (8q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q−2s

− (8q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q−s

+ (8q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q0

− (8q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · qs

+ (8q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q2s

− (8q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q3s

+ (8q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q4s

...

− (8q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q2007s

+ (8q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q2008s

− (7q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q2009s

+ (7q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q2010s

− (6q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q2011s

+ (6q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q2012s

− (5q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q2013s

+ (5q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q2014s
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− (4q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q2015s

+ (4q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q2016s

− (3q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q2017s

+ (3q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q2018s

− (2q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q2019s

+ (2q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q2020s

− (q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q2021s

+ (q7 + q6 + q5 + q4 + q3 + q2 + q + 1) · q2022s

− (q6 + q5 + q4 + q3 + q2 + q + 1) · q2023s

+ (q5 + q4 + q3 + q2 + q + 1) · q2024s

− (q4 + q3 + q2 + q + 1) · q2025s

+ (q3 + q2 + q + 1) · q2026s

− (q2 + q + 1) · q2027s

+ (q + 1) · q2028s

− q2029s.

5.6 Derivatives of the orbital integrals

We now state the derivative of the orbital integral in the three cases we described before.

Theorem 5.6.1. Let r ≥ 0. Let γ ∈ S3(F )
−
rs and let ℓ, δ, λ be as in Lemma 5.3.3 and

Lemma 5.4.1. Then
1

log q
∂Orb(γ,1K′

S,≤r
)

is given by the following three expressions:
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• If ℓ is odd, the derivative is

(−1)r+1

r+ ℓ−1
2∑

j=r+1

(
ℓ+ 2δ + 1

2
+ 3r − 2j

)
· qj

+
r∑

j=0

(−1)j+1

(
ℓ+ 2δ + 1

2
+ 2r − j

)
· qj.

• If ℓ ≥ 0 is even, the derivative is

(−1)r+1

r+ ℓ
2∑

j=r+1

(
λ+ 2δ + 1

2
+ 3r − 2j

)
· qj

+
r∑

j=0

(−1)j+1

(
λ+ 2δ + 1

2
+ 2r − j

)
· qj

+ (−1)r+δ− ℓ
2 qr+

ℓ
2 ·


δ− ℓ

2

2
− λ−ℓ−1

2
· r if δ ≡ ℓ

2
(mod 2)

− δ− 3
2
ℓ+λ

2
− λ−ℓ+1

2
· r if δ ̸≡ ℓ

2
(mod 2).

• If ℓ < 0 is even (so ℓ = −2|v(d)|), the derivative is

r−|v(d)|∑
j=0

(−1)j+1

(
λ+ 1

2
+ 2(r − |v(d)|)− j

)
· qj

+ (−1)r−|v(d)|+1 · λ− 1

2
·max (r − |v(d)|, 0) · qr−|v(d)|.

We prove Theorem 5.6.1 in Section 7.7.
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Chapter 6

Support for the weighted orbital integral

for S3(F )

In this section we set up the framework of the weighted orbital integral based on the definitions

in the previous section. This involves rewriting the integral as an infinite discrete double sum

over two parameters (n,m) that we will introduce later, and determining the volume of the

supports of the indicator function.

We always retain the setting of Lemma 5.3.3 throughout this chapter.

6.1 Reparametrization in terms of valuations

6.1.1 Computation of value in indicator function

We are integrating over t1 ∈ E and t2 ∈ E. Regarding h′ ∈ H ′ as an element of GL3(E) as

described before, we have

h′ =


t1 t2 0

t̄2 t̄1 0

0 0 1

 .
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We therefore have

h̄′
−1

=


t1

t1 t̄1−t2 t̄2

−t̄2
t1 t̄1−t2 t̄2

0

−t2
t1 t̄1−t2 t̄2

t̄1
t1 t̄1−t2 t̄2

0

0 0 1

 .

Hence

h̄′
−1
γh′ =


t1

t1 t̄1−t2 t̄2

−t̄2
t1 t̄1−t2 t̄2

0

−t2
t1 t̄1−t2 t̄2

t̄1
t1 t̄1−t2 t̄2

0

0 0 1



a 0 0

b −d̄ 1

c 1− dd̄ d



t1 t2 0

t̄2 t̄1 0

0 0 1



=


t1

t1 t̄1−t2 t̄2

−t̄2
t1 t̄1−t2 t̄2

0

−t2
t1 t̄1−t2 t̄2

t̄1
t1 t̄1−t2 t̄2

0

0 0 1




at1 at2 0

bt1 − d̄t̄2 bt2 − d̄t̄1 1

ct1 + (1− dd̄)t̄2 ct2 + (1− dd̄)t̄1 d



=



at21 − bt1t̄2 + dt̄22
t1t̄1 − t2t̄2

at1t2 − bt2t̄2 + d̄t̄1t̄2
t1t̄1 − t2t̄2

−t̄2
t1t̄1 − t2t̄2

−at1t2 + bt1t̄1 − d̄t̄1t̄2
t1t̄1 − t2t̄2

−at22 + bt̄1t2 − dt̄21
t1t̄1 − t2t̄2

t̄1
t1t̄1 − t2t̄2

ct1 + (1− dd̄)t̄2 ct2 + (1− dd̄)t̄1 d


At this point, note that the entry d appears by itself at the bottom-right.

Let us define

t = t2t̄
−1
1 ⇐⇒ t2 = tt̄1.

This lets us rewrite everything in terms of the ratio t and t1 ∈ E:

h̄′
−1
γh′ =



t21(a− bt̄+ d̄t̄2)

t1t̄1(1− tt̄)
t1t̄1(at− btt̄+ d̄t̄)

t1t̄1(1− tt̄)
t1 · (−t̄)

t1t̄1(1− tt̄)
t1t̄1(−at+ b− d̄t̄)

t1t̄1(1− tt̄)
t̄21(−at2 + bt− d̄)

t1t̄1(1− tt̄)
−t̄1

t1t̄1(1− tt̄)

t1(c+ (1− dd̄)t̄) t̄1(ct+ (1− dd̄)) d


This new parametrization is better because t1 only plays the role of a scale factor on the
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outside, with “interesting” terms only involving t. To make this further explicit, we write

t1 = ϖ−mϵ

for m ∈ Z and ϵ ∈ O×
E . Then


ϵ̄

ϵ

1

 h̄′
−1
γh′


ϵ−1

ϵ̄−1

1



=



a− bt̄+ d̄t̄2

1− tt̄
at− btt̄+ d̄t̄

1− tt̄
−ϖmt̄

1− tt̄
−at+ b− d̄t̄

1− tt̄
−at2 + bt− d̄

1− tt̄
−ϖm

1− tt̄
c+ (1− dd̄)t̄

ϖm

ct+ (1− dd̄)
ϖm

d


.

For brevity, we will let Γ(γ, t,m) denote the right-hand matrix. The conjugation by
(

ϵ−1

ϵ̄−1

1

)
has no effect on any of the K ′

S,≤r, so that we can simply use

1K′
S,≤r

(h̄′
−1
γh′) = 1K′

S,≤r
(Γ(γ, t,m))

in the work that follows. For brevity, we abbreviate

1≤r(γ, t,m) := 1K′
S,≤r

(Γ(γ, t,m)).

6.1.2 Reparametrizing the integral in terms of t and m

From now on, following [Zha12, §4] we always fix the notation

m = m(t1) := −v(t1)

n = n(t) := v(1− tt̄).
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(At the risk of stating the obvious, this n is not the same n in GLn, etc.) We need to rewrite

the integral, phrased originally via dh′, in terms of the parameters t (hence n), m, and γ.

We start by observing that

deth′ = t1t̄1 − t2t̄2 = t1t̄1(1− tt̄)

which means that

v(deth′) = −2m+ n

ergo

|deth′|F = q−v(deth′) = q2m−n

η(h′) = (−1)v(deth′) = (−1)n.

Meanwhile, from t2 = tt̄1 we derive

dt2 = |t1|E dt = q2m dt.

Bringing this all into the weighted orbital integral gives

Orb(γ,1K′
S,≤r

s) = κ

∫
t,t1∈E

1≤r(γ, t,m)(−1)n
(
q2m−n

)s−2
dt1 · (q2m dt)

= κ

∫
t,t1∈E

1≤r(γ, t,m)(−1)nqs(2m−n) · q2n−2m dt dt1.
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6.2 Description of the support of 1≤r when n ≤ 0

Proposition 6.2.1 (Support of 1≤r for n = 0). Whenever n = 0 (this requires v(t) ≥ 0),

1≤r(γ, t,m) =


1 if − r ≤ m ≤ δ + r

0 otherwise.

Proof. We have to consider the nine entries of Γ(γ, t,m) in tandem.

The upper 2× 2 matrix is always in ω−rOE, because v(t) ≥ 0, v(d) ≥ −r, v(b) ≥ −r, and

v(a) = 0 suffices.

In the right column, since v(t) ≥ 0 and n = 0, the condition is simply m ≥ −r.

In the bottom row, we need

v
(
c+ (1− dd̄)t̄

)
−m ≥ −r,

v
(
ct+ (1− dd̄)

)
−m ≥ −r.

If v(t) > 0 this is equivalent to m − r ≤ δ. In the case where v(t) = 0 we instead use the

observation that [
c+ (1− dd̄)t̄

]
− t̄
[
ct+ (1− dd̄)

]
= (1− tt̄)c (6.1)

which forces at least one of ct+ (1− dd̄) and c+ (1− dd̄)t̄ to have valuation δ. So the claim

follows now.

Proposition 6.2.2 (Support of 1≤r for n < 0). Suppose n = −2k < 0, equivalently,

v(t) = −k < 0, for some k.

1≤r(γ, t,m) =


1 if − r ≤ m+ k ≤ δ + r

0 otherwise.
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Proof. The proof is similar to the previous claim, but simpler.

Since k > 0, the fraction t2

1−tt̄
has positive valuation, so the upper 2 × 2 submatrix of

Γ(γ, t,m) is always in ϖ−rOE. Turning to the right column, the condition reads exactly

m+ k ≥ −r. Finally, in the bottom row, from v(t) > 0 and v(c) = δ the condition is simply

−k + δ −m ≥ −r.

Note all the results in this section hold for any b and d with v(b) ≥ −r and v(d) ≥ −r,

i.e. we do not yet need to consider cases based on whether b and d are units or not.

6.3 Description of the support of 1≤r when n > 0

In this situation we evaluate over n > 0 only. In this case t is automatically a unit.

Consider the upper 2× 2 submatrix of Γ(γ, t,m). Using the identities

a− bt̄+ d̄t̄2

1− tt̄ − t̄ · at− btt̄+ d̄t̄

1− tt̄ = a− bt̄ ∈ ϖ−rOE

a− bt̄+ d̄t̄2

1− tt̄ + t̄ · −at+ b− d̄t̄
1− tt̄ = a ∈ ϖ−rOE

−at+ b− d̄t̄
1− tt̄ − t̄ · −at

2 + bt− d̄
1− tt̄ = −a+ b ∈ ϖ−rOE,

it follows that as soon as one entry in the upper 2× 2 submatrix is in ϖ−rOE, then all four

are. Focusing on the fraction with numerator −at2 + bt− d̄ we use the identity

(2at− b)2 − (b2 − 4ad̄) = −4a(−at2 + bt− d̄)

to rewrite v(−at2 + bt− d̄) ≥ n− r as

v
(
(2at− b)2 − (b2 − 4ad̄)

)
≥ n− r.

This takes care of all four of the entries in the upper 2× 2 submatrix.
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Meanwhile, the requirements on the other entries amount to

m ≥ n− r (6.2)

v
(
c+ (1− dd̄)t̄

)
≥ m− r (6.3)

v
(
ct+ (1− dd̄)

)
≥ m− r (6.4)

v(d) ≥ −r. (6.5)

According to the earlier identity (6.1), if (6.3) is assumed true, then (6.4) is equivalent to

δ + v(1− tt̄) ≥ m− r.

Meanwhile, since v(c+ (1− dd̄)t̄) = v(c̄+ (1− dd̄)t), (6.3) is itself equivalent to

v(t+ u) + δ ≥ m− r

by reading the definition of (5.2).

In summary:

Proposition 6.3.1 (Support of 1≤r when n > 0). Assume t is such that n = v(1− tt̄) > 0.

Then 1≤r(γ, t,m) = 1 if and only if v(d) ≥ −r,

n− r ≤ m ≤ n+ δ + r

and t lies in the set specified by

v
(
(2at− b)2 − (b2 − 4ad̄)

)
≥ n− r

v(t+ u) ≥ m− δ − r.
(6.6)
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6.4 Rewriting the quadratic constraint on the valuation

of t in the n > 0 situation

We now analyze the inequality

v
(
(2at− b)2 − (b2 − 4ad̄)

)
≥ n− r (6.7)

and divide it into several (disjoint) possibilities. Recalling that ℓ = b2− 4ad̄, there are several

possibilities:

• If ℓ ≥ n− r, then (6.7) is equivalent to

2v(2at− b) ≥ n− r ⇐⇒ v

(
t− b

2a

)
≥
⌈
n− r
2

⌉
. (6.8)

We will further subdivide this into two cases.

– Case 1 is the situation where
⌈
n−r
2

⌉
≥ m− δ − r.

– Case 2 is the situation where
⌈
n−r
2

⌉
< m− δ − r.

• If ℓ < n− r, then (6.7) could only hold if v(2at− b) = ℓ
2
. Note that in particular, this

requires ℓ to be even.

If this happens, then as we saw in Lemma 5.4.1 the quantity b2 − 4ad̄ must be a square

and we denote it τ 2. Thus, (6.7) then reads

v(2at− b+ τ) + v(2at− b− τ) ≥ n− r. (6.9)

Since we are assuming n > ℓ + r, it must be the case that one of the two factors

v(2at− b∓ τ) is equal to v(τ) = ℓ/2 exactly, and the other is at least n− r − ℓ
2
> ℓ

2
.
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Hence, there is one situation where v(2at− b+ τ) = ℓ
2

and

v

(
t− b+ τ

2a

)
= v(2at− b− τ) ≥ n− ℓ

2
− r (6.10)

Note that conversely (6.10) implies (6.9). We further subdivide this into two cases:

– Case 3+ is the situation where n− ℓ
2
− r > m− δ − r.

– Case 4+ is the situation where n− ℓ
2
− r ≤ m− δ − r.

Replacing τ with −τ above in (6.10) yields the other situation where v(2at− b− τ ) = ℓ
2

and

v

(
t− b− τ

2a

)
= v(2at− b+ τ) ≥ n− ℓ

2
− r (6.11)

which gives us two additional cases. We denote them Case 3- and Case 4-.

This gives us six cases, with each t ∈ E satisfying at most one of them. (If ℓ is odd, only

Case 1 and Case 2 are used.) In each case, for a given pair (n,m) we are interested in the

volume of t such that two disk inequalities hold together with the assumption n = v(1− tt̄).

We rewrite these six cases in the format specified by Lemma 2.2.3, noting that each

possibility will actually split into two sub-cases (although the lemma will only apply in

the cases where the centers ξi are actually in O×
E ; this which will be true in the main case

v(b) = v(d) = 0). This gives Table 6.1.

Note that in generating Table 6.1, we did the calculations

v

(
u+

b

2a

)
= v

(
au− d̄ū

2a

)
= v(au− d̄ū)

v

(
u+

b± τ
2

)
= v(au− d̄ū± τ).

to populate the entries for v(ξ1 − ξ2), as well as the identity

1− b± τ
2a
· b̄± τ̄

2ā
=

4− N(b± τ)
4
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to calculate v(1− ξ1ξ̄1) entries in the latter four cases.

6.5 Case analysis

Up until now the analysis has been valid for all five cases of Lemma 5.4.1. However, starting

from now on we will have to be a little more careful and think about which situation of

Lemma 5.4.1 we are in.

6.5.1 Analysis of Case 1 and 2 assuming n > 0 and v(b) = 0

We analyze Case 1 and 2 assuming v(b) = 0.

Considering n > 0 and n− r ≤ m ≤ n+ δ + r as fixed, we compute the volume of the set

of t for which n = v(1− tt̄) and 1≤r(γ, t,m) = 1.

In addition to the constraint n ≤ ℓ + r, we see that the two cases have the following

additional requirements:

Case 1 If m <
⌈
n−r
2

⌉
+ δ + r then we need

v(4− bb̄) ≥
⌈
n− r
2

⌉
(6.12)

v(au− d̄ū) ≥ m− δ − r. (6.13)

Case 2 If m ≥
⌈
n−r
2

⌉
+ δ + r then we need

λ = v(1− uū) ≥ m− δ − r (6.14)

v(au− d̄ū) ≥
⌈
n− r
2

⌉
. (6.15)

We will now show that some of these inequalities are redundant and can be ignored.

Lemma 6.5.1. If v(b) = 0, then (6.13) and (6.15) are redundant i.e. they are automatically

true for 0 < n ≤ ℓ+ r.

116



Proof. This is immediate from Lemma 5.4.2.

Lemma 6.5.2. If v(b) = 0, then (6.12) is redundant.

Proof. Regardless of whether v(d) = 0 or v(d) > 0, the equation

(4− bb̄) = −4au(1− dd̄)− b̄(b2 − 4ad̄)

always implies

v(4− bb̄) ≥ min(ℓ, δ) with equality if ℓ ̸= δ (6.16)

sinec −4au and b̄ are units. Hence, a priori (6.16) suggests that we have a condition n ≤ r+2δ

in addition to n ≤ r+ ℓ. However, by Lemma 5.4.1, we always have ℓ ≤ 2δ, and consequently

(6.12) is redundant as well.

Putting all of this together, we find that the valid pairs (n,m) come in two cases.

Double sum for Case 1 We sum over (m,n) such that

1 ≤ n ≤ ℓ+ r,

n− r ≤ m ≤
⌈
n− r
2

⌉
+ δ + r − 1

(6.17)

where each (m,n) gives a volume contribution of


q−n−⌈n−r

2 ⌉ (1− q−1) if n > r

q−n (1− q−2) if n ≤ r.

(6.18)

Double sum for Case 2 We sum over (m,n) such that

1 ≤ n ≤ ℓ+ r,

max

(
n− r,

⌈
n− r
2

⌉
+ δ + r

)
≤ m ≤ min(n, λ) + δ + r

(6.19)

117



where each (m,n) gives a volume contribution of


q−n−(m−δ−r) (1− q−1) if m > δ + r

q−n (1− q−2) if m ≤ δ + r.

(6.20)

Notice that m ≤ δ + r could only occur when n ≤ r.

6.5.2 Analysis of merged Case 1 and 2 assuming n > 0 and v(b) > 0

If v(b) > 0 instead, so that ℓ = 0 but still δ ≥ 0. Then (6.8) becomes independent of the unit

t because we must have

v

(
t− b

2a

)
= 0.

Consequently, in this situation, it is not necessary to distinguish between Cases 1 and 2.

Instead, (6.6) merely requires that

0 ≥ n− r

v(t+ u) ≥ m− δ − r

In this situation, by Lemma 2.2.1, we get a nonzero contribution in the merged case if and

only if

1 ≤ n ≤ r

n− r ≤ m ≤ n+ δ + r

λ ≥ m− δ − r.

(6.21)

In that case the volume contribution is given by the same expression as (6.20).

To avoid having to consider the situation v(b) > 0 separately, we make the following

observation:

Lemma 6.5.3 (Reducing v(b) > 0 to before). Consider the two (disjoint) ranges (6.17) and

(6.19) in the special case ℓ = 0. These two ranges collectively cover exactly the same elements
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(m,n) as (6.21). Moreover, the volume contribution (6.18) equals that of (6.20) for pairs

(m,n) in (6.17).

Proof. If we combine (6.17) and (6.19), they say that

1 ≤ n ≤ ℓ+ r = r

n− r ≤ m ≤ min(n, λ) + δ + r = min(n, λ) + r

which matches (6.21) exactly. So it remains to verify that the volume contributions match.

Now suppose that m <
⌈
n−r
2

⌉
+ δ + r. Since n ≤ r, it follows that m ≤ δ + r. So on the

one hand we have the n ≤ r case in (6.18) and on the other hand we have the m ≤ δ + r

case in (6.20), which both equal q−n(1− q−2). Hence the proof is complete.

Because of this proposition then we can fold the v(b) > 0 result into the case v(b) = 0

too in future calculations. In other words the double sums in Case 1 and 2 mentioned in the

previous subsection will work verbatim even in the v(b) > 0 situation, which is convenient.

Remark 6.5.4 (Comparison to [Zha12]). Note that in the original paper [Zha12] only r = 0

is considered and in this case all three ranges (6.17), (6.19) and (6.21) are empty. Therefore

the corresponding step in the calculation of [Zha12] is much simpler, consisting only of the

one-line observation that Case 1 and Case 2 cannot occur at all if r = 0. In contrast once

r > 0 then the ranges are not necessarily empty and therefore one needs to ensure that the

terms arising actually match.

6.5.3 Analysis of Case 3+, 3-, 4+, 4- assuming n > 0 and v(b) ≥ 0

and v(d) ≥ 0

Suppose ℓ ≥ 0 is even. As before we consider n > 0 and n− r ≤ m ≤ n+ δ + r as fixed, and

seek to compute the volume of the set of t for which n = v(1− tt̄) and 1≤r(γ, t,m) = 0.
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Double sum for Case 3+ Suppose n > ℓ + r, m < n − ℓ
2
+ δ, and we choose b+τ

2a
. Then

Lemma 2.2.3 gives a nonzero contribution if and only if

λ+ δ − ℓ = v(4− N(b+ τ)) ≥ n− ℓ

2
− r

λ+ v(d)− ℓ

2
= v(au− d̄ū+ τ) ≥ m− δ − r.

Compiling all seven constraints gives that the valid pairs (m,n) are those for which

max(1, ℓ+ r + 1) ≤ n ≤ − ℓ
2
+ δ + λ+ r,

n− r ≤ m ≤ min

(
n+ δ + r, n− ℓ

2
+ δ − 1, λ+ v(d)− ℓ

2
+ δ + r

)

which from ℓ, δ, r ≥ 0 can be simplified to just

ℓ+ r + 1 ≤ n ≤ − ℓ
2
+ δ + λ+ r,

n− r ≤ m ≤ min(n− 1, λ+ v(d) + r)− ℓ

2
+ δ

Moreover, in any situation where v(d) > 0, we have ℓ = δ = 0, and hence n − 1 <

λ+ r < λ+ v(d) + r is obvious. Thus we may drop the v(d) term from the inequality

and obtain
ℓ+ r + 1 ≤ n ≤ λ− ℓ

2
+ δ + r,

n− r ≤ m ≤ min(n− 1, λ+ r)− ℓ

2
+ δ

(6.22)

Each (m,n) gives a volume contribution of

q−n−(n− ℓ
2
−r)
(
1− q−1

)
.

Double sum for Case 3- Suppose n > ℓ + r, m < n − ℓ
2
+ δ, and we choose b−τ

2a
. Then
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Lemma 2.2.3 gives a nonzero contribution if and only if

δ = v(4− N(b− τ)) ≥ n− ℓ

2
− r

ℓ

2
= v(au− d̄ū− τ) ≥ m− δ − r.

Compiling all seven constraints gives that the valid pairs (m,n) are those for which

ℓ+ r + 1 ≤ n ≤ ℓ

2
+ δ + r,

n− r ≤ m ≤ min

(
n− ℓ

2
+ δ − 1,

ℓ

2
+ δ + r, n+ δ + r

)

This simplifies to

ℓ+ r + 1 ≤ n ≤ ℓ

2
+ δ + r,

n− r ≤ m ≤ ℓ

2
+ δ + r.

(6.23)

As in the previous case, (m,n) gives a volume contribution of

q−n−(n− ℓ
2
−r)
(
1− q−1

)
.

Double sum for Case 4+ Suppose n > ℓ + r, m ≥ n − ℓ
2
+ δ (which implies m ≥ n − r

since r ≥ 0 and 0 ≤ ℓ ≤ 2δ), and we choose b+τ
2a

. Then Lemma 2.2.3 gives a nonzero

contribution if and only if

λ ≥ m− δ − r

λ+ v(d)− ℓ

2
= v(au− d̄ū+ τ) ≥ n− ℓ

2
− r.

Rearranging gives that the valid pairs (m,n) are those for which

ℓ+ r + 1 ≤ n ≤ λ+ v(d) + r
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n− ℓ

2
+ δ ≤ m ≤ min(n, λ) + δ + r.

However, in any situation where v(d) > 0 and hence ℓ = δ = 0, the inequality on m

already implies that n ≤ λ+ r. Hence we may drop the v(d) term to get instead the

inequalities

ℓ+ r + 1 ≤ n ≤ λ+ r

n− ℓ

2
+ δ ≤ m ≤ min(n, λ) + δ + r.

(6.24)

Here, each (m,n) gives a volume contribution of

q−n−(m−δ−r)
(
1− q−1

)
.

Double sum for Case 4- Suppose n > ℓ + r, m ≥ n − ℓ
2
+ δ, and we choose b−τ

2a
. Then

Lemma 2.2.3 gives a nonzero contribution if and only if

λ ≥ m− δ − r
ℓ

2
= v(au− d̄ū− τ) ≥ n− ℓ

2
− r.

The latter inequality contradicts the assumption that n > ℓ+ r, so in fact this case can

never occur.

6.6 Case analysis when v(b) = v(d) < 0

We need to handle now the situation where v(b) = v(d) < 0. In that case we have ℓ = δ =

2v(d) < 0.

For Case 3+, Case 3-, Case 4+, Case 4-, we still agree to fix the choice of square root

τ such that (5.11) holds. (Note that in the right-hand side of the first inequality, we still

have λ+ v(d)− 1
2
ℓ = λ > 0.)
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6.6.1 Analysis of merged Case 1 and 2 assuming v(b) = v(d) < 0

In the situation where ℓ ≥ n− r, then for any unit t we have v(t− b
2a
) = v(b) = −|v(d)| < 0,

so (6.8) becomes simply

v(b) ≥
⌈
n− r
2

⌉
⇐⇒ n ≤ r + 2v(b) = r + ℓ.

Thus, the only constraint on the unit t is that

v(t+ u) ≥ m− δ − r.

So, by applying Lemma 2.2.1, we find that the nonzero contributions occur exactly when

1 ≤ n ≤ −2|v(d)|+ r

n− r ≤ m ≤ n− 2|v(d)|+ r

λ ≥ m+ 2|v(d)| − r

(6.25)

with the same volume contribution given by (6.20), that is.


q−n−(m+2|v(d)|−r) (1− q−1) if m > −2|v(d)|+ r

q−n (1− q−2) if m ≤ −2|v(d)|+ r.

(6.26)

So an analysis almost identical to the one in Lemma 6.5.3 applies here to show that (6.17)

and (6.19) match the above range, with the same volume contributions. This means that the

same expression can be used for the case v(b) = v(d) < 0 as well.
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6.6.2 Analysis of Case 3+ and Case 4+ assuming v(b) = v(d) < 0

Now suppose n > ℓ+ r and v(b) = v(d) < 0. In this situation, we have b+τ
2a

is a unit, and

λ = v (1− uū) = v

(
1− N(b+ τ)

4

)
.

Hence when we apply Lemma 2.2.3 we see that we are simply requiring that

λ ≥ max

(
n− ℓ

2
− r,m− δ − r

)

with Case 3+ corresponding to n − ℓ
2
− r > m − δ − r and Case 4+ corresponding to

n − ℓ
2
− r ≥ m − δ − r; we do not separate these. As before we immediately replace

ℓ = δ = −2|v(d)| above.

Consequently, we will need to sum over the range

max(1,−2|v(d)|+ r + 1) ≤ n ≤ λ− |v(d)|+ r

n− r ≤ m ≤ min(n, λ)− 2|v(d)|+ r.

(6.27)

The volume contribution is now given by


q−n−max(n+|v(d)|−r,m+2|v(d)|−r)(1− q−1) if max(n+ |v(d)| − r,m+ 2|v(d)| − r) > 0

q−n(1− q−2) if max(n+ |v(d)| − r,m+ 2|v(d)| − r) ≤ 0.

(6.28)

since max(n+ |v(d)| − r,m+ 2|v(d)| − r) could actually be non-positive, in contrast to the

earlier cases.
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6.6.3 Analysis of Case 3- and Case 4+ assuming v(b) = v(d) < 0

Again suppose n > ℓ+ r and v(b) = v(d) < 0. In this case, (6.11) becomes simply

ℓ

2
= v

(
t− b− τ

2a

)
≥ n− ℓ

2
− r

which implies n ≤ ℓ+ r. So actually neither Case 3- nor Case 4- could happen.
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Assume ξ1 and ξ2 ρ1 and ρ2

1 n ≤ ℓ+ r

ξ1 =
b
2a

ξ2 = −u
v(1− ξ1ξ̄1) = v(4− bb̄)
v(ξ1 − ξ2) = v(au− d̄ū)

⌈
n−r
2

⌉
≥ m− δ − r

2 n ≤ ℓ+ r

ξ1 = −u
ξ2 =

b
2a

v(1− ξ1ξ̄1) = λ

v(ξ1 − ξ2) = v(au− d̄ū)

m− δ − r
>
⌈
n−r
2

⌉

3+ n > ℓ+ r

ξ1 =
b+τ
2a

ξ2 = −u
v(1− ξ1ξ̄1) = v(1− N(b+τ)

4
)

= λ+ δ − ℓ
v(ξ1 − ξ2) = v(au− d̄ū+ τ)

= λ+ v(d)− ℓ
2

n− ℓ

2
− r

> m− δ − r

3- n > ℓ+ r

ξ1 =
b−τ
2a

ξ2 = −u
v(1− ξ1ξ̄1) = v(1− N(b−τ)

4
)

= δ

v(ξ1 − ξ2) = v(au− d̄ū− τ)
= ℓ

2

n− ℓ

2
− r

> m− δ − r

4+ n > ℓ+ r

ξ1 = −u
ξ2 =

b+τ
2a

v(1− ξ1ξ̄1) = λ

v(ξ1 − ξ2) = v(au− d̄ū+ τ)

= λ+ v(d)− ℓ
2

m− δ − r

≥ n− ℓ

2
− r

4- n > ℓ+ r

ξ1 = −u
ξ2 =

b−τ
2a

v(1− ξ1ξ̄1) = λ

v(ξ1 − ξ2) = v(au− d̄ū− τ)
= ℓ

2

m− δ − r

≥ n− ℓ

2
− r

Table 6.1: The six cases for calculating the weighted orbital integral for S3(F ), in the
inhomogeneous group version of the AFL.
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Chapter 7

Evaluation of the weighted orbital

integral for S3(F )

We now put together the sums we found in the previous section to come up with the expression

for the weighted orbital integral. We continue to assume Lemma 5.3.3 and Lemma 5.4.1 in

this chapter.

7.1 Region where n ≤ 0 for all values of ℓ

Proposition 7.1.1 (In≤0). The contribution to the integral Orb(γ,1K′
S,≤r

, s) over n ≤ 0 is

exactly

In≤0 := q2(δ+r)s

δ+2r∑
j=0

q−2js = q−2rs + · · ·+ q2(δ+r)s.

Proof. For n = 0 we get a contribution of

κ

∫
t,t1∈E

1[n = 0]1≤r(γ, t,m)q2s·mq−2m dt dt1

= κVol(t : n = 0)
δ+r∑

m=−r

Vol(t1 : −v(t1) = m)q2m(s−1)
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= κ

(
1− q + 1

q2

) δ+r∑
m=−r

(
q2m

(
1− q−2

))
q2m(s−1)

= κ

(
1− q + 1

q2

)(
1− q−2

) δ+r∑
m=−r

q2ms.

For the region where v(t) = −k < 0, for each individual k > 0,

κ

∫
t,t1∈E

1[v(t) = −k]1≤r(γ, t,m)qs(2m−n)q2n−2m dt dt1

= κVol(t : v(t) = −k)
δ+r−k∑

m=−r−k

Vol(t1 : −v(t1) = m)qs(2m+2k)−4k−2m

= κq2k
(
1− q−2

) δ+r−k∑
m=−r−k

(
q2m

(
1− q−2

))
qs(2m+2k)−4k−2m

= κq−2k
(
1− q−2

)2 δ+r−k∑
m=−r−k

q2(m+k)s

= κq−2k
(
1− q−2

)2 δ+r∑
i=−r

q2is.

Since
∑

k>0 q
−2k = q−2

1−q−2 , we find that the total contribution across both the n = 0 case and

the k > 0 case is

((
1− q + 1

q2

)(
1− q−2

)
+ q−2(1− q−2)

)
κ

δ+r∑
i=−r

q2is

=
(
1− q−1

) (
1− q−2

)
κ

δ+r∑
i=−r

q2is

=
δ+r∑
i=−r

q2is.

This equals the claimed sum above. (We write it over 0 ≤ j ≤ δ + 2r for consistency with a

later part.)
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7.2 Contribution from Case 1 and Case 2 assuming v(b) ≥

0 and v(d) ≥ 0

Again using Vol(t1 : −v(t1) = m) = q2m(1− q−2), summing all the cases gives the following

contribution within κ
∫
t,t1∈E 1[n > 0]1≤r(γ, t,m):

I1+2
n>0 := κ

r∑
n=1

⌈n−r
2 ⌉+δ+r−1∑
m=n−r

q−n
(
1− q−2

)
·
(
(−1)nqs(2m−n)q2n−2m

)(
q2m(1− q−2)

)
+ κ

ℓ+r∑
n=r+1

⌈n−r
2 ⌉+δ+r−1∑
m=n−r

q−n−⌈n−r
2 ⌉ (1− q−1

)
·
(
(−1)nqs(2m−n)q2n−2m

)(
q2m(1− q−2)

)
+ κ

r∑
n=1

δ+r∑
m=max(n−r,⌈n−r

2 ⌉+δ+r)

q−n
(
1− q−2

)
·
(
(−1)nqs(2m−n)q2n−2m

)(
q2m(1− q−2)

)

+ κ
ℓ+r∑
n=1

min(n,λ)+δ+r∑
m=max(n−r,⌈n−r

2 ⌉+δ+r,δ+r+1)

q−n−(m−δ−r)
(
1− q−1

)
·
(
(−1)nqs(2m−n)q2n−2m

)(
q2m(1− q−2)

)
=

r∑
n=1

⌈n−r
2 ⌉+δ+r−1∑
m=n−r

qn
(
1 + q−1

)
· (−1)nqs(2m−n)

+
ℓ+r∑

n=r+1

⌈n−r
2 ⌉+δ+r−1∑
m=n−r

q⌊n+r
2 ⌋ · (−1)nqs(2m−n)

+
r∑

n=1

δ+r∑
m=max(n−r,⌈n−r

2 ⌉+δ+r)

qn
(
1 + q−1

)
· (−1)nqs(2m−n)
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+
ℓ+r∑
n=1

min(n,λ)+δ+r∑
m=max(n−r,⌈n−r

2 ⌉+δ+r,δ+r+1)

qn−(m−δ−r) · (−1)nqs(2m−n).

To simplify the expressions, we replace the summation variable m with

j := (n+ δ + r)−m ≥ 0.

In that case,

2m− n = 2(δ + n+ r − j)− n = n+ 2δ + 2r − 2j.

Then the expression rewrites as

I1+2
n>0 =

r∑
n=1

δ+2r∑
j=⌊n+r

2 ⌋+1

qn
(
1 + q−1

)
· (−1)nqs(n+2δ+2r−2j)

+
ℓ+r∑

n=r+1

δ+2r∑
j=⌊n+r

2 ⌋+1

q⌊n+r
2 ⌋ · (−1)nqs(n+2δ+2r−2j)

+
r∑

n=1

min(δ+2r,⌊n+r
2 ⌋)∑

j=n

qn
(
1 + q−1

)
· (−1)nqs(n+2δ+2r−2j)

+
ℓ+r∑
n=1

min(δ+2r,⌊n+r
2 ⌋,n−1)∑

j=max(0,n−λ)

qj · (−1)nqs(n+2δ+2r−2j).

We interchange the order of summation so that it is first over j and then n. There are

four double sums to interchange.

• The first double sum runs from j =
⌊
r+1
2

⌋
+ 1 to j = δ + 2r. In addition to 1 ≤ n ≤ r,

we need
⌊
n+r
2

⌋
+ 1 ≤ j, which solves to n+r

2
≤ j − 1

2
or n ≤ 2j − 1 − r. Thus the

condition on n is

1 ≤ n ≤ min(2j − 1− r, r).

• The second double sum runs from j = r + 1 to δ + 2r. We also need r + 1 ≤ n ≤ ℓ+ r
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and n ≤ 2j − 1− r. Hence, the desired condition on n is

r + 1 ≤ n ≤ min(2j − 1− r, ℓ+ r).

• The third double sum runs from j = 1 to j = r. Meanwhile, the values of n need to

satisfy 1 ≤ n ≤ r, n ≤ j and j ≤
⌊
n+r
2

⌋
=⇒ n ≥ 2j − r, consequently we just obtain

max(1, 2j − r) ≤ n ≤ j.

