
The OTIS Excerpts
A collection of 202 problems and solutions

Evan Chen

May 18, 2025

web.evanchen.cc/excerpts.html

web.evanchen.cc/excerpts.html




The noblest art is that of making others happy.

P. T. Barnum

If you like this book and want to support me,
please consider buying me a coffee!

http://ko-fi.com/evanchen/

©2019 Evan Chen. All rights reserved. Personal use only.

http://ko-fi.com/evanchen
http://ko-fi.com/evanchen/




Preface
This book is a selection of notes from twelve of the lectures that I use in

my year-round math olympiad classes. The program is affectionately named
OTIS. The abbreviation officially stands for “Olympiad Training for Individual
Study”; but in truth, I rigged the acronym so that it would match the name
of an elevator in Lincoln, Nebraska of which I had fond childhood memories.

When I started teaching OTIS back in the fall of 2015, it was just a small
group of students at Phillips Academy that I would meet with every couple of
weeks. Despite my inexperience at the time, I have fond memories of this first
group, and I maybe learned as much from them as they did from me.

Every year since then, the number of OTIS students has doubled, and the
number of applications has increased even faster than that. At the same time,
I became increasingly involved with volunteering with the organization of high-
school contests. By the time I started graduate school, I was spending so little
time on my own studies that I began to fear (rightly or wrongly) that I might
fail out of the math PhD program.

Thus, despite my best efforts, I eventually had the heartbreaking task of
having to tell eager and enthusiastic students that I simply did not have the
time or space to take them all under my wing. I am the kind of person who
finds it hard to say no, and so this was painful for me to do. OTIS taught me
the reality that I am just one person.

In this way, these notes are an apology to everyone I turned down, and to
everyone that I will have to turn down. I would have loved to be able to help
everyone who came to my doorstep. I am sorry that I could not do more, but
I wrote you a short book, as it was the least I could do.

As with all my works, there are bound to be numerous errors, mistakes,
or points of unclarity. Comments, suggestions, corrections are very welcome.
You can reach me at evan@evanchen.cc.

Evan Chen
December 30, 2018

Fremont, California, USA
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Introduction
The book is divided into algebra, combinatorics, and number theory. We do

not cover geometry, for which Euclidean Geometry in Mathematical Olympiads
[Che16] already serves the role of “comprehensive book”.

The twelve main chapters in this book are structured in to four sections.

• A theoretical portion, of varying length, in which relevant theorems
or ideas are developed. Some of this material is new, but the majority of
it is not. Most of it has been adapted, edited, and abridged from existing
handouts that you can still find at

http://web.evanchen.cc/olympiad.html.

In general, the theoretical material here tries to stick to the basics, rather
than being comprehensive.

• A couple walkthroughs. These are olympiad problems which are chosen
to illustrate ideas, accompanied by an outline of the solution.

When designing my lecture notes for OTIS, I wrote these walkthroughs
with the idea of emulating a person. In a real classroom the student does
not simply passively listen to solutions. The process is more interactive:
the instructor walks a student through the example, but with a back-
and-forth series of prepared questions. My hope with the walkthroughs
is to simulate this as best I can with static text.

• A series of problems. These problems cover a range of difficulties. But
in general, the first half of the problems in each chapter are intended
to be fairly accessible, perhaps at the level of IMO 1/4. The difficulty
increases quickly after that, with the closing problem usually being quite
challenging.

• Full solutions to both the walkthroughs and problems. (Great for in-
flating page count!) Readers are encouraged to read solutions even to
problems that they solved; comments, remarks, or alternate solutions
frequently appear.

In addition, at the end of each part, a handful of problems chosen from USA
selection tests are given, mostly for fun.

In general, I assume the reader has some minimal experience with reading
and writing proofs. However, I nonetheless dedicated the first chapter to some
mathematical and stylistic comments which may be helpful to beginners in
proofs. Readers with significant proof experience should feel no shame in
skipping this first chapter.

v
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Contest abbreviations
Many problems have a source quoted, but there are a large number of abbre-
viations as a result. We tabulate some of the abbreviations here.

AIME American Invitational Math Exam, the qualifying exam for the USA
national olympiad.