• The fourth double sum runs j = 0 to

j = min

(
δ + 2r,

⌊
ℓ

2

⌋
+ r, ℓ+ r − 1

)
=

⌊
ℓ

2

⌋
+ r − 1[ℓ = 0]

again because of ℓ < 2δ. Meanwhile, we require 1 ≤ n ≤ ℓ+ r, j ≥ n− λ, j ≤ n− 1, as

well as j ≤
⌊
n+r
2

⌋
⇐⇒ n ≥ 2j − r. Putting these four conditions together gives

max(j + 1, 2j − r) ≤ n ≤ min(j + λ, ℓ+ r).

Hence we get

I1+2
n>0 =

δ+2r∑
j=⌊ r+1

2 ⌋+1

min(2j−1−r,r)∑
n=1

qn
(
1 + q−1

)
· (−1)nqs(n+2δ+2r−2j)

+
δ+2r∑
j=r+1

min(2j−1−r,ℓ+r)∑
n=r+1

q⌊n+r
2 ⌋ · (−1)nqs(n+2δ+2r−2j)

+
r∑

j=1

j∑
n=max(1,2j−r)

qn
(
1 + q−1

)
· (−1)nqs(n+2δ+2r−2j)

+

⌊ ℓ
2⌋+r−1[ℓ=0]∑

j=0

min(j+λ,ℓ+r)∑
n=max(j+1,2j−r)

qj · (−1)nqs(n+2δ+2r−2j).
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At this point, we can unify the sum over j by noting that for j outside of the summation

range, the inner sum is empty anyway. Specifically, note that:

• In the first and second double sum, the inner sum over n is empty anyway when j < r.

• In the third double sum, adding j = 0 does not introduce new terms. Moreover, when

j > r the inner sum over n is also empty anyway.

• In the fourth double sum,

– If ℓ = 0 and j ≥ r, then j + 1 ≥ 0 + r; and

– If ℓ > 0 and j > ℓ
2
+ r, then 2j − r ≥ ℓ+ r.

So no new terms are introduced in this case either.

So we can unify all four double sums to run over 0 ≤ j ≤ δ + 2r, simplifying the expression

to just

I1+2
n>0 = q2(δ+r)s

δ+2r∑
j=0

(
min(2j−1−r,r)∑

n=1

qn
(
1 + q−1

)
· (−1)nqs(n−2j)

+

min(2j−1−r,ℓ+r)∑
n=r+1

q⌊n+r
2 ⌋ · (−1)nqs(n−2j)

+

j∑
n=max(1,2j−r)

qn
(
1 + q−1

)
· (−1)nqs(n−2j)

+

min(j+λ,ℓ+r)∑
n=max(j+1,2j−r)

qj · (−1)nqs(n−2j)

)
.
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7.3 Merging of In≤0 with I1+2
n>0 (and proof of Theorem 5.5.2)

We continue assuming v(b) = v(d) = 0. It turns out that In≤0 + I1+2
n>0 can be rewritten more

compactly (giving a simple answer especially when ℓ is odd). Then

In≤0 + I1+2
n>0

can be rewritten to the collation

= q2(δ+r)s

δ+2r∑
j=0

(
q−2js +

min(2j−1−r,r)∑
n=1

qn
(
1 + q−1

)
· (−1)nqs(n−2j)

+

min(2j−1−r,ℓ+r)∑
n=r+1

q⌊n+r
2 ⌋ · (−1)nqs(n−2j)

+

j∑
n=max(1,2j−r)

qn
(
1 + q−1

)
· (−1)nqs(n−2j)

+

min(j+λ,ℓ+r)∑
n=max(j+1,2j−r)

qj · (−1)nqs(n−2j)

)
.

Note that when r = 0 and ℓ = λ ≡ 1 (mod 2) we recover [Zha12, Equation (4.13)].

The above expression can be considered as a Laurent polynomial in −qs, whose coefficients

are nonnegative polynomials in q (note that (−1)n = (−1)n−2j). Now we are going to extract

the coefficient of (−qs)k, for each integer k. First, note that

• The initial term before the sums adds 1 if k is even and −2r ≤ k ≤ 2δ + 2r, and 0

otherwise.

We move on to the inner sums and calculate their contributions. For a fixed k ∈ Z, we want to

consider (n, j) with n−2j+2(δ+r) = k, that is, 2j = n+2δ+2r−k, or n = 2j+k−2δ−2r.

The condition that j ∈ Z and 0 ≤ j ≤ δ + 2r is then equivalent to

k − 2δ − 2r ≤ n ≤ k + 2r and n ≡ k (mod 2). (7.1)
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We note also that

n < 2j − r ⇐⇒ n < n+ 2δ + r − k ⇐⇒ k < 2δ + r (7.2)

which needs to hold for the first two sums to contribute. Conversely, in the latter two sums,

we will assume that

n ≥ 2j − r ⇐⇒ k ≥ 2δ + r. (7.3)

Now we are ready for the main calculation. In what follows i%2 ∈ {0, 1} means the remainder

when i is divided by 2. Moreover, any ellipses of the form

qi + · · ·+ qi
′

will be an abbreviation for qi + qi−1 + · · · + qi
′ (i.e. within any ellipses, the exponents are

understood to decrease by 1, and the sums are always nonempty, meaning i ≥ i′).

In the region where k < 2δ + r, the first two sums contribute:

• The first sum contributes if and only if (7.1) holds, 1 ≤ n ≤ r and (7.2) is true. Hence,

the contribution only occurs when k < 2δ + r. In that case, all 1 ≤ n ≤ min(r, k + 2r)

with n ≡ k (mod 2) appear. Since the contribution of a given n is qn + qn−1 and the n

are incrementing by 2, our final total is


qk+2r + · · ·+ q(k−1)%2 if − 2r < k ≤ −r

qr−(k−r)%2 + · · ·+ q(k−1)%2 if − r ≤ k < 2δ + r

0 otherwise.

• The second sum contributes if and only if (7.1) holds, (7.2) holds and r+1 ≤ n ≤ ℓ+ r.

The hypothesis n > r means we need k ≥ −r. Since ℓ < 2δ, the upper bound for n is

n ≤ min(ℓ+ r, k + 2r) which we split into two cases.
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In the case where k + 2r ≤ ℓ + r, then since ℓ < 2δ, the inequality k < 2δ + r holds

automatically. We have the largest term n = k + 2r ≡ k (mod 2), so the largest

exponent q that appears is
⌊
(k+2r)+r

2

⌋
.

In the other case ℓ+ r ≤ k + 2r, we obtain largest exponents of

⌊
(ℓ+ r − (ℓ+ r − k)%2) + r

2

⌋
= r +

⌊
ℓ− (ℓ+ r − k)%2

2

⌋
.

Thus, we obtain


q⌊ k+3r

2 ⌋ + · · ·+ qr+(r+1−k)%2 if − r ≤ k ≤ ℓ− r

qr+⌊
ℓ−(ℓ+r−k)%2

2 ⌋ + · · ·+ qr+(r+1−k)%2 if ℓ− r ≤ k < 2δ + r

0 otherwise.

In the region where k ≥ 2δ + r, the latter two sums are in play:

• In the third sum, we assume (7.3); then the other constraints on n are

n ≥ 1

n ≤ j ⇐⇒ 2n ≤ n+ 2δ + 2r − k ⇐⇒ n ≤ 2δ + 2r − k

which implies k < 2δ + 2r for this range to be nonempty. In this case, (7.1) is actually

redundant already. That means our contribution can be described as


q2δ+2r−k + · · ·+ q(k−1)%2 if 2δ + r ≤ k < 2δ + 2r

0 otherwise.

• Unlike the other sums, the j is in the exponent in the fourth sum, so (7.1) will not be

useful to us. Instead our goal is to detect the values of j for which the corresponding

135



value of

n = 2j − 2δ − 2r + k

lies in the desired interval. That is, we get a contribution of qj if and only if (7.3) holds

and

0 ≤ j ≤ δ + 2r

j < 2j − 2δ − 2r + k =⇒ 2δ + 2r − k < j

2j − 2δ − 2r + k ≤ j + λ ⇐⇒ j ≤ 2δ + 2r + λ− k

2j − 2δ − 2r + k ≤ ℓ+ r ⇐⇒ j ≤ δ +
3r + ℓ− k

2

The values of k for which there is any valid index j is given by

2δ + r ≤ k ≤ 2δ +min (λ+ 2r, ℓ+ 3r) .

The breakpoint for the two upper bounds on j occurs when

2δ + 2r − k + λ ≤ δ +
3r + ℓ− k

2
⇐⇒ k ≥ 2δ + 2λ− ℓ+ r.

Comparing all the bounds, we find there are three possible scenarios.

– If λ ≤ ℓ+r
2

, then we get



qδ+⌊ 3r+ℓ−k
2 ⌋ + · · ·+ q2δ+2r−k+1 if 2δ + r ≤ k ≤ 2δ + 2r

qδ+⌊ 3r+ℓ−k
2 ⌋ + · · ·+ q0 if 2δ + 2r < k ≤ 2δ + 2λ− ℓ+ r

q2δ+2r+λ−k + · · ·+ q0 if 2δ + 2λ− ℓ+ r ≤ k ≤ 2δ + λ+ 2r

0 otherwise.
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– If ℓ+r
2
< λ ≤ ℓ+ r, then we get



qδ+⌊ 3r+ℓ−k
2 ⌋ + · · ·+ q2δ+2r−k+1 if 2δ + r ≤ k ≤ 2δ + 2λ− ℓ+ r

qδ+⌊ 3r+ℓ−k
2 ⌋ + · · ·+ q2δ+2r−k+1 if 2δ + 2λ− ℓ+ r ≤ k ≤ 2δ + 2r

q2δ+2r+λ−k + · · ·+ q0 if 2δ + 2r < k ≤ 2δ + λ+ 2r

0 otherwise.

– If ℓ+ r < λ, then we get


qδ+⌊ 3r+ℓ−k

2 ⌋ + · · ·+ q2δ+2r−k+1 if 2δ + r ≤ k ≤ 2δ + 2r

qδ+⌊ 3r+ℓ−k
2 ⌋ + · · ·+ q0 if 2δ + 2r < k ≤ 2δ + ℓ+ 3r

0 otherwise.

This completes the analysis of the four sums above. For later purposes, it will be more

symmetric to rewrite the exponent as

δ +

⌊
3r + ℓ− k

2

⌋
= r +

⌊
(2δ + ℓ+ r)− k

2

⌋
.

Now we can piece together all the parts below. It turns out that for every value of k, the

coefficient of (−qs)k is an expression of the form 1 + q + q2 + · · ·+ qnγ(k) for some k. Indeed,

• When k = −2r the only term is q0.

• For −2r < k < r, only the first sum contributes qk+2r + · · ·+ q(k−1)%2, which is then

completed by the q0 contribution from In≤0 when k is even with a possible q0.

• For −r ≤ k < 2δ + r, the first and second sum actually fit together with a “seam” near

qr, which is for even k then completed by the single q0 contribution from In≤0 (only

when k is even).
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• For 2δ+r ≤ k ≤ 2δ+2r, the same holds with piecing the third and fourth sum together

(where the seam is near qk this time).

• Finally, only the fourth sum contributes for k ≥ 2δ + 2r, and it is of the desired form.

This gives us a succinct description of the weighted orbital integral.

If ℓ is even, we now have the following intermediate result.

Proposition 7.3.1 (Case 1 and 2 for ℓ ≥ 0 even). Suppose ℓ ≥ 0 is even. Then we have the

intermediate result

In≤0 + I1+2
n>0 =

2δ+min(λ+2r,ℓ+3r)∑
k=−2r

(−1)k
(
1 + q + q2 + · · ·+ qn

1+2
γ (k)

)
(qs)k

where the piecewise function nγ : Z→ Z≥0 is defined by

n1+2
γ (k) =



k + 2r if −2r ≤ k ≤ −r⌊
k+r
2

⌋
+ r if −r ≤ k ≤ ℓ− r

ℓ
2
+ r − (k − r)%2 if ℓ− r ≤ k ≤ 2δ + r⌊
(ℓ+2δ+r)−k

2

⌋
+ r if 2δ + r ≤ k ≤ ℓ+ 2δ + 3r

in the case λ ≥ ℓ+ r, and

n1+2
γ (k) =



k + 2r if −2r ≤ k ≤ −r⌊
k+r
2

⌋
+ r if −r ≤ k ≤ ℓ− r

ℓ
2
+ r − (k − r)%2 if ℓ− r ≤ k ≤ 2δ + r⌊
(ℓ+2δ+r)−k

2

⌋
+ r if 2δ + r ≤ k ≤ 2λ− ℓ+ 2δ + r

(λ+ 2δ + 2r)− k if 2δ + 2λ− ℓ+ r ≤ k ≤ λ+ 2δ + 2r

in the case λ ≤ ℓ+ r.
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On the other hand, when ℓ is odd, we get Theorem 5.5.2:

Theorem 5.5.2 (Weighted orbital integral for odd ℓ). Let r ≥ 0. Let γ ∈ S3(F )
−
rs and let b,

d, δ, ℓ, be as in Lemma 5.3.3 and Lemma 5.4.1. If ℓ is odd, define

nγ := ARCH
[−2r,ℓ+2δ+2r]

(r, ℓ).

Then for any r ≥ 0 we have the formula:

Orb(γ,1K′
S,≤r

, s) =
ℓ+2δ+2r∑
k=−2r

(−1)k
(
1 + q + q2 + · · ·+ qnγ(k)

)
(qs)k.

7.4 Contribution from Case 3+, 3-, 4+ assuming v(b) ≥ 0

and v(d) ≥ 0

These cases only appear when ℓ is even and we assume this for this subsection. We consider

the contribution of these cases within κ
∫
t,t1∈E 1[n > 0]1≤r(γ, t,m) (using (6.22), (6.23),

(6.24)) and put Vol(t1 : −v(t1) = m) = q2m(1− q−2) to get:

I3+4
n>0 := κ

λ− ℓ
2
+δ+r∑

n=ℓ+r+1

min(n−1,λ+r)− ℓ
2
+δ∑

m=n−r

q−n−(n− ℓ
2
−r)
(
1− q−1

)
·
(
(−1)nqs(2m−n)q2n−2m

)(
q2m(1− q−2)

)
+ κ

ℓ
2
+δ+r∑

n=ℓ+r+1

ℓ
2
+δ+r∑

m=n−r

q−n−(n− ℓ
2
−r)
(
1− q−1

)
·
(
(−1)nqs(2m−n)q2n−2m

)(
q2m(1− q−2)

)
+ κ

λ+r∑
n=ℓ+r+1

min(n,λ)+δ+r∑
m=n− ℓ

2
+δ

q−n−(m−δ−r)
(
1− q−1

)
·
(
(−1)nqs(2m−n)q2n−2m

)(
q2m(1− q−2)

)
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=

λ− ℓ
2
+δ+r∑

n=ℓ+r+1

min(n−1,λ+r)− ℓ
2
+δ∑

m=n−r

q−n−(n− ℓ
2
−r) ·

(
(−1)nqs(2m−n)q2n

)

+

ℓ
2
+δ+r∑

n=ℓ+r+1

ℓ
2
+δ+r∑

m=n−r

q−n−(n− ℓ
2
−r) ·

(
(−1)nqs(2m−n)q2n

)

+
λ+r∑

n=ℓ+r+1

min(n,λ)+δ+r∑
m=n− ℓ

2
+δ

q−n−(m−δ−r) ·
(
(−1)nqs(2m−n)q2n

)

=

λ− ℓ
2
+δ+r∑

n=ℓ+r+1

min(n−1,λ+r)− ℓ
2
+δ∑

m=n−r

q
ℓ
2
+r · (−1)nqs(2m−n)

+

ℓ
2
+δ+r∑

n=ℓ+r+1

ℓ
2
+δ+r∑

m=n−r

q
ℓ
2
+r · (−1)nqs(2m−n)

+
λ+r∑

n=ℓ+r+1

min(n,λ)+δ+r∑
m=n− ℓ

2
+δ

qn−m+δ+r · (−1)nqs(2m−n)

= q
ℓ
2
+r ·

λ+r∑
n=ℓ+r+1

n−1− ℓ
2
+δ∑

m=n−r

(−1)nqs(2m−n)

+ q
ℓ
2
+r ·

λ− ℓ
2
+δ+r∑

n=λ+r+1

λ− ℓ
2
+δ+r∑

m=n−r

(−1)nqs(2m−n)

+ q
ℓ
2
+r ·

ℓ
2
+δ+r∑

n=ℓ+r+1

ℓ
2
+δ+r∑

m=n−r

(−1)nqs(2m−n)

+
λ+r∑

n=ℓ+r+1

min(n,λ)+δ+r∑
m=n− ℓ

2
+δ

qn−m+δ+r · (−1)nqs(2m−n);

We now analyze each double sum.

7.4.1 Analysis of the coefficient of the top-degree term q
ℓ
2
+r

We start by analyzing just the first three double sums: Fix an index k; we collect the

coefficient of (−qs)k.
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• For the first double sum, change the summation for m to

m = n− r + j ⇐⇒ j = m− n+ r

so that 2m− n = n− 2r + 2j and the first double sum rewrites as

λ+r∑
n=ℓ+r+1

n− ℓ
2
+δ−1∑

m=n−r

(−qs)2m−n =
λ+r∑

n=ℓ+r+1

r− ℓ
2
+δ−1∑

j=0

(−qs)n−2r+2j

=

r− ℓ
2
+δ−1∑

j=0

λ+r∑
n=ℓ+r+1

(−qs)n−2r+2j

=

r− ℓ
2
+δ−1∑

j=0

λ−r+2j∑
k=ℓ−r+2j+1

(−qs)k

Now we collect the coefficient of (−qs)k. The value of k runs from the lowest value

k = ℓ − r + 1 to the highest value k = λ − ℓ + 2δ + r − 2. We seek the number of

0 ≤ j ≤ r − ℓ
2
+ δ − 1 such that

ℓ− r + 2j + 1 ≤ k ≤ λ− r + 2j ⇐⇒ k + r − λ
2

≤ j ≤ k + r − (ℓ+ 1)

2

so the number of terms that appear is

min

(⌊
k − ℓ+ r − 1

2

⌋
,− ℓ

2
+ δ + r − 1

)
−max

(⌈
k + r − λ

2

⌉
, 0

)
+ 1

which is nonnegative (but could be zero). We add in one more term k = λ−ℓ+2δ+r−1

and k = λ− ℓ+ 2δ + r for simplicity; this is okay because the above display equals zero

at this value anyway.
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• For the second double sum, change the order of summation to

λ− ℓ
2
+δ+r∑

n=λ+r+1

λ− ℓ
2
+δ+r∑

m=n−r

(−qs)2m−n =

λ− ℓ
2
+δ+r∑

m=λ+1

min(λ− ℓ
2
+δ+r,m+r)∑

n=λ+r+1

(−qs)2m−n

=

λ− ℓ
2
+δ+r∑

m=λ+1

2m−λ−r−1∑
k=max(m−r,2m−λ+ ℓ

2
−δ−r)

(−qs)k.

Now we collect the coefficient of (−qs)k. The value of k runs from the lowest value

k = λ− r + 1 to the highest value k = λ− ℓ+ 2δ + r − 1. For k in this interval, we

seek values of λ+ 1 ≤ m ≤ λ− ℓ
2
+ δ + r and

k ≤ 2m− λ− r − 1 =⇒ m ≥ k + λ+ r + 1

2

k ≥ m− r =⇒ m ≤ k + r

k ≥ 2m− λ+
ℓ

2
− δ − r =⇒ m ≤ k + λ− ℓ

2
+ δ + r

2
.

When k ≥ λ − r + 1 we already have k+λ+r+1
2

≥ λ + 1, so the number of terms that

appear is

min

(
k + r,

⌊
k + λ− ℓ

2
+ δ + r

2

⌋
, λ− ℓ

2
+ δ + r

)
−
⌈
k + λ+ r + 1

2

⌉
+ 1

which is nonnegative (but could be zero). We add in two extra term at k = λ− r and

k = λ− ℓ+ 2δ + r; for simplicity; this is okay because the above display equals zero at

this value anyway.

• The third double sum
ℓ
2
+δ+r∑

n=ℓ+r+1

ℓ
2
+δ+r∑

m=n−r

(−qs)2m−n

happens to coincide with the previous one if one replaces λ by ℓ everywhere. Hence the
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number of terms that appear is

min

(
k + r,

⌊
k + ℓ

2
+ δ + r

2

⌋
,+

ℓ

2
+ δ + r

)
−
⌈
k + ℓ

2
+ r + 1

2

⌉
+ 1

running from k = ℓ
2
− r to k = ℓ

2
+ 2δ + r.

Now we collate the contribution of the first three double sums:

λ−ℓ+2δ+r∑
k=ℓ−r

(
min

(⌊
k − ℓ+ r − 1

2

⌋
,− ℓ

2
+ δ + r − 1

)
−max

(⌈
k + r − λ

2

⌉
, 0

)
+ 1

)
(−qs)k

+
λ−ℓ+2δ+r∑
k=λ−r

(
min

(
k + r,

⌊
k + λ− ℓ

2
+ δ + r

2

⌋
, λ− ℓ

2
+ δ + r

)
−
⌈
k + λ+ r + 1

2

⌉
+ 1

)
(−qs)k

+
2δ+r∑
k=ℓ−r

(
min

(
k + r,

⌊
k + ℓ

2
+ δ + r

2

⌋
,
ℓ

2
+ δ + r

)
−
⌈
k + ℓ+ r + 1

2

⌉
+ 1

)
(−qs)k

=
λ−r−1∑
k=ℓ−r

(
min

(⌊
k − ℓ+ r − 1

2

⌋
,− ℓ

2
+ δ + r − 1

)
+ 1

)
(−qs)k

+
λ−ℓ+2δ+r∑
k=λ−r

(
min

(⌊
k − ℓ+ r − 1

2

⌋
,− ℓ

2
+ δ + r − 1

)
−
⌈
k + r − λ

2

⌉
+ 1

)
(−qs)k

+
λ−ℓ+2δ+r∑
k=λ−r

(
min

(
k + r,

⌊
k + λ− ℓ

2
+ δ + r

2

⌋
, λ− ℓ

2
+ δ + r

)
−
⌈
k + λ+ r + 1

2

⌉
+ 1

)
(−qs)k

+
2δ+r∑
k=ℓ−r

(
min

(
k + r,

⌊
k + ℓ

2
+ δ + r

2

⌋
,
ℓ

2
+ δ + r

)
−
⌈
k + ℓ+ r + 1

2

⌉
+ 1

)
(−qs)k.

Hence, for each k the coefficient of (−qs)k is given by a sum of a subset of the following

four coefficients:

• For ℓ− r ≤ k ≤ λ− r − 1, we get

C1(k) :=


⌊
k−ℓ+r+1

2

⌋
if k ≤ 2δ + r

− ℓ
2
+ δ + r if k ≥ 2δ + r.
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• For λ− r ≤ k ≤ λ− ℓ+ 2δ + r, we get

C2(k) :=


⌊
k−ℓ+r+1

2

⌋
−
⌈
k+r−λ

2

⌉
if k ≤ 2δ + r

− ℓ
2
+ δ + r −

⌈
k+r−λ

2

⌉
if k ≥ 2δ + r

=


λ−ℓ+1

2
− (k + r + 1)%2 if k ≤ 2δ + r⌊

λ−ℓ+2δ+r−k
2

⌋
if k ≥ 2δ + r.

• For λ− r ≤ k ≤ λ− ℓ+ 2δ + r, we get

C3(k) :=


k + r −

⌈
k+λ+r+1

2

⌉
+ 1 if k ≤ λ− ℓ

2
+ δ − r⌊

k+λ− ℓ
2
+δ+r

2

⌋
−
⌈
k+λ+r+1

2

⌉
+ 1 if λ− ℓ

2
+ δ − r ≤ k ≤ λ− ℓ

2
+ δ + r(

λ− ℓ
2
+ δ + r

)
−
⌈
k+λ+r+1

2

⌉
+ 1 if k ≥ λ− ℓ

2
+ δ + r

=



⌊
k−λ+r+1

2

⌋
if k ≤ λ− ℓ

2
+ δ − r

− ℓ
2
+δ+1−(k+ ℓ

2
+δ+r+1)%2−(k+r)%2

2
if λ− ℓ

2
+ δ − r ≤ k ≤ λ− ℓ

2
+ δ + r⌊

λ−ℓ+2δ+r−k+1
2

⌋
if k ≥ λ− ℓ

2
+ δ + r.

• For ℓ− r ≤ k ≤ 2δ + r, we get

C4(k) :=


k + r −

⌈
k+ℓ+r+1

2

⌉
+ 1 if k ≤ ℓ

2
+ δ − r⌊

k+ ℓ
2
+δ+r

2

⌋
−
⌈
k+ℓ+r+1

2

⌉
+ 1 if ℓ

2
+ δ − r ≤ k ≤ ℓ

2
+ δ + r(

ℓ
2
+ δ + r

)
−
⌈
k+ℓ+r+1

2

⌉
+ 1 if k ≥ ℓ

2
+ δ + r

=



⌊
k−ℓ+r+1

2

⌋
if k ≤ ℓ

2
+ δ − r

− ℓ
2
+δ+1−(k+ ℓ

2
+δ+r)%2−(k+r+1)%2

2
if ℓ

2
+ δ − r ≤ k ≤ ℓ

2
+ δ + r⌊

2δ+r−k+1
2

⌋
if k ≥ ℓ

2
+ δ + r.
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The coefficient we need is then

C(k) := C1(k) + C2(k) + C3(k) + C4(k)

where we consider Ci(k) = 0 if k falls outside the required range for Ci.

Section 7.4.1 gives a sketch of the regions covered by C1, C2, C3, C4 in one situation. In

the general situation, some of the points in the middle could have different orders relative to

each other. (In particular, 2δ + r could occur in either C1 or C2.)

ℓ− r λ− r λ− ℓ+ 2δ + rC1 C2

λ− r λ− ℓ+ 2δ + r

C3

ℓ− r 2δ + r

C4

2δ + r

ℓ
2
+ δ − r ℓ

2
+ δ + r

λ− ℓ
2
+ δ − r λ− ℓ

2
+ δ + r

Figure 7.1: Rough illustration of one possibility for the shapes of regions for C1, C2, C3, C4,
in the case where λ− ℓ

2
+ δ − r ≤ ℓ

2
+ δ + r. The breaking points within each Ci are marked

in black, and grey dotted lines join values of k that overlap between the regions. The four
black breaking points show up in the collated formula later.

ℓ− r λ− r λ− ℓ+ 2δ + rC1 C2

λ− r λ− ℓ+ 2δ + rC3

ℓ− r 2δ + r

C4

2δ + r

ℓ
2
+ δ − r ℓ

2
+ δ + r

λ− ℓ
2
+ δ − r λ− ℓ

2
+ δ + r

Figure 7.2: An illustration of another possibility for the shapes of regions for C1, C2, C3, C4,
this time in the case where ℓ

2
+ δ + r ≤ λ− ℓ

2
+ δ − r.
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To make the casework a bit more efficient, we prove the following lemma, which effectively

lets us fold together cases on λ− r or 2δ + r.

Lemma 7.4.1 (Folding cases). The following two identities are true:

• For k ≤ min
(
λ− ℓ

2
+ δ − r, 2δ + r

)
,

⌊
k − ℓ+ r + 1

2

⌋
=


C1(k) if k ≤ λ− r

C2(k) + C3(k) if k ≥ λ− r.

• For k ≥ max
(
λ− ℓ

2
+ δ − r, λ− r

)
,

⌊
λ− ℓ+ 2δ + r − k

2

⌋
=


C2(k) if k ≥ 2δ + r

C2(k) + C4(k)− (k + r)%2 if k ≤ 2δ + r.

Proof. For the first part, it’s trivial for k ≤ λ− r, whilst for k ≥ λ− r we have

C2(k) + C3(k) =
λ− ℓ+ 1

2
− (k + r − λ)%2 +

⌊
k − λ+ r + 1

2

⌋
=

⌊
k − ℓ+ r + 2

2

⌋
− (k + r − λ)%2

which also equals the claimed result.

For the second part, it’s again trivial for k ≥ 2δ + r whilst for k ≤ 2δ + r we have

C2(k) + C4(k) =
λ− ℓ+ 1

2
− (k + r + 1)%2 +

⌊
2δ + r − k + 1

2

⌋
=

⌊
λ− ℓ+ 2δ + r − k

2

⌋
+ (1− (k + r + 1)%2)

which also matches.

We consider the following five cases now:
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1. Suppose ℓ− r ≤ k ≤ ℓ
2
+ δ− r (in particular, also k ≤ 2δ+ r and k ≤ λ− ℓ

2
= δ). Then

from Lemma 7.4.1 we have

C(k) =

⌊
k − ℓ+ r + 1

2

⌋
+ C4(k) = k − (ℓ− r) + (k + r)%2.

2. Next suppose that ℓ
2
+δ−r ≤ k ≤ min(δ+ ℓ

2
+r, λ− ℓ

2
+δ−r). Again from Lemma 7.4.1

we have

C(k) =

⌊
k − ℓ+ r + 1

2

⌋
+ C4(k)

=

⌊
k − ℓ+ r + 1

2

⌋
+
− ℓ

2
+ δ + 1− (k + ℓ

2
+ δ + r)%2− (k + r + 1)%2

2

=
k − ℓ+ r + 1

2
+
− ℓ

2
+ δ + 1− (k + ℓ

2
+ δ + r)%2

2
− (k + r + 1)%2

=

(
δ − ℓ

2

)
+

⌊
k −

(
ℓ
2
+ δ − r

)
2

⌋
+ (k + r)%2.

3. The next case is split into two possibilities.

• First suppose that

λ− ℓ

2
+ δ − r ≤ k ≤ ℓ

2
+ δ + r

(which matches Section 7.4.1). Then

C(k) = C2(k) + C3(k) + C4(k)

=
λ− ℓ+ 1

2
− (k + r + 1)%2

+
− ℓ

2
+ δ + 1− (k + ℓ

2
+ δ + r + 1)%2− (k + r)%2

2

+
− ℓ

2
+ δ + 1− (k + ℓ

2
+ δ + r)%2− (k + r + 1)%2

2

=
λ− 2ℓ+ 2δ + 1

2
+ (k + r)%2.
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• Instead suppose that

ℓ

2
+ δ + r ≤ k ≤ λ− ℓ

2
+ δ − r.

We consider four more sub-possibilities.

– If k ≤ min(2δ + r, λ− r) we get

C(k) = C1(k) + C4(k)

=

⌊
k − ℓ+ r + 1

2

⌋
+

⌊
2δ + r − k + 1

2

⌋
= − ℓ

2
+ δ + r + (k + r)%2.

– Similarly k ≥ min(2δ + r, λ− r) we get

C(k) = C2(k) + C3(k)

=

⌊
λ− ℓ+ 2δ + r − k

2

⌋
+

⌊
k − λ+ r + 1

2

⌋
= − ℓ

2
+ δ + r.

– If 2δ + r ≤ k ≤ λ− r we simply get

C(k) = C1(k) = −
ℓ

2
+ δ + r.

– Finally if λ− r ≤ k ≤ 2δ + r we get instead

C(k) = C1(k) + C2(k) + C3(k)

=
λ− ℓ+ 1

2
− (k + r + 1)%2 +

⌊
k − λ+ r + 1

2

⌋
+

(
ℓ

2
+ δ + r

)
−
⌈
k + ℓ+ r + 1

2

⌉
+ 1

148



= − ℓ
2
+ δ + r + (k + r)%2.

4. Moving on, suppose that max( ℓ
2
+ δ + r, λ− ℓ

2
+ δ − r) ≤ k ≤ λ− ℓ

2
+ δ + r. Applying

Lemma 7.4.1 we get that

C(k) =

⌊
λ− ℓ+ 2δ + r − k

2

⌋
+ C3(k) + 1k≤2δ+r(k + r)%2

=

⌊
λ− ℓ+ 2δ + r − k

2

⌋
+
− ℓ

2
+ δ + 1− (k + ℓ

2
+ δ + r + 1)%2− (k + r)%2

2

+ 1k≤2δ+r(k + r)%2

=

(
δ − ℓ

2

)
+

⌊(
λ− ℓ

2
+ δ + r

)
− k

2

⌋
+ 1k≤2δ+r(k + r)%2.

5. Finally, if λ− ℓ
2
+ δ + r ≤ k ≤ λ− ℓ+ 2δ + r, use Lemma 7.4.1 to get just

C(k) =

⌊
λ− ℓ+ 2δ + r − k

2

⌋
+ C3(k)

=

⌊
λ− ℓ+ 2δ + r − k

2

⌋
+

⌊
λ− ℓ+ 2δ + r − k + 1

2

⌋
+ 1k≤2δ+r(k + r)%2

= (λ− ℓ+ 2δ + r)− k + 1k≤2δ+r(k + r)%2.

Having exhausted all five cases, we compile them into the following:

Proposition 7.4.2 (cγ). Let us define

cγ := ARCH
[ℓ−r,λ−ℓ+2δ+r]

(δ − ℓ/2,min(λ− ℓ− 1, 2r)).

Then

q
ℓ
2
+r ·

λ+r∑
n=ℓ+r+1

n−1− ℓ
2
+δ∑

m=n−r

(−1)nqs(2m−n) + q
ℓ
2
+r ·

λ− ℓ
2
+δ+r∑

n=λ+r+1

λ− ℓ
2
+δ+r∑

m=n−r

(−1)nqs(2m−n)
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+ q
ℓ
2
+r ·

ℓ
2
+δ+r∑

n=ℓ+r+1

ℓ
2
+δ+r∑

m=n−r

(−1)nqs(2m−n)

=
λ−ℓ+2δ+r∑
k=ℓ−r

cγ(k)(−1)k(qs)k +
2δ+r∑
k≡ℓ−r

(k + r)%2 · (−1)k(qs)k.

Proof. After removing the 1k≤2δ+r · (k + r)%2 term, we see that we need to verify

cγ(k) =



k − (ℓ− r) ℓ− r ≤ k ≤ ℓ
2
+ δ − r(

δ − ℓ
2

)
+

⌊
k−( ℓ

2
+δ−r)
2

⌋
ℓ
2
+ δ − r ≤ k ≤ min(δ + ℓ

2
+ r, λ− ℓ

2
+ δ − r)

λ−2ℓ+2δ+1
2

λ− ℓ
2
+ δ − r ≤ k ≤ ℓ

2
+ δ + r

− ℓ
2
+ δ + r ℓ

2
+ δ + r ≤ k ≤ λ− ℓ

2
+ δ − r(

δ − ℓ
2

)
+

⌊
(λ− ℓ

2
+δ+r)−k

2

⌋
max( ℓ

2
+ δ + r, λ− ℓ

2
+ δ − r) ≤ k ≤ λ− ℓ

2
+ δ + r

(λ− ℓ+ 2δ + r)− k λ− ℓ
2
+ δ + r ≤ k ≤ λ− ℓ+ 2δ + r.

which follows directly from the definition of ARCH that we proposed.

7.4.2 Analysis of the remaining double sum

It remains to evaluate

λ+r∑
n=ℓ+r+1

min(n,λ)+δ+r∑
m=n− ℓ

2
+δ

qn−m+δ+r · (−1)nqs(2m−n).

As before if we define

j := (n+ δ + r)−m ≥ 0

k := n+ 2δ + 2r − 2j.
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so the sum becomes

λ+r∑
n=ℓ+r+1

ℓ
2
+r∑

j=max(0,n−λ)

qj · (−1)nqs(n+2δ+2r−2j)

=

ℓ
2
+r∑

j=max(r−(λ−ℓ−1),0)

λ+min(j,r)∑
n=ℓ+r+1

qj · (−1)nqs(n+2δ+2r−2j)

=
r∑

j=max(r−(λ−ℓ−1),0)

j+λ∑
n=ℓ+r+1

qj · (−1)nqs(n+2δ+2r−2j) +

ℓ
2
+r∑

j=r+1

λ+r∑
n=ℓ+r+1

qj · (−1)nqs(n+2δ+2r−2j)

=
r∑

j=max(r−(λ−ℓ−1),0)

λ+2δ+2r−j∑
k=ℓ+2δ+3r−2j+1

qj · (−qs)k +
ℓ
2
+r∑

j=r+1

λ+2δ+3r−2j∑
k=ℓ+2δ+3r−2j+1

qj · (−qs)k.

Now we collect the coefficient of (−qs)k. In the first double sum the value of k runs from the

lowest value k = ℓ+ 2δ + r + 1 to the highest value λ+ 2δ + 2r −max(r − (λ− ℓ− 1), 0).

The range of j being summed is given by solving

ℓ+ 2δ + 3r− 2j + 1 ≤ k ≤ λ+ 2δ + 2r− j ⇐⇒ ℓ+ 2δ + 3r + 1− k
2

≤ j ≤ λ+ 2δ + 2r− k

to get

max

(⌈
ℓ+ 2δ + 3r + 1− k

2

⌉
, 0, r − (λ− ℓ− 1)

)
≤ j ≤ max (λ+ 2δ + 2r − k, r) .

In the second double sum the value of k runs from the lowest value k = 2δ + r + 1 to the

highest value k = λ+ 2δ + r − 2 and j now needs to satisfy

ℓ+2δ+3r−2j+1 ≤ k ≤ λ+2δ+3r−2j ⇐⇒ ℓ+ 2δ + 3r + 1− k
2

≤ j ≤ λ+ 2δ + 3r − k
2

so we get the range to this time be

max

(⌈
ℓ+ 2δ + 3r + 1− k

2

⌉
, r + 1

)
≤ j ≤ min

(⌊
λ+ 2δ + 3r − k

2

⌋
,
ℓ

2
+ r

)
.
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In this case the max resolves to the ceiling because λ+2δ+3r+1−k
2

≥ λ+2δ+3r+1−(λ+2δ+r−2)
2

≥ r+1

for all k in the desired range, but the min does not resolve immediately. For convenience, we

add on two extra values k = λ+ 2δ + r − 1 and k = λ+ 2r + r for which the range above for

j is void anyway, to make it easier to merge the sums momentarily.

In summary, our rewritten sum equals

λ+2δ+2r−max(r−(λ−ℓ−1),0)∑
k=ℓ+2δ+r+1

min(λ+2δ+2r−k,r)∑
j=max(⌈ ℓ+2δ+3r+1−k

2 ⌉,0,r−(λ−ℓ−1))

qj(−qs)k

+
λ+2δ+r∑

k=2δ+r+1

min(⌊λ+2δ+3r−k
2 ⌋, ℓ2+r)∑

j=max(⌈ ℓ+2δ+3r+1−k
2 ⌉,r+1)

qj(−qs)k.

Notice we always have

2δ + r + 1 ≤ ℓ+ 2δ + r + 1 ≤ λ+ 2δ + r ≤ λ+ 2δ + 2r −max (r − (λ− ℓ− 1), 0)

so the values of k in the second double sum are contained inside those of the first. Moreover,

the two breaking points are

λ+ 2δ + 2r − k ≤ r ⇐⇒ k ≥ λ+ 2δ + r⌈
ℓ+ 2δ + 3r + 1− k

2

⌉
≥ r + 1 ⇐⇒ k ≤ ℓ+ 2δ + r − 1

which miraculously line up with the boundaries of the sum. Hence for these overlapped values

the two sums over j fit together neatly with a “seam” at the value j = r. Then rewriting the

sum with ascending values of k we have

ℓ+2δ+r∑
k=2δ+r+1

ℓ
2
+r∑

j=⌈ ℓ+2δ+3r+1−k
2 ⌉

qj(−qs)k
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+
λ+2δ+r∑

k=ℓ+2δ+r+1

ℓ
2
+r∑

j=max(⌈ ℓ+2δ+3r+1−k
2 ⌉,0,r−(λ−ℓ−1))

qj(−qs)k

+

λ+2δ+2r−max(r−(λ−ℓ−1),0)∑
k=λ+2δ+r+1

λ+2δ+2r−k∑
j=max(⌈ ℓ+2δ+3r+1−k

2 ⌉,0,r−(λ−ℓ−1))

qj(−qs)k.

where we have used λ+2δ+3r−k
2

≥ ℓ
2
+ r ⇐⇒ λ+ 2δ + r + ℓ ≥ k to resolve the minimums in

the first two sums.

To proceed further we split this into cases based on whether λ > ℓ+ r or not.

• If λ > ℓ+ r, then we have

ℓ+2δ+r∑
k=2δ+r+1

ℓ
2
+r∑

j=⌈ ℓ+2δ+3r+1−k
2 ⌉

qj(−qs)k

+
λ+2δ+r∑

k=ℓ+2δ+r+1

ℓ
2
+r∑

j=max(⌈ ℓ+2δ+3r+1−k
2 ⌉,0)

qj(−qs)k

+
λ+2δ+2r∑

k=λ+2δ+r+1

λ+2δ+2r−k∑
j=max(⌈ ℓ+2δ+3r+1−k

2 ⌉,0)
qj(−qs)k.

(7.4)

• If λ ≤ ℓ+ r, then we instead have

ℓ+2δ+r∑
k=2δ+r+1

ℓ
2
+r∑

j=⌈ ℓ+2δ+3r+1−k
2 ⌉

qj(−qs)k

+
λ+2δ+r∑

k=ℓ+2δ+r+1

ℓ
2
+r∑

j=max(⌈ ℓ+2δ+3r+1−k
2 ⌉,r−(λ−ℓ−1))

qj(−qs)k

+
2λ−ℓ+2δ+r−1∑
k=λ+2δ+r+1

λ+2δ+2r−k∑
j=max(⌈ ℓ+2δ+3r+1−k

2 ⌉,r−(λ−ℓ−1))

qj(−qs)k.

(7.5)
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7.5 Proof of Theorem 5.5.7

We now put the finishing touches to deduce Theorem 5.5.7.

Theorem 5.5.7 (Weighted orbital integral for even ℓ ≥ 0). Let r ≥ 0. Let γ ∈ S3(F )
−
rs and

let b, d, δ, ℓ, λ be as in Lemma 5.3.3 and Lemma 5.4.1. Suppose also ℓ ≥ 0 is even. Define

nγ := ARCH
[−2r,λ+2δ+2r]

(r, ℓ)

cγ := ARCH
[ℓ−r,λ−ℓ+2δ+r]

(δ − ℓ/2,min(2r, λ− ℓ)).

Then for any r ≥ 0 we have:

Orb(γ,1K′
S,≤r

, s) =
λ+2δ+2r∑
k=−2r

(−1)k
(
1 + q + q2 + · · ·+ qnγ(k)

)
(qs)k

+
2δ+λ−ℓ+r∑
k=ℓ−r

cγ(k)(−1)kq
ℓ
2
+r(qs)k.

Proof of Theorem 5.5.7. The coefficient c(γ,u,v⊤) was already introduced in Proposition 7.4.2,

where there is an extra (k+ r)%2 term for ℓ− r ≤ k ≤ 2δ+ r that matches the corresponding

term in Proposition 7.3.1.

Then, when λ > ℓ+ r the terms in Proposition 7.3.1 fit together with the sum in (7.4) to

give n(γ,u,v⊤). The same is true with λ ≤ ℓ+ r when one uses (7.5) instead. This completes

the proof.
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Remark 7.5.1 (Expanding nγ). One can expand the Arch notation for nγ to obtain

nγ(k) =



k + 2r if −2r ≤ k ≤ −r⌊
k+r
2

⌋
+ r if −r ≤ k ≤ ℓ− r

ℓ
2
+ r if ℓ− r ≤ k ≤ λ− ℓ+ 2δ + r⌊
(2δ+λ+r)−k

2

⌋
+ r if λ− ℓ+ 2δ + r ≤ k ≤ λ+ 2δ + r

(λ+ 2δ + 2r)− k if λ+ 2δ + r ≤ k ≤ λ+ 2δ + 2r.

Then cγ can be similarly expanded, but the result is so notationally dense that it is hardly

worth including. If one defines the shorthands

Bγ :=
ℓ

2
+ δ − r

Tγ := λ− ℓ

2
+ δ + r

wγ := min(λ− ℓ− 1, 2r)

then it could be written out more fully as

cγ(k) =



k − (ℓ− r) if ℓ− r ≤ k ≤ Bγ⌊
k−Bγ

2

⌋
− ℓ

2
+ δ if Bγ ≤ k ≤ Bγ + wγ

− ℓ
2
+ δ + 1

2
wγ if Bγ + wγ ≤ k ≤ Tγ − wγ⌊

Tγ−k

2

⌋
− ℓ

2
+ δ if Tγ − wγ ≤ k ≤ Tγ

(λ− ℓ+ 2δ + r)− k if Tγ ≤ k ≤ 2δ + λ− ℓ+ r.
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7.6 Contribution of cases for the v(b) = v(d) < 0 case

(and proof of Theorem 5.5.10)

We now deal with the edge case v(b) = v(d) < 0. The region In≤0 remains the same, but

we need to alter the calculation of the other parts. We assume |v(d)| ≤ r henceforth since

otherwise the entire orbital integral vanishes.

7.6.1 Contribution of Case 1 and Case 2

This situation only occurs if r > 2|v(d)|. In that case we get

I1+2
n>0 = κ

−2|v(d)|+r∑
n=1

−2|v(d)|+r∑
m=n−r

q−n
(
1− q−2

)
·
(
(−1)nqs(2m−n)q2n−2m

)(
q2m(1− q−2)

)

+ κ

−2|v(d)|+r∑
n=1

min(n−2|v(d)|+r,λ−|v(d)|+r)∑
m=−2|v(d)|+r+1

q−n−(m+2|v(d)|−r)
(
1− q−1

)
·
(
(−1)nqs(2m−n)q2n−2m

)(
q2m(1− q−2)

)
=

−2|v(d)|+r∑
n=1

−2|v(d)|+r∑
m=n−r

qn
(
1 + q−1

)
(−1)nqs(2m−n)

+

−2|v(d)|+r∑
n=1

min(n,λ)−2|v(d)|+r∑
m=−2|v(d)|+r+1

qn−(m+2|v(d)|−r) · (−1)nqs(2m−n).

7.6.2 Contribution of Case 3+ and Case 4+

We split the sum into several cases.

I3+4
n>0 = κ

−|v(d)|+r∑
n=max(1,−2|v(d)|+r+1)

−2|v(d)|+r∑
m=n−r

q−n
(
1− q−2

)
·
(
(−1)nqs(2m−n)q2n−2m

)(
q2m(1− q−2)

)

+ κ

−|v(d)|+r∑
n=max(1,−2|v(d)|+r+1)

min(n,λ)−2|v(d)|+r∑
m=−2|v(d)|+r+1

q−n−(m+2|v(d)|−r)
(
1− q−1

)
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·
(
(−1)nqs(2m−n)q2n−2m

)(
q2m(1− q−2)

)
+ κ

λ−|v(d)|+r∑
n=−|v(d)|+r+1

n−|v(d)|∑
m=n−r

q−2n+r−|v(d)| (1− q−1
)
·
(
(−1)nqs(2m−n)q2n−2m

)(
q2m(1− q−2)

)

+ κ

λ−|v(d)|+r∑
n=−|v(d)|+r+1

min(n,λ)−2|v(d)|+r∑
m=n−|v(d)|+1

q−n−(m+2|v(d)|−r)
(
1− q−1

)
·
(
(−1)nqs(2m−n)q2n−2m

)(
q2m(1− q−2)

)
=

−|v(d)|+r∑
n=max(1,−2|v(d)|+r+1)

−2|v(d)|+r∑
m=n−r

qn
(
1 + q−1

)
· (−1)nqs(2m−n)

+

−|v(d)|+r∑
n=max(1,−2|v(d)|+r+1)

min(n,λ)−2|v(d)|+r∑
m=−2|v(d)|+r+1

qn−(m+2|v(d)|−r)(−1)nqs(2m−n)

+

λ−|v(d)|+r∑
n=−|v(d)|+r+1

n−|v(d)|∑
m=n−r

qr−|v(d)|(−1)nqs(2m−n)

+

λ−|v(d)|+r∑
n=−|v(d)|+r+1

min(n,λ)−2|v(d)|+r∑
m=n−|v(d)|+1

qn−(m+2|v(d)|−r)(−1)nqs(2m−n).

7.6.3 Merging the contributions

When we put together these sums, the first two double sums fold together and we get just

the following five double sums:

I1+2
n>0 + I3+4

n>0 =

−|v(d)|+r∑
n=1

−2|v(d)|+r∑
m=n−r

qn
(
1 + q−1

)
(−1)nqs(2m−n)

+

λ−|v(d)|+r∑
n=−|v(d)|+r+1

n−|v(d)|∑
m=n−r

qr−|v(d)|(−1)nqs(2m−n)

+

−2|v(d)|+r∑
n=1

min(n,λ)−2|v(d)|+r∑
m=−2|v(d)|+r+1

qn−(m+2|v(d)|−r) · (−1)nqs(2m−n)

+

−|v(d)|+r∑
n=max(1,−2|v(d)|+r+1)

min(n,λ)−2|v(d)|+r∑
m=−2|v(d)|+r+1

qn−(m+2|v(d)|−r)(−1)nqs(2m−n)
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+

λ−|v(d)|+r∑
n=−|v(d)|+r+1

min(n,λ)−2|v(d)|+r∑
m=n−|v(d)|+1

qn−(m+2|v(d)|−r)(−1)nqs(2m−n).

The first double sum, combined with In≤0

We start with
−|v(d)|+r∑

n=1

−2|v(d)|+r∑
m=n−r

qn
(
1 + q−1

)
(−1)nqs(2m−n)

We’d like to write an analogous sum over j. For 1 < j < −|v(d)|+ r we get a contribution of

qj(−qs)k for k = 2m− n if and only if for n = j + (k − n)%2 = j + (k − j)%2 we have

n− r ≤ m ≤ −2|v(d)|+ r ⇐⇒ 2n− 2r ≤ k + n ≤ −4|v(d)|+ 2r

⇐⇒ j + (k − j)%2− 2r ≤ k ≤ −j − (k − j)%2− 4|v(d)|+ 2r

⇐⇒ j − 2r ≤ k ≤ −j − 4|v(d)|+ 2r.

When j = 0, the contribution is analogous except we must have n = 1 so that k must be odd;

and when j = −|v(d)|+ r, the contribution is analogous except we must have n = −|v(d)|+ r

so that k must have the same parity as −|v(d)|+ r. In other words, the double sum can be

written as

So this double sum can be rewritten as

−|v(d)|+r−1∑
j=1

−j−4|v(d)|+2r∑
k=j−2r

qj(−qs)k+
∑

−2r≤k≤−4|v(d)|+2r
k≡1 (mod 2)

(−qs)k+
∑

−|v(d)|−r≤k≤−3|v(d)|+3r
k≡−|v(d)|+r mod 2

q−|v(d)|+r(−qs)k.

However, we also have

In≤0 =
∑

−2r≤k≤−4|v(d)|+2r
k≡0 (mod 2)

(−qs)k.
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Hence once we incorporate In≤0 in we have

In≤0 +

−|v(d)|+r∑
n=1

−2|v(d)|+r∑
m=n−r

qn
(
1 + q−1

)
(−1)nqs(2m−n)

=

−|v(d)|+r−1∑
j=0

−j−4|v(d)|+2r∑
k=j−2r

qj(−qs)k

+
∑

−|v(d)|−r≤k≤−3|v(d)|+r
k≡−|v(d)|+r mod 2

q−|v(d)|+r(−qs)k.

The second double sum

We turn to the second double sum

λ−|v(d)|+r∑
n=−|v(d)|+r+1

n−|v(d)|∑
m=n−r

(−1)nqs(2m−n).

Working with k = 2m− n, the values of k run from the lowest value k = −|v(d)| − r + 1 to

the highest value k = λ− 3|v(d)|+ r. The coefficient of k is the number of integers m such

that

n−r ≤ m ≤ n−|v(d)| ⇐⇒ 2m−k−r ≤ m ≤ 2m−k−|v(d)| ⇐⇒ k+ |v(d)| ≤ m ≤ k+r

and

−|v(d)|+r+1 ≤ 2m−k ≤ λ−|v(d)|+r ⇐⇒ k − |v(d)|+ r + 1

2
≤ m ≤ k + λ− |v(d)|+ r

2
.

In other words, the double sum in question equals

λ−3|v(d)|+r∑
k=−|v(d)|−r+1

(
min

(⌊
k + λ− |v(d)|+ r

2

⌋
, k + r

)

−max

(⌈
k − |v(d)|+ r + 1

2

⌉
, k + |v(d)|

)
+ 1

)
(−qs)k.
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The third, fourth, and fifth double sum

Now we evaluate the final three double sums. Replacing j = n − (m + 2|v(d)| − r) gives

2m− n = 2(n− (2|v(d)| − r)− j)− n = n− 4|v(d)|+ 2r− 2j and the last three double sums

transform into

−2|v(d)|+r∑
n=1

n−1∑
j=max(0,n−λ)

qj · (−1)nqs(n−4|v(d)|+2r−2j)

+

−|v(d)|+r∑
n=max(1,−2|v(d)|+r+1)

n−1∑
j=max(0,n−λ)

qj(−1)nqs(n−4|v(d)|+2r−2j)

+

λ−|v(d)|+r∑
n=−|v(d)|+r+1

−|v(d)|+r−1∑
j=max(0,n−λ)

qj(−1)nqs(n−4|v(d)|+2r−2j).

The range of n across the three double sums is disjoint and runs from n = 1 up to n =

λ− |v(d)|+ r.

We now interchange the order of summation so that j is on the outside to get and then

split the second double sum and re-collate:

−2|v(d)|+r−1∑
j=0

−2|v(d)|+r∑
n=j+1

qj · (−1)nqs(n−4|v(d)|+2r−2j)

+

−|v(d)|+r−1∑
j=0

min(j+λ,−|v(d)|+r)∑
n=max(j+1,−2|v(d)|+r+1)

qj(−1)nqs(n−4|v(d)|+2r−2j)

+

−|v(d)|+r−1∑
j=max(0,−λ−|v(d)|+r+1)

j+λ∑
n=−|v(d)|+r+1

qj(−1)nqs(n−4|v(d)|+2r−2j)

=

−2|v(d)|+r−1∑
j=0

−2|v(d)|+r∑
n=j+1

qj · (−1)nqs(n−4|v(d)|+2r−2j)

+

−λ−|v(d)|+r∑
j=0

j+λ∑
n=max(j+1,−2|v(d)|+r+1)

qj(−1)nqs(n−4|v(d)|+2r−2j)

+

−|v(d)|+r−1∑
j=max(0,−λ−|v(d)|+r+1)

−|v(d)|+r∑
n=max(j+1,−2|v(d)|+r+1)

qj(−1)nqs(n−4|v(d)|+2r−2j)
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+

−|v(d)|+r−1∑
j=max(0,−λ−|v(d)|+r+1)

j+λ∑
n=−|v(d)|+r+1

qj(−1)nqs(n−4|v(d)|+2r−2j)

=

−2|v(d)|+r−1∑
j=0

−2|v(d)|+r∑
n=j+1

qj · (−1)nqs(n−4|v(d)|+2r−2j)

+

−λ−|v(d)|+r∑
j=0

j+λ∑
n=max(j+1,−2|v(d)|+r+1)

qj(−1)nqs(n−4|v(d)|+2r−2j)

+

−|v(d)|+r−1∑
j=max(0,−λ−|v(d)|+r+1)

j+λ∑
n=max(j+1,−2|v(d)|+r+1)

qj(−1)nqs(n−4|v(d)|+2r−2j)

=

−2|v(d)|+r−1∑
j=0

−2|v(d)|+r∑
n=j+1

qj · (−1)nqs(n−4|v(d)|+2r−2j)

+

−|v(d)|+r−1∑
j=0

j+λ∑
n=max(j+1,−2|v(d)|+r+1)

qj(−1)nqs(n−4|v(d)|+2r−2j).

Let k = n− 2j − 4|v(d)|+ 2r and transform this into

−2|v(d)|+r−1∑
j=0

−2j−6|v(d)|+3r∑
k=−j−4|v(d)|+2r+1

qj · (−qs)k

+

−|v(d)|+r−1∑
j=0

−j+λ−4|v(d)|+2r∑
k=max(j+1,−2|v(d)|+r+1)−2j−4|v(d)|+2r

qj(−qs)k.

7.6.4 Collation

Altogether, we have arrived at the following formula

Orb(γ,1K′
S,≤r

, s) =

−|v(d)|+r−1∑
j=0

−j−4|v(d)|+2r∑
k=j−2r

qj(−qs)k + q−|v(d)|+r
∑

−|v(d)|−r≤k≤−3|v(d)|+r
k≡−|v(d)|+r mod 2

(−qs)k

+ q−|v(d)|+r

λ−3|v(d)|+r∑
k=−|v(d)|−r+1

(
min

(⌊
k + λ− |v(d)|+ r

2

⌋
, k + r

)

−max

(⌈
k − |v(d)|+ r + 1

2

⌉
, k + |v(d)|

)
+ 1

)
(−qs)k
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−2|v(d)|+r−1∑
j=0

−2j−6|v(d)|+3r∑
k=−j−4|v(d)|+2r+1

qj · (−qs)k

+

−|v(d)|+r−1∑
j=0

−j+λ−4|v(d)|+2r∑
k=max(j+1,−2|v(d)|+r+1)−2j−4|v(d)|+2r

qj(−qs)k.

We collapse the sums

q−|v(d)|+r
∑

−|v(d)|−r≤k≤−3|v(d)|+r
k≡−|v(d)|+r mod 2

(−qs)k

+ q−|v(d)|+r

λ−3|v(d)|+r∑
k=−|v(d)|−r+1

(
min

(⌊
k + λ− |v(d)|+ r

2

⌋
, k + r

)

−max

(⌈
k − |v(d)|+ r + 1

2

⌉
, k + |v(d)|

)
+ 1

)
(−qs)k

by noting that the coefficient of the second sum can be written as



⌊
k+λ−|v(d)|+r

2

⌋
−
⌈
k−|v(d)|+r+1

2

⌉
+ 1 if λ− |v(d)| − r ≤ k ≤ −3|v(d)|+ r

r − |v(d)|+ 1 if − 3|v(d)|+ r ≤ k ≤ λ− |v(d)|⌊
k+λ−|v(d)|+r

2

⌋
− (k + |v(d)|) + 1 if k ≥ max(−3|v(d)|+ r, λ− |v(d)| − r)

(k + r)−
⌈
k−|v(d)|+r+1

2

⌉
+ 1 if k ≤ min(−3|v(d)|+ r, λ− |v(d)| − r)

=



λ−1
2

+ (k + |v(d)|+ r)%2 if λ− |v(d)| − r ≤ k ≤ −3|v(d)|+ r

r − |v(d)|+ 1 if − 3|v(d)|+ r ≤ k ≤ λ− |v(d)|⌊
λ−3|v(d)|+r−k

2

⌋
+ 1 if k ≥ max(−3|v(d)|+ r, λ− |v(d)| − r)⌊

k+|v(d)|+r
2

⌋
+ (k + |v(d)|+ r)%2 if k ≤ min(−3|v(d)|+ r, λ− |v(d)| − r)
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Thus when we add q−|v(d)|+r
∑

−|v(d)|−r≤k≤−3|v(d)|+r
k≡−|v(d)|+r mod 2

(−qs)k back in we conveniently arrive at a

coefficient of

1 +



λ−1
2

if λ− |v(d)| − r ≤ k ≤ −3|v(d)|+ r

r − |v(d)| if − 3|v(d)|+ r ≤ k ≤ λ− |v(d)|⌊
λ−3|v(d)|+r−k

2

⌋
if k ≥ max(−3|v(d)|+ r, λ− |v(d)| − r)⌊

k+|v(d)|+r
2

⌋
if k ≤ min(−3|v(d)|+ r, λ− |v(d)| − r).

If we now define

cγ(k) := ARCH
[−|v(d)|−r,λ−3|v(d)|+r]

(0,min(2r − 2|v(d)|, λ))

then the coefficient can be written instead as 1 + cγ(k).

Similarly, we unify the three remaining double sums by repeatedly splitting into five

double sums and re-collating everything. The entire expression delightfully collapses into a

single double sum as follows:

−|v(d)|+r−1∑
j=0

−j−4|v(d)|+2r∑
k=j−2r

qj(−qs)k

+

−2|v(d)|+r−1∑
j=0

−2j−6|v(d)|+3r∑
k=−j−4|v(d)|+2r+1

qj · (−qs)k

+

−|v(d)|+r−1∑
j=0

−j+λ−4|v(d)|+2r∑
k=max(j+1,−2|v(d)|+r+1)−2j−4|v(d)|+2r

qj(−qs)k

=

−2|v(d)|+r−1∑
j=0

−j−4|v(d)|+2r∑
k=j−2r

qj(−qs)k

+

−|v(d)|+r−1∑
j=max(−2|v(d)|+r,0)

−j−4|v(d)|+2r∑
k=j−2r

qj(−qs)k

+

−2|v(d)|+r−1∑
j=0

−2j−6|v(d)|+3r∑
k=−j−4|v(d)|+2r+1

qj · (−qs)k
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+

−2|v(d)|+r−1∑
j=0

−j+λ−4|v(d)|+2r∑
k=−2j−6|v(d)|+3r+1

qj(−qs)k

+

−|v(d)|+r−1∑
j=max(−2|v(d)|+r,0)

−j+λ−4|v(d)|+2r∑
k=−j−4|v(d)|+2r+1

qj(−qs)k

=

−2|v(d)|+r−1∑
j=0

−j+λ−4|v(d)|+2r∑
k=j−2r

qj(−qs)k +
−|v(d)|+r−1∑

j=max(−2|v(d)|+r,0)

−j+λ−4|v(d)|+2r∑
k=j−2r

qj(−qs)k

=

−|v(d)|+r−1∑
j=0

−j+λ−4|v(d)|+2r∑
k=j−2r

qj(−qs)k.

Thus, at this point we now have

Orb(γ,1K′
S,≤r

, s) =

λ−3|v(d)|+r∑
k=−|v(d)|−r

q−|v(d)|+r(1 + cγ(k))(−qs)k

+

−|v(d)|+r−1∑
j=0

−j+λ−4|v(d)|+2r∑
k=j−2r

qj(−qs)k

=

λ−3|v(d)|+r∑
k=−|v(d)|−r

q−|v(d)|+rcγ(k)(−qs)k

+

−|v(d)|+r∑
j=0

−j+λ−4|v(d)|+2r∑
k=j−2r

qj(−qs)k.

Interchange the order of the latter sum to be k first:

Orb(γ,1K′
S,≤r

, s) =

λ−3|v(d)|+r∑
k=−|v(d)|−r

q−|v(d)|+rcγ(k)(−qs)k

+

λ−4|v(d)|+2r∑
k=−2r

min(k+2r,−|v(d)|+r,λ−4|v(d)|+2r−k)∑
j=0

qj(−qs)k.

Putting this all together gives Theorem 5.5.10:

Theorem 5.5.10 (Weighted orbital integral when v(b) = v(d) < 0). Let r ≥ 0. Let γ ∈

S3(F )
−
rs and let b, d, λ be as in Lemma 5.3.3 and Lemma 5.4.1. Suppose also v(b) = v(d) < 0.
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Then if |v(d)| > r, the entire orbital integral is zero. Otherwise define

nγ := ARCH
[−2r,λ+2r−4|v(d)|]

(r − |v(d)|, 0)

cγ := ARCH
[−r−|v(d)|,λ+r−3|v(d)|]

(0,min(2r − 2|v(d)|, λ)).

Then for any r ≥ 0 we have the formula:

Orb(γ,1K′
S,≤r

, s) =

λ+2r−4|v(d)|∑
k=−2r

(−1)k
(
1 + q + q2 + · · ·+ qnγ(k)

)
(qs)k

+

λ+r−3|v(d)|∑
k=−r−|v(d)|

cγ(k)(−1)kqr−|v(d)|(qs)k.

7.7 Derivatives of the orbital integral on S3(F )

We now differentiate each of the three earlier theorems. Because of the similarity of the shapes

of the orbitals, we prove the general results Lemma 7.7.1 and Lemma 7.7.3 and specialize

them to the cases we need.

7.7.1 Analysis of the nγ sum

Lemma 7.7.1 (Derivative of nγ sum). Let C, W and H be integers with W > 4H ≥ 0 and

W odd. Consider sums of the form

Σr(s) :=
C+2r+W∑
k=C−2r

(
1 + q + · · ·+ qARCH[C−2r,C+2r+W ](r,2H)(k)

)
(−qs)k.

Then for any r ≥ 0 we have

− 1

log q

∂

∂s
Σr(s)

∣∣∣∣
s=0

= (−1)r+C

r+H∑
j=r+1

(
W + 1

2
+ r − 2(j − r)

)
· qj
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+
r∑

j=0

(−1)j+C

(
W + 1

2
+ 2r − j

)
· qj.

Proof. Since Σr(0) = 0, the effect of C is just multiplication by (−1)C and hence we assume

without loss of generality that C = 0. For each 0 ≤ j ≤ r +H we consider the range of k

such that j ≤ ARCH[−2r,2r+W ](r, 2H)(k). The derivative at s = 0 will give the coefficient for

qj.

• For 0 ≤ j ≤ r, we have a contiguous range −2r + j ≤ k ≤ 2r +W − j. When we

take the derivative of
∑

k(−qs)k at s = 0 we get we get log q ·∑k(−1)k across this

range. Since consecutive elements differ by 1, and W is odd, we get (−1)j times half

the number of elements in the range, which is (2r+W−j)−(−2r+j)+1
2

= W+1
2

+ 2r − j.

• For r + 1 ≤ j ≤ r + H, we have a contiguous range −2r + r + 2(j − r) ≤ k ≤

2r +W − (r + 2(j − r)) instead, and the same proof gives the coefficient of qj.

7.7.2 Analysis of the cγ sum

We will use the following extremely easy lemma:

Lemma 7.7.2 (Extremely easy). If a0 ≤ a1 are integers then

a1∑
k=a0

(k − a0) · k · (−1)k = (−1)a1 · a1(a1 − a0 + 1)

2
− (−1)a0 + (−1)a1

4
· a0

a1∑
k=a0

(a1 − k) · k · (−1)k = (−1)a0 · a0(a1 − a0 + 1)

2
− (−1)a0 + (−1)a1

4
· a1.

Proof. This follows trivially by induction on a1. (Alternatively, use a symbolic engine like

WolframAlpha; see here for the first sum and here for the second sum.)

Lemma 7.7.3 (Derivative of cγ sum). Let C, W , L be integers with L ≥ 1 odd and W ≥ 0.
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Consider sums of the form

Σr(s) :=
C+2W+L+r∑

k=C−r

ARCH
[C−r,C+2W+L+r]

(W,min(2r, L))(k) · (−qs)k.

Then for any r ≥ 0 we have

(−1)r+W+C

log q

∂

∂s
Σr(s)

∣∣∣∣
s=0

=


W
2
− L−1

2
· r if W ≡ 0 (mod 2)

−W+L
2
− L+1

2
· r if W ≡ 1 (mod 2).

Proof. Since Σr(0) = 0, the effect of C is just multiplication by (−1)C and hence we assume

without loss of generality that C = 0. Also, note that change L to L− 1 makes no difference

since L is odd (in general the ARCH(w0, w1) only depends on ⌊w1/2⌋). With this assumption,

we could write explicitly

Σr(s) :=
2W+L+r∑
k=−r

ARCH
[−r,2W+L+r]

(W,min(2r, L− 1))(k) · (−qs)k.

Then for any r ≥ 0 we have

1

log q

∂

∂s
Σr(s)

∣∣∣∣
s=0

=
2W+L+r∑
k=−r

(−1)k · k · ARCH
[−r,2W+L+r]

(W,min(2r, L− 1))(k).

Let H := min(2r, L− 1) for brevity, which is even. We split the sum now into five parts:

1

log q

∂

∂s
Σr(s)

∣∣∣∣
s=0

=
W−r−1∑
k=−r

(−1)k · k · ARCH
[−r,2W+L+r]

(W,H)(k)

+
W−r+H−1∑
k=W−r

(−1)k · k · ARCH
[−r,2W+L+r]

(W,H)(k)

+
W+L+r−H∑
k=W−r+H

(−1)k · k · ARCH
[−r,2W+L+r]

(W,H)(k)

+
W+L+r∑

k=W+L+r−H+1

(−1)k · k · ARCH
[−r,2W+L+r]

(W,H)(k)
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+
2W+L+r∑

k=W+L+r+1

(−1)k · k · ARCH
[−r,2W+L+r]

(W,H)(k)

=
W−r−1∑
k=−r

(−1)k · k · (k + r)

+
W−r+H−1∑
k=W−r

(−1)k · k ·
(
W +

⌊
k − (W − r)

2

⌋)

+
W+L+r−H∑
k=W−r+H

(−1)k · k ·
(
W +

H

2

)

+
W+L+r∑

k=W+L+r−H+1

(−1)k · k ·
(
W +

⌊
W + L+ r − k

2

⌋)

+
2W+L+r∑

k=W+L+r+1

(−1)k · k · (2W + L+ r − k).

We can take out the contribution of r in the second, third, and fourth sum and write

W+L+r∑
k=W−r

(−1)k · k ·W = (−1)W−r+1W · L+ 2r + 1

2
(7.6)

The remaining part of the third sum is

W+L+r−H∑
k=W−r+H

(−1)k · k · H
2

= (−1)W−r+1L+ 2r − 2H + 1

2
· H
2

(7.7)

By Lemma 7.7.2, the first sum is

W−r−1∑
k=−r

(−1)k · k · (k + r) = (−1)W−r−1 · W (W − r − 1)

2
− (−1)r + (−1)W+r−1

4
· (−r)

and the fifth sum is

2W+L+r∑
k=W+L+r+1

(−1)k · k · (2W + L+ r − k) = (−1)W+L+r+1 · W (W + L+ r + 1)

2

− (−1)r+1 + (−1)W+r

4
· (2W + L+ r).
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This sum equals

W−r−1∑
k=−r

(−1)k · k · (k + r) +
2W+L+r∑

k=W+L+r+1

(−1)k · k · (2W + L+ r − k)

= (−1)W+rW (L+ 2r + 2)

2
− (−1)W+r(W%2) · 2W + L+ 2r

2
.

(7.8)

Similarly, if we set aside the floors for the moment the second and fourth sum give

W−r+H−1∑
k=W−r

(−1)k · k · k − (W − r)
2

=
(−1)W−r−1

4
·H · (W − r +H − 1)

W+L+r∑
k=W+L+r−H+1

(−1)k · k · W + L+ r − k
2

=
(−1)W+r

4
·H · (W + L+ r −H + 1)

by Lemma 7.7.2. Their sum is

W−r+H−1∑
k=W−r

(−1)k · k · k − (W − r)
2

+
W+L+r∑

k=W+L+r−H+1

(−1)k · k · W + L+ r − k
2

=
(−1)W+r

4
·H · (L+ 2r + 2− 2H).

(7.9)

We now add in the correction terms of −1/2 from the floor:

∑
W−r≤k≤W−r+H−1
k≡W+r+1 mod 2

(−1)k · k ·
(
−1

2

)
=

(−1)W−r

2

(
(W − r) · H

2
+

(
H

2

)2
)

∑
W+L+r−H+1≤k≤W+L+r

k≡W+L+r−1 mod 2

(−1)k · k ·
(
−1

2

)
=

(−1)W+L+r

2

(
(W + L+ r) · H

2
−
(
H

2

)2
)
.

As L is odd the sum of these is equal to

∑
W−r≤k≤W−r+H−1
k≡W+r+1 mod 2

(−1)k · k ·
(
−1

2

)
+

∑
W+L+r−H+1≤k≤W+L+r

k≡W+L+r−1 mod 2

(−1)k · k ·
(
−1

2

)

=
(−1)W+r

2
·
(
H2

2
− (L+ 2r)

H

2

)
.

(7.10)
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Hence, if we sum all of (7.6), (7.7), (7.8), (7.9), (7.10) we obtain

(−1)W+r

log q

∂

∂s
Σr(s)

∣∣∣∣
s=0

= −W · L+ 2r + 1

2
− L+ 2r − 2H + 1

2
· H
2

+
W (L+ 2r + 2)

2
− (W%2) · 2W + L+ 2r

2

+
1

4
·H · (L+ 2r + 2− 2H) +

1

2

(
H2

2
− (L+ 2r)

H

2

)
=
W

2
− (W%2) · 2W + L+ 2r

2
− H

4
((L− 1) + 2r −H) .

Since H = min(L − 1, 2r), it follows H · ((L− 1) + 2r −H) = 2r(L − 1), and finally the

variable H is gone. Hence

(−1)W+r

log q

∂

∂s
Σr(s)

∣∣∣∣
s=0

=
W

2
− (W%2) · 2W + L+ 2r

2
− r

2
(L− 1)

which equals the claimed expression.

7.7.3 Proof of Theorem 5.6.1

All that remains is to apply the above lemmas with the correct inputs. To spell out the

details:

• For ℓ odd, consult Theorem 5.5.2.

– Apply Lemma 7.7.1 with C = 0, W = ℓ+ 2δ and H = ℓ−1
2

.

• For ℓ ≥ 0 even, consult Theorem 5.5.7.

– Apply Lemma 7.7.1 with C = 0, W = λ+ 2δ and H = ℓ
2
.

– Apply Lemma 7.7.3 with C = ℓ, W = δ − 1
2
ℓ and L = λ− ℓ.

• For ℓ < 0 even, consult Theorem 5.5.7. If r < |v(d)| then all the orbital integrals are

zero anyway. Otherwise, we replace r by to r − |v(d)| ≥ 0 and then apply the following

lemmas:
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– Apply Lemma 7.7.1 with C = −2|v(d)|, W = λ and H = 0 and r replaced by

r − |v(d)|.

– Apply Lemma 7.7.3 with C = −2|v(d)|, W = 0 and L = λ and r replaced by

r − |v(d)|.
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Chapter 8

Synopsis of the weighted orbital integral

Orb((γ,u,v⊤), ϕ⊗ 1OnF×(OnF )∨, s) for

(γ,u,v⊤) ∈ (S2(F )× V ′2(F ))rs and

ϕ ∈ H(S2(F ))

Throughout this section, H = GLn(F ) (rather than H = GLn−1(F )) and K ′ = GLn(OF ).