EGMO European Girl’s Math Olympiad (not to be confused with [Che16])

ELMO The ELMO is a contest held at the USA olympiad training camp every
year, written by returning students for newcomers.
The meaning of the acronym changes each year. It originally meant
“Experimental Lincoln Math Olympiad” but future names have included
“elog Math Olympiad”, “End Letter Missing”, “Ex-Lincoln Math Olympiad”,
“English Language Master’s Open”. “Ego Loss May Occur”, “vEry
badLy naMed cOntest”, “Eyyy LMaO”.

ELMO Shortlist A list of problems from which each year’s ELMO is chosen.

HMMT Harvard-MIT Math Tournament, the largest collegiate math compe-
tition in the United States. The contest is held twice a year, in November
and February.

IMO International Math Olympiad, the supreme high-school mathematics
olympiad.

IMO Shortlist A list of about 30 problems prepared annually, from which the
six problems of the IMO are selected by vote.

Putnam The William Lowell Putnam Mathematical Competition, an annual
competition for undergraduate students studying in USA and Canada.

RMM Romanian Masters in Mathematics, an annual olympiad held in Ro-
mania in late February for teams with a strong performance at the In-
ternational Mathematical Olympiad.

TSTST The embarrassingly named “Team Selection Test Selection Test”.
Held in June each year, the TSTST selects students for the USA Team
Selection Test.

TST Abbreviation for Team Selection Test. Most countries use a TST as
the final step in the selection of their team for the International Math
Olympiad.

USAJMO USA Junior Math Olympiad, the junior version of the national
math olympiad for the United States (for students in 10th grade and
below).

USAMO USA Math Olympiad, the national math olympiad for the United
States.

vi
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1 Notes on Proofs
This is a chapter detailing common logic mistakes in proofs, as well as

containing some suggestions for how to present proofs more readably. It can
be safely skipped by veterans with past proof experience. There are a small
number of problems at the end to try to give you practice with these types of
issues.

§1.1 Common proof mistakes
§1.1.1 “Find all” problem are always two-part problems
Any problem of the form “find all…” is always implicitly a two-part
problem. (This includes functional equations and Diophantine equations, for
example.)

To be more explicit, if you have are asked to find all x satisfying property
P (x), and you think the answer is a set S, then you must prove that

P (x) if and only if x ∈ S.

Note that this is an “if and only if”, so there are two directions, not just one!
For any solution of this form, I strongly recommend that you structure your

solution as follows:

• Start by writing “We claim the answer is …” and state your conjec-
tured answer.

• Then, say “We prove these satisfy the conditions”, and do so. For
example, in a functional equation with answer f(x) = x2, you should
plug this f back in and verify the equation is satisfied. Even if this
verification is trivial, you must still explicitly include it, because it is
part of the problem.

• Finally, say “Now we prove these are the only ones” and do so.

This is a common mistake because many standard high school curriculums
do not make this distinction explicitly, if at all. Thus your instincts might be
wrong, and so you will need to adjust slightly.

To give an example of what I mean, here’s an example from middle school.

Example 1. Find all real numbers x such that 3x+ 2 = 17.

7
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Bogus Solution. Note that

3x+ 2 = 17

=⇒ 3x = 15

=⇒ x = 5.

Hence the answer is x = 5.

But really what you have shown is that 3x+ 2 = 17 =⇒ x = 5. You haven’t
proven the other direction. Fortunately, in this case it’s very easy to reverse
all the steps you did; x = 5 =⇒ 3x = 15 =⇒ 3x+2 = 17. Put another way,
here is a correct solution.

Solution 1. Note that

3x+ 2 = 17

⇐⇒ 3x = 15

⇐⇒ x = 5.

Therefore the answer is x = 5. �

No big deal, right? However it’s not always true that you can simply replace
=⇒ with ⇐⇒ .

Example 2. Find all real numbers x such that
√
x+ 7 = x+ 1.

This time, we see something different. Consider the solution:

Bogus Solution. Note that
√
x+ 7 = x+ 1

=⇒ x+ 7 = x2 + 2x+ 1

=⇒ 0 = x2 + x− 6.

=⇒ x = −3, 2.