For the concrete calculation, we are mostly interested in the case n = 2. The goal of this

chapter is to define the orbital integral in Theorem 1.3.1 and give a precise statement of the

parameters used to state the formula, as well as the dependencies between the parameters

that needs to hold in order for the matching to work.

8.1 Definition

For our conjecture, it will be enough to define the weighted orbital integral in the case where

our function is of the form

ϕ⊗ 1On
F×(On

F )∨
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where ϕ ∈ H(Sn(F )) is the left component, and the right component is the indicator function

defined in the obvious way:

1On
F×(On

F )∨ : V
′
n(F )→ {0, 1}

(u,v⊤) 7→


1 u and v⊤ have OF -entries

0 otherwise.

Then, unsurprisingly from the definition of our action as

h · (γ,u,v⊤) = (hγh−1, hu,v⊤h−1)

we analogously define the weighted orbital integral as follows.

Definition 8.1.1 ([Liu21, §1.3]). For brevity let η(h) := η(deth) for h ∈ H. For (γ,u,v⊤) ∈

Sn(F )× V ′
n(F ), ϕ ∈ H(Sn(F )), and s ∈ C, we define the weighted orbital integral by

Orb((γ,u,v⊤), ϕ⊗ 1On
F×(On

F )∨ , s)

:=

∫
h∈H

ϕ(h−1γh)1On
F×(On

F )∨(hu,v
⊤h−1)η(h) |det(h)|−s

F dh.

Definition 8.1.2 (The abbreviation ∂Orb((γ,u,v⊤), ϕ)). Moving forward we abbreviate

∂Orb((γ,u,v⊤), ϕ) :=
∂

∂s

∣∣∣∣
s=0

Orb((γ,u,v⊤), ϕ⊗ 1On
F×(On

F )∨ , s).

As before it seems this weighted orbital integral should be related to an ordinary one.

To define it, fix a self-dual lattice Λn in V+
n of full rank. First, if (g, u) ∈ U(V+

n )× V+
n and

f ∈ H(U(V+
n )), then we define an orbital integral for U(V+

n )× V+
n by

OrbU(V+
n )×V+

n ((g, u), f ⊗ 1Λn) :=

∫
U(V+

n )

f(x−1gx)1Λn(x
−1u) dx. (8.1)
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Then in the spirit of [Liu21, Conjecture 1.9] and Theorem 5.1.3, we propose the following.

Conjecture 8.1.3 (Relative fundamental lemma in the semi-Lie case). Let ϕ ∈ H(Sn(F ))

and (γ,u,v⊤) ∈ (Sn(F )× V ′
n(F ))rs. Then

ω(γ,u,v⊤)Orb(ϕ⊗ 1On
F×(On

F )∨ , (γ,u,v
⊤), 0)

=


0 if (γ,u,v⊤) ∈ (Sn(F )× V ′

n(F ))
−
rs

OrbU(V+
n )×V+

n ((g, u),BCηn−1

Sn
(ϕ)⊗ 1Λn) if (γ,u,v⊤) ∈ (Sn(F )× V ′

n(F ))
+
rs

where the transfer factor ω is defined in Chapter 13.

Wei Zhang suggests that this conjecture can be proven by similar means to Theorem 5.1.3,

but since it is not necessary for this paper we do not pursue this proof here.

8.2 Basis for the indicator functions in H(S2(F ))

From now on assume n = 2. This section is almost an exact analog of Section 5.2, so we will

be slightly terser. Again set

S2(F ) := {g ∈ GL2(E) | gḡ = id2} .

We again have a Cartan decomposition indexed by a single integer r ≥ 0:

Lemma 8.2.1 (Cartan decomposition of S2(F )). For each integer r ≥ 0 let

K ′
S,r := GL2(OE) ·

 0 ϖr

ϖ−r 0



denote the orbit of

 0 ϖr

ϖ−r 0

 under the left action of GL2(OE). Then we have a decompo-
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sition

S2(F ) =
∐
r≥0

K ′
S,r.

Proof. This is [LRZ24, Equation (7.1.7) and (7.1.8)].

Like last time, K ′
S,r is the part of S2(F ) for which the most negative valuation among the

nine entries is −r. And as before we abbreviate the r = 0 term specifically:

K ′
S := K ′

S,0

= GL2(OE) ·

 1

1


= GL2(OE) · id2 = S2(F ) ∩GL2(OE).

Repeating the definition

K ′
S,≤r := S2(F ) ∩ϖ−r GL2(OE) = K ′

S,0 ⊔K ′
S,1 ⊔ · · · ⊔K ′

S,r

we get a basis of indicator functions for the Hecke algebra H(S2(F )):

Corollary 8.2.2 (Basis of H(S2(F ))). For r ≥ 0, the indicator functions 1K′
S,≤r

form a basis

of H(S2(F )).

8.3 Parametrization of γ

From now on assume n = 2, and that (γ,u,v⊤) ∈ (S2(F )× V ′
2)rs is regular.

8.3.1 Identifying an orbit representative

The weighted orbital integral depends only on the H-orbit of (γ,u,v⊤). Consequently,

we may assume without loss of generality (via multiplication by a suitable change-of-basis
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h ∈ H = GL2(F )) that

u =

0

1

 , v⊤ =

(
0 e

)
e ∈ F.

(We know u is not the zero vector from the regular condition applied on (γ,u,v⊤).)

Meanwhile, we will let γ =

a b

c d

 ∈ GL2(F ) for a, b, c, d ∈ F . Then, viewed as an

element of GL3(F ) via the embedding we described earlier, we have

(γ,u,v⊤) 7→


a b 0

c d 1

0 e 0

 ∈ Mat3(F ).

Thus, our definition of regular requires that

0

1

 is linearly independent from

b
d

 and

(
0 e

)
is linearly independent from

(
c d

)
. This is just saying that b, c, e are all nonzero.

We also know that γ ∈ S2(F ), which gives us relations on a, b, c, d (the same as [LRZ24,

Equation (7.3.2)]); we have

1 0

0 1

 =

a b

c d


ā b̄

c̄ d̄

 =⇒
b̄c = bc̄ = 1− aā = 1− dd̄,

d = −āc/c̄ = −āb/b̄.

8.3.2 Simplification due to the matching of non-split unitary group

Like before, we focus on the case where regular (γ,u,v⊤) matches an element in the non-split

unitary group. As we described in Proposition 3.3.2, this is controlled by the parity of v(∆),

where

∆ = det
((

v⊤γi+ju
)
0≤i,j≤n−1

)
.
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When n = 2, for the representatives we described before, we have

(
v⊤γi+ju

)
0≤i,j≤n−1

=

 e de

de bce+ d2e


so

∆ = bce2 =
b

b̄
(1− aā)e2.

Hence, v(∆) is odd if and only if v(1−aā) is odd. Thus, we restrict attention to the following

situation:

Assumption 8.3.1. We will assume that

v(1− aā) ≡ 1 (mod 2).

In particular, a must be a unit. And since d = −āc/c̄, it follows d is a unit. In other

words, Assumption 8.3.1 gives the direct corollary

v(a) = v(d) = 0.

8.4 Parameters used in the calculation of the weighted

orbital integral

The situation is simpler than Section 5.4 and we will state our derivative in terms of the five

integers r, v(b), v(c), v(e) and v(d− a). From Assumption 8.3.1, we actually get that

Assumption 8.4.1. We have that

• v(b) + v(c) is an odd positive integer;

• v(d− a) ≥ 0.
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These are the only constraints between these five numbers we will consider (together with

r ≥ 0). However, we mention that we will only be interested in the case when v(e) ≥ 0 since

in the case v(e) < 0 we will shortly see that Orb((γ,u,v⊤), ϕ⊗ 1On
F×(On

F )∨ , s) = 0 identically

in s in that situation.

For convenience, we summarize all the assumptions on the shape of (γ,u,v⊤) in the

following single lemma.

Lemma 8.4.2 (Parameters for (γ,u,v⊤) ∈ (S2(F )×V ′
2(F ))rs). Suppose (γ,u,v⊤) ∈ (S2(F )×

V ′
2(F ))rs. Then one can choose a representative of the GL2(F )-orbit of (γ,u,v⊤) of the form


a b

c d

 ,

0

1

 ,

(
0 e

)
where a, b, c, d, e ∈ F satisfy bce ̸= 0,

b̄c = bc̄ = 1− aā = 1− dd̄,

d = −āc/c̄ = −āb/b̄.

Moreover, we always assume (γ,u,v⊤) matches an element of (U(V−
2 )×V−

2 )rs rather than

(U(V+
2 )× V+

2 )rs; this is equivalent to Assumption 8.3.1 which states that

v(1− aā) ≡ 1 (mod 2).

In particular, we may assume v(a) = v(d) = 0 and v(b) + v(c) ≥ 1 is odd (Assumption 8.4.1).
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Chapter 9

Support of the weighted orbital integral

for S2(F )× V ′2(F )

We assume (γ,u,v⊤) is as in Lemma 8.4.2 throughout this chapter.

9.1 Iwasawa decomposition

The overall method is to take the Iwasawa decomposition in KAN form:

Lemma 9.1.1 (Iwasawa decomposition). Every element in h ∈ GL2(F ) may be parametrized

as

h = k

x1 0

0 x2


1 y

0 1


where k ∈ K ′ = GL2(OF ), x1, x2 ∈ O×

F and y ∈ OF .

Because the orbits are invariant under conjugation byK ′, the parameter k can be discarded.

The Haar measure in these coordinates

∣∣∣∣x1x2
∣∣∣∣ d×x1 d

×x2 dy
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where we take multiplicative Haar measure on F× (normalized so that O×
F has volume 1) and

additive Haar measure on F (so OF has volume 1).

9.2 Action of upper triangular matrices on (γ, u, v⊤)

We now compute the action of an arbitrary

h =

x1 0

0 x2


1 y

0 1


on (γ,u,v⊤). The main term is given by

hγh−1 =

x1 0

0 x2


1 y

0 1


a b

c d


1 −y

0 1


x−1

1 0

0 x−1
2


=

x1 0

0 x2


cy + a −cy2 + (d− a)y + b

c −cy + d


x−1

1 0

0 x−1
2


=

cy + a x1

x2
· (−cy2 + (d− a)y + b)

x2

x1
· c −cy + d


Meanwhile, we have

hu =

x1 0

0 x2


1 y

0 1


0

1

 =

x1y
x2


v⊤h−1 =

(
0 e

)1 −y

0 1


x−1

1 0

0 x−1
2

 =

(
0 e

x2

)
.
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9.3 Description of support

From now on we fix the notation

n1 := v(x1)

n2 := v(x2).

Note that although n2 ≥ 0, the value of n1 will often be non-positive. In fact n1 is not

particularly simple to work with and we will prefer to introduce the notation

m := n2 + v(c) + r − n1 (9.1)

instead to use as a summation variable. This is chosen so that x2

x1
· c ∈ ϖ−rOF ⇐⇒ m ≥ 0.

Note that it follows we have

n1 + n2 = 2n2 −m+ v(c) + r (9.2)

9.3.1 Collating the linear constraints

For a given r ≥ 0, we find that h contributes to the integral exactly if hu and v⊤h−1 have

OF -entries, and all the entries of hγh−1 are in ϖ−rOF . The former condition is just saying

that

v(y) ≥ −n1,

0 ≤ n2 ≤ v(e).
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Now we consider the entries of hγh−1. First, because a and d are units by Assumption 8.3.1,

and r ≥ 0, it follows that

cy + a,−cy + d ∈ ϖ−rOF ⇐⇒ cy ∈ ϖ−rOF

⇐⇒ v(y) ≥ −v(c)− r.

Moreover,
x2
x1
· c ∈ ϖ−rOF ⇐⇒ n2 + v(c)− n1 ≥ −r ⇐⇒ m ≥ 0.

In summary, up until now we have the following requirements imposed:

0 ≤ n2 ≤ v(e)

0 ≤ m

v(y) ≥ max(−n1,−v(c)− r)

= max(m− n2, 0)− v(c)− r.

(9.3)

9.3.2 The quadratic constraint

As for the quadratic constraint, we seek y such that

x1
x2
· (−cy2 + (d− a)y + b) ∈ ϖ−rOF

⇐⇒ v

(
−y2 + d− a

c
y +

b

c

)
≥ n2 − n1 − v(c)− r

= m− 2v(c)− 2r.

As before, we complete the square:

−y2 + d− a
c

y +
b

c
= −

(
y − d− a

2c

)2

+
b

c
+

(d− a)2
4c2

.
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Because bc̄ = 1− aā has odd valuation, it follows that b
c
= 1−aā

cc̄
has odd valuation to. On the

other hand, (d−a)2

4c2
has even valuation.

This motivates us to introduce the following parameter:

Definition 9.3.1 (θ). We define

θ := min (v(b) + v(c), 2v(d− a)) ≥ 0.

Note that v(b) + v(c) is odd, so θ takes the odd value if v(b) + v(c) < 2v(d− a) and the

even value otherwise. This definition ensures that

v

(
b

c
+

(d− a)2
4c2

)
= θ − 2v(c).

9.4 Cases based on θ

Henceforth we consider two cases based on θ. We number these Case 5 and Case 6 to prevent

confusion with the cases introduced in Chapter 6.

Case 5 Let’s assume first that

θ − 2v(c) ≥ m− 2v(c)− 2r ⇐⇒ m ≤ θ + 2r.

Then the only additional condition on y is that

v

(
y − d− a

2c

)
≥
⌈m
2

⌉
− v(c)− r.

We refer to this as Case 5.

Case 6+ / Case 6- Otherwise assume that

θ − 2v(c) < m− 2v(c)− 2r ⇐⇒ m > θ + 2r.
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Then in order for y to satisfy the constraint, we would need to be in a situation where

2v(y − d−a
2c

) = θ − 2v(c). So this case could only arise at all when θ is even, that is

0 ≤ 2v(d− a) = θ < v(b) + v(c)

(note that v(d− a) ≥ 0 because a and d are units). As the quantity b
c
+ (d−a)2

4c2
must be

a perfect square, we denote it by τ 2, with

v(τ) =
θ

2
− v(c).

This gives us the factorization

b

c
= τ 2 − (d− a)2

4c2
=

(
τ − d− a

2c

)(
τ +

d− a
2c

)
.

The left-hand side has odd valuation v(b) − v(c), so the two factors on the right

have unequal valuations and hence exactly one of them has valuation the same as

v(d−a
2c

) = v(τ). Hence, we agree to fix the choice of the square root τ so that

v

(
τ +

d− a
2c

)
= v(b)− v(c)− v(τ) = v(b)− θ

2

v

(
τ − d− a

2c

)
= v(τ) =

θ

2
− v(c)

and in particular v
(
τ + d−a

2c

)
> v

(
τ − d−a

2c

)
.

In any case, the constraint on y is that

v

(
y −

(
d− a
2c
± τ
))
≥ (m− 2v(c)− 2r)− v(τ)

= (m− 2v(c)− 2r)−
(
θ

2
− v(c)

)
= m− θ

2
− v(c)− 2r
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v

(
y −

(
d− a
2c
∓ τ
))

= v(τ) =
θ

2
− v(c).

By assumption, the second equation is true whenever the first inequality is and we may

disregard it. Case 6+ refers to the situation where the ± sign is + and Case 6- refers

to the situation where the ∓ sign is −. And these cases must be disjoint because the

right-hand sides above are unequal.

9.4.1 Analysis of Case 5

The triple (x1, x2, y) ∈ O×
F ×O×

F ×OF contributes to the weighted orbital integral in Case 5

exactly if the following identities hold:

0 ≤ n2 ≤ v(e)

0 ≤ m ≤ θ + 2r

v(y) ≥ max(m− n2, 0)− v(c)− r

v

(
y − d− a

2c

)
≥
⌈m
2

⌉
− v(c)− r.

However, from the definitions we already know that

v

(
d− a
2c
− 0

)
≥ θ − 2v(c)

2
≥ m

2
− v(c)− r

so the disks in the last two conditions have nonempty intersection. Hence the earlier

Lemma 2.2.2 applies to tell us that the locus of valid y is a single disk whose volume in OF is

given by

q−max(m−n2,⌈m/2⌉,0)+v(c)+r = q−max(m−n2,⌈m/2⌉)+v(c)+r.
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The volume contribution for and x1 ∈ O×
F and x2 ∈ O×

F is also 1, because v(x1) and v(x2)

are fixed. Hence the overall volume of the support in H for this pair (m,n2) is given by

∣∣∣∣x1x2
∣∣∣∣ qn2−n1 Vol({y | . . . }) = qn2−n1−max(m−n2,⌈m/2⌉)+v(c)+r

= qm−max(m−n2,⌈m/2⌉).

And again, this case is summed over

0 ≤ n2 ≤ v(e), 0 ≤ m ≤ θ + 2r.

9.4.2 Analysis of Case 6+ and Case 6-

Again, this case could only occur if θ is even. The triple (x1, x2, y) ∈ O×
F×O×

F×OF contributes

to the weighted orbital integral in Case 6+ and Case 6- exactly if the following identities hold:

0 ≤ n2 ≤ v(e)

θ + 2r < m

v(y) ≥ max(m− n2, 0)− v(c)− r

v

(
y −

(
d− a
2c
± τ
))
≥ m− θ

2
− v(c)− 2r.

The last two inequalities specify disks. So in each case, via Lemma 2.2.2 we get a nonzero

contribution if and only if the distance between the centers 0 and d−a
2c
± τ has valuation at

least that of the smaller of the two right-hand sides, that is

v

(
d− a
2c
± τ
)
≥ min

(
max(m− n2, 0)− v(c)− r,m−

θ

2
− v(c)− 2r

)
= min

(
max(m− n2, 0),m−

θ

2
− r
)
− v(c)− r.
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Hence the upper bound on m is given by two different requirements, depending on which of

the two values of v
(
d−a
2c
± τ
)
+ v(c) + r is given by the case:

• In Case 6+, we need at least one of the inequalities


max(m− n2, 0) ≤ v(b)− θ

2
+ v(c) + r,

m ≤ v(b) + v(c) + 2r

to hold. Now the inequality 0 ≤ v(b)− θ
2
+ v(c) + r is always true, as θ < v(b) + v(c),

so we can disregard it. Therefore this can be rewritten as just

m ≤ max

(
r, n2 −

θ

2

)
+ v(b) + v(c) + r.

• In Case 6-, we need at least one of the inequalities


max(m− n2, 0) ≤ θ

2
+ r

m ≤ θ + 2r

to hold. But m ≤ θ + 2r is always false and 0 ≤ θ
2
+ r is always true, so this simplifies

to

m ≤ n2 +
θ

2
+ r.

Assuming m lies in the valid range so that the locus of valid y is nonempty, it follows that

the volume is given exactly by

q−max(m−n2,m− θ
2
−r,0)−v(c)−r = q−max(m−n2,m− θ

2
−r)−v(c)−r.
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Hence the overall volume of the support in H for this pair (m,n2) is given by

∣∣∣∣x1x2
∣∣∣∣ qn2−n1 Vol({y | . . . }) = qn2−n1−max(m−n2,m− θ

2
−r)+v(c)+r

= qm−max(m−n2,m− θ
2
−r)

= qmin(n2,
θ
2
+r).

And this sum is over two ranges of m (although the ranges obviously overlap, they set of y

they cover is disjoint):

θ + 2r < m ≤ max

(
r, n2 −

θ

2

)
+ v(b) + v(c) + r

θ + 2r < m ≤ n2 +
θ

2
+ r.

Note the second range could be empty if n2 is small enough, but the first range is always

nonempty.
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Chapter 10

Evaluation of the weighted orbital

integral for S2(F )× V ′2(F )

We continue to assume (γ,u,v⊤) is as in Lemma 8.4.2 throughout this chapter.

We now aggregate the supports we found in the previous section together with the

definition of the weighted orbital integral to extract the desired formulas.

Recall that the weighted orbital integral was defined as

Orb((γ,u,v⊤), ϕ⊗ 1On
F×(On

F )∨ , s)

:=

∫
h∈H

ϕ(h−1γh)1On
F×(On

F )∨(hu,v
⊤h−1)η(h) |det(h)|−s

F dh

and that after taking Iwasawa decomposition as

h = k

x1 0

0 x2


1 y

0 1


we broke the sum based on n1 = v(x1) and n2 = v(x2). For h as above, we know that

η(h) = (−1)n1+n2
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|det(h)|−s
F = (qs)n1+n2 .

Applying (9.2) we find that

η(h) |det(h)|−s
F = (qs)2n2−m+v(c)+r.

10.1 The contribution for Case 5

We assume θ+2r ≥ 0, because otherwise the entire sum is empty. Hence, the total contribution

for Case 5 is

I5 :=

v(e)∑
n2=0

θ+2r∑
m=0

qm−max(m−n2,⌈m/2⌉)(−qs)2n2−m+v(c)+r

:=

v(e)∑
n2=0

θ+2r∑
m=0

qmin(n2,⌊m/2⌋)(−qs)2n2−m+v(c)+r.

We’ll change the summation variable to

k := 2n2 −m+ v(c) + r ⇐⇒ m = 2n2 − k + v(c) + r.

Then

I5 :=

v(e)∑
n2=0

2n2+v(c)+r∑
k=2n2−θ+v(c)−r

qmin(n2,n2+⌊ v(c)+r−k
2 ⌋)(−qs)k

=

v(e)∑
n2=0

2n2+v(c)+r∑
k=2n2−θ+v(c)−r

qn2−max(0,⌈ k−(v(c)+r)
2 ⌉)(−qs)k.

We then interchange the order of summation so that k is outside. Then k runs from the

lowest value of k = −θ + v(c)− r to the largest value k = 2v(e) + v(c) + r over all choices of

n2. Since

2n2 − θ + v(c)− r ≤ k ≤ 2n2 + v(c) + r
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then in addition to 0 ≤ n2 ≤ v(e) we also need

k − v(c)− r
2

≤ n2 ≤
k + θ − v(c) + r

2
.

In other words, we obtain

I5 =

2v(e)+v(c)+r∑
k=−θ+v(c)−r

(−1)k(qs)k
min(v(e),⌊ k+θ−v(c)+r

2 ⌋)∑
n2=max(0,⌈ k−v(c)−r

2 ⌉)
qn2−max(0,⌈ k−(v(c)+r)

2 ⌉)

=

2v(e)+v(c)+r∑
k=−θ+v(c)−r

(−1)k(qs)k
(
qmin(v(e),⌊ k+θ−v(c)+r

2 ⌋)−max(0,⌈ k−v(c)−r
2 ⌉) + · · ·+ q0

)
.

Here, we retain the convention from Chapter 7 that ellipses of the form

qi + · · ·+ qi
′

will denote the expression qi + qi−1 + · · · + qi
′ (i.e. within any ellipses, the exponents are

understood to decrease by 1, and the sums are always nonempty, meaning i ≥ i′).

To simplify the exponent, write

min
(
v(e),

⌊
k+θ−v(c)+r

2

⌋)
−max

(
0,
⌈
k−v(c)−r

2

⌉)
= min

(
v(e),

⌊
k+θ−v(c)+r

2

⌋)
+min

(
0,
⌊
v(c)+r−k

2

⌋)
= min

(⌊
k+θ−v(c)+r

2

⌋
, v(e) +

⌊
v(c)+r−k

2

⌋
, v(e),

⌊
k+θ−v(c)+r

2

⌋
+
⌊
v(c)+r−k

2

⌋)
.

(10.1)

This already completes Theorem 1.3.1 in the situation when θ is odd since Case 6+ and

Case 6- do not appear at all. However, let’s turn to the remaining cases first.
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10.2 The contribution for Case 6+ and Case 6-

Herein we assume θ = 2v(d − a) > v(b) + v(c) is even, and in particular θ ≥ 0. We get a

contribution of

I6+ :=

v(e)∑
n2=0

max(r,n2− θ
2)+v(b)+v(c)+r∑

m=θ+2r+1

qmin(n2,
θ
2
+r)(−qs)2n2−m+v(c)+r

I6- :=

v(e)∑
n2=0

n2+
θ
2
+r∑

m=θ+2r+1

qmin(n2,
θ
2
+r)(−qs)2n2−m+v(c)+r.

We will split I6+ into two parts:

I6+ =

θ
2
+r∑

n2=0

v(b)+v(c)+2r∑
m=θ+2r+1

qn2(−qs)2n2−m+v(c)+r

+ q
θ
2
+r

v(e)∑
n2=

θ
2
+r+1

n2− θ
2
+v(b)+v(c)+r∑

m=θ+2r+1

(−qs)2n2−m+v(c)+r.

Note that the second sum is nonempty only when v(e) > θ
2
+ r. So we consider cases on this

in what follows.

10.2.1 Sub-case where v(e) ≤ θ
2
+ r

First, suppose v(e) ≤ θ
2
+ r. Then the contribution of Case 6- is void, since the inner sum of

I6- contributes only when n2 >
θ
2
+ r. We only need to consider

I6+ =

v(e)∑
n2=0

v(b)+v(c)+2r∑
m=θ+2r+1

qn2(−qs)2n2−m+v(c)+r

=

v(e)∑
n2=0

2n2−θ+v(c)−r−1∑
k=2n2−v(b)−r

qn2(−qs)k.
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Swapping the summation order so that k is outside, the sum runs from the lowest value

k = −v(b)− r up to the highest value k = 2v(e)− θ + v(c)− r − 1, subject to 0 ≤ n2 ≤ v(e)

and

2n2 − v(b)− r ≤ k ≤ 2n2 − θ + v(c)− r − 1

⇐⇒
⌈
k + θ − v(c) + r + 1

2

⌉
≤ n2 ≤

⌊
k + v(b) + r

2

⌋
.

Thus,

I6+ =

2v(e)−θ+v(c)−r−1∑
k=−v(b)−r

min(v(e),⌊ k+v(b)+r
2 ⌋)∑

n2=max(0,⌈ k+θ−v(c)+r+1
2 ⌉)

qn2(−qs)k.

10.2.2 Sub-case where v(e) > θ
2
+ r

We start on I6-; note if n2 ≤ θ
2
+ r then the inner sum of I6- has empty range anyway.

Consequently, we can simply write

I6- = q
θ
2
+r

v(e)∑
n2=

θ
2
+r+1

n2+
θ
2
+r∑

m=θ+2r+1

(−qs)2n2−m+v(c)+r

which in particular is nonempty. In that case, simplifying the inner sum gives

I6- = q
θ
2
+r

v(e)∑
n2=

θ
2
+r+1

(
(−qs)2n2−θ+v(c)−r−1 + · · ·+ (−qs)n2− θ

2
+v(c)

)
.

We collect the coefficient of (−qs)k for each k. The lowest value of k which appears is

k = v(c) + r + 1; the highest one is k = 2v(e)− θ + v(c)− r − 1. For these k, the coefficient

is the number of integers n2 such that

θ

2
+ r + 1 ≤ n2 ≤ v(e)
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and

n2 −
θ

2
+ v(c) ≤ k ≤ 2n2 − θ − r − 1 + v(c)

⇐⇒ k + θ − v(c) + r + 1

2
≤ n2 ≤ k +

θ

2
− v(c).

Note we already have k+θ−v(c)+r+1
2

≥ θ
2
+ r + 1 for k in the desired range. Hence we have

I6- = q
θ
2
+r

2v(e)−θ+v(c)−r−1∑
k=v(c)+r+1

(
1 + min

(
v(e), k +

θ

2
− v(c)

)

−max

(
θ

2
+ r + 1,

⌈
k + θ − v(c) + r + 1

2

⌉))
(−qs)k

= q
θ
2
+r

2v(e)−θ+v(c)−r−1∑
k=v(c)+r+1

(
1 + min

(
v(e), k +

θ

2
− v(c)

)
−
⌈
k + θ − v(c) + r + 1

2

⌉)
(−qs)k.

The second double sum of I6+ is again nonempty since v(e) > θ
2
+ r. So we compute it in

a similar way to I6- by putting

q
θ
2
+r

v(e)∑
n2=

θ
2
+r+1

n2− θ
2
+v(b)+v(c)+r∑

m=θ+2r+1

(−qs)2n2−m+v(c)+r

= q
θ
2
+r

v(e)∑
n2=

θ
2
+r+1

(
(−qs)2n2−θ+v(c)−r−1 + · · ·+ (−qs)n2+

θ
2
−v(b)

)
.

Again we calculate the coefficient of (−qs)k. The values of k run from the lowest value

k = θ − v(b) + r + 1 and end at the highest value k = 2v(e)− θ + v(c)− r − 1. In this range

we need θ
2
+ r + 1 ≤ n2 ≤ v(e) and

n2 +
θ

2
− v(b) ≤ k ≤ 2n2 − θ + v(c)− r − 1

⇐⇒ k + θ − v(c) + r + 1

2
≤ n2 ≤ k − θ

2
+ v(b).
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The double sum therefore becomes

q
θ
2
+r

2v(e)−θ+v(c)−r−1∑
k=θ−v(b)+r+1

(
1 + min

(
v(e), k − θ

2
+ v(b)

)

−max

(
θ

2
+ r + 1,

⌈
k + θ − v(c) + r + 1

2

⌉))
(−qs)k.

It is natural to split this sum into k ≤ v(c) + r and k > v(c) + r. In the former case, we

have both k− θ
2
+ v(b) ≤ v(e) and θ

2
+ r + 1 ≥

⌈
k+θ−v(c)+r+1

2

⌉
; in the latter case we have just

θ
2
+ r + 1 ≤

⌈
k+θ−v(c)+r+1

2

⌉
instead. Hence, the double sum simplifies further to

q
θ
2
+r

v(c)+r∑
k=θ−v(b)+r+1

(
1 +

(
k − θ

2
+ v(b)

)
−
(
θ

2
+ r + 1

))
(−qs)k

+ q
θ
2
+r

2v(e)−θ+v(c)−r−1∑
k=v(c)+r+1

(
1 + min

(
v(e), k − θ

2
+ v(b)

)
−
⌈
k + θ − v(c) + r + 1

2

⌉)
(−qs)k

= q
θ
2
+r

v(c)+r∑
k=θ−v(b)+r+1

(k − θ + v(b)− r) (−qs)k

+ q
θ
2
+r

2v(e)−θ+v(c)−r−1∑
k=v(c)+r+1

(
1 + min

(
v(e), k − θ

2
+ v(b)

)
−
⌈
k + θ − v(c) + r + 1

2

⌉)
(−qs)k.

Meanwhile, the first sum within I6+ can be computed as

θ
2
+r∑

n2=0

v(b)+v(c)+2r∑
m=θ+2r+1

qn2(−qs)2n2−m+v(c)+r =

θ
2
+r∑

n2=0

qn2

v(b)+v(c)+2r∑
m=θ+2r+1

(−qs)2n2−m+v(c)+r

=

θ
2
+r∑

n2=0

qn2

2n2−θ+v(c)−r−1∑
k=2n2−v(b)−r

(−qs)k.

We now interchange the summation so that k is outside, running from the lowest value

k = −v(b)− r to the highest value k = v(c) + r − 1. From

2n2 − v(b)− r ≤ k ≤ 2n2 − θ + v(c)− r − 1
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we require that 0 ≤ n2 ≤ θ
2
+ r and

k + θ − v(c) + r + 1

2
≤ n2 ≤

k + r + v(b)

2
.

In other words, we get

v(c)+r−1∑
k=−v(b)−r

(−qs)k
min( θ

2
+r,⌊ v(b)+r+k

2 ⌋)∑
n2=max(0,⌈ k+θ−v(c)+r+1

2 ⌉)
qn2 .

Hence the total contribution from Case 6 can be written as

I6+ + I6- =

v(c)+r−1∑
k=−v(b)−r

(−qs)k
(
qmin( θ

2
+r,⌊ v(b)+r+k

2 ⌋) + · · ·+ qmax(0,⌈ k+θ−v(c)+r+1
2 ⌉))

+ q
θ
2
+r

v(c)+r∑
k=θ−v(b)+r+1

(k − θ + v(b)− r) (−qs)k

+ q
θ
2
+r

2v(e)−θ+v(c)−r−1∑
k=v(c)+r+1

(
2 + min

(
v(e), k − θ

2
+ v(b)

)
+min

(
v(e), k +

θ

2
− v(c)

)

− 2

⌈
k + θ − v(c) + r + 1

2

⌉)
(−qs)k.

We’d like to further simplify the coefficient of q
θ
2
+r as follows. First, we may as well write

2− 2

⌈
k + θ − v(c) + r + 1

2

⌉
= 2−

(
(k + θ − v(c) + r + 1) + 1k+θ+v(c)+r≡1 mod 2

)
= 1k+θ+v(c)+r≡0 mod 2 + v(c)− θ − k − r.

Set aside the indicator function 1k+θ+v(c)+r≡0 mod 2 momentarily; we will merge it in a moment.

To consolidate the minimum’s in the third double sum, note that we have

v(c) + r + 1 ≤ v(e) +
θ

2
− v(b) < v(e) + v(c)− θ

2
≤ 2v(e)− θ + v(c)− r − 1.
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Hence, based on the value of k, we get the following coefficients:

• If v(c) + r + 1 ≤ k ≤ v(e) + θ
2
− v(b), we get

(v(c)− θ − k − r) +
(
k − θ

2
+ v(b)

)
+

(
k +

θ

2
− v(c)

)
= k − θ + v(b)− r.

• If v(e) + θ
2
− v(b) ≤ k ≤ v(e) + v(c)− θ

2
, we get

(v(c)− θ − k − r) + v(e) +

(
k +

θ

2
− v(c)

)
= v(e)− θ

2
− r.

• If v(e) + v(c)− θ
2
≤ k ≤ 2v(e)− θ + v(c)− r, we get

(v(c)− θ − k − r) + v(e) + v(e)

= 2v(e) + v(c)− θ − r.

Noting the expression in the first bullet also matches the coefficient of (−qs)k for θ − v(b) +

r + 1 ≤ k ≤ v(c) + r, we can now write

I6+ + I6- =

v(c)+r−1∑
k=−v(b)−r

(−qs)k
(
qmin( θ

2
+r,⌊ v(b)+r+k

2 ⌋) + · · ·+ qmax(0,⌈ k+θ−v(c)+r+1
2 ⌉))

+ q
θ
2
+r

2v(e)−θ+v(c)−r−1∑
k=θ−v(b)+r+1

c(γ,u,v⊤)(k)(−qs)k

+ q
θ
2
+r

2v(e)−θ+v(c)−r−1∑
k=v(c)+r+1

1k+θ+v(c)+r≡0 mod 2(−qs)k
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as the overall contribution from Case 6, where

c(γ,u,v⊤)(k) := min

(
k − θ + v(b)− r, v(e)− θ

2
− r, 2v(e) + v(c)− θ − r

)
.

10.3 Proof of Theorem 1.3.1

We now prove Theorem 1.3.1, which we restate here.

Theorem 1.3.1 (Explicit orbital integral on S2(F )× V ′
2(F )). Let

(γ,u,v⊤) =


a b

c d

 ,

0

1

 ,

(
0 e

) ∈ (S2(F )× V ′
2(F ))

−
rs

satisfy the requirements in Lemma 8.4.2. Let r ≥ 0.

If v(e) < 0 or v(b) + v(c) < −2r, then

Orb((γ,u,v⊤),1K′
S,≤r
⊗ 1On

F×(On
F )∨ , s) = 0

holds identically for all s ∈ C.

Otherwise define

n(γ,u,v⊤)(k) := min
(⌊

k+(v(b)+r)
2

⌋
,
⌊
(2v(e)+v(c)+r)−k

2

⌋
, N
)

where

N := min
(
v(e), v(b)+v(c)−1

2
+ r, v(d− a) + r

)
.

Also, if v(d− a) < v(e)− r and v(b) + v(c) > 2v(d− a), then additionally define

c(γ,u,v⊤)(k) = min
(
k − (2v(d− a)− v(b) + r),

(2v(e) + v(c)− 2v(d− a)− r)− k, v(e)− v(d− a)− r
)
.
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N N

2N 2N

k = −v(b)− r

k = −v(b)− r + 2N k = 2v(e) + v(c) + r − 2N

k = 2v(e) + v(c) + r

n(γ,u,v⊤)

c(γ,u,v⊤)

(only if N = v(d− a) + r)

k = −v(b) + v(e) + v(d− a) k = v(c) + v(e)− v(d− a)

κ := v(e)− v(d− a)− r κ := v(e)− v(d− a)− r

κ := v(e)− v(d− a)− r κ := v(e)− v(d− a)− r

Figure 10.1: Sketch of the functions in Theorem 1.3.1. The boxed numbers indicate values of
k.

Otherwise define c(γ,u,v⊤)(k) = 0. Then we have

Orb((γ,u,v⊤),1K′
S,≤r

, s) =

2v(e)+v(c)+r∑
k=−(v(b)+r)

(−1)k
(
1 + q + q2 + · · ·+ qn(γ,u,v⊤)

(k)
)
(qs)k

+

2v(e)+v(c)−2v(d−a)−r∑
k=2v(d−a)−v(b)+r

(−1)kc(γ,u,v⊤)(k)q
v(d−a)+r(qs)k.