Hence x = −3 or x = 2.

This time, the first arrow (when we square both sides) is not reversible. We
have proven that

√
x+ 7 = x+1 =⇒ x = −3, 2 but this time the converse is

false, since x = −3 does not work.
If you follow my advice to structure your solutions by stating the answer,

checking it, and then proving it is the only ones, you won’t make this mistake.

Solution 2. The answer is x = 2. Since
√
2 + 7 = 3 = 2 + 1, it works.

8
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We now show this is the only solution. Note that
√
x+ 7 = x+ 1

=⇒ x+ 7 = x2 + 2x+ 1

=⇒ 0 = x2 + x− 6.

=⇒ x = −3, 2.

Hence x = −3 or x = 2. However, we can see that x = −3 does not work,
since

√
−3 + 7 = 2 6= −2 = (−3) + 1. Therefore x = 2 is the only solution, as

claimed. �

Now, here is a more serious example.

Example 3 (USAJMO 2011). Find all positive integers n such that 2n +
12n + 2011n is a perfect square.

Solution 3. The answer is n = 1 only.
This clearly works, since 21 + 121 + 20111 = 2025 = 452.
Now we verify this is the only solution. If n is odd and n > 1, then taking

modulo 4 we see the 2n +12n +2011n ≡ 3 (mod 4), so it is not a square. If n
is even, then taking modulo 3 we see the 2n + 12n + 2011n ≡ 2 (mod 3), so it
is not a square. Thus n = 1 is the only solution. �

The subtle mistake one can make is to forget to do the calculation 21 +
121 + 20111 = 2025 = 452. To see why this is necessary, compare this with a
hypothetical different problem.

Example 4. Find all positive integers n such that 2n+12n+2023n is a perfect
square.

Solution 4. There are no such n at all.
First, n = 1 does not work since 21 + 121 + 20231 = 2037, which is not a

square.
If n is odd and n > 1, then taking modulo 4 we see the 2n+12n+2023n ≡ 3

(mod 4), so it is not a square. If n is even, then taking modulo 3 we see the
2n + 12n + 2023n ≡ 2 (mod 3), so it is not a square. �

§1.1.2 Checking for reversibility
As you can see the previous logical mistake is due to not distinguishing between
P =⇒ Q and Q =⇒ P . Many of you have been taught the wrong instincts,
and now you have to adjust. For “find all” problems the surest way to do this
is to just do both directions explicitly in the way I suggested.

But this won’t cover everything. I’m thinking in particular of the special
case Q = true. Consider the following example.

9
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Example 5. Suppose θ and η are angles in the interval (0, 12π). Verify the
trig identity

tan

(
θ + η

2

)
=

sin η + sin θ

cos η + cos θ
.

The “high-school” proof again messes up the direction of the arrows.

Bogus Solution. Write

tan

(
θ + η

2

)
=

sin η + sin θ

cos η + cos θ
(†)

=⇒ sin(θ + η)

1 + cos(θ + η)
=

sin η + sin θ

cos η + cos θ

=⇒ sin θ cos η + cos θ sin η

1 + cos θ cos η − sin θ sin η
=

sin η + sin θ

cos η + cos θ

=⇒ sin θ
(
cos2 η + sin2 η

)
+ sin η

(
cos2 θ + sin2 θ

)
= sin θ + sin η

=⇒ sin θ + sin η = sin θ + sin η. X

The second line is by tangent half-angle formula.

What you’ve shown is that (†) =⇒ true. This isn’t worth anything. I have
a much easier proof that (†) =⇒ true: just multiply both sides by zero.

What you really want is true =⇒ (†), which you can again do by being
careful that all arrows above are ⇐⇒ and not =⇒ . (The condition about
the angles ensures that we do not have division by zero issues.)

§1.1.3 Optimization problems are always two-part problems
Along the same lines, some problems will ask you to “find the minimum (or
maximum) value of X”. These problems are always two parts as well,
you need to prove a bound on X, and then show that bound can actually be
achieved.

In such situations, I strongly recommend you write your solution as follows:

• Start by writing “We claim the minimum/maximum is …”.