For reference, we provide Figure 10.1 sketching the shapes of n(γ,u,v⊤) and c(γ,u,v⊤), which

may be easier to think about.
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Proof of Theorem 1.3.1. First, suppose θ = v(b) + v(c) < 2v(d− a) is odd. Then

n(γ,u,v⊤)(k) := min
(⌊

k+(v(b)+r)
2

⌋
,
⌊
(2v(e)+v(c)+r)−k

2

⌋
, v(e), v(b)+v(c)−1

2
+ r
)

and c(γ,u,v⊤) terms do not appear. Now, in that case, the exponent (10.1) can be simplified,

because

⌊
k + θ − v(c) + r

2

⌋
=

⌊
k + v(b) + r

2

⌋
v(e) +

⌊
v(c) + r − k

2

⌋
=

⌊
(2v(e) + v(c) + r)− k

2

⌋
⌊
k + θ − v(c) + r

2

⌋
+

⌊
v(c) + r − k

2

⌋
=
k + θ − v(c) + r

2
+
v(c) + r − k

2
− 1

2

=
θ − 1

2
+ r

=
v(b) + v(c)− 1

2
+ r < v(d− a) + r.

Hence, n(γ,u,v⊤) coincides with the exponent in (10.1). So the result is true in this case.

Now assume instead θ = 2v(d− a) < v(b) + v(c) is even. Notice that

⌊
k + θ − v(c) + r

2

⌋
+

⌊
v(c) + r − k

2

⌋
=
θ

2
+ r − 1k+v(c)+r≡0 mod 2.

First assume that v(e) ≤ θ
2
+ r and consider (10.1). For the range of values of k in I6+,

that is

−v(b)− r ≤ k ≤ 2v(e)− θ + v(c)− r − 1

we have the first term of (10.1) is smallest, as

⌊
k + θ − v(c) + r

2

⌋
< v(e)

≤ v(e) +
v(b) + v(c)− 1

2
≤ v(e) +

⌊
v(c) + r − k

2

⌋
⌊
k + θ − v(c) + r

2

⌋
≤ v(e)− 1 ≤ θ

2
+ r − 1.
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So the contributions from Case 5 and Case 6 fit together to give

⌊ k+θ−v(c)+r
2 ⌋∑

j=0

qj +
(
qmin(v(e),⌊ v(b)+r+k

2 ⌋) + · · ·+ qmax(0,⌈ k+θ−v(c)+r+1
2 ⌉))

= qmin(v(e),⌊ v(b)+r+k
2 ⌋) + · · ·+ q0

which thus matches the formula for n(γ,u,v⊤)(k).

Now suppose instead v(e) > θ
2
+ r. First, a similar analysis gives that the first part of I6+

fits together with I5 again. Indeed if

−v(b)− r ≤ k ≤ v(c) + r − 1

then in (10.1) we get the first exponent again, and hence we again get the fit

⌊ k+θ−v(c)+r
2 ⌋∑

j=0

qj +
(
qmin( θ

2
+r,⌊ v(b)+r+k

2 ⌋) + · · ·+ qmax(0,⌈ k+θ−v(c)+r+1
2 ⌉))

= qmin( θ
2
+r,⌊ v(b)+r+k

2 ⌋) + · · ·+ q0

which matches the claimed formula for n(γ,u,v⊤) in this range.

The remaining contribution from Case 6+ and Case 6- is

q
θ
2
+r

2v(e)−θ+v(c)−r−1∑
k=θ−v(b)+r+1

c(γ,u,v⊤)(k)(−qs)k

+ q
θ
2
+r

2v(e)−θ+v(c)−r−1∑
k=v(c)+r+1

1k+θ+v(c)+r≡0 mod 2(−qs)k.

The first sum matches the claimed coefficient c(γ,u,v⊤) (except the summation in the

theorem statement includes endpoints at k = θ − v(b) + r and k = 2v(e)− θ + v(c)− r, but

c(γ,u,v⊤)(k) = 0 at these two endpoints, so there is no change).

Meanwhile the second sum accounts for the discrepancy between the final term of (10.1)
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and the formula for n(γ,u,v⊤). That is, the range of k for which (10.1) achieves the last

minimum is exactly

v(c) + r + 1 ≤ k ≤ 2v(e)− θ + v(c)− r − 1

and only in those cases does (10.1) differs from n(γ,u,v⊤) by exactly 1k+θ+v(c)+r≡0 mod 2. This

final step shows the claimed formulas coincide.

Example 10.3.1 (The special case v(e) = 0). When v(e) = 0 the expression is particularly

simple. The assumption v(d− a) ≥ v(e)− r is automatically true, and n(γ,u,v⊤) is identically

zero, so

Orb((γ,u,v⊤),1K′
S,≤r
⊗ 1On

F×(On
F )∨ , s) =

v(c)+r∑
k=−(v(b)+r)

(−qs)k.

Example 10.3.2. Suppose r = 14, v(b) = −5, v(c) = 100, v(e) = 3. We have v(d − a) ≥

0 > −11 = v(e)− r. Hence the above formula reads

Orb((γ,u,v⊤),1K′
S,≤14
⊗ 1On

F×(On
F )∨ , s) = −q−9s

+ q−8s

− (q + 1) · q−7s

+ (q + 1) · q−6s

− (q2 + q + 1) · q−5s

+ (q2 + q + 1) · q−4s

− (q3 + q2 + q + 1) · q−3s

+ (q3 + q2 + q + 1) · q−2s

− (q3 + q2 + q + 1) · q−s

+ (q3 + q2 + q + 1) · q0

− (q3 + q2 + q + 1) · qs
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+ (q3 + q2 + q + 1) · q2s

...

− (q3 + q2 + q + 1) · q111s

+ (q3 + q2 + q + 1) · q112s

− (q3 + q2 + q + 1) · q113s

+ (q3 + q2 + q + 1) · q114s

− (q2 + q + 1) · q115s

+ (q2 + q + 1) · q116s

− (q + 1) · q117s

+ (q + 1) · q118s

− q119s

+ q120s.

Example 10.3.3. Suppose r = 2, v(b) = −5, v(c) = 100, v(e) = 20, v(d− a) = 1. Then we

have

Orb((γ,u,v⊤),1K′
S,≤2
⊗ 1On

F×(On
F )∨ , s) = −q3s

+ q4s

− (q + 1) · q5s

+ (q + 1) · q6s

− (q2 + q + 1) · q7s

+ (q2 + q + 1) · q8s

− (q3 + q2 + q + 1) · q9s

+ (2q3 + q2 + q + 1) · q10s

− (3q3 + q2 + q + 1) · q9s
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+ (4q3 + q2 + q + 1) · q10s

− (5q3 + q2 + q + 1) · q9s

+ (6q3 + q2 + q + 1) · q10s

...

− (17q3 + q2 + q + 1) · q25s

+ (18q3 + q2 + q + 1) · q26s

− (18q3 + q2 + q + 1) · q27s

+ (18q3 + q2 + q + 1) · q28s

...

− (18q3 + q2 + q + 1) · q117s

+ (18q3 + q2 + q + 1) · q118s

− (18q3 + q2 + q + 1) · q119s

+ (17q3 + q2 + q + 1) · q120s

− (16q3 + q2 + q + 1) · q121s

+ (15q3 + q2 + q + 1) · q122s

...

+ (3q3 + q2 + q + 1) · q134s

− (2q3 + q2 + q + 1) · q135s

+ (q3 + q2 + q + 1) · q136s

− (q2 + q + 1) · q137s

+ (q2 + q + 1) · q138s

− (q + 1) · q139s

+ (q + 1) · q140s

− q141s
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+ q142s.

10.4 Proof of Corollary 1.3.2

With Theorem 1.3.1 established, we aim to calculate the derivative of

Orb((γ,u,v⊤),1K′,S,≤r ⊗ 1On
F×(On

F )∨ , s)

now at s = 0. Our goal is to prove Corollary 1.3.2:

Corollary 1.3.2 (Derivative at s = 0 for S2(F )×V ′
2(F )). Retain the setting of Theorem 1.3.1.

Also define κ := v(e)− (v(d− a) + r). If both κ ≥ 0 and v(b) + v(c) > 2v(d− a), then we

have the formula

(−1)v(c)+r

log q
∂Orb((γ,u,v⊤),1K′

S,≤r
)

=
N∑
j=0

(
2v(e) + v(b) + v(c) + 1

2
+ r − 2j

)
· qj

− qv(d−a)+r ·


κ
2

if κ ≡ 0 (mod 2)(
v(e) + v(b)+v(c)

2
− 2v(d− a)− r

)
− κ

2
if κ ≡ 1 (mod 2).

Otherwise we instead have the formula

(−1)v(c)+r

log q
∂Orb((γ,u,v⊤),1K′

S,≤r
) =

N∑
j=0

(
2v(e) + v(b) + v(c) + 1

2
+ r − 2j

)
· qj.

Proof of Corollary 1.3.2. For this calculation it will be more convenient to reformat Theo-

rem 1.3.1 as a sum over qj rather than (−1)k(qs)k. To that, continuing to write

N := min

(
v(e),

v(b) + v(c)− 1

2
+ r, v(d− a) + r

)
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consider any index 0 ≤ j ≤ N . Then

n(γ,u,v⊤)(k) ≥ j ⇐⇒ 2j − v(b)− r ≤ k ≤ 2v(e) + v(c) + r − 2j.

In other words, the first part of Corollary 1.3.3 can be rewritten as

2v(e)+v(c)+r∑
k=−(v(b)+r)

(−1)k
(
1 + · · ·+ qn(γ,u,v⊤)

(k)
)
(qs)k = qj

N∑
j=0

2v(e)+v(c)+r−2j∑
k=2j−v(b)−r

(−qs)k
 .

If we take the derivative at s = 0 with respect to k, we get

log q
N∑
j=0

qj 2v(e)+v(c)+r−2j∑
k=2j−v(b)−r

(−1)kk

 .

The number of terms inside the summation is 2v(e) + v(b) + v(c) + 2r − 4j + 1, an even

number. Each consecutive pair differs by (−1)v(c)+r. Hence we get

(−1)v(c)+r log q
N∑
j=0

(
qj ·
(
2v(e) + v(b) + v(c) + 1

2
+ r − 2j

))
.

Now in the case that v(e) > v(d− a) + r and 2v(d− a) < v(b) + v(c), we have to handle the

additional contribution obtained when we differentiate

qv(d−a)+r

2v(e)+v(c)−2v(d−a)−r∑
k=2v(d−a)−v(b)+r

(−1)kc(γ,u,v⊤)(k)(−qs)k (10.2)

at s = 0. For brevity, we will define

κ := v(e)− v(d− a)− r ≥ 0.

(We allow the degenerate case κ = 0 for convenience, in which case c(γ,u,v⊤) is still identically

zero.)
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We return to differentiating (10.2); to do so we reuse the (self-contained) extremely easy

Lemma 7.7.2 from before. For the range of k given, we split it into three parts.

• For −v(b) + r + 2v(d− a) ≤ k < −v(b) + v(e) + v(d− a), apply the first part of the

lemma to conclude that the contribution to the derivative is

log q ·
(
(−1)v(b)+v(e)+v(d−a)−1 · (−v(b) + v(e) + v(d− a)− 1) · κ

2

− (−1)v(b)+v(e)+v(d−a)+1 + (−1)v(b)+r

4
· (−v(b) + r + 2v(d− a))

)
.

• For v(c) + v(e)− v(d− a) < k ≤ 2v(e) + v(c)− 2v(d− a)− r apply the second part of

the lemma to conclude that the contribution to the derivative is

log q ·
(
(−1)v(c)+v(e)+v(d−a)+1 · (v(c) + v(e)− v(d− a) + 1) · κ

2

− (−1)v(c)+v(e)+v(d−a)+1 + (−1)v(c)+r

4
· (2v(e) + v(c)− r − 2v(d− a))

)
.

• For the region−v(b)+v(e)+v(d−a) ≤ k ≤ v(c)+v(e)−v(d−a), we have c(γ,u,v⊤)(k) = κ

and the values of k form
⌈
v(c)+v(b)−2v(d−a)

2

⌉
consecutive pairs. So the contribution to

the derivative here is exactly

log q · (−1)v(c)+v(e)+v(d−a)κ · v(b) + v(c)− 2v(d− a) + 1

2
.

If we sum all three, we get a contribution of κ log q · (−1)v(c)+v(e)+v(d−a) times

v(b) + v(c)− 2v(d− a) + 1

2
− v(c) + v(e)− v(d− a) + 1

2

+
−v(b) + v(e) + v(d− a)− 1

2
= −1

2
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If κ is even, then that’s all she wrote; we simply get

(−1)v(c)+r+1 · κ
2
· qv(d−a)+r log q.

On the other hand, if κ is odd we get instead

(−1)v(c)+rκ
2
qv(d−a)+r log q

− 1

2
qv(d−a)+r log q · (−1)v(c)+v(e)+v(d−a) ·

(
(2v(e) + v(c)− r − 2v(d− a))

− (−v(b) + r + 2v(d− a))
)

= (−1)v(c)+rqv(d−a)+r log q ·
[
−
(
v(e) +

v(b) + v(c)

2
− 2v(d− a)− r

)
+

κ
2

]
.

These formulas match Corollary 1.3.2, proving it. (Note that we changed κ > 0 to κ ≥ 0,

which makes no change since then the contribution is zero anyway.)

10.5 Proof of Corollary 1.3.3

From Corollary 1.3.2 we can now prove Corollary 1.3.3

Corollary 1.3.3 (The special case ∂Orb((γ,u,v⊤),1K′
S,≤r

+ 1K′
S,≤(r−1)

)). Retain the setting

of Theorem 1.3.1. Also define κ := v(e)− (v(d− a) + r). For r ≥ 1 define

C :=



κ−1
2

if κ > 0 is odd and v(b) + v(c) > 2v(d− a)
κ+v(b)+v(c)−2v(d−a)−1

2
if κ ≥ 0 is even and v(b) + v(c) > 2v(d− a)

v(e)−N if v(e) ≥ v(b)+v(c)−1
2

+ r and 2v(d− a) > v(b) + v(c)

0 otherwise

C ′ :=


C + 1 if κ ≥ 0 and v(b) + v(c) > 2v(d− a)

0 otherwise.
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Then

(−1)v(c)+r

log q
∂Orb((γ,u,v⊤),1K′

S,≤r
+ 1K′

S,≤(r−1)
)

= (qN + qN−1 + · · ·+ 1) + CqN + C ′qN−1

Proof of Corollary 1.3.3. Observe that when we add the right-hand side of Corollary 1.3.2

to the same right-hand side with r replaced by r − 1, almost all the terms cancel. Indeed,

the main sum for 0 ≤ j ≤ N − 1 line up:

(−1)r+v(c)

N−1∑
j=0

qj ·
(
2v(e) + v(b) + v(c) + 1

2
+ r − 2j

)

(−1)(r−1)+v(c)

N−1∑
j=0

qj ·
(
2v(e) + v(b) + v(c) + 1

2
+ (r − 1)− 2j

)
= qN−1 + · · ·+ q0.

So we consider three cases:

• In the case where v(d − a) + r > v(e) and v(b)+v(c)−1
2

+ r > v(e) then the value of

N = v(e) does not change when we decrease r by one. Hence the term for j = N

cancels in both sums and we get exactly we get

(−1)r+v(c) log q(1 + q + · · ·+ qN).

• Next suppose v(e) ≥ v(b)+v(c)−1
2

+ r and also 2v(d − a) > v(b) + v(c) (so the extra

terms involving κ are absent). In that case N = v(b)+v(c)−1
2

+ r. Then we are left with

(−1)r+v(c) log q times

N−1∑
j=0

(qj) +

(
2v(e) + v(b) + v(c) + 1

2
+ r − (v(b) + v(c)− 1 + 2r)

)
qN
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=
N−1∑
j=0

(qj) +

(
2v(e)− v(b)− v(c)− 1

2
− r
)
qN

=
N∑
j=0

(qj) +

(
v(e)− r − v(b) + v(c)− 1

2

)
qN .

This matches Theorem 1.3.1.

• Finally, suppose κ ≥ 0 and v(b) + v(c) > 2v(d− a) so that N = v(d− a) + r. Then we

are left with (−1)r+v(c) log q times

N−1∑
j=0

(qj) +

(
2v(e) + v(b) + v(c) + 1

2
+ r − 2(v(d− a) + r)

)
qN

+ qN ·


−κ

2
if κ ≡ 0 (mod 2)

κ
2
−
(
v(e) + v(b)+v(c)

2
− 2v(d− a)− r

)
if κ ≡ 1 (mod 2)

+ qN−1 ·


−κ+1

2
if κ + 1 ≡ 0 (mod 2)

κ+1
2
−
(
v(e) + v(b)+v(c)

2
− 2v(d− a)− (r − 1)

)
if κ + 1 ≡ 1 (mod 2)

=
N−1∑
j=0

(qj) + qN ·


(

2v(e)+v(b)+v(c)+1
2

+ r − 2(v(d− a) + r)
)
− κ

2
if κ ≡ 0 (mod 2)

1
2
+ κ

2
if κ ≡ 1 (mod 2)

− qN−1 ·


κ−1
2
−
(
v(e) + v(b)+v(c)

2
− 2v(d− a)− (r − 1)

)
if κ ≡ 0 (mod 2)

−κ+1
2

if κ ≡ 1 (mod 2)

=
N∑
j=0

(qj) + qN ·


(

2v(e)+v(b)+v(c)−1
2

+ r − 2(v(d− a) + r)
)
− κ

2
if κ ≡ 0 (mod 2)

κ−1
2

if κ ≡ 1 (mod 2)

− qN−1 ·


κ−1
2
−
(
v(e) + v(b)+v(c)

2
− 2v(d− a)− (r − 1)

)
if κ ≡ 0 (mod 2)

−κ+1
2

if κ ≡ 1 (mod 2)
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=
N∑
j=0

(qj) + qN ·


(

v(e)+v(b)+v(c)−1
2

− 3
2
v(d− a)− 1

2
r
)

if κ ≡ 0 (mod 2)

κ+1
2

if κ ≡ 1 (mod 2)

− qN−1 ·


−1

2
−
(

1
2
v(e) + v(b)+v(c)

2
− 3

2
v(d− a)− 1

2
r
)

if κ ≡ 0 (mod 2)

−κ+1
2

if κ ≡ 1 (mod 2)

=
N∑
j=0

(qj) + qN ·


(

κ+v(b)+v(c)−1−2v(d−a)
2

)
if κ ≡ 0 (mod 2)

κ−1
2

if κ ≡ 1 (mod 2)

+ qN−1 ·


κ+v(b)+v(c)+1−2v(d−a)

2
if κ ≡ 0 (mod 2)

−κ+1
2

if κ ≡ 1 (mod 2).

This matches Theorem 1.3.1, and the proof is complete.
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Chapter 11

Large kernel and large image

In this chapter we use Corollary 1.3.3 to prove both Theorem 1.3.5 and Theorem 1.3.6 for

the orbital integral on S2(F )× V ′
2(F ), We also comment on an analogous result for S3(F ),

although we do not provide all the details.

We assume (γ,u,v⊤) is as in Lemma 8.4.2 throughout this chapter.

11.1 In the semi-Lie case, the kernel is trivial if we allow

v(e) to vary, for every fixed choice of γ

We prove Theorem 1.3.5 in this section. We treat γ as fixed, satisfying the requirements of

Lemma 8.4.2, and we let

θ := min (v(b) + v(c), 2v(d− a)) ≥ 0

as we did in Chapter 9.

Lemma 11.1.1 (The matrix of ∂Orb’s has full rank). Fix γ. Let N ≥ 0 be a nonnegative

integer. We define an (N +
⌊
θ
2

⌋
+ 2)× (N + 1) matrix M as follows: for 0 ≤ i ≤ N +

⌊
θ
2

⌋
+ 1
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and 0 ≤ r ≤ N , the ith row and rth column takes the value

Mi,r :=
(−1)r
log q

∂Orb


γ,

0

1

 ,

(
0 ϖi

) ,1K′,≤r

 .

Then M has full rank.

The basic strategy of the proof will be to perform some sequences of row operations.

Specifically, we introduce the following definition.

• For each i = N +
⌊
θ
2

⌋
, . . . , 0 in that order, subtract the ith row of M from the (i+ 1)th

row of M . Denote the new matrix as M ′.

• For each i = N +
⌊
θ
2

⌋
− 1, . . . , 0 in that order, subtract the ith row of M ′ from the

(i+ 2)nd row of M ′. Denote the new matrix as M ′′.

Then the basic premise is to show that M ′′ has an upper triangular submatrix. This is easier

to see with some illustrations, which we give below.

Example 11.1.2. For example, for N = 4 and v(b) + v(c) = 1, v(d− a) = 0 (hence θ = 0),

we have

M =



1 2 3 4 5

1 q + 3 2q + 4 3q + 5 4q + 6

2 q + 4 q2 + 3q + 5 2q2 + 4q + 6 3q2 + 5q + 7

2 2q + 5 q2 + 4q + 6 q3 + 3q2 + 5q + 7 2q3 + 4q2 + 6q + 8

3 2q + 6 2q2 + 5q + 7 q3 + 4q2 + 6q + 8 q4 + 3q3 + 5q2 + 7q + 9

3 3q + 7 2q2 + 6q + 8 2q3 + 5q2 + 7q + 9 q4 + 4q3 + 6q2 + 8q + 10


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hence

M ′ =



1 2 3 4 5

0 q + 1 2q + 1 3q + 1 4q + 1

1 1 q2 + q + 1 2q2 + q + 1 3q2 + q + 1

0 q + 1 q + 1 q3 + q2 + q + 1 2q3 + q2 + q + 1

1 1 q2 + q + 1 q2 + q + 1 q4 + q3 + q2 + q + 1

0 q + 1 q + 1 q3 + q2 + q + 1 q3 + q2 + q + 1


and finally

M ′′ =



1 2 3 4 5

0 q + 1 2q + 1 3q + 1 4q + 1

0 −1 q2 + q − 2 2q2 + q − 3 3q2 + q − 4

0 0 −q q3 + q2 − 2q 2q3 + q2 − 3q

0 0 0 −q2 q4 + q3 − 2q2

0 0 0 0 −q3


.

Example 11.1.3. For example, for N = 4, v(b) + v(c) = 17, v(d− a) = 2 (hence θ = 4), we

have

M =



9 10 11 . . .

8q + 10 9q + 11 10q + 12 . . .

7q2 + 9q + 11 8q2 + 10q + 12 9q2 + 11q + 13 . . .

q2 + 10q + 12 7q3 + 9q2 + 11q + 13 8q3 + 10q2 + 12q + 14 . . .

8q2 + 11q + 13 q3 + 10q2 + 12q + 14 7q4 + 9q3 + 11q2 + 13q + 15 . . .

2q2 + 12q + 14 8q3 + 11q2 + 13q + 15 q4 + 10q3 + 12q2 + 14q + 16 . . .

9q2 + 13q + 15 2q3 + 12q2 + 14q + 16 8q4 + 11q3 + 13q2 + 15q + 17 . . .

3q2 + 14q + 16 9q3 + 13q2 + 15q + 17 2q4 + 12q3 + 14q2 + 16q + 18 . . .


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hence

M ′ =



9 10 11 12 . . .

8q + 1 9q + 1 10q + 1 11q + 1 . . .

7q2 + q + 1 8q2 + q + 1 9q2 + q + 1 10q2 + q + 1 . . .

−6q2 + q + 1 7q3 + q2 + q + 1 8q3 + q2 + q + 1 9q3 + q2 + q + 1 . . .

7q2 + q + 1 −6q3 + q2 + q + 1 7q4 + q3 + q2 + q + 1 8q4 + · · ·+ 1 . . .

−6q2 + q + 1 7q3 + q2 + q + 1 −6q4 + q3 + q2 + q + 1 7q5 + · · ·+ 1 . . .

7q2 + q + 1 −6q3 + q2 + q + 1 7q4 + q3 + q2 + q + 1 −6q5 + · · ·+ 1 . . .

−6q2 + q + 1 7q3 + q2 + q + 1 −6q4 + q3 + q2 + q + 1 7q5 + · · ·+ 1 . . .


and finally

M ′′ =



9 10 11 12 13

8q + 1 9q + 1 10q + 1 11q + 1 12q + 1

7q2 + q − 8 8q2 + q − 9 9q2 + q − 10 10q2 + q − 11 11q2 + q − 12

−6q2 − 7q 7q3 + q2 − 8q 8q3 + q2 − 9q 9q3 + q2 − 10q 10q3 + q2 − 11q

0 −6q3 − 7q2 7q4 + q3 − 8q2 8q4 + q3 − 9q2 9q4 + q3 − 10q2

0 0 −6q4 − 7q3 7q5 + q4 − 8q3 8q5 + q4 − 9q3

0 0 0 −6q5 − 7q4 7q6 + q5 − 8q4

0 0 0 0 −6q6 − 7q5



.

Example 11.1.4. For example, for N = 4, v(b) + v(c) = 5, v(d− a) = 8 (hence θ = 5), we
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have

M =



3 4 5 . . .

2q + 4 3q + 5 4q + 6 . . .

q2 + 3q + 5 2q2 + 4q + 6 3q2 + 5q + 7 . . .

2q2 + 4q + 6 q3 + 3q2 + 5q + 7 2q3 + 4q2 + 6q + 8 . . .

3q2 + 5q + 7 2q3 + 4q2 + 6q + 8 q4 + 3q3 + 5q2 + 7q + 9 . . .

4q2 + 6q + 8 3q3 + 5q2 + 7q + 9 2q4 + 4q3 + 6q2 + 8q + 10 . . .

5q2 + 7q + 9 4q3 + 6q2 + 8q + 10 3q4 + 5q3 + 7q2 + 9q + 11 . . .

6q2 + 8q + 10 5q3 + 7q2 + 9q + 11 4q4 + 6q3 + 8q2 + 10q + 12 . . .


hence

M ′ =



3 4 5 6 7

2q + 1 3q + 1 4q + 1 5q + 1 6q + 1

q2 + q + 1 2q2 + q + 1 3q2 + q + 1 4q2 + q + 1 5q2 + q + 1

q2 + q + 1 q3 + q2 + q + 1 2q3 + q2 + q + 1 3q3 + q2 + q + 1 4q3 + q2 + q + 1

q2 + q + 1 q3 + q2 + q + 1 q4 + · · ·+ 1 2q4 + · · ·+ 1 3q4 + · · ·+ 1

q2 + q + 1 q3 + q2 + q + 1 q4 + · · ·+ 1 q5 + · · ·+ 1 2q5 + · · ·+ 1

q2 + q + 1 q3 + q2 + q + 1 q4 + · · ·+ 1 q5 + · · ·+ 1 q6 + · · ·+ 1

q2 + q + 1 q3 + q2 + q + 1 q4 + · · ·+ 1 q5 + · · ·+ 1 q6 + · · ·+ 1


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and finally

M ′′ =



3 4 5 6 7

2q + 1 3q + 1 4q + 1 5q + 1 6q + 1

q2 + q − 2 2q2 + q − 3 3q2 + q − 4 4q2 + q − 5 5q2 + q − 6

q2 − q q3 + q2 − 2q 2q3 + q2 − 3q 3q3 + q2 − 4q 4q3 + q2 − 5q

0 q3 − q2 q4 + q3 − 2q2 2q4 + q3 − 3q2 3q4 + q3 − 4q2

0 0 q4 − q3 q5 + q4 − 2q3 2q5 + q4 − 3q3

0 0 0 q5 − q4 q6 + q5 − 2q4

0 0 0 0 q6 − q5



.

Proof of Lemma 11.1.1. In order to prove M has full rank, it suffices to prove M ′′ has full

rank. We now confirm the patterns shown by the example above.

By quoting Corollary 1.3.2 we will write

Mi,r =

min(i,r+⌊ θ2⌋)∑
j=0

(
i+

v(b) + v(c) + 1

2
+ r − 2j

)
qj

− 1θ≡0 mod 2
i≥r+θ/2

· qv(d−a)+r ·
(
i− r
2

+ ti

)

where

ti =


−v(d−a)

2
if i+ r ≡ v(d− a) (mod 2)

v(b)+v(c)−3v(d−a)
2

if i+ r ̸≡ v(d− a) (mod 2)

depends only on the parity of i. Hence for i ≥ 1 we always have

M ′
i,r =Mi,r −Mi−1,r

= −1θ≡0 mod 2
i≥r+θ/2

· qv(d−a)+r ·
(
i− r
2

+ ti

)
+ 1 θ≡0 mod 2

i−1≥r+θ/2
· qv(d−a)+r ·

(
i− 1− r

2
+ ti−1

)
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+ 1i≤r+⌊ θ2⌋ ·
(
v(b) + v(c) + 1

2
+ r − i

)
qi

+

min(i−1,r+⌊ θ2⌋)∑
j=0

qj.

From this we can make the following deductions on

M ′′
i,r =M ′

i,r −M ′
i−2,r

by cancelling most of the terms.

• If i ≥ r +
⌊
θ
2

⌋
+ 3 then M ′′

i,r = 0 is clear.

• If i = r +
⌊
θ
2

⌋
+ 2 we contend that M ′′

i,r = 0 too.

– When θ = v(b) + v(c) is odd, the surviving terms are

−
(
v(b) + v(c) + 1

2
+ r − (i− 2)

)
qi−2 + qr+⌊ θ2⌋

Substituting in i = r + v(b)+v(c)−1
2

+ 2 gives zero, as needed.

– When θ = 2v(d− a) is even, the surviving terms are

− qv(d−a)+r ·
(
i− r
2

+ ti

)
+ qv(d−a)+r ·

(
(i− 2)− r

2
+ ti−2

)
+ qv(d−a)+r ·

(
i− 1− r

2
+ ti−1

)
−
(
v(b) + v(c) + 1

2
+ r − (i− 2)

)
qi−2

+ qr+⌊ θ2⌋

= qv(d−a)+r ·
(
−1 + i− 1− r

2
+ ti−1 −

v(b) + v(c) + 1

2
− r + i− 2 + 1

)
= qv(d−a)+r ·

(
−3

2
r + ti−1 −

v(b) + v(c)

2
+

3

2
i

)
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Substituting in i = r + v(d− a) + 2 (and since ti = ti−2), we also get exactly 0,

since ti−1 =
v(b)+v(c)−3v(d−a)

2
.

• If i = r +
⌊
θ
2

⌋
+ 1, we consider again cases on the parity of θ.

– When θ = v(b) + v(c) is odd, the surviving terms are

−
(
v(b) + v(c) + 1

2
+ r − (i− 2)

)
qi−2 + qr+⌊ θ2⌋ + qr+⌊ θ2⌋−1 = qr+⌊ θ2⌋ − qr+⌊ θ2⌋−1.

– When θ = 2v(d− a) is even, the surviving terms are

− qv(d−a)+r ·
(
i− r
2

+ ti

)
+ qv(d−a)+r ·

(
i− 1− r

2
+ ti−1

)
−
(
v(b) + v(c) + 1

2
+ r − (i− 2)

)
qi−2

+ qr+⌊ θ2⌋ + qr+⌊ θ2⌋−1

=

(
ti−1 − ti +

1

2

)
qr+⌊ θ2⌋

−
(
v(b) + v(c) + 1

2
+ r − (i− 2)− 1

)
qr+⌊ θ2⌋−1

=

(
−v(d− a)

2
− v(b) + v(c)− 3v(d− a)

2
+

1

2

)
qr+⌊ θ2⌋

−
(
v(b) + v(c) + 1

2
+ r − ((r + v(d− a) + 1)− 2)− 1

)
qr+⌊ θ2⌋−1

= −v(b) + v(c)− 1− 2v(d− a)
2

qr+⌊ θ2⌋

− v(b) + v(c) + 1− 2v(d− a)
2

qr+⌊ θ2⌋−1.

In the edge case where r = 0 and θ ≤ 1, it can be checked the same formula still

holds with the last term omitted.

Hence we have found a diagonal of M ′′ below with all entries are zero, and on which all

entries are nonzero except possibly M ′′
1,0 = 0 in the case where r = 0 and θ ≤ 1.
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Assuming r+
⌊
θ
2

⌋
≥ 2, suppose we take the rows from i = r+

⌊
θ
2

⌋
+1 up to i = r+

⌊
θ
2

⌋
+N+1.

Then the resulting matrix is upper triangular. The determinant is the product of the diagonal

entries; up to multiplication by sign and a power of q, it equals and the determinant is equal

to 
(q − 1)N+1 if θ ≡ 1 (mod 2)(

v(b)+v(c)−1−2v(d−a)
2

q + v(b)+v(c)+1−2v(d−a)
2

)N+1

if θ ≡ 0 (mod 2)

which is manifestly nonzero for any odd prime power q.

In the situation where r +
⌊
θ
2

⌋
= 1, we use the same rows except that we replace the row

for i = 1 with the row for i = 0, which has leftmost entry M0,0 =
v(b)+v(c)+1

2
> 0. Hence the

same proof still shows that the determinant is nonzero.

11.1.1 Proof of Theorem 1.3.5

We can now deduce:

Theorem 1.3.5 (∂Orb is injective even for fixed γ ∈ S2(F )). Fix any (γ,u,v⊤) ∈ (S2(F )×

V ′
2(F ))

−
rs. Then there doesn’t exist any nonzero function ϕ ∈ H(S2(F )) such that

∂Orb
(
(γ,u, ϖiv⊤), ϕ

)
= 0

holds for every integer i. Thus Conjecture 1.2.4 holds for n = 2.

Proof of Theorem 1.3.5. Suppose we are given some function

ϕ =
N∑
r=0

(−1)rcr1K′
S,≤r
∈ H(S2(F )).
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Letting M be the matrix given in Lemma 11.1.1, we are supposed to have

M



c0

c1
...

cN


= 0.

Since M has full rank, it follows that c0 = · · · = cN = 0.

11.2 In the semi-Lie case, the kernel has finite codimen-

sion for fixed v(e)

We prove Theorem 1.3.6 in this section. We start with the following lemma.

Lemma 11.2.1 (A combination vanishing for large r). Let (γ,u,v⊤) ∈ (S2(F )× V ′
2(F ))

−
rs.

If r ≥ v(e) + 2, we have

∂Orb
(
(γ,u,v⊤),1K′

S,≤r
+ 21K′

S,≤(r−1)
+ 1K′

S,≤(r−2)

)
= 0.

Proof. This follows directly from Corollary 1.3.3 which gives

v(e)∑
j=0

qj =
(−1)r
log q

∂Orb
(
(γ,u,v⊤),

(
1K′

S,≤r
+ 1K′

S,≤(r−1)

))
=

(−1)r−1

log q
∂Orb

(
(γ,u,v⊤),

(
1K′

S,≤(r−1)
+ 1K′

S,≤(r−2)

))
.

We need one more lemma:

Lemma 11.2.2. There is no Y ∈ C× such that

q3(Y r + Y −r)− 3q2(Y r−1 + Y −(r−1)) + 3q(Y r−2 + Y −(r−2))− (Y r−3 + Y −(r−3)) = 0
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holds for all sufficiently large integers r.

Proof. Assume for contradiction such a Y ∈ C× existed. Let Y ±k := Y k + Y −k for brevity

for every integer k ≥ 1. By writing the recursion relations

Y ±(r−1) = Y ±1 · Y ±(r−2) − Y ±(r−3)

Y ±r = Y ±1 · Y ±(r−1) − Y ±(r−2)

= ((Y ±1)2 − 1) · Y ±(r−2) − Y ±1 · Y ±(r−3)

we can deduce that

0 = q3 · Y ±r − 3q2 · Y ±(r−1) + 3q · Y ±(r−2) − Y ±(r−3)

=
[
q3 ·

(
(Y ±1)2 − 1

)
− 3q2 · Y ±1 + 3q

]
· Y ±(r−2) −

[
q3 · Y ±1 − 3q2 + 1

]
· Y ±(r−3).

Now, in general there is no complex number Y ∈ C× such that Y r + Y −r = 0 for two

consecutive values of r. Hence, if either bracketed coefficient is zero, then so must be the

other one. However, in that case, we would conclude that Y ±1 = 3q2−1
q3

from the second

bracketed coefficient, meaning

0 = q3 ·
((

3q2 − 1

q3

)2

− 1

)
− 3q2 · 3q

2 − 1

q3
+ 3q =

(q2 − 1)3

q3

which is a contradiction, because q > 1.

Hence neither bracketed coefficient can be zero, from which we conclude that there is

some nonzero constant c such that

Y ±(r−2) = c · Y ±(r−3) ̸= 0
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holds for all large r. But then

c · Y ±(r−3) = Y ±1 · Y ±(r−3) − Y ±(r−4) = Y ±1 · Y ±(r−3) − Y ±(r−3)

c

and hence c = Y ±1− 1
c
. So either c = Y or c = 1

Y
. Then from Y ±(r−2) = c · Y ±(r−3) we derive

that Y = ±1.

But substituting Y = 1 in the original equation would imply (q − 1)3 = 0 while Y = −1

would imply (q + 1)3 = 0 neither of which is possible. This contradiction completes the proof

of the lemma.

11.2.1 Proof of Theorem 1.3.6

We now prove:

Theorem 1.3.6 (The kernel of ∂Orb is large for fixed (u,v⊤) ∈ V ′
2(F )). Let N ≥ 0 be an

integer. Consider all (γ,u,v⊤) ∈ (S2(F )× V ′
2(F ))

−
rs for which v(uv⊤) ≤ N . Then the space

of ϕ ∈ H(S2(F )) for which

∂Orb
(
(γ,u,v⊤), ϕ

)
= 0

holds for all such (γ,u,v⊤) is a Q-vector subspace of H(S2(F )) whose codimension is at most

N + 2.