• Then, say “We prove that this is attainable”, and give the construc-
tion (or otherwise prove existence). Even if this verification is trivial,
you must still explicitly include it, because it is part of the problem.

• Finally, say “We prove this is a lower/upper bound”, and do so.

Here is a fun example.

Example 6 (USAMO 2010). The 2010 positive real numbers a1, a2, …, a2010
satisfy the inequality aiaj ≤ i + j for all 1 ≤ i < j ≤ 2010. Determine, with
proof, the largest possible value of the product a1a2 . . . a2010.

10
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This problem is quite difficult, and will be covered in a walkthrough later.
For now, we show you how to not solve the problem by presenting three bogus
solutions which get pairwise distinct answers!

Bogus Solution. We have a1a2010 ≤ 2011, a2a2009 ≤ 2011, …, a1005a1006 ≤
2011, so a1a2 . . . a2010 ≤ 20111005.

Bogus Solution. Multiplying all the possible
(
2010
2

)
inequalities together

gives
2010∏
n=1

an ≤

 ∏
1≤i<j≤2010

i+ j

 1
2009

.

Bogus Solution. We have a1a2 ≤ 3, a3a4 ≤ 7, and so on, thus

a1a2 . . . a2010 ≤ 3 · 7 · · · · · 4019.

Moreover, one can prove that this is the lowest possible bound of the form
(i1+ j1)(i2+ j2) . . . (i1005+ j1005), where i1, …, j1005 are a permutation of
1, …, 2010. Thus this is the answer.

All of these solutions have correctly proven an upper bound on
∏
ai, but

none of them have made any progress on showing that there actually exists
ai achieving that constant, which turns out to be the true difficulty of the
problem.

§1.1.4 Be neat, be careful
This list isn’t exhaustive. These are just the most common mistakes that more
experienced students have learned to avoid. Yet there are plenty of problems
that have their own pitfalls.

The best thing you can do about this is to be neat and be careful.

• If a solution has cases, give each case a separate bullet point and label
clearly exactly what case it is doing.

• Write out more details on parts that you feel less confident in.

• If you have central claims in the problem, write them in full as explicit
lemmas in the problem.

In short, be organized.

11
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§1.2 Stylistic writing suggestions
§1.2.1 Deciding on the level of detail
One of the most common questions I get is: “how much detail do I need
to include on a contest?”. The answer is actually quite simple: enough to
convince the grader you know the solution.1 To put it one way, whenever
you omit a detail, the grader has to decide whether you know how to do it
and just did not write it, or whether you don’t know how to do it and are just
bluffing. So if you are ever unsure about how much to write, just ask yourself
that.

In still other words, you should write your solution in such a way that a
student who did not solve the problem could not plausibly write the same
thing you did. This is especially important if you have a long computational
solution, for example solving geometry with complex numbers. You cannot
just skip over a page of calculation by saying that “simplifying, we find this
is equal to …”, because a student who did not solve the problem (i.e. was not
actually able to do the calculation) is perfectly capable of writing the same
thing.

§1.2.2 Never write wrong math
This is much more of a math issue than a style issue: you can lose all of your
points for making false claims, because this is the easiest way to convince the
grader that your solution is wrong.

As a special case, don’t say something that is partially true and then say
how to fix it later. At best this will annoy the grader; at worst they may get
confused and think the solution is wrong.

§1.2.3 Emphasize the point where you cross the ocean
Solutions to olympiad problems often involve a few key ideas, with the rest
of the solution being checking details. You want graders to immediately see
all the key ideas in the solution: this way, they quickly have a high-level
understanding of your approach.

Let me share a quote from Scott Aaronson:

Suppose your friend in Boston blindfolded you, drove you around
for twenty minutes, then took the blindfold off and claimed you
were now in Beijing. Yes, you do see Chinese signs and pagoda
roofs, and no, you can’t immediately disprove him — but based
on your knowledge of both cars and geography, isn’t it more likely

1This is a slightly different standard than in many other places. For example, consider the
official solutions to a contest. Here the reader knows the author already has the solution,
and the reader is just trying to understand it. Whereas during a contest, the grader
already knows the solution, and is interested in whether you know it.

12
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you’re just in Chinatown? …We start in Boston, we end up in
Beijing, and at no point is anything resembling an ocean
ever crossed.