Moreover, this subspace of H(S2(F )) is not contained in any maximal ideal of H(S2(F ))

when H(S2(F )) is viewed as a ring under the isomorphism of Chapter 4.

Proof of Theorem 1.3.6. The first part of Theorem 1.3.6 follows directly from Lemma 11.2.1.

It remains to show the kernel is not contained in any maximal ideal. Consider the

composed isomorphism from Chapter 4 given by

H(S2(F ))
BCη

S−−→ H(U(V+
2 ))

Sat−−→ Q[Y + Y −1].

By combining [LRZ24, Equation (7.1.9)] (which is also Lemma 15.3.1 later) and [LRZ24,
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Equation (7.1.4)] we find that

Sat
(
BCη

S

(
1K′,≤r + 1K′,≤(r−1)

))
= (−1)r Sat(1ϖ−r Mat2(OE)∩V+

n
)

= (−1)r
qr r∑

j=−r

Y j − qr−1

r−1∑
j=−(r−1)

Y j

 .

Hence, if we define the polynomial

Pr(Y ) := (−1)r Sat
(
BCη

S

(
1K′,≤r + 21K′,≤(r−1) + 1K′,≤(r−2)

))
=

qr r∑
j=−r

Y j − qr−1

r−1∑
j=−(r−1)

Y j

−
qr−1

r−1∑
j=−(r−1)

Y j − qr−2

r−2∑
j=−(r−2)

Y j


= qr

r∑
j=−r

Y j − 2qr−1

r−1∑
j=−(r−1)

Y j + qr−2

r−2∑
j=−(r−2)

Y j

then for any r ≥ N + 2, all the polynomials Pr(Y )− PN+2(Y ) lie in the kernel.

We now prove there is no choice of a single Y ∈ C× for which Pr(Y ) is eventually constant,

which would complete the proof. Indeed, if we write

Pr(Y )− qPr−1(Y ) = qr(Y r + Y −r)− 2qr−1(Y r−1 + Y −(r−1)) + qr−2(Y r−2 + Y −(r−2))

then

(Pr(Y )− qPr−1(Y ))− (Pr−1(Y )− qPr−2(Y )) = q3(Y r + Y −r)− 3q2(Y r−1 + Y −(r−1))

+ 3q(Y r−2 + Y −(r−2))− (Y r−3 + Y −(r−3)).

So we are done by Lemma 11.2.2.
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11.3 A sequence of test functions almost lying in the

kernel in the semi-Lie case

We make one additional remark on the kernel that unifies both of the preceding two sections.

For this section, we define the following indicator function for r ≥ 3:

ϕr := 1K′,≤r + 1K′,≤(r−1) − q2(1K′,≤(r−2) + 1K′,≤(r−3)).

We give the following theorem which can be thought of as a simultaneously refined version of

both Lemma 11.1.1 and Lemma 11.2.1. Roughly, it says that we can define a sequence of test

functions

ϕr + (q + 1)ϕr−1 + qϕr−2 r ≥ 5

such that for any fixed (γ,u,v⊤), there are at most three values of r for which the orbital

integral does not vanish.

Theorem 11.3.1 (A sequence in H(S2(F ))). Suppose (γ,u,v⊤) ∈ (S2(F )× V ′
2(F ))

−
rs is as

in Lemma 8.4.2. Then

∂Orb
(
(γ,u,v⊤), ϕr + (q + 1)ϕr−1 + qϕr−2

)
= 0

holds for all r ≥ 5 with at most three exceptions, namely those r with

v(e)−min

(
v(b) + v(c)− 1

2
, v(d− a)

)
+2 ≤ r ≤ v(e)−min

(
v(b) + v(c)− 1

2
, v(d− a)

)
+4.

Proof. As always θ := min (v(b) + v(c), 2v(d− a)) as in Chapter 9. Consider Corollary 1.3.3,

and let N , C, C ′ be as in the statement. Let N ♭♭, C♭♭, (C ′)♭♭ be the changes to those constants

when one replaces r by r− 2. Then one can record the changes to these parameters explicitly,

see Table 11.1.
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Assumptions Parameters for r Parameters for r − 2

r ≥ v(e)−
⌊
θ
2

⌋
+ 3

N = v(e)

C = C ′ = 0

N ♭♭ = v(e)

C♭♭ = (C ′)♭♭ = 0

r = v(e)−
⌊
θ
2

⌋
+ 2

θ = 2v(d− a)
(exceptional)

N = v(e)

C = C ′ = 0

N ♭♭ = (r − 2) +
⌊
θ
2

⌋
= v(e)

C♭♭ = −1+(v(b)+v(c)−2v(d−a))
2

(C ′)♭♭ = C♭♭ + 1

r = v(e)−
⌊
θ
2

⌋
+ 1

θ = 2v(d− a)
N = v(e)

C = C ′ = 0

N ♭♭ = (r − 2) +
⌊
θ
2

⌋
= v(e)− 1

C♭♭ = 0

(C ′)♭♭ = 1

r ≤ v(e)−
⌊
θ
2

⌋
θ = 2v(d− a)
κ ≡ 0 (mod 2)

N = r +
⌊
θ
2

⌋
C = κ−1+(v(b)+v(c)−2v(d−a))

2

C ′ = C + 1

N ♭♭ = (r − 2) +
⌊
θ
2

⌋
C♭♭ = (κ−2)−1+(v(b)+v(c)−2v(d−a))

2

(C ′)♭♭ = C♭♭ + 1

r ≤ v(e)−
⌊
θ
2

⌋
θ = 2v(d− a)
κ ≡ 1 (mod 2)

N = r +
⌊
θ
2

⌋
C = κ−1

2

C ′ = C + 1

N ♭♭ = (r − 2) +
⌊
θ
2

⌋
C♭♭ = (κ−2)−1

2

(C ′)♭♭ = C♭♭ + 1

r ≤ v(e)−
⌊
θ
2

⌋
θ = v(b) + v(c)

N = r +
⌊
θ
2

⌋
C = v(e)−

⌊
θ
2

⌋
+ r

C ′ = 0

N ♭♭ = (r − 2) +
⌊
θ
2

⌋
C♭♭ = v(e)−

⌊
θ
2

⌋
+ (r − 2)

(C ′)♭♭ = 0

Table 11.1: Comparison of N to N ♭♭, etc., needed to carry out the proof of Theorem 11.3.1.
Note the exceptional case r = v(e)−

⌊
θ
2

⌋
+ 2 differs from all the others because C − C♭♭ can

be large.
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Note in particular except for the single exceptional value r = v(e)−
⌊
θ
2

⌋
+ 2 we should

always have (N ♭♭ + 2) − N ∈ {0, 1, 2}, C − C♭♭ ∈ {0, 1, 2}, (C ′) − (C ′)♭♭ ∈ {0, 1}. More

explicitly, we have the following result from Table 11.1 for every r ≥ 3:

(−1)r+v(c)

log q
∂Orb

(
(γ,u,v⊤), ϕr

)

=


−qr+⌊ θ2⌋ − qr+⌊ θ2⌋−1 + q + 1 if r ≤ v(e)−

⌊
θ
2

⌋
+ 1 and θ = v(b) + v(c)

−2qr+⌊ θ2⌋ + q + 1 if r ≤ v(e)−
⌊
θ
2

⌋
+ 1 and θ = 2v(d− a)

−qv(e)+2 − qv(e)+1 + q + 1 if r ≥ v(e)−
⌊
θ
2

⌋
+ 3.

It follows that for r ≥ v(e)−
⌊
θ
2

⌋
+ 4 we have

(−1)r+v(c)

log q
∂Orb

(
(γ,u,v⊤), ϕr + ϕr−1

)
= 0 (11.1)

while when r ≤ v(e)−
⌊
θ
2

⌋
+ 1 we have

(−1)r+v(c)

log q
∂Orb

(
(γ,u,v⊤), ϕr + qϕr−1

)
= 1− q2. (11.2)

Then Theorem 11.3.1 follows directly from (11.1) and (11.2).

11.4 Proof of Theorem 1.3.11 for the group AFL

We give the short proof of the following:

Theorem 1.3.11 (∂Orb: H(S3(F ))→ C∞(S3(F )
−
rs) has large image). There is no nontrivial

ϕ ∈ H(S3(F )) such that

∂Orb (γ, ϕ) = 0
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holds for every γ ∈ S3(F )
−
rs. In other words, the map

∂Orb: H(S3(F ))→ C∞(S3(F )
−
rs)

ϕ 7→ (γ 7→ ∂Orb (γ, ϕ))

is injective, i.e., has image as large as possible, for n = 3.

Proof of Theorem 1.3.11. Suppose that

ϕ =
N∑
r=0

aj1K′
S,≤r

for some N > 0. We pick our γ according to Lemma 5.3.3 subject to

v(b) = v(d) = −N.

In that case, we have

Orb(γ,1K′
S,≤r

, s) = 0 for all r = 0, 1, . . . , N − 1

and so there is certainly no contribution to its derivative. However, for aN according to

Example 5.5.11 we have

∂Orb(γ,1K′
S,≤N

) =
∂

∂s

∣∣∣∣
s=0

(
λ−2r∑
k=−r

(−1)k(qs)k
)

= (−1)r+1 · λ+ 1

2
̸= 0.

Hence N > 0 cannot hold.

For N = 0, we instead take, say, ℓ = δ = 1 in Theorem 5.5.2 in which case Orb(γ, 1K′
S
, s) =

−q3s + q2s − qs + 1 whose derivative is −2. The proof is complete.
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11.5 A sequence of test functions almost lying in the

kernel in the group AFL case

We mention the following S3(F ) analog of Theorem 11.3.1.

Theorem 11.5.1 (A sequence in H(S3(F ))). Choose γ ∈ S3(F )
−
rs and let ℓ be as in

Lemma 5.3.3. If ℓ ≥ 0, then for any r ≥ 3,

∂Orb
(
γ,1K′

S,r
+ 2q1K′

S,r−1
+ q21K′

S,r−2

)
= −(2q + 2) log q.

The result also holds for ℓ < 0 if r ≥ −1
2
ℓ+ 3; while for r < −1

2
ℓ the left-hand is 0 instead.

To prove it, we first state the following corollaries of Lemma 7.7.1 and Lemma 7.7.3,

respectively.

Corollary 11.5.2. Retain the setting of Lemma 7.7.1. Also let Σ′
r(s) = Σr(s)− Σr−1(s) for

all r ≥ 1. Then for all r ≥ 3,

∂

∂s

(
Σ′

r(s) + 2qΣ′
r−1(s) + q2Σ′

r−2(s)
)∣∣∣∣

s=0

= (−1)C+1(2q + 2) log q.

Proof. From Lemma 7.7.1 it follows that for any r ≥ 1 we have

− ∂

∂s
(Σr(s) + qΣr−1(s))

∣∣∣∣
s=0

= (−1)r
r+H∑
j=r+1

qj +
r∑

j=1

(−1)jqj + W + 1

2
+ 2r.

Hence it follows that for any r ≥ 2,

− ∂

∂s
(Σr(s) + qΣr−1(s) + q (Σr(s) + qΣr−1(s)))

∣∣∣∣
s=0

=

(
W − 3

2
+ 2r

)
q +

W + 1

2
+ 2r.

Subtracting this from the same expression for r − 1 yields the corollary.
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Corollary 11.5.3. Retain the setting of Lemma 7.7.3. Also let Σ′
r(s) = Σr(s)− Σr−1(s) for

all r ≥ 1. Then for all r ≥ 2,

∂

∂s

(
Σ′

r(s) + Σ′
r−1(s)

)∣∣∣∣
s=0

= 0.

Proof. Since Lemma 7.7.3 implies Σ′
r(s) = −L−(−1)W

2
(−1)r+W+C this is immediate.

Proof of Theorem 11.5.1. Assume the notation in Lemma 5.3.3 and Lemma 5.4.1. We

apply Corollary 11.5.2 and Corollary 11.5.3 directly using the same inputs as the proof of

Theorem 5.6.1.

For ℓ ≥ 0, the cγ sum (when ℓ is even) has no effect, while by Corollary 11.5.2 we always

get −(2q + 2) log q (as we only use C even in Corollary 11.5.2).

When ℓ < 0, if r ≥ −1
2
ℓ+3 then the replacement of r by r−|v(d)| ≥ 3 allows the analysis

to carry through. And where r < −1
2
ℓ, the entire orbital integral is identically zero anyways,

as needed.

11.5.1 Generation of H(S3(F )) as an ideal

In the spirit of the conjecture proposed in [LRZ24, Conjecture 1.0.2], we mention the following

result as well.

Proposition 11.5.4. The subspace of H(S3(F )) spanned by

1K′
S,r

+ 2q1K′
S,r−1

+ 1K′
S,r−2

for r ≥ 3 is (in addition to being of codimension at most 3) not contained in any maximal

ideal of H(S3(F )).

Proof. This requires us to invoke the explicit results from Chapter 4. Consider the composed

isomorphisms

H(S3(F ))
BCS−−→ H(U(V+

3 ))
Sat−−→ Q[Y + Y −1].
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Let K = GLn(OE) ∩ U(V+
3 ) and note for any r ≥ 2 we have

1Kϖ(r,0,−r)K

BC−1
S7−−−→ 1K′

S,r
+ 2q1K′

S,r−1
+ 2q21K′

S,r−2
+ 2q31K′

S,r−3
+ . . .

=⇒ 1Kϖ(r,0,−r)K − q21Kϖ(r−2,0,−(r−2))K

BC−1
S7−−−→ 1K′

S,r
+ 2q1K′

S,r−1
+ q21K′

S,r−2
.

Hence for r ≥ 3 if we define

Pr(Y ) := Sat
(
BCS(1K′

S,r
+ 2q1K′

S,r−1
+ q21K′

S,r−2
)
)

= Sat
(
1Kϖ(r,0,−r)K − q21Kϖ(r−2,0,−(r−2))K

)
= Sat

(
1ϖ−r Mat3(OE)∩U(V+

3 ) − 1ϖ−(r−1) Mat3(OE)∩U(V+
3 )

− q21ϖ−(r−2) Mat3(OE)∩U(V+
3 ) + q21ϖ−(r−3) Mat3(OE)∩U(V+

3 )

)
=

q2r r∑
j=−r

Y j + q2r−1

r−1∑
j=−(r−1)

Y j

−
q2r−2

r−1∑
j=−(r−1)

Y j + q2r−3

r−2∑
j=−(r−2)

Y j


−

q2r−2

r−2∑
j=−(r−2)

Y j + q2r−3

r−3∑
j=−(r−3)

Y j

+

q2r−4

r−3∑
j=−(r−3)

Y j + q2r−5

r−4∑
j=−(r−4)

Y j


then it follows that Pr(Y )− P3(Y ) is contained in the kernel for any r ≥ 3.

To show this kernel generates the entire ring, it would be sufficient to prove there is no

Y ∈ C× such that P3(Y ) = P4(Y ) = P5(Y ) = P6(Y ) = · · · . However, using the explicit

formula for Pr(Y ) above, a direct calculation gives the following two identities:

P5(Y )− q2

Y
P4(Y )− q2Y P4(Y )− q2

Y
P3(Y ) = −q5

P6(Y )− q2

Y
P5(Y )− q2Y P5(Y )− q2

Y
P4(Y ) = 0.

So such a common root Y cannot exist.
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Chapter 12

Transfer factors

In this short chapter we document the definitions of the transfer factors appearing in

Conjecture 1.2.1 and Conjecture 1.2.2.

12.1 Transfer factor for the inhomogeneous group AFL

The definition of the transfer factor in Conjecture 1.2.1 is given below:

Definition 12.1.1 ([Zha24b, Equation 2.7]). Choose any γ ∈ Sn(F )rs. Let e =

(
0 . . . 0 1

)⊤
∈

F n be a column vector. Then the transfer factor ω(γ) is defined by

ω(γ) := η
(
det
((
γie
)n−1

i=0

))
.

For n = 3, because we gave our answer in terms of a representative of an H ′-orbit, it is

not trivial to state the transfer factor in terms of the a, b, d in Lemma 5.3.3.

However, we don’t need this transfer factor anyway in this paper, so we do not evaluate it

here.
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12.2 Transfer factor for the semi-Lie AFL

Definition 12.2.1 ([Zha24b, Equation 2.2]). Choose any (γ,u,v⊤) ∈ (Sn(F ) × V ′
n(F ))rs.

Then the transfer factor ω(γ) is defined by

ω(γ,u,v⊤) := η
(
det
((
γiu
)n−1

i=0

))
.

For the purposes of our n = 2 calculation, we compute the transfer factor when

(γ,u,v⊤) =


a b

c d

 ,

0

1

 ,

(
0 e

) ∈ (S2(F )× V ′
2(F ))

−
rs.

is as described in Lemma 8.4.2. Applying the definition above, we find that

ω(γ,u,v⊤) = η
(
det
(
γ0u, γ1u

))
= η

det

0 b

1 d


 = (−1)v(b) = (−1)v(c)+1. (12.1)
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Chapter 13

The geometric side

13.1 Rapoport-Zink spaces

We briefly recall the theory of Rapoport-Zink spaces. This follows the exposition in [Zha24a,

§4.1].

Let F̆ denote the completion of a maximal unramified extension of F , and let F denote

the residue field of OF̆ . Suppose S is a Spf OF̆ -scheme. Then we can consider triples (X, ι, λ)

consisting of the following data.

• X is a formal ϖ-divisible n-dimensional OF -module over S whose relative height is 2n.

• ι : OE → End(X) is an action of OE such that the induced action of OF on LieX is

via the structure morphism OF → OS.

We require that ι satisfies the Kottwitz condition of signature (n− 1, 1), meaning that

for all a ∈ OE, the characteristic polynomial of ι(a) on LieX is exactly

(T − a)n−1(T − ā) ∈ OS[T ].

• λ : X → X∨ is a principal OF -relative polarization.
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We require that the Rosati involution of λ induces the map a 7→ ā on OF (i.e. the

nontrivial automorphism of Gal(E/F )).

The triple is called supersingular if X is a supersingular strict OF -module.

For each n ≥ 1, over F we choose a supersingular triple (Xn, ιXn , λXn); it’s unique up to

OE-linear quasi-isogeny compatible with the polarization, and refer to it as the framing object.

We can now define the Rapoport-Zink space:

Definition 13.1.1 (Rapoport-Zink space; [LRZ24, §5.1]). For each n ≥ 1, we let Nn

denote the functor over Spf OF̆ defined as follows. Let S be an Spf OF̆ scheme, and let

S := S ×Spf OF̆
SpecF. For every Spf OF̆ scheme, we let Nn(S) be the set of isomorphism

classes of quadruples

(X, ι, λ, ρ)

where (X, ι, λ) is one of the triples as we described, and

ρ : X ×S S → Xn ×SpecF S

is a framing, meaning it is a height zero OF -linear quasi-isogeny and satisfies

ρ∗((λXn)S) = λS.

Then Nn is formally smooth over OF̆ of relative dimension n− 1.

Henceforth, we also make the following abbreviation.

Definition 13.1.2 (Nm,n). For integers m and n,

Nm,n := Nm ×Spf OF̆
Nn.
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13.2 A realization of the non-split Hermitian space V−
n of

dimension n

For the following definition (and later on), we need a variation of N1:

Definition 13.2.1 (E). Let (E, ιE, λE) be the unique triple over F whose Rosati involution

has signature (1, 0) (note this is different from N1 where the signature is (0, 1) instead).

At the same time, we can define the following Hermitian space.

Definition 13.2.2 ([LRZ24, §5.2]). For each n ≥ 1, let

V−
n := Hom◦

OE
(E,Xn)

which we call the space of special homomorphisms. When endowed with the form

⟨x, y⟩ = λ−1
E ◦ y∨ ◦ λXn ◦ x ∈ End◦

E(E) ≃ E

it becomes an n-dimensional E/F -Hermitian space.

Proposition 13.2.3 (Realization of V−
n ). Up to isomorphism, V−

n is the unique n-dimensional

nondegenerate non-split E/F -Hermitian space.

Proof. See the comment in [LRZ24, §5.2] or the comment after [Zha24a, Equation (4.2)].

As described in [Zha24a, Equation (4.3)], there is an action of U(V−
n ) on (Xn, ιXn , λXn)

and hence each g ∈ U(V−
n ) acts on Nn by

g · (X, i, λ, ρ) := (X, i, λ, g ◦ ρ).
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13.3 Intersection numbers for the group version of AFL

for the full spherical Hecke algebra

Here we reproduce the definition of the intersection number used in Conjecture 1.2.1.

Compared to the formulation of the group version and semi-Lie version of the AFL, the

intersection number requires the introduction of a Hecke operator Tφ for an element

φ ∈ H(G♭ ×G,K♭ ×K)

as introduced in [LRZ24]. This definition is too involved to reproduce here in its entirety, we

give a summary for this special cases in which we need.

First consider the given f ∈ H(U(V+
n )). The main work of the construction is to define

another derived formal scheme T1
K♭⊗f (see [LRZ24, §6.1]) together with two projection maps

T1
K♭⊗f

Nn−1,n Nn−1,n.

This definition is carried out in [LRZ24, §5], by defining it first for so-called atomic elements

of the spherical Hecke algebra, which form basis elements of a certain presentation of this

Hecke algebra as the unitary group for a polynomial algebra; we refer the reader to loc. cit. for

the full details.

Now, take the natural closed embedding

Nn−1 → Nn

and let

∆: Nn−1 ↪→ Nn−1,n

be the associated graph morphism; let ∆Nn−1 denote the image, with an inclusion ι : ∆Nn−1 ↪→
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Nn−1,n. Once this is done, consider then the diagram

π∗
1(∆Nn−1) T1

K♭⊗f

∆Nn−1 Nn−1,n (π2)∗(π∗
1(∆Nn−1,n)) Nn−1,n.

π1

π2

ι

That is, one takes the pullback of ∆Nn−1

ι
↪−→ Nn−1,n along the projection

Nn−1,n
π1←− T1

K♭⊗f

and then takes the pushforward along the other projection

T1
K♭⊗f

π2−→ Nn−1,n.

Definition 13.3.1 (Hecke operator). Set

T1
K♭⊗f (∆Nn−1) := (π2)∗(π

∗
1(∆Nn−1)).

This is the part of the intersection number depending on f (or rather T1
K♭⊗f ). As for our

g ∈ U(V−
n )rs, consider the translation (1, g) ·∆Nn−1 . The intersection number is then defined

as by taking the intersection of these two objects using the derived tensor product ⊗L of the

structure sheaves.

Definition 13.3.2 (Int((1, g),1K♭ ⊗ f); [LRZ24, Equation (6.1.1)] or [Zha24a, Equation

(4.4)]). We define the intersection number in Conjecture 1.2.1 by

Int((1, g),1K♭ ⊗ f) :=
〈
T1

K♭⊗f∆Nn−1 , (1, g) ·∆Nn−1

〉
Nn−1,n

:= χNn−1,n

(
OT1

K♭⊗f (∆Nn−1
)

L
⊗

ONn−1,n

O(1,g)·∆Nn−1

)
.
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Here χ denotes the Euler-Poincaré characteristic, meaning that if X is a formal scheme

over Spf OF̆ then given a finite complex F of OX-modules we set

χX(F) =
∑
i

∑
j

(−1)i+j len
OF̆

Hj(X,Hi(F))

provided all the lengths are finite.

Remark 13.3.3. In general we could adapt this definition so (1, g) is replaced by by an

element of (U(V−
n−1)× U(V−

n ))rs if we wish to work with the full group version of the AFL

rather than just the inhomogeneous version. However, this simpler definition will be sufficient

for our purposes.

13.4 Intersection numbers for the semi-Lie version of AFL

for the full spherical Hecke algebra

Now we continue to define an intersection number needed for the proposed Conjecture 1.2.2

from earlier. The definition mirrors the one given in the last section. Here we reproduce the

definition of the intersection number used in Conjecture 1.2.1.

We work here with Nn,n rather than Nn−1,n. The change is that we need to incorporate

the new u ∈ V−
n that was not present before. In order to do this one considers a certain

relative Cartier divisor Z(u) on Nn for each nonzero u ∈ V−
n . This divisor was defined by

Kudala and Rapport in [KR11] and accordingly we call it a KR-divisor following [Zha24a,

§4.3]. The definition is given as follows.

Definition 13.4.1 (Z(u); [KR11, Definition 3.2]). Recall that (E, ιE, λE) is the unique triple

over F whose Rosati involution has signature (1, 0). Hence the formal OF -module has a

unique lifting called its canonical lifting, which we denote by the triple (E , ιE , λE).
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Then the KR-divisor Z(u) is the locus where the quasi-homomorphism

u : E→ Xn

lifts to a homomorphism from E to the universal object over Nn. More explicitly, it consists

of those X ∈ Nn such that there exists a map φ : E → X with the following property. Let S

be an Spf OF̆ scheme and consider the map on special fiber

E = E×S S
φ×SS−−−→ X ′ ×S S.

Since X ∈ Nn we also have ρ : X ×S S → Xn ×SpecF S. Moreover, u gives a map

E×SpecF S
u×Spec FS−−−−−→ Xn ×SpecF S.

Then we require the following diagram to commute:

E×S S X ×S S

E×SpecF S Xn ×SpecF S.

φ×SS

ρE ρ

u×Spec FS

That is, Z(u) is the locus where u lifts to a homomorphism E → Xn. Note also by the

definition that gZ(u) = Z(gu). See [KR11] for a full definition.

The main change is then that we can consider ∆Z(u) as the image of

Z(u) ↪→ Nn
∆−→ Nn,n

where ∆: Nn → Nn,n now denotes the diagonal map. If one defines an appropriate space

T1K⊗f for f ∈ H(U(V+
n )) again following [LRZ24], together with

T1K⊗f

Nn,n Nn,n
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then one can then repeat the diagram from before:

π∗
1(∆Z(u)) T1K⊗f

∆Z(u) Nn,n (π2)∗(π∗
1(∆Z(u))) Nn,n.

π1

π2

ι

In other words, we again take a pullback followed by a pushforward but this time of

∆Z(u) ↪→ Nn,n. This lets us write an analogous definition:

Definition 13.4.2 (Hecke operator). Set

T1K⊗f (∆Z(u)) := (π2)∗(π
∗
1(∆Z(u))).

Meanwhile to replace (1, g)∆Nn,n−1 , we let

Γg ⊆ Nn,n

denote the graph of the automorphism of Nn induced by g. This finally allows us to write a

definition of the intersection number in the semi-Lie case:

Definition 13.4.3 (Int((g, u), f)). In analog to Definition 13.3.2 for the group version of the

AFL, we now define the intersection number in Conjecture 1.2.2 as

Int((g, u), f) :=
〈
T1K⊗f∆Z(u),Γg

〉
Nn,n

:= χNn,n

(
OT1K⊗f (∆Z(u))

L
⊗

ONn,n

OΓg

)
.

In the situation where f = 1K , this coincides with the existing definition in [Zha24a,

Equation (4.9)] and [Zha21a, Remark 3.1].
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13.5 An analogy between the geometric and analytic sides

With the intersection number now defined for Conjecture 1.2.2, we provide some intuitive

discussion about the connection. All of this is for philosophical cheerleading only, and is

not meant to formally assert any definitions or results. But it may help in motivating the

formulation of the conjecture.

For this section write G := U(V+
n ) and K := G ∩ GLn(OE) the hyperspecial maximal

compact subgroup of G. For simplicity we only focus on the semi-Lie AFL originally proposed

by Liu to start; which is the special case of Conjecture 1.2.2 when f = 1K and ϕ = 1K′ .

The geometric side On the geometric side, Nn is the RZ-space acted on by U(V−
n ), and

hence U(V−
n )×U(V−

n ) acts on Nn,n. Roughly speaking, we are considering the two morphisms

Nn
∆−→ Nn,n

Γg←− Nn

with ∆ being thought of as the diagonal morphism and Γg as the graph under multiplication

by g ∈ U(V−
n )rs.

Hence loosely speaking, the intersection Int ((g, u),1K) can be thought of as the intersection

of three images in Nn,n:

• A “diagonal” object ∆;

• A “graph” object Γ;

• A third object Z(u), the KR-divisor, parametrized by diagrams

E Xn

E Xn.
u

The derived tensor product ⊗L is used together with some formalism to make this intersection

idea precise. The intersection of the “diagonal” and “graph” is the fixed point locus, and in

245



fact could be formally defined as the intersection

Γg ∩∆Nn

viewed as a closed formal subscheme of Nn (or Nn,n); see [Zha24a, Equation (4.6)].

The analytic side On the other hand, consider the analytic side. We will try to explain

how the weighted orbital integral in Definition 8.1.1 can be thought of as some weighted

intersection of analogous objects.

Note the quotient G/K can be identified as

G/K ≃
{
Λ ⊆ V+

n | Λ∨ = Λ
}

that is, the set of self-dual lattices Λ of full rank, which thus has a natural action of G.

Henceforth we denote elements of G/K by h, and fix one particular such lattice Λ0, acted on

by OE. Hence G/K can be thought of as

G/K ≃ {hΛ0 | h ∈ G/K} .

Recall from (8.1) that we have an orbital integral on the unitary side of the shape

∫
h∈G/K

1K(h
−1gh)1Λ0(h · u) dh

where u ∈ V+
n , and Λ0 is a fixed particular lattice in G/K. See for example the “relative

fundamental lemma” stated as [Liu21, Conjecture 1.9].

Like before, we can consider two maps

G/K
∆−→ G/K ×G/K Γg←− G/K
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which are the diagonal morphism and the graph of the action of g. Hence the intersection

are those cosets hK for which

hK = ghK ⇐⇒ h−1gh ∈ K.

Hence the indicator function 1K(h
−1gh) plays the analog of the fixed point locus in the

geometric side.

Meanwhile, the term h · u plays a role analogous to the KR-divisor on the geometric side,

giving the third intersection object. We have

h · u ∈ Λ0 ⇐⇒ u ∈ h−1Λ0

and so the object corresponding to the KR-divisor Z(u) is the subset in G/K of those lattices

containing u, that is

{Λ′ | Λ′ ∋ u} .

The analog to the earlier diagram that we described for Z(u) is then

OE → Λ′

1 7→ u.

Up until now this whole section is written for f = 1K and ϕ = 1K′ . In the general

situation, if one replaces 1K in the above integral by a general f , then this corresponds to

changing the analog of the fixed point locus; the idea of [LRZ24] is that this should correspond

to replacing ∆Z(u) with Tf (∆Z(u)) on the geometric side.
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Chapter 14

Intersection numbers for Int((g, u), f ) for

n = 2

This chapter is dedicated to computing intersection numbers for the semi-Lie version of AFL

in the special case n = 2.

14.1 Background on quaternion division algebra

Through this section we let D be a quaternion division algebra over F , with a fixed maximal

order OD. We will make D explicit in the following way for our calculations to follow.

14.1.1 Structure as a noncommutative algebra

As F -vector spaces we will write

D = E ⊕ EΠ

where Π is selected so that Π2 = ϖ. We endow D with a noncommutative multiplication

according to

Πt = t̄Π for all t ∈ E
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where t is the image of t ∈ E under the nontrivial element of Gal(E/F ).

14.1.2 Conjugation of elements of D

In general, suppose x ∈ D is any element decomposed as x = a+ bΠ for a, b ∈ E. Then we

denote by x̄ ∈ D the conjugate in D defined by

x̄ := ā− bΠ

where, again, ā is the image of a ∈ E under the nontrivial element of Gal(E/F ). It is an

anti-involution, meaning that x̄ = x and xy = ȳx̄.

(Notice that we have a slight abuse of notation here in that we have used the same

notation to denote both conjugation under the Galois action of Gal(E/F ) as well as the

conjugation in D. However, there is no ambiguity resulting because when E is viewed as a

subset of D, the two symbols denote the same element of E: that is we have

a+ 0Π = ā+ 0Π

in any event. In other words, the restriction of the quaternion conjugation to E coincides

with the nontrivial element of Gal(E/F ), so we do not need to introduce a separate notation

for it.)

This allows us to define the reduced norm and trace in D. The reduced trace is given by

tr x := x+ x̄ = TrE/F (a) = 2x0 ∈ F.

We may thus define

Dtr=0 := {u ∈ D | tru = 0}

which has codimension 1 inside D (i.e. is three-dimensional as an F -vector space). Since
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tr(a+ bΠ) = TrE/F (a), we could also write

Dtr=0 = {a+ bΠ | a, b ∈ E and TrE/F (a) = 0}.

The reduced norm is similarly defined by

Nm x = xx̄ = (a+ bΠ)(ā− bΠ)

= aā+ bΠā− abΠ− bΠbΠ

= aā− bb̄ϖ

= NE/F (a)− NE/F (b)ϖ ∈ F.

As an F -vector space, D has a basis given by {1,√ε,Π,√εΠ}, that is

D = F ⊕ F√ε⊕ FΠ⊕ F√εΠ.

It will be convenient to introduce the following notation:

Definition 14.1.1 (x0 and x−). For x ∈ D, we introduce the notation x0 and x− to mean

• x0 is the projection into the first component F ; and

• x− = x− x0 is the projection into Dtr=0 = F
√
ε⊕ FΠ⊕ F√εΠ.

In particular, the formula for conjugation then reads as the simpler

x̄ = x0 − x−.

14.1.3 Hermitian structure

We view D as an E/F -Hermitian space under left multiplication by E; that is, for a, b, t ∈ E

we consider

t · (a+ bΠ) = at+ btΠ.
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as the action of E on D. Then we equip D with a E/F -Hermitian form ⟨•, •⟩ : D ×D → E

defined by

⟨x, y⟩ = 1

2
TrD/E(xȳ)

i.e. the projection of xȳ ∈ D = E ⊕ EΠ onto the first component. In particular, note that

⟨x, x⟩ = xx̄ = Nm x

or equivalently

⟨a+ bΠ, a+ bΠ⟩ = aā− bb̄ϖ.

14.1.4 Identification of V−
n with D

We continue using the notation (E, ιE, λE) as the triple over F whose Rosati involution has

signature (1, 0). Moreover, we will take the identification

End(E) ≃ OD

see [KR11, Remark 2.5], and hence the corresponding identification

V−
n ≃ D.

14.2 The invariants for the orbit of (g, u)

We specialize to the situation where u ∈ OD and g ∈ U(V−
n ).

14.2.1 Coordinates for g

To impose coordinates on g, we appeal to the following fact.
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Lemma 14.2.1 (Description of U(V−
2 )). Every unitary map in U(V−

2 ) can be described in

the form

x 7→ λ−1x(α + βΠ)

for some quaternion α+ βΠ ∈ D× and an element λ ∈ E× such that

Nm(α + βΠ) = NE/F (λ).

Moreover, such a description is unique up to multiplication by elements of F . In other

words,

U(V−
2 ) ≃ (E× ×D×)◦/∆(F×)

where (D× ×E×)◦ denotes those pairs (λ, α+ βΠ) with NE/F (λ) = Nm(α+ βΠ), and ∆(F×)

is the diagonal embedding of F×.

Remark 14.2.2. In this paper we will not have a need to compose multiple such unitary

maps. However, if we did, then our notation above swaps the multiplication order. That is,

if we have g1, g2 ∈ U(V−
2 ) represented by pairs g1 ↔ (λ1, α1 + βΠ1) and g2 ↔ (λ2, α2 + βΠ2)

under the isomorphism above, then

g1 ◦ g2 ↔ (λ2λ1, (α2 + β2Π)(α1 + βΠ)).

Note that in the definition for g, if v(λ) ̸= 0 then we can factor out powers of ϖ = ϖ̄

from λ and put them into α and β instead. Hence, by relabeling α and β, we may assume

without loss of generality that:

Assumption 14.2.3. We assume WLOG that v(λ) = 0 (and hence v(α) = 0, v(β) ≥ 0).

This frees us from having to deal with v(λ) offsets in subsequent calculation.

We encode g as a matrix on D now (with the obvious E-basis 1, Π, again viewing D as a
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left-E module) so we can compute its determinant and trace. We have

g(1) = λ−1 · 1 · (α+ βΠ) = λ−1α + λ−1βΠ

g(Π) = λ−1 · Π(α + βΠ) = λ−1β̄ϖ + λ−1ᾱΠ.

Hence, written as a matrix with respect to the obvious basis {1,Π} we have

g = λ−1

α β̄ϖ

β ᾱ

 .

14.2.2 Coordinates for u

We also impose coordinates for u according to

u = s+ tΠ ∈ OD s, t ∈ E.

To make the calculation that follows less complicated, we are going to make the following

assumption on u.

Assumption 14.2.4. We assume WLOG that either u ∈ E or u ∈ EΠ. That is, either s = 0

or t = 0.

This assumption can be made without loss of generality because the invariants and the

intersection only depend on the SU(2)-orbit of the pair (g, u), and any element u ∈ D× can

be mapped under an element of SU(2) into a pair for which u ∈ E or u ∈ EΠ.