Olympiad solutions work the same way: a geometry solution might require a
student to do some angle chasing, deduce that two triangles are congruent,
and then finish by doing a little more angle chasing. In that case, you want to
highlight the key step of proving the two triangles were congruent, so the grader
sees it immediately and can say “okay, this student is using this approach”.

Ways that you can highlight this are:

• Isolating crucial steps and claims as their own lemmas.2

• Using claims to say what you’re doing. Rather than doing angle chas-
ing and writing “blah blah blah, therefore 4MBIBM ∼ 4MCICM”,
consider instead “We claim 4MBIBM ∼ 4MCICM , proof”.

• Displaying important equations. For example, notice how the line

4MBIBM ∼ 4MCICM (1.1)

jumps out at the reader. You can even number such claims to refer-
ence them later, e.g. “by (1.1)”. This is especially useful in functional
equations.

• Just say it! Little hints like “the crucial claim is X” or “the main idea
is Y ” are immensely helpful. Don’t make X and Y look like another
intermediate step.

§1.2.4 Leave space
Most people don’t leave enough space. This makes solutions hard to read.
Things you can do to help with this:

• Skip a line after paragraphs. Use paragraph breaks more often than you
already do.

• If you isolate a specific lemma or claim in your proof, then it should
be on its own line, with some whitespace before and after it.

• Any time you do casework, you should always split cases into separate
paragraphs or bullet points. Make it visually clear when each case begins
and ends.

2This is often useful for another reason: breaking the proof into individual steps. The
complexity of understanding a proof grows super-linearly in its length; therefore breaking
it into smaller chunks is often a good thing.

13
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• Display important equations, rather than squeezing them into para-
graphs. If you have a long calculation, then do an aligned display3

rather than squeezing it into a paragraph. For example, instead of writ-
ing 0 ≤ (a− b)2 = (a+ b)2 − 4ab = (10− c)2 − 4 (25− c(a+ b)) =
(10− c)2 − 4 (25− c(10− c)) = c(20− 3c), write instead

0 ≤ (a− b)2 = (a+ b)2 − 4ab

= (10− c)2 − 4 (25− c(a+ b))

= (10− c)2 − 4 (25− c(10− c))
= c(20− 3c).

§1.2.5 For the love of god please include a diagram if you
needed one

If you used a diagram to solve the problem, give one to the reader too. (This
is not limited to just geometry problems.)

In competition settings, you do not need to draw a new diagram for the
solution. Just turn in the one that you already drew when solving the problem,
by adding the appropriate page headers to it.

“Why can’t the reader draw their own diagram in Geogebra?” Well, yes,
in theory. But theory is not the same as practice. For example, suppose you
write “let M be the midpoint of BC” when you meant “let M be the midpoint
of EF”. Now because of that one typo, you’re completely screwed, because you
also forced the reader to draw their own diagram, which is now different from
yours. The reader has no way to fix your mistake for you. There’s no reason
to press your luck like this; just include a diagram.

If you want to understand how painful it is to read a solution with no di-
agram provided, check out the AoPS thread for USAMO 2014/4 at https:
//aops.com/community/p3478584 and try reading some of the text-only so-
lutions.

§1.2.6 Pay special attention to definitions (extra important!)
The previous illustration of how the typo “let M be the midpoint of BC” can
kill you illustrates a more general point: you have to get definitions right. For
intermediate logic, a reader can rely on truth/falsity of statements to help fill
in gaps or fix typos — but definitions cannot be intrinsically right or wrong,
so the reader has to use the one you gave them.

Thus it’s absolutely critical your definitions are solid. Whenever you define a
new object or algorithm, pay special care that your specifications are complete
and correct.

Tips:
3This is the align* environment, for those of you that like LATEX.
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• Write in complete sentences. Do not skimp on words when you’re
defining objects, they’re too important. (If you want to be lazy, do so in
the main body of your solution, not the definitions.)

• If the definition is complicated enough, give some examples. (To be
honest, I always thought the examples were worth more than the formal
definition.) Compare for example

Define a block of letters to be a maximal contiguous subse-
quence of consecutive letters.

versus
Define