In order for (g, u) to be regular semisimple we require that

u = s+ tΠ

g(u) = λ−1(s+ tΠ)(α + βΠ)

= λ−1
(
(sα + tβ̄ϖ) + (sβ + tᾱ)Π

)
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are linearly independent, meaning

0 ̸= det

s sα + tβ̄ϖ

t sβ + tᾱ

 = st(ᾱ− α) + βs2 − β̄t2ϖ

= βs2 − β̄t2ϖ

=


−β̄t2ϖ if s = 0

βs2 if t = 0.

Hence, we have a requirement that β ̸= 0 and s and t are not both zero (we require st = 0

from Assumption 14.2.4).

Remark 14.2.5 (α ≠ 0). Note that necessarily α is nonzero as well. This follows from the

requirement that αᾱ− ββ̄ϖ = λλ̄; if α = 0 we would get a left-hand side with odd valuation

but a right-hand side with even valuation.

14.2.3 The invariants of the matching

At this point we can state:

Lemma 14.2.6. Under the coordinates we just described, the four corresponding invariants

of Definition 3.3.1 are:

Tr g = λ−1(α + ᾱ)

det g = λ−2(αᾱ− ββ̄ϖ)

⟨u, u⟩ = ss̄− tt̄ϖ

⟨g(u), u⟩ =


λ−1ᾱNmu if s = 0

λ−1αNmu if t = 0.
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Proof. The first three are immediate. The last one follows by computing

⟨g(u), u⟩ =
〈
λ−1(s+ tΠ)(α + βΠ), s+ tΠ

〉
= λ−1

〈
(sα + tβ̄ϖ) + (tᾱ + sβ)Π, s+ tΠ

〉
= λ−1 · 1

2
TrD/E

[
((sα + tβ̄ϖ) + (tᾱ + sβ)Π)(s̄− tΠ)

]
= λ−1 (ss̄α− tt̄ᾱϖ)

and recalling that st = 0.

14.3 A basis for H(U(V+
2 ))

As before K = GL2(OE) ∩ U(V+
2 )denotes the maximal hyperspecial compact subgroup of

U(V+
2 ). For each r ≥ 0, we define

1K,≤r := 1ϖ−r Mat2(OE)∩U(V+
2 ) ∈ H(U(V+

2 )).

For convenience 1K,≤r = 0 for r < 0. We also set

1K,r := 1K,≤r − 1K,≤(r−1)

which is the indicator function for the coset

K

 0 ϖr

ϖ−r 0

K.

Note when r = 0, 1K,0 = 1K = 1K,≤0.

Analogous to Section 8.2 we then have the following result.

Proposition 14.3.1 (1K,≤r basis). The functions 1K,≤r (for r ≥ 0) form a basis of H(U(V+
2 )).

(Similarly, so do 1K,r for r ≥ 0.)
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Proof. This follows from the fact that

U(V+
2 ) =

∐
r≥0

K

 0 ϖr

ϖ−r 0

K.

See the comment in [LRZ24, Equation (7.1.5)].

The base change for this basis is given later in Lemma 15.3.1.

14.4 Background on special divisors for n = 2

14.4.1 The Rapoport-Zink space N2 and T1K,≤r

Recall N2 from Chapter 13. With the Hecke operator T from [LRZ24] (see Chapter 13 for

discussion) we introduce T1K,≤r
= T1K⊗1K,≤r

(∆Nn) so that we have the diagram

T1K,≤r

N2 N2

14.4.2 The Lubin-Tate space M2

We introduce the notationM2 for the Lubin-Tate space for n = 2. It is defined almost in the

same way as N2 except that we replace X2 with E now.

Definition 14.4.1 (Lubin-Tate space). We letM2 denote the functor over Spf OF̆ defined as

follows. Let S be an Spf OF̆ scheme, and let S := S ×Spf OF̆
SpecF. For every Spf OF̆ scheme,

we let Nn(S) be the set of isomorphism classes of quadruples

(Y, ι, λ, ρ)
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where (Y, ι, λ) is one of the triples as we described, and

ρ : Y ×S S → E×SpecF S

is a framing, meaning it is a height zero OF -linear quasi-isogeny and satisfies

ρ∗((λE)S) = λS.

Proposition 14.4.2 ([LRZ24, Example 5.5.6]). The Serre tensor construction produces an

identification

ST: N2
∼−→M2.

By abuse of notation we will also use the same symbol for the map

ST: N2,2
∼−→M2 ×M2.

Recall we have an action of U(V−
2 ) (actually PU(V−

2 )) on N2. We describe now the

corresponding action onM2. We have an isomorphism of short exact sequences

1 O×
E/OF (O×

D ×O×
E)

◦/∆(O×
F ) O×

D/O
×
F 1

1 U(1) U(V−
2 ) PU(V−

2 ) 1.

The image of α + βΠ ∈ O×
D/O

×
F is then (λ, α + βΠ) ∈ PU(2) for any choice of λ with

λλ̄ = Nm(α + βΠ).

14.4.3 The divisor Z†
SO(4) on M2 × M2

Now we define the special orthogonal divisor Z†
SO(4)(u) onM2 ×M2 as follows.

Definition 14.4.3 (Z†
SO(4)(u)). Let u ∈ OD. Then we define the divisor Z†

SO(4)(u) to be the

pairs (Y, Y ′) ∈M2 ×M2 such that there exists φ : Y → Y ′ with the following property. Let
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S be an Spf OF̆ scheme and consider the map on special fiber

Y ×S S
φ×SS−−−→ Y ′ ×S S.

Also, from Y ∈M2 and Y ′ ∈M2 we have the data of framings ρ : Y ×S S → E×SpecF S and

ρ′ : Y ′ ×S S → E×SpecF S. Moreover, u gives a map

E×SpecF S
u×Spec FS−−−−−→ E×SpecF S.

Then we require the following diagram to commute:

Y ×S S Y ′ ×S S

E×SpecF S E×SpecF S.

φ×SS

ρ ρ′

u×Spec FS

We propose that the Serre tensor construction identifies the space T1K,≤r
we previously

described with the following Z†
SO(4) divisor:

Conjecture 14.4.4 (T1K,≤r
≃ Z†

SO(4)(ϖ
r)). The Serre tensor construction gives an isomor-

phism

T1K,≤r
≃ Z†

SO(4)(ϖ
r)

such that we get an analogous diagram

Z†
SO(4)(ϖ

r)

M2 M2.

We assume this conjecture henceforth. (In fact, for n = 2 we could even go as far as to

take this as a definition of T1K,≤r
, but then the generalization Conjecture 1.2.2 would be less

obvious, since a definition like this would not easily extend to n > 2.)
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14.4.4 The divisor Z†
SO(3) on M2

Turning to M2 ×M2, we will henceforth always identify M2 with its image under the

diagonal map

Z†
SO(4)(1) M2 M2 ×M2.

∼ ∆M2

Definition 14.4.5 (Z†
SO(3)(u)). Suppose now u ∈ Dtr=0. Then we define the divisor Z†

SO(3)(u)

to be those X ∈M2 for which we have a diagram

X X

E E.

φ

u

Note that basically by definition, for u ∈ OD and tru = 0 we have

Z†
SO(3)(u) ≃ Z

†
SO(4)(u) ∩ Z

†
SO(4)(1)

when we identifyM2 with its image inM2 ×M2.

14.5 Comparison of the unitary and orthogonal special

divisors

We now relate Z(u) to Z†
SO(3)(u) through our isomorphism N2,2

∼−→M2 ×M2. Recall that

we have the notation

Z(u)◦ := Z(u)−Z
( u
ϖ

)
.

Define Z†
SO(4)(u)

◦ and Z†
SO(3)(u)

◦ similarly.

Lemma 14.5.1 (Z†
SO(3)(ū

√
εu)◦, [CLZ]). Let u ∈ V−

n , and consider it as an element u ∈ D.

Then pullback along the Serre tensor construction identifies

ST∗Z(u)◦ ≃ Z†
SO(3)(ū

√
εu)◦.
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Proof. This is shown in the in-preparation [CLZ] by Ryan C. Chen, Weixiao Lu, and Wei

Zhang. (Although [CLZ] is technically written for F = Qp, that restriction is for other parts

of the paper that don’t affect this lemma.)

14.6 The intersection number as a triple product

We return to the intersection number

Int((g, u),1K,≤r) = χNn,n

(
OT1⊗1K,≤r

(∆Z(u))

L
⊗

ONn,n

OΓg

)

which we will rewrite more succinctly using angle brackets as

Int((g, u),1K,≤r) =
〈
T1K⊗1K,≤r

∆Z(u),Γg

〉
N2,2

in analogy to [LRZ24, §6.1]. (Note that ∆ here is the diagonal map N2 → N2,2.) For this

calculation, it would be sufficient to split

Z(u) =
∑
i≥0

Z(u/ϖi)◦.

Accordingly, let us introduce the notation

Int◦((g, u),1K,≤r) := Int((g, u),1K,≤r)− Int
((
g,
u

ϖ

)
,1K,≤r

)
=
〈
T1K⊗1K,≤r

∆Z(u)◦ ,Γg

〉
N2,2

.

From Lemma 14.5.1 we get

Int◦((g, u),1K,≤r) =
〈
Z†

SO(4)(g ·ϖr), ∆(ST∗(Z(u))◦)
〉
M2×M2

=
〈
Z†

SO(4)(g ·ϖr), Z†
SO(3)(ū

√
εu)◦

〉
M2×M2

261



=
〈
Z†

SO(4)(g ·ϖr), Z†
SO(4)(1)

◦, Z†
SO(4)(ū

√
εu)◦

〉
M2×M2

=
〈
Z†

SO(4)(g ·ϖr), Z†
SO(4)(1), Z

†
SO(4)(ū

√
εu)
〉
M2×M2

−
〈
Z†

SO(4)(g ·ϖr), Z†
SO(4)(1), Z

†
SO(4)

(
ū
√
εu

ϖ

)〉
M2×M2

.

In that case we have

Int((g, u),1K,≤r) =
∑
i≥0

Int◦
((
g,

u

ϖi

)
,1K,≤r

)
. (14.1)

14.7 The formula of Gross-Keating

In what follows, we let

⟨x, y⟩0 =
⟨x, y⟩+ ⟨x, y⟩

2

denote half the E/F -trace of ⟨x, y⟩ ∈ E. Let Otr=0
D := OD ∩ Dtr=0.

Proposition 14.7.1 (Gross-Keating). Let x, y ∈ Otr=0
D and let

n1 = min (v(⟨x, x⟩0), v(⟨x, y⟩0), v(⟨y, y⟩0))

n2 = v
(
⟨x, x⟩0 ⟨y, y⟩0 − ⟨x, y⟩

2
0

)
− n1

so that 0 ≤ n1 ≤ n2. Then if n1 is odd, we have

〈
Z†

SO(4)(1), Z
†
SO(4)(x), Z

†
SO(4)(y)

〉
M2×M2

=

n1−1
2∑

j=0

(n1 + n2 − 4j)qj

while if n1 is even we instead have

〈
Z†

SO(4)(1), Z
†
SO(4)(x), Z

†
SO(4)(y)

〉
M2×M2

=
n2 − n1 + 1

2
qn1/2 +

n1/2−1∑
j=0

(n1 + n2 − 4j)qj.
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Proof. This is a rewriting of [Kud97, Proposition 14.6] which is itself a special case of [GK93,

Proposition 5.4].

We now compute all the quantities needed to invoke the Gross-Keating formula. We start

by writing

ū
√
εu = (s− tΠ)√ε(s+ tΠ)

= (s− tΠ)(s√ε+ t
√
εΠ)

= ss
√
ε− ts√εΠ+ st

√
εΠ− tt√εϖ

= (ss+ ttϖ)
√
ε+ 2st

√
εΠ.

We now invoke Assumption 14.2.4 to simplify this to just

ū
√
εu = (ss+ ttϖ)

√
ε.

This assumption will also let us write

(ss+ ttϖ)2 = (ss− ttϖ)2 = (Nmu)2.

Next we consider

g ·ϖr = ϖr(α + βΠ).

(Here the action of g is the one on M2, which is why we write g · ϖr rather than g(ϖr).)

From now on, let’s write

α = α0 + α1

√
ε

for α0, α1 ∈ F . Then we use the notation

x := ū
√
εu = (ss̄+ tt̄ϖ)

√
ε ∈ Otr=0

D

y := (g ·ϖr)− = ϖr(α1

√
ε+ βΠ) ∈ Otr=0

D .
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Then we can compute

⟨x, x⟩0 = Nmx

= NE/F ((ss̄+ tt̄ϖ)
√
ε)

= −ε(ss̄+ tt̄ϖ)2 = −ε(Nmu)2

⟨y, y⟩0 = Nm
(
ϖr(α1

√
ε+ βΠ)

)
= ϖ2r(−α2

1ε− ββ̄ϖ)

⟨x, y⟩0 = (x̄y)0

=
[
−(ss̄+ tt̄ϖ)

√
ε ·ϖr(α1

√
ε+ βΠ)

]
0

= −ϖrα1ε(ss̄+ tt̄ϖ).

This lets us compute the determinant

⟨x, x⟩0 ⟨y, y⟩0 − ⟨x, y⟩
2
0 = −ε(Nmu)2 ·ϖ2r(−α2

1ε− ββ̄ϖ)− (ϖrα1ε(ss̄+ tt̄ϖ))2

= ε(Nmu)2 ·ϖ2r · (ϖββ̄).

Hence we arrive at an exact formula for

〈
Z†

SO(4)(1), Z
†
SO(4)(x), Z

†
SO(4)(y)

〉
M2×M2

in terms of the valuations of the above formulas, which we will explicate in the next section

after matching (g, u) to the corresponding element in (S2(F )× V ′
2(F ))rs.
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Chapter 15

Proof of Theorem 1.3.8

We now put together all the results from the previous chapters to prove Theorem 1.3.8.

On the orbital side, we assume (γ,u,v⊤) is as in Lemma 8.4.2 throughout this chapter.

On the geometric side, we assume (g, u) are as described in Section 14.2.

15.1 Matching (γ, u, v⊤) and (g, u), and the invariants

for the matching

15.1.1 The invariants for the orbit of (γ, u, v⊤)

Recall the relations in Lemma 8.4.2. The invariants in this case as described in Definition 3.3.1

are:

• Tr γ = a+ d

• det γ = ad− bc

• v⊤u = e

• v⊤γu =

(
0 e

)a b

c d


0

1

 = de.
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Note that the parameters b and c are absent; but we have

v(b) + v(c) = v(det γ − ad).

15.1.2 Matching

We now take these results and line them up with Lemma 14.2.6 to deduce the following

lemma.

Lemma 15.1.1 (Explicit matching of invariants of U(V−
2 ) and (S2(F )× V ′

2(F ))
−
rs). Let

g = λ−1

α β̄ϖ

β ᾱ

 ∈ U(V−
2 )

and u = s+ tΠ with st = 0 and v(λ) = 0. Suppose (g, u) matches with

(γ,u,v⊤) =


a b

c d

 ,

0

1

 ,

(
0 e

) ∈ (S2(F )× V ′
2(F ))rs.

Then we have

a =


λ−1ᾱ if s = 0

λ−1α if t = 0

d =


λ−1α if s = 0

λ−1ᾱ if t = 0

bc = λ−2ββ̄ϖ

e = Nmu.
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Thus we also have the identity

v(d− a) = v(α1).

Proof. Setting the invariants from the previous subsection equal to the ones determined in

Lemma 14.2.6 gives

a+ d = λ−1(α + ᾱ)

det γ = ad− bc = det g = λ−2(αᾱ− ββ̄ϖ)

e = Nmu

de =


λ−1ᾱNmu if s = 0

λ−1αNmu if t = 0.

So the equations for e, d and a are immediate. In both cases we get ad = λ−2αᾱ and hence

λ−2ββ̄ϖ = −(det g − λ−2αᾱ) = −(det γ − ad) = bc.

Remark 15.1.2 (Deriving Lemma 8.4.2 from Lemma 15.1.1). Note that many of the

assumptions in Lemma 8.4.2 can also be extracted from Lemma 15.1.1. For example, taking

the valuation of

λλ̄ = αᾱ− ββ̄ϖ

implies that (since the left-hand side is a unit)

v(a) = v(α) = 0 < 2v(β) + 1 = v(b) + v(c).

So indeed v(1− aā) = v(b̄c) must be odd.
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15.2 Translation of the Gross-Keating data to the orbital

side

We combine the results of Section 14.7 with Lemma 15.1.1. Retaining the notation

x := ū
√
εu = (ss̄+ tt̄ϖ)

√
ε ∈ Otr=0

D

y := (g ·ϖr)− = (α1

√
ε+ βΠ) ∈ Otr=0

D

from Section 14.7, we obtain the following:

v(⟨x, x⟩0) = 2v(Nmu)

= 2v(e)

v (⟨x, y⟩0) = r + v(α1) + v(Nmu)

= r + v(d− a) + v(e)

v(⟨x, x⟩0 ⟨y, y⟩0 − ⟨x, y⟩
2
0) = 2r + 2v(Nmu) + v(ββ̄ϖ)

= 2r + 2v(e) + v(b) + v(c).

Notice that the last valuation is odd. Therefore we can always extract v(⟨y, y⟩0) by writing

v (⟨x, x⟩0) + v (⟨y, y⟩0) = min
(
v
(
⟨x, x⟩0 ⟨y, y⟩0 − ⟨x, y⟩

2
0

)
, v(⟨x, y⟩20)

)
=⇒ v (⟨y, y⟩0) = min(2r + 2v(e) + v(b) + v(c), 2r + 2v(d− a) + 2v(e))− 2v(e)

= 2r +min(v(b) + v(c), 2v(d− a)).

Hence, we have

min (v(⟨x, x⟩0), v(⟨x, y⟩0), v(⟨y, y⟩0), )

= min (2v(e), r + v(d− a) + v(e), 2r +min(v(b) + v(c), 2v(ς)))
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= min (2v(e), r + v(d− a) + v(e), 2r + v(b) + v(c), 2r + 2v(ς))

= min (2v(e), v(b) + v(c) + 2r, 2v(d− a) + 2r)

where we can drop r + v(d− a) + v(e) from the minimum because it equals 2v(e)+(2v(d−a)+2r)
2

.

Now recall the right-hand side of Proposition 14.7.1, that is


∑n1−1

2
j=0 (n1 + n2 − 4j) · qj if n1 ≡ 1 (mod 2)

n2−n1+1
2

qn1/2 +
∑n1/2−1

j=0 (n1 + n2 − 4j) · qj if n1 ≡ 0 (mod 2).

for 0 ≤ n1 ≤ n2. Then apply Proposition 14.7.1 to obtain that

〈
Z†

SO(4)(1), Z
†
SO(4)(ū

√
εu), Z†

SO(4)((g ·ϖr)−)
〉
M2×M2

is equal to the above formula applied at

n1 := min(2v(e), v(b) + v(c) + 2r, 2v(d− a) + 2r)

n2 := 2v(e) + v(b) + v(c) + 2r − n1.

Note that

n1 + n2 = 2v(e) + v(b) + v(c) + 2r.

For brevity, we henceforth introduce the symbol GK for the sum above; hence we have

〈
Z†

SO(4)(1), Z
†
SO(4)(ū

√
εu), Z†

SO(4)((g ·ϖr)−)
〉
M2×M2

= GK(r, v(b), v(c), v(e), v(d− a)).

(15.1)

In that case we also have

〈
Z†

SO(4)(1), Z
†
SO(4)

(
ū
√
εu

ϖ

)
, Z†

SO(4)((g ·ϖr)−)

〉
M2×M2

= GK(r, v(b), v(c), v(e)−1, v(d−a)).
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Subtracting the two gives

Int◦((g, u),1K,≤r) =
〈
Z†

SO(4)(1), Z
†
SO(4)(ū

√
εu)◦, Z†

SO(4)((g ·ϖr)−)
〉
M2×M2

= GK(r, v(b), v(c), v(e), v(d− a))

−GK(r, v(b), v(c), v(e)− 1, v(d− a)).

(15.2)

15.3 Base change

The base change for n = 2 was already calculated in [LRZ24] and we simply recall the result

here.

As in Chapter 14, we define

1K,≤r := 1ϖ−r Mat2(OE)∩U(V+
n ) ∈ H(U(V+

n ))

1K,r := 1K,≤r − 1K,≤(r−1)

= 1ϖ−r Mat2(OE)∩U(V+
n ) ∈ H(U(V+

n ))

Lemma 15.3.1 ([LRZ24, Lemma 7.1.1]). For n = 2 and r ≥ 1 we have

BCη
S(1K′

S,≤r
+ 1K′

S,≤(r−1)
) = (−1)r1K,r

= (−1)r(1K,≤r − 1K,≤(r−1)).

Proof. This follows directly from [LRZ24, Equation (7.1.9)].
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15.4 Transfer factor

As stated in (12.1), the transfer factor is

ω(γ,u,v⊤) = (−1)v(c)+1.

15.5 Comparison to orbital formula

In what follows, we introduce the shorthand

∂Orb(r, v(b), v(c), v(e), v(d− a)) := ∂Orb((γ,u,v⊤),1K′
S,≤r

).

The main claim is that the following formula holds:

Theorem 15.5.1 (GK is a difference of two orbitals). We have

(−1)r+v(c)

log q

(
∂Orb(r, v(b), v(c), v(e), v(d− a)) + ∂Orb(r, v(b), v(c), v(e)− 1, v(d− a))

)
= GK(r, v(b), v(c), v(e), v(d− a)).

We continue to use the notation N and κ from Chapter 10 defined by

N := min
(
v(e), v(b)+v(c)−1

2
+ r, v(d− a) + r

)
κ := v(e)− v(d− a)− r ≥ 0

and prove Theorem 15.5.1 by exhausting the cases based on which value of N is smallest.
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15.5.1 Proof of Theorem 15.5.1 when v(e) ≤ v(b)+v(c)−1
2

+ r and

v(e) ≤ v(d − a) + r

In the Gross-Keating formula we have simply

n1 = 2v(e)

n2 = v(b) + v(c) + 2r.

Hence, we have

GK(r, v(b), v(c), v(e), v(d− a)) = −2v(e) + v(b) + v(c) + 2r + 1

2
qv(e)

+

v(e)−1∑
j=0

(2v(e) + v(b) + v(c) + 2r − 4j) · qj.

On the orbital side, we refer to Corollary 1.3.2 and compare it to the single instance of

Gross-Keating above. The exponent of j runs up to v(e) in one case and v(e) − 1 in the

second; that is we need

v(e)∑
j=0

(
2v(e) + v(b) + v(c) + 1

2
+ r − 2j

)
· qj

+

v(e)−1∑
j=0

(
2(v(e)− 1) + v(b) + v(c) + 1

2
+ r − 2j

)
· qj

=
−2v(e) + v(b) + v(c) + 2r + 1

2
qv(e) +

v(e)−1∑
j=0

(2v(e) + v(b) + v(c) + 2r − 4j) · qj

which is obvious.
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15.5.2 Proof of Theorem 15.5.1 when v(b)+v(c)−1
2

+ r < v(e) and

v(b) + v(c) < 2v(d − a)

Set N = v(b)+v(c)−1
2

+ r. In the Gross-Keating formula we have simply

n1 = 2N + 1

n2 = 2v(e).

Hence

GK(r, v(b), v(c), v(e), v(d− a)) =
N∑
j=0

(2v(e) + v(b) + v(c) + 2r − 4j) · qj.

We compare this to Corollary 1.3.2; we check

N∑
j=0

(
2v(e) + v(b) + v(c) + 1

2
+ r − 2j

)
· qj

+
N∑
j=0

(
2(v(e)− 1) + v(b) + v(c) + 1

2
+ r − 2j

)
· qj

=
N∑
j=0

(2v(e) + v(b) + v(c) + 2r − 4j) · qj

which is clear.

15.5.3 Proof of Theorem 15.5.1 when v(d − a) + r < v(e) and

2v(d − a) < v(b) + v(c)

Hence N = v(d − a) + r and κ := v(e) − (v(d − a) + r) > 0. In the Gross-Keating side

formula, we now have

n1 := 2v(d− a) + 2r = 2N
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n2 = 2v(e) + v(b) + v(c)− 2v(d− a).

Hence

GK(r, v(b), v(c), v(e), v(d− a)) = 2v(e) + v(b) + v(c)− 4v(d− a)− 2r + 1

2
qN

+
N−1∑
j=0

(2v(e) + v(b) + v(c) + 2r − 4j) · qj.

This time, the relevant combination of Corollary 1.3.2 is

N∑
j=0

qj ·
(
2v(e) + v(b) + v(c) + 1

2
+ r − 2j

)

+ qN ·


−κ

2
if κ ≡ 0 (mod 2)

κ
2
−
(
v(e) + v(b)+v(c)

2
− 2v(d− a)− r

)
if κ ≡ 1 (mod 2)

+
N∑
j=0

qj ·
(
2(v(e)− 1) + v(b) + v(c) + 1

2
+ r − 2j

)

+ qN ·


−κ−1

2
if κ − 1 ≡ 0 (mod 2)

κ−1
2
−
(
(v(e)− 1) + v(b)+v(c)

2
− 2v(d− a)− r

)
if κ − 1 ≡ 1 (mod 2)

=
N∑
j=0

qj · (2v(e) + v(b) + v(c) + 2r − 4j) · qj

+ qN ·


−κ

2
+ κ−1

2
−
(
(v(e)− 1) + v(b)+v(c)

2
− 2v(d− a)− r

)
if κ ≡ 0 (mod 2)

−κ−1
2

+ κ
2
−
(
v(e) + v(b)+v(c)

2
− 2v(d− a)− r

)
if κ ≡ 1 (mod 2)

=
N∑
j=0

qj · (2v(e) + v(b) + v(c) + 2r − 4j) · qj

+ qN ·
(
1

2
−
(
v(e) +

v(b) + v(c)

2
− 2v(d− a)− r

))
=

N−1∑
j=0

qj · (2v(e) + v(b) + v(c) + 2r − 4j) · qj
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+ qN ·
(
(2v(e) + v(b) + v(c) + 2r − 4N) +

1

2
−
(
v(e) +

v(b) + v(c)

2
− 2v(d− a)− r

))
.

The coefficient of qN is given by

(2v(e) + v(b) + v(c) + 2r − 4(v(d− a)− r)) + 1

2
−
(
v(e) +

v(b) + v(c)

2
− 2v(d− a)− r

)
=

2v(e) + v(b) + v(c)− 4v(d− a)− 2r + 1

2

which matches the one from Gross-Keating. Hence Theorem 15.5.1 is completely proved.

15.6 Conclusion (proof of Theorem 1.3.8)

From Theorem 15.5.1 we have

GK(r, v(b), v(c), v(e), v(d− a)) = (−1)r+v(c)

log q

(
∂Orb(r, v(b), v(c), v(e), v(d− a))

+ ∂Orb(r, v(b), v(c), v(e)− 1, v(d− a))
)

GK(r, v(b), v(c), v(e)− 1, v(d− a)) = (−1)r+v(c)

log q

(
∂Orb(r, v(b), v(c), v(e)− 1, v(d− a))

+ ∂Orb(r, v(b), v(c), v(e)− 2, v(d− a))
)

so subtraction (and recalling (15.2)) gives

Int◦((g, u),1K,≤r) = GK(r, v(b), v(c), v(e), v(d− a))

−GK(r, v(b), v(c), v(e)− 1, v(d− a))

=
(−1)r+v(c)

log q

(
∂Orb(r, v(b), v(c), v(e), v(d− a))

− ∂Orb(r, v(b), v(c), v(e)− 2, v(d− a))
)
.

(15.3)

We now show that (15.3) implies Theorem 1.3.8. Because r = 0 is known already, it suffices

to verify for r > 0.
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Suppose we sum (15.3) with u replaced by u/ϖi for i = 0, 1, . . . . The left-hand side equals

Int((g, u), 1K,≤r) by (14.1). On the right-hand side this has the effect of decreasing v(e) by 2

since e = Nmu. Hence the sum of the right-hand sides telescopes and gives us the identity

Int((g, u),1K,≤r) =
(−1)v(c)+r

log q
∂Orb((γ,u,v⊤),1K′

S,≤r
). (15.4)

Subtracting the same equation from itself with r replaced by r − 1 gives

Int((g, u),1K,≤r − 1K,≤(r−1))

=
(−1)v(c)+r

log q
∂Orb((γ,u,v⊤),1K′

S,≤r
+ 1K′

S,≤(r−1)
).

which, since (−1)v(c) = −ω(γ,u,v⊤), becomes

Int((g, u), (−1)r(1K,≤r − 1K,≤(r−1)))

=
−ω(γ,u,v⊤)

log q
∂Orb((γ,u,v⊤),1K′

S,≤r
+ 1K′

S,≤(r−1)
).

(15.5)

But Lemma 15.3.1 says that (−1)r(1K,≤r−1K,≤(r−1)) ∈ H(U(V+
n )) matches 1K′

S,≤r
+1K′

S,≤(r−1)
∈

H(S2(F )) for any r ≥ 0. And hence from the r = 0 case we can inductively conclude Theo-

rem 1.3.8 for r > 0, completing the proof.

15.7 A particularly clean formula for a certain intersection

number

We mention in particular that the value of

Int◦((g, u), 1K,r) =
〈
T1K⊗1K,r

∆Z(u)◦ ,Γg

〉
N2,2
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(note the change from 1K,≤r to 1K,r here) has a particularly clean formula that seems worth

mentioning. We phrase this entirely based on the quantities in the geometric side to keep in

self-contained.

Theorem 15.7.1 (Int◦((g, u), 1K,r)). Let r ≥ 1 and v(Nmu) > 0 for u ∈ V−
2 , and let

g = λ−1

α β̄ϖ

β ᾱ

 ∈ U(V−
2 )

where v(λ) = 0. Then 〈
T1K⊗1K,r

∆Z(u)◦ ,Γg

〉
N2,2

is equal to


(C + 1)qN + (C + 2)qN−1 if v(Nmu)− r = v(α− ᾱ) ≤ v(β)

2qN if v(β) + r < min(v(Nmu), v(α− ᾱ) + r)

qN + qN−1 otherwise

where

N = min(v(Nmu), v(β) + r, v(α− ᾱ) + r)

and we write

C = v(β)− v(α− ᾱ) ≥ 0

in the first case.

Proof. Recall that

GK(r, v(b), v(c), v(e), v(d− a)) = (−1)r+v(c)

log q

(
∂Orb(r, v(b), v(c), v(e), v(d− a))

+ ∂Orb(r, v(b), v(c), v(e)− 1, v(d− a))
)

GK(r − 1, v(b), v(c), v(e), v(d− a)) = (−1)r−1+v(c)

log q

(
∂Orb(r − 1, v(b), v(c), v(e), v(d− a))
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− ∂Orb(r − 1, v(b), v(c), v(e)− 1, v(d− a))
)

when we subtract we obtain that

Int◦((g, u),1K,r) =
(−1)r+v(c)

log q

(
∂Orb(r, v(b), v(c), v(e), v(d− a))

+ ∂Orb(r − 1, v(b), v(c), v(e), v(d− a))

− ∂Orb(r, v(b), v(c), v(e)− 2, v(d− a))

+ ∂Orb(r − 1, v(b), v(c), v(e)− 2, v(d− a))
)
.

Gathering the first two terms lets us apply the simpler formula Corollary 1.3.3 twice; doing

so gives

Int◦((g, u),1K,r) =
(
(qN + qN−1 + · · ·+ 1) + CqN + C ′qN−1

)
−
(
(qN

♭

+ qN
♭−1 + · · ·+ 1) + C♭qN

♭

+ (C ′)♭qN
♭−1
)

where N , C, C ′ are is in Corollary 1.3.3, and N ♭, C♭, (C ′)♭ are the same quantities with v(e)

replaced by v(e)− 2. Let κ and κ♭ = κ − 2 be also as in Corollary 1.3.3.

We consider cases now.

• Suppose first v(e) ≤ v(b)+v(c)−1
2

+ r and v(e) < v(d − a) + r. Then N = v(e) and

N ♭ = v(e)− 2 and C = C ′ = (C♭) = (C ′)♭ = 0, Hence in this case we have

Int◦((g, u),1K,r) = qN + qN−1.

• Next suppose 2v(d − a) > v(b) + v(c) and consider cases on v(e). We only need to

consider v(e) > v(b)+v(c)−1
2

+ r.
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– If v(e) = v(b)+v(c)−1
2

+ r + 1 then we have

N =
v(b) + v(c)− 1

2
+ r, N ♭ =

v(b) + v(c)− 1

2
+ r − 1

and C = 1, C♭ = 0, and C ′ = (C ′)♭ = 0. Consequently we get

Int◦((g, u),1K,r) = 2qN .

– Once v(e) ≥ v(b)+v(c)−1
2

+ r + 2 we always have N = N ♭ = v(b)+v(c)−1
2

+ r,

C − C♭ = (v(e)−N)− ((v(e)− 2)−N) = 2

and C ′ = (C ′)♭ = 0. Hence in this case we have

Int◦((g, u),1K,r) = 2qN

as well.

• Finally suppose 2v(d− a) < v(b) + v(c) and consider cases on v(e). We only need to

consider v(e) ≥ v(d− a) + r.

– If v(e) = v(d− a) + r, then

N = v(d− a) + r, N ♭ = v(d− a) + r − 2.

In this case κ = 0 (and κ♭ = −2). So C♭ = (C ′)♭ = 0 but we have larger terms

C =
v(b) + v(c)− 2v(d− a)− 1

2

C ′ =
v(b) + v(c)− 2v(d− a) + 1

2
.
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Hence, we get an exceptional case

Int◦((g, u),1K,r) =
v(b) + v(c)− 2v(d− a) + 1

2
qN

+
v(b) + v(c)− 2v(d− a) + 3

2
qN−1

– If v(e) = v(d− a) + r + 1, then we have

N = v(d− a) + r, N ♭ = v(d− a) + r − 1.

In this case κ = 1 (and κ♭ = −1) so we have C = 0, C ′ = 1, C♭ = 0 = (C ′)♭ = 0.

Consequently we get

Int◦((g, u),1K,r) = qN + qN−1.

– Once v(e) ≥ v(d− a) + r + 2, we always have N = N ♭ = v(d− a) + r and

C − C♭ = (C ′)− (C ′♭) = 1

regardless of the parity of κ. Hence in this case we also get

Int◦((g, u),1K,r) = qN + qN−1.

Hence, in summary we get that

Int◦((g, u),1K,r)

=


(C + 1)qN + (C + 2)qN−1 if v(e)− r = v(d− a) ≤ v(b)+v(c)−1

2

2qN if v(b)+v(c)−1
2

+ r < min(v(e), v(d− a) + r)

qN + qN−1 otherwise.

(15.6)
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where

C =
v(b) + v(c)− 2v(d− a)− 1

2
≥ 0

in the first case. Then (15.6) translates via Lemma 15.1.1 into the desired claim.
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Appendix A

Sage implementations of formulas and

test cases

Below we provide Sage implementations and test suites for some of the calculations this

paper.

A.1 Orbital and Gross-Keating implementations and tests

A.1.1 Description of implemented functions

Semi-Lie orbital integral in S2(F ) × V ′
2 (F )

All the formulas in Section 1.3.1 are implemented.

• O(r, vb, vc, ve, vda) implements Theorem 1.3.1.

• delO(r, vb, vc, ve, vda) implements Corollary 1.3.2, divided by a factor of log q.

• delO_combo(r, vb, vc, ve, vda) implements Corollary 1.3.3, divided by a factor of

log q.
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Inhomogeneous orbital integral for S3(F )

The next part of the program implements the orbital integral that is alluded to in Theo-

rem 1.3.9. The parameters are those described in Lemma 5.3.3 and Lemma 5.4.1.

• The ARCH function defined in Definition 5.5.1 is implemented as ARCH(a0, a1, w1,

w2, k).

• There are some common sums appearing in the formulas Theorems 5.5.2, 5.5.7 and 5.5.10

which are implemented as follows.

– The function ARCH_sum_n(a0, a1, w1, w2) implements the sum

a1∑
k=a0

(
1 + q + · · ·+ qARCH[a0,a1]

(w1,w2)(k)
)
(−qs)k ∈ Z[qs, q].

– The function ARCH_sum_c(a0, a1, w1, w2) implements the sum

a1∑
k=a0

ARCH
[a0,a1]

(w1, w2)(k)(−qs)k ∈ Z[qs].

• Using these functions, we implement O_for_S3(r, l, delta, lam) as the full orbital

integral for all the cases. Hence this function implements all there of Theorems 5.5.2,

5.5.7 and 5.5.10.

Derivative of the inhomogeneous orbital integral for S3(F )

We also implement functions that can compute the derivative of the orbital integral for S3(F ).

• ARCH_deriv_n(r, C, W, H) implements Lemma 7.7.1.

• ARCH_deriv_c(r, C, W, H) implements Lemma 7.7.3.

• delO_for_S3_via_arch(r, l, delta, lam) implements 1
log q

∂Orb(γ, ϕ) by calling

the previous two functions, using the arguments that are mentioned in the proof of
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Theorem 11.5.1.

• delO_for_S3(r, l, delta, lam) implements the final formula for 1
log q

∂Orb(γ, ϕ)

detailed in Theorem 5.6.1. It is the result of directly substituting Lemma 7.7.1 and

Lemma 7.7.3 with the parameters described in the proof of Theorem 5.6.1

The geometric side

• gross_keating_sum(n1, n2) implements the sum in Proposition 14.7.1.

• GK(r, vb, vc, ve, vda) implements the sum GK(r, v(b), v(c), v(e), v(d− a)) that we

introduced in (15.1).

• clean_intersection(r, vb, vc, ve, vda) implements the right-hand side of Theo-

rem 15.7.1, although we use the argument names corresponding to the matched elements

after the translation in Lemma 15.1.1.

A.1.2 Randomized test suite

The code then implements the following tests to check correctness. These tests are randomized

tests where the parameters are randomly selected by a program which can then numerically

compute them; they do not purport to be symbolic or formal proofs of the formulas.

1. test_O verifies that the formula Theorem 1.3.1 matches the casework described in

Chapter 9. To speed up the test, rather than symbolically comparing, it selects the

values q = 17 and s = logq 1337 in comparing the sides.

Within this test, some auxiliary functions are defined.

• The function O_brute_odd(r, vb, vc, ve, vda) is a naïve implementation of

the casework in Chapter 9 when θ is odd.
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• The function O_brute_even(r, vb, vc, ve, vda) is a naïve implementation of

the casework in Chapter 9 when θ is even (encompassing both Case 5, Case 6+

and Case 6-).

2. test_delO verifies that Corollary 1.3.2 matches the derivative of Theorem 1.3.1.

3. test_delO_combo verifies that Corollary 1.3.3 matches a subtraction of Corollary 1.3.2.

4. test_matrix_upper_triangular verifies that the important entries of the matrix in

Lemma 11.1.1 are computed correctly (that is, one indeed gets an upper triangular

matrix when looking at the relevant rows).

5. test_kernel_large_r verifies Lemma 11.2.1 holds.

6. test_kernel_full verifies Theorem 11.3.1 holds.

7. test_O_for_S3 verifies that the formulas Theorems 5.5.2, 5.5.7 and 5.5.10 match the

casework described in Chapter 6. To speed up the test, rather than symbolically

comparing, it selects the values q = 17 and s = logq 1337 in comparing the sides.

There are many subfunctions in here used for the naïve implementations of the casework.

• O_zero(r, l, delta) implements I≤0 as in Proposition 7.1.1.

• The function vol_1disk(n, vxx, rho) implements lemma 2.2.1. Here the argu-

ment vxx corresponds to v(1− ξξ̄).

• The function vol_2disk(n, vxx, rho) implements lemma 2.2.3. Here the ar-

gument vxx1 corresponds to v(1− ξ1ξ̄1) and the argument vxx2 corresponds to

v(1− ξ2ξ̄2).

• The function qs_weight(n, m) implements the weight

κ · (−1)nqs(2m−n)q2n−2m
(
q2m(1− q−2)

)
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that occurs frequently throughout. This expression is the product of the factor

κ · (−1)nqs(2m−n)q2n−2m from Section 6.1.2 and the volume factor Vol(t1 : −v(t1) =

m) = q2m(1− q−2).

• The function O_case_1_2_brute(r, l, delta, lam=None) is a naïve implemen-

tation of Case 1 and Case 2 from Chapter 6. For odd ℓ, we combine it with I≤0 in

O_ell_odd_brute(r, l, delta) to get a naïve implemenattion of Theorem 5.5.2.

For even ℓ we instead get (together with I≤0) is Proposition 7.3.1.

• The function O_case_3_4_brute(r, l, delta, lam) is a naïve implementation

of Case 3+, Case 3-, Case 4+ and Case 4- (asserting it never occurs) from

Chapter 6. Putting all the cases together gives O_ell_odd_brute(r, l, delta,

lam) which is a naïve implementation of Theorem 5.5.7.

• The function O_ell_neg_brute(r, l, delta, lam) is a separate naïve imple-

mentation of Theorem 5.5.10. It re-does the cases separately in the same was as

this paper rather than using the previous brute-force implementation.

8. test_delO_for_S3_via_arch verifies that the derivatives of the formulas in Theo-

rems 5.5.2, 5.5.7 and 5.5.10 match those predicted by Lemma 7.7.1 and Lemma 7.7.1.

Hence it can be thought of as a verification of those two lemmas.

9. test_delO_for_S3 verifies Theorem 5.6.1.

10. test_ker_for_S3 verifies Theorem 11.5.1.

11. test_GK_to_orbital verifies Theorem 15.5.1.

12. test_clean_intersection verifies Theorem 15.7.1.

A.1.3 Code listing
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1 import argparse
2 import unittest
3

4 q = var("q")
5 qs = var("q_s") # = q^s
6

7

8 def irange(start, stop):
9 return range(start, stop + 1)

10

11

12 def print_coeffs(expression) -> None:
13 """
14 If you’re working in a Juptyer notebook, and you have a polynomial

in q and qs,
15 you can use this utility function to print out the coefficients of

q^s each on their
16 own line.
17

18 :param expression: The polynomial to be pretty-printed
19 """
20 if expand(expression) == 0:
21 show(0)
22 else:
23 for c in expand(expression).coefficients(qs, sparse=True):
24 show(c[1], "." * 10, c[0])
25

26

27 # Semi-Lie Orbital and its derivatives
28 def O(r, vb, vc, ve, vda):
29 assert vb % 2 != vc % 2, (vb, vc)
30 assert r >= 0, r
31 assert vb + vc >= 0, (vb, vc)
32 S = 0
33 for k in irange(-vb - r, 2 * ve + vc + r):
34 n = min(
35 (k + (vb + r)) // 2,
36 (2 * ve + vc + r - k) // 2,
37 ve,
38 min((vb + vc) // 2, vda) + r,
39 )
40 S += (-qs) ** k * sum([q**i for i in irange(0, n)])
41 if vda < ve - r and vb + vc > 2 * vda:
42 for k in irange(2 * vda - vb + r, 2 * ve + vc - 2 * vda - r):
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43 c = min(k - (2 * vda - vb + r), 2 * ve + vc - 2 * vda - r -
k, ve - vda - r)

44 S += q ** (vda + r) * (-qs) ** k * c
45 return S
46

47

48 def delO(r, vb, vc, ve, vda):
49 assert r >= 0, r
50 assert vb + vc >= 0 and vb % 2 != vc % 2, (vb, vc)
51 varkappa = ve - vda - r
52 N = min(ve, floor((vb + vc) // 2 + r), vda + r)
53 j = var("j")
54 S = sum(q**j * (floor((2 * ve + vb + vc + 1) / 2) + r - 2 * j), j,

0, N)
55

56 if varkappa >= 0 and vb + vc > 2 * vda:
57 if varkappa % 2 == 0:
58 S += q ** (vda + r) * (-varkappa / 2)
59 else:
60 S += q ** (vda + r) * (varkappa / 2 - (ve + (vb + vc) / 2 -

2 * vda - r))
61 return (-1) ** (r + vc) * S
62

63

64 def delO_combo(r, vb, vc, ve, vda):
65 assert r >= 1
66 N = min(ve, (vb + vc) // 2 + r, vda + r)
67 j = var("j")
68 S = sum(q**j, j, 0, N)
69

70 if ve >= vda + r and vb + vc > 2 * vda:
71 assert N > 0
72 if (r + ve + vda) % 2 == 1:
73 C = (ve - r - vda) // 2
74 else:
75 C = (ve + vb + vc - r - 3 * vda) // 2
76 S += C * q**N + (C + 1) * q ** (N - 1)
77

78 elif 2 * vda > vb + vc and ve >= (vb + vc) // 2 + r:
79 C = ve - r - (vb + vc) // 2
80 S += C * q**N
81

82 else:
83 pass
84
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85 return (-1) ** (r + vc) * S
86

87

88 # Formulas for the group AFL on S3(F)
89 def ARCH(a0, a1, w1, w2, k):
90 assert a0 <= a1
91 assert w1 + w2 <= (a1 - a0) / 2
92 assert a0 <= k <= a1
93

94 if a0 <= k <= a0 + w1:
95 return k - a0
96 elif a0 + w1 <= k <= a0 + w1 + w2:
97 return w1 + floor((k - (a0 + w1)) / 2)
98 elif a0 + w1 + w2 <= k <= a1 - (w1 + w2):
99 return w1 + floor(w2 / 2)

100 elif a1 - (w1 + w2) <= k <= a1 - w1:
101 return w1 + floor(((a1 - w1) - k) / 2)
102 elif a1 - w1 <= k <= a1:
103 return a1 - k
104 else:
105 raise ValueError
106

107

108 def ARCH_sum_n(a0, a1, w1, w2):
109 j = var("j")
110 S = 0
111 for k in irange(a0, a1):
112 S += sum(q**j, j, 0, ARCH(a0, a1, w1, w2, k)) * (-qs) ** k
113 return S
114

115

116 def ARCH_sum_c(a0, a1, w1, w2):
117 S = 0
118 for k in irange(a0, a1):
119 S += ARCH(a0, a1, w1, w2, k) * (-qs) ** k
120 return S
121

122

123 # Orbital for S3
124 def O_for_S3(r, l, delta, lam):
125 if l % 2 == 1:
126 assert lam == l, (l, lam)
127 else:
128 assert l < lam, (l, lam)
129 if l < 0 or delta < 0:
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130 assert l == delta and l % 2 == 0, (l, delta)
131 else:
132 assert l <= 2 * delta, (l, delta)
133

134 S = 0
135 if l % 2 == 1:
136 return ARCH_sum_n(-2 * r, 2 * delta + l + 2 * r, r, l)
137 elif l % 2 == 0 and l >= 0:
138 n_sum = ARCH_sum_n(-2 * r, 2 * delta + lam + 2 * r, r, l)
139 c_sum = ARCH_sum_c(
140 l - r, 2 * delta + lam - l + r, delta - l / 2, min(lam - l

- 1, 2 * r)
141 )
142 return n_sum + q ** (r + l / 2) * c_sum
143 else:
144 assert (avd := -l / 2) > 0 # avd := abs(vd)
145 if r < avd:
146 return 0
147 n_sum = ARCH_sum_n(-2 * r, lam + 2 * (r - 2 * avd), r - avd, 0)
148 c_sum = ARCH_sum_c(-r - avd, lam + r - 3 * avd, 0, min(lam - 1,

2 * (r - avd)))
149 return n_sum + q ** (r - avd) * c_sum
150

151

152 # Derivatives of the orbital integral
153 def ARCH_deriv_n(r, C, W, H):
154 j = var("j")
155 assert W > 4 * H >= 0, (W, H)
156 assert W % 2 == 1, W
157 return -(
158 (-1) ** (r + C) * sum(((W + 1) / 2 + r - 2 * (j - r)) * q**j,

j, r + 1, r + H)
159 + sum((-1) ** (j + C) * ((W + 1) / 2 + 2 * r - j) * q**j, j, 0,

r)
160 )
161

162

163 def ARCH_deriv_c(r, C, W, L):
164 k = var("k")
165 assert L >= 1, L
166 assert W >= 0, W
167 assert L % 2 == 1, L
168 return (-1) ** (r + W + C) * (
169 W / 2 - (L - 1) / 2 * r if W % 2 == 0 else -(W + L) / 2 - (L +

1) / 2 * r
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170 )
171

172

173 def delO_for_S3_via_arch(r, l, delta, lam):
174 if l % 2 == 1:
175 assert lam == l, (l, lam)
176 else:
177 assert l < lam, (l, lam)
178 if l < 0 or delta < 0:
179 assert l == delta and l % 2 == 0, (l, delta)
180 else:
181 assert l <= 2 * delta, (l, delta)
182

183 if l % 2 == 1:
184 return ARCH_deriv_n(r, C=0, W=l + 2 * delta, H=(l - 1) / 2)
185 elif l >= 0:
186 n_sum = ARCH_deriv_n(r, C=0, W=lam + 2 * delta, H=l / 2)
187 c_sum = ARCH_deriv_c(r, C=0, W=delta - l / 2, L=lam - l)
188 return n_sum + q ** (r + l / 2) * c_sum
189 else:
190 assert (avd := -l / 2) > 0 # avd := abs(vd)
191 if r < avd:
192 return 0
193 n_sum = ARCH_deriv_n(r - avd, C=-2 * avd, W=lam, H=0)
194 c_sum = ARCH_deriv_c(r - avd, C=0, W=0, L=lam)
195 return n_sum + q ** (r - avd) * c_sum
196

197

198 def delO_for_S3(r, l, delta, lam):
199 if l % 2 == 1:
200 assert lam == l, (l, lam)
201 else:
202 assert l < lam, (l, lam)
203 if l < 0 or delta < 0:
204 assert l == delta and l % 2 == 0, (l, delta)
205 else:
206 assert l <= 2 * delta, (l, delta)
207

208 j = var("j")
209 if l % 2 == 1:
210 S = (-1) ** (r + 1) * sum(
211 ((l + 2 * delta + 1) / 2 + 3 * r - 2 * j) * q**j, j, r + 1,

r + (l - 1) / 2
212 )
213 S += sum(
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214 (-1) ** (j + 1) * ((l + 2 * delta + 1) / 2 + 2 * r - j) *
q**j, j, 0, r

215 )
216 return S
217 elif l >= 0:
218 frac = (lam + 2 * delta + 1) / 2
219 S = (-1) ** (r + 1) * sum((frac + 3 * r - 2 * j) * q**j, j, r +

1, r + l / 2)
220 S += sum((-1) ** (j + 1) * (frac + 2 * r - j) * q**j, j, 0, r)
221 S += (
222 (-1) ** (r + delta - l / 2)
223 * q ** (r + l / 2)
224 * (
225 (delta - l / 2) / 2 - (lam - l - 1) / 2 * r
226 if (delta - l // 2) % 2 == 0
227 else -(delta - 3 * l / 2 + lam) / 2 - (lam - l + 1) / 2

* r
228 )
229 )
230 return S
231 else:
232 assert (avd := -l / 2) > 0 # avd := abs(vd)
233 t = r - avd # top-level exponent (if t < 0, then S = 0)
234 S = sum((-1) ** (j + 1) * ((lam + 1) / 2 + 2 * t - j) * q**j,

j, 0, t)
235 S += (-1) ** (t + 1) * (lam - 1) / 2 * max(t, 0) * q**t
236 return S
237

238

239 # Geometric side --- Gross-Keating and friends
240 def gross_keating_sum(n1, n2):
241 j = var("j")
242 assert 0 <= n1 <= n2
243 if n1 % 2 == 1:
244 return sum((n1 + n2 - 4 * j) * q**j, j, 0, (n1 - 1) / 2)
245 else:
246 S = sum((n1 + n2 - 4 * j) * q**j, j, 0, n1 / 2 - 1)
247 S += (n2 - n1 + 1) / 2 * q ^ (n1 / 2)
248 return S
249

250

251 def GK(r, vb, vc, ve, vda):
252 assert r >= 0
253 assert vb + vc >= 0 and vb % 2 != vc % 2
254 vxx = 2 * ve

297



255 vxy = r + vda + ve
256 vdet = 2 * r + 2 * ve + vb + vc
257 vyy = min(2 * vxy, vdet) - vxx
258

259 return gross_keating_sum(min(vxx, vxy, vyy), vdet - min(vxx, vxy,
vyy))

260

261

262 def clean_intersection(r, vb, vc, ve, vda):
263 vbeta = (vb + vc - 1) / 2
264 N = min(ve, vbeta + r, vda + r)
265 C = vbeta - vda
266 if ve - r == vda <= vbeta:
267 return (C + 1) * q**N + (C + 2) * q ** (N - 1)
268 elif vbeta + r < min(ve, vda + r):
269 return 2 * q**N
270 else:
271 return q**N + q ** (N - 1)
272

273

274 class RandThesisTest(unittest.TestCase):
275 def get_semi_lie_params(self, r_min=0, r_max=15):
276 params = {
277 "r": randint(r_min, r_max),
278 "vb": randint(-5, 15),
279 "vda": randint(0, 15),
280 "ve": randint(0, 15),
281 }
282 params["vc"] = randrange(1 - params["vb"], 15, 2)
283 assert params["vb"] % 2 != params["vc"] % 2
284 assert params["vb"] + params["vc"] >= 0
285 return params
286

287 def test_O(self):
288 params = self.get_semi_lie_params()
289

290 def O_brute_odd(r, vb, vc, ve, vda):
291 assert vb % 2 != vc % 2, (vb, vc)
292 assert vda >= 0, vda
293 assert r >= 0, r
294 assert vda * 2 > vb + vc, (vda, vb, vc)
295

296 voffset = vda - vc
297 S = 0
298
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299 for n2 in irange(0, ve):
300 for n1 in irange(n2 - vb - r, n2 + vc + r):
301 rho1 = max(-n1, -r - vc)
302 rho2 = ceil((n2 - n1 - vc - r) / 2)
303 if voffset < min(rho1, rho2):
304 continue
305 else:
306 S += (
307 q ** (n2 - n1)
308 * q ** (-max(rho1, rho2))
309 * (-1) ** (n1 + n2)
310 * qs ** (n1 + n2)
311 )
312 return S
313

314 def O_brute_even(r, vb, vc, ve, vda):
315 assert vb % 2 != vc % 2, (vb, vc)
316 assert vda >= 0, vda
317 assert r >= 0, r
318 assert vda * 2 < vb + vc, (vda, vb, vc)
319 theta = vda * 2
320 vt = theta // 2 - vc
321

322 S = 0
323

324 for n2 in irange(0, ve):
325 # Case 5
326 for m in irange(0, theta + 2 * r):
327 n1 = n2 + vc + r - m
328 S += (
329 q ** (m - max(m - n2, ceil(m / 2)))
330 * (-1) ** (n1 + n2)
331 * qs ** (n1 + n2)
332 )
333

334 # Case 6+/6-
335 center_plus = vb - theta // 2
336 center_minus = theta // 2 - vc
337

338 for m in irange(
339 theta + 2 * r + 1,
340 max(n2 + vc + r, 2 * vc + 2 * r + vt) + center_plus,
341 ):
342 n1 = n2 + vc + r - m
343 rho1 = max(m - n2, 0) - vc - r

299



344 rho2 = m - 2 * vc - 2 * r - vt
345 if center_plus >= min(rho1, rho2):
346 S += (
347 q ** (n2 - n1)
348 * q ** (-max(rho1, rho2))
349 * (-1) ** (n1 + n2)
350 * qs ** (n1 + n2)
351 )
352 if center_minus >= min(rho1, rho2):
353 S += (
354 q ** (n2 - n1)
355 * q ** (-max(rho1, rho2))
356 * (-1) ** (n1 + n2)
357 * qs ** (n1 + n2)
358 )
359

360 return S
361

362 brute_res = (
363 O_brute_odd(**params)
364 if params["vb"] + params["vc"] < 2 * params["vda"]
365 else O_brute_even(**params)
366 )
367

368 orb = O(**params)
369 self.assertEqual(orb.subs(q_s=1), 0)
370 self.assertEqual(brute_res.subs(q=17, q_s=1337), orb.subs(q=17,

q_s=1337))
371

372 def test_delO(self):
373 params = self.get_semi_lie_params()
374 self.assertEqual(
375 delO(**params),
376 derivative(O(**params), qs).subs(q_s=1),
377 )
378

379 def test_delO_combo(self):
380 params = self.get_semi_lie_params(r_min=1)
381 r = params.pop("r")
382 self.assertEqual(
383 delO(r, **params) + delO(r - 1, **params),
384 delO_combo(r, **params),
385 )
386

387 def test_matrix_upper_triangular(self):
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388 N = 7
389 params = self.get_semi_lie_params(r_min=0, r_max=N)
390 del params["ve"]
391 del params["r"]
392 vb, vc, vda = params["vb"], params["vc"], params["vda"]
393 theta = min(vb + vc, 2 * vda)
394

395 # Here M0 = M, M1 = M’, M2 = M’’
396 M0 = matrix(
397 [
398 vector(
399 (-1) ** (r + vc) * delO(r, vb, vc, i, vda) for r in

range(0, N + 1)
400 )
401 for i in irange(0, N + theta // 2 + 1)
402 ]
403 )
404 M1 = matrix([M0[0]] + [M0[i + 1] - M0[i] for i in

range(M0.nrows() - 1)])
405 M2 = matrix([M1[0], M1[1]] + [M1[i + 2] - M1[i] for i in

range(M1.nrows() - 2)])
406

407 for r in range(0, N + 1):
408 t = r + theta // 2
409 for i in irange(t + 2, N + theta // 2 + 1):
410 self.assertEqual(M2[i][r], 0)
411 C = (vb + vc - 1 - 2 * vda) / 2
412 if theta % 2 == 1:
413 self.assertEqual(M2[t + 1][r], q**t - (q ** (t - 1) if

t > 0 else 0))
414 else:
415 self.assertEqual(
416 M2[t + 1][r], -C * q**t - (C + 1) * (q ** (t - 1) if

t > 0 else 0)
417 )
418

419 def test_kernel_large_r(self):
420 params = self.get_semi_lie_params(r_min=2)
421 r = max(params.pop("r"), params["ve"] + 2)
422 self.assertEqual(
423 delO(r, **params) + 2 * delO(r - 1, **params) + delO(r - 2,

**params), 0
424 )
425

426 def test_kernel_full(self):
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427 params = self.get_semi_lie_params(r_min=5)
428 vb, vc, vda, ve = params["vb"], params["vc"], params["vda"],

params["ve"]
429 r = params.pop("r")
430

431 def delPhi(r):
432 return (
433 delO(r, **params)
434 + delO(r - 1, **params)
435 - q**2 * delO(r - 2, **params)
436 - q**2 * delO(r - 3, **params)
437 )
438

439 left_bound = ve - min((vb + vc - 1) / 2, vda) + 2
440 right_bound = left_bound + 2
441 expr = expand(delPhi(r) + (q + 1) * delPhi(r - 1) + q *

delPhi(r - 2))
442 if not left_bound <= r <= right_bound:
443 self.assertEqual(expr, 0)
444 # in fact I think the following is the exact criteria for it to

be nonzero
445 # although I don’t claim this in the paper
446 # but we’ll put it in the test case just for kicks
447 elif left_bound <= r <= right_bound - 1:
448 self.assertNotEqual(expr, 0)
449 elif r == right_bound - 1 and vb + vc < 2 * vda:
450 self.assertNotEqual(expr, 0)
451 elif r == right_bound - 1 and vb + vc >= 2 * vda:
452 self.assertEqual(expr, 0)
453

454 def get_S3_params(self, r_min=0, r_max=10):
455 l = randint(-5, 10)
456 if l < 0:
457 l *= 2
458

459 params = {
460 "r": randint(r_min, r_max),
461 "l": l,
462 "lam": l if l % 2 == 1 else randrange(max(0, l + l % 2) +

1, 17, 2),
463 "delta": l if l < 0 else randint((l + 1) // 2, 10),
464 }
465 return params
466

467 def test_O_for_S3(self):
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468 # Brute force auxiliary functions for the inhomogeneous group
AFL orbital

469 def O_zero(r, l, delta):
470 j = var("j")
471 return sum(qs ** (2 * j), j, -r, delta + r)
472

473 def vol_1disk(n, vxx, rho):
474 assert n >= 1 and n >= rho
475 if vxx < rho:
476 return 0
477 elif rho <= 0:
478 return q ** (-n) * (1 - q ** (-2))
479 else:
480 return q ** (-(n + rho)) * (1 - q ** (-1))
481

482 def vol_2disk(n, vxx1, vx12, rho1, rho2):
483 assert rho1 >= rho2
484 assert n >= 1 and n >= rho1
485

486 if vxx1 >= rho1 and vx12 >= rho2:
487 return (
488 q ** (-(n + rho1)) * (1 - q ** (-1))
489 if rho1 >= 1
490 else q ** (-n) * (1 - q ** (-2))
491 )
492 else:
493 return 0
494

495 def qs_weight(n, m):
496 kappa = 1 / ((1 - q ** (-1)) * (1 - q ** (-2)))
497 return (
498 kappa
499 * (-1) ** n
500 * qs ** (2 * m - n)
501 * q ** (2 * n - 2 * m)
502 * q ** (2 * m)
503 * (1 - q ** (-2))
504 )
505

506 def O_case_1_2_brute(r, l, delta, lam=None):
507 assert 0 <= l <= 2 * delta, (l, delta)
508 assert r >= 0, r
509 if lam is None:
510 assert l % 2 == 1
511 lam = l
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512 else:
513 assert l % 2 == 0
514

515 S = 0
516 for n in irange(1, l + r):
517 for m in irange(n - r, n + delta + r):
518 r_n = ceil((n - r) / 2)
519 r_m = m - delta - r
520 if r_n >= r_m:
521 S += vol_2disk(
522 n, vxx1=min(l, delta), vx12=ceil(l / 2),

rho1=r_n, rho2=r_m
523 ) * qs_weight(n, m)
524 else:
525 S += vol_2disk(
526 n, vxx1=lam, vx12=ceil(l / 2), rho1=r_m,

rho2=r_n
527 ) * qs_weight(n, m)
528 return S
529

530 def O_ell_odd_brute(r, l, delta):
531 return O_zero(r, l, delta) + O_case_1_2_brute(r, l, delta)
532

533 def O_case_3_4_brute(r, l, delta, lam):
534 assert 0 <= l <= 2 * delta, (l, delta)
535 assert r >= 0, r
536 assert l % 2 == 0, l
537 assert lam % 2 == 1, lam
538 INFINITY = abs(r) + abs(l) + abs(delta) + abs(lam) + 1
539

540 S = 0
541 for n in irange(l + r + 1, INFINITY):
542 for m in irange(n - r, n + delta + r):
543 r_n = n - l / 2 - r
544 r_m = m - delta - r
545

546 # Case 3+ and 4+
547 if r_n > r_m: # Case 3+
548 S += vol_2disk(
549 n,
550 vxx1=lam + delta - l,
551 vx12=lam - l / 2,
552 rho1=r_n,
553 rho2=r_m,
554 ) * qs_weight(n, m)
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555 else: # Case 4+
556 S += vol_2disk(
557 n,
558 vxx1=lam,
559 vx12=lam - l / 2,
560 rho1=r_m,
561 rho2=r_n,
562 ) * qs_weight(n, m)
563

564 # Cases 3- and 4-
565 if r_n > r_m: # Case 3-
566 S += vol_2disk(
567 n,
568 vxx1=delta,
569 vx12=l / 2,
570 rho1=r_n,
571 rho2=r_m,
572 ) * qs_weight(n, m)
573 else: # Case 4-
574 assert (
575 vol_2disk(
576 n,
577 vxx1=lam,
578 vx12=l / 2,
579 rho1=r_m,
580 rho2=r_n,
581 )
582 == 0
583 )
584

585 return S
586

587 def O_ell_even_brute(r, l, delta, lam):
588 return (
589 O_zero(r, l, delta)
590 + O_case_1_2_brute(r, l, delta, lam)
591 + O_case_3_4_brute(r, l, delta, lam)
592 )
593

594 def O_ell_neg_brute(r, vb, lam):
595 assert r >= 0
596 assert vb < 0
597 assert lam % 2 == 1
598 l = 2 * vb
599 delta = 2 * vb
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600 INFINITY = abs(r) + abs(l) + abs(delta) + abs(lam) + 1
601

602 S = 0
603 for n in irange(1, INFINITY):
604 for m in irange(n - r, n + delta + r):
605 if n <= l + r:
606 S += vol_1disk(n, vxx=lam, rho=m - delta - r) *

qs_weight(n, m)
607 elif n > l + r:
608 rho1 = max(n - l / 2 - r, m - delta - r)
609 rho2 = min(n - l / 2 - r, m - delta - r)
610 S += vol_2disk(
611 n, vxx1=lam, vx12=lam, rho1=rho1, rho2=rho2
612 ) * qs_weight(n, m)
613

614 return S + O_zero(r, l, delta)
615

616 params = self.get_S3_params()
617 l = params["l"]
618 orb = O_for_S3(**params)
619 if l < 0:
620 brute_res = O_ell_neg_brute(r=params["r"], vb=l // 2,

lam=params["lam"])
621 elif l % 2 == 0:
622 brute_res = O_ell_even_brute(**params)
623 elif l % 2 == 1:
624 del params["lam"]
625 brute_res = O_ell_odd_brute(**params)
626

627 self.assertEqual(orb.subs(q_s=1), 0)
628 self.assertEqual(brute_res.subs(q=17, q_s=1337), orb.subs(q=17,

q_s=1337))
629

630 def test_delO_for_S3_via_arch(self):
631 params = self.get_S3_params()
632 self.assertEqual(
633 derivative(O_for_S3(**params), qs).subs(q_s=1),
634 delO_for_S3_via_arch(**params),
635 )
636

637 def test_delO_for_S3(self):
638 params = self.get_S3_params()
639 self.assertEqual(delO_for_S3_via_arch(**params),

delO_for_S3(**params))
640
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641 def test_ker_for_S3(self):
642 params = self.get_S3_params(r_min=3)
643 l = params["l"]
644 r = params.pop("r")
645 deriv = (
646 (delO_for_S3(r, **params) - delO_for_S3(r - 1, **params))
647 + 2 * q * (delO_for_S3(r - 1, **params) - delO_for_S3(r -

2, **params))
648 + q**2 * (delO_for_S3(r - 2, **params) - delO_for_S3(r - 3,

**params))
649 )
650 if l < 0:
651 if r < -l // 2:
652 self.assertEqual(deriv, 0)
653 elif r >= -l // 2 + 3:
654 self.assertEqual(deriv, -2 * q - 2)
655 else:
656 self.assertEqual(deriv, -2 * q - 2)
657

658 def test_GK_to_orbital(self):
659 params = self.get_semi_lie_params(r_min=1)
660 omega = (-1) ** (params["r"] + params["vc"]) # transfer factor
661 ve = params.pop("ve")
662 self.assertEqual(
663 omega * (delO(ve=ve, **params) + delO(ve=ve - 1, **params)),
664 GK(ve=ve, **params),
665 )
666

667 def test_clean_intersection(self):
668 params = self.get_semi_lie_params(r_min=1)
669 if params["ve"] == 0:
670 params["ve"] += 1
671 r, vb, vc, ve, vda = (
672 params["r"],
673 params["vb"],
674 params["vc"],
675 params["ve"],
676 params["vda"],
677 )
678 self.assertEqual(
679 (GK(r, vb, vc, ve, vda) - GK(r - 1, vb, vc, ve, vda))
680 - (GK(r, vb, vc, ve - 1, vda) - GK(r - 1, vb, vc, ve - 1,

vda)),
681 clean_intersection(**params),
682 )
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683

684

685 if __name__ == "__main__":
686 parser = argparse.ArgumentParser(
687 "checkthesis",
688 description="Checks the formulas in Evan’s thesis for

consistency",
689 )
690 parser.add_argument(
691 "--trials", default=5, type=int, help="Number of trials to run."
692 )
693 parser.add_argument("--seed", type=int, help="Random seed passed

to Sage")
694 parser.add_argument("--failfast", action="store_true", help="Stop

on 1st failure.")
695 group = parser.add_mutually_exclusive_group()
696 group.add_argument("--verbose", action="store_true", help="Set

verbosity to 2.")
697 group.add_argument("--quiet", action="store_true", help="Set

verbosity to 0.")
698 parser.add_argument(
699 "--test",
700 default="",
701 type=str,
702 help="The name of a specific test to run (if empty, runs all).",
703 )
704 args = parser.parse_args()
705 if args.verbose is True:
706 verbosity = 2
707 elif args.quiet is True:
708 verbosity = 0
709 else:
710 verbosity = 1
711

712 suite = unittest.TestSuite()
713 loader = unittest.TestLoader()
714 if args.seed:
715 set_random_seed(args.seed)
716 print(f"Using random seed {initial_seed()}")
717 for _ in range(args.trials):
718 if args.test:
719 suite.addTest(RandThesisTest(args.test))
720 else:
721 suite.addTest(loader.loadTestsFromTestCase(RandThesisTest))
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722 runner = unittest.TextTestRunner(failfast=args.failfast,
verbosity=verbosity)

723 runner.run(suite)

A.2 Quaternion implementations and tests

As an afterthought we also provide the following short self-contained file verifying the

quaternion calculations done in Chapter 14. Unlike the previous code, it is symbolic.

1 import unittest
2

3

4 def show_quaternion(expr, **kwargs) -> None:
5 """If you’re using a Jupyter notebook you can use this utility

function to
6 pretty-print the four coefficients of the quaternion, each on its

own line.
7

8 :param expr: the quaternion to print
9 :param **kwargs: passed to c.subs for each of the four

coefficients c
10 """
11 coeffs = [c.subs(**kwargs) for c in expr.coefficient_tuple()]
12 if coeffs[1] == 0 and coeffs[2] == 0 and coeffs[3] == 0:
13 show(coeffs[0])
14 else:
15 show(1, "." * 12, coeffs[0])
16 show(LatexExpr(r"\sqrt{\epsilon}"), "." * 10, coeffs[1])
17 show(LatexExpr(r"\Pi"), "." * 11, coeffs[2])
18 show(LatexExpr(r"\sqrt{\epsilon}\Pi"), "." * 9, coeffs[3])
19

20

21 def project_to_trace_zero(expr):
22 return expr - expr.coefficient_tuple()[0]
23

24

25 def hermitian_form(x, y):
26 coeffs = (x * y.conjugate()).coefficient_tuple()
27 return coeffs[0] + coeffs[1] * sqrt_eps
28

29
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30 def symmetric_form(x, y):
31 return (x * y.conjugate() + y * x.conjugate()) / 2
32

33

34 # Variables
35 R = QQ["s0", "s1", "t0", "t1", "a0", "a1", "b0", "b1", "eps", "varpi",

"z0", "z1"]
36 s0, s1, t0, t1, a0, a1, b0, b1, eps, varpi, z0, z1 = R.gens()
37 DD = QuaternionAlgebra(Frac(R), eps, varpi, names=("sqrt_eps", "Pi",

"sqrt_eps_Pi"))
38 sqrt_eps, Pi, sqrt_eps_Pi = DD.gens()
39

40 # Main variables
41 alpha = a0 + a1 * sqrt_eps
42 beta = b0 + b1 * sqrt_eps
43 s = s0 + s1 * sqrt_eps
44 t = t0 + t1 * sqrt_eps
45 lam_inv = z0 + z1 * sqrt_eps
46

47 # Their conjugates
48 alphac = a0 - a1 * sqrt_eps
49 betac = b0 - b1 * sqrt_eps
50 sc = s0 - s1 * sqrt_eps
51 tc = t0 - t1 * sqrt_eps
52 lamc_inv = z0 - z1 * sqrt_eps
53

54 r = 100
55

56

57 # The pair (g,u)
58 def g(x):
59 return lam_inv * x * (alpha + beta * Pi)
60

61

62 u = s + t * Pi
63

64

65 # Derived quantities
66 uu = hermitian_form(u, u)
67 x = project_to_trace_zero(u.conjugate() * sqrt_eps * u)
68 y = project_to_trace_zero(varpi ^ r * (alpha + beta * Pi))
69 xx = symmetric_form(x, x)
70 xy = symmetric_form(x, y)
71 yy = symmetric_form(y, y)
72
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73

74 class QuaternionTestCase(unittest.TestCase):
75 def assertQtrnsEqualWhen(self, expr1, expr2, **kwargs):
76 coeffs1 = [c.subs(**kwargs) for c in expr1.coefficient_tuple()]
77 coeffs2 = [c.subs(**kwargs) for c in expr2.coefficient_tuple()]
78 for i in range(4):
79 self.assertEqual(coeffs1[i], coeffs2[i])
80

81 def assertQtrnsEqual(self, expr1, expr2):
82 self.assertQtrnsEqualWhen(expr1, expr2, s0=0, s1=0)
83 self.assertQtrnsEqualWhen(expr1, expr2, t0=0, t1=0)
84

85 def assertQtrnsEqualExactly(self, expr1, expr2):
86 self.assertQtrnsEqualWhen(expr1, expr2)
87

88 def test_uu(self):
89 self.assertQtrnsEqualExactly(uu, s * sc - t * tc * varpi)
90

91 def test_gu_u(self):
92 self.assertQtrnsEqualWhen(
93 hermitian_form(g(u), u), lam_inv * alphac * uu, s0=0, s1=0
94 )
95 self.assertQtrnsEqualWhen(
96 hermitian_form(g(u), u), lam_inv * alpha * uu, t0=0, t1=0
97 )
98

99 def test_x(self):
100 self.assertQtrnsEqual(x, (s * sc + t * tc * varpi) * sqrt_eps)
101

102 def test_xx(self):
103 self.assertQtrnsEqual(xx, -eps * uu**2)
104

105 def test_xy(self):
106 self.assertQtrnsEqual(xy, -varpi ^ r * a1 * eps * (s * sc + t *

tc * varpi))
107

108 def test_yy(self):
109 self.assertQtrnsEqual(
110 yy, varpi ^ (2 * r) * (-(a1**2) * eps - beta * betac *

varpi)
111 )
112

113 def test_det(self):
114 self.assertQtrnsEqual(
115 xx * yy - xy**2,

311



116 eps * uu ^ 2 * varpi ^ 200 * (varpi * beta * betac),
117 )
118

119

120 if __name__ == "__main__":
121 unittest.main()
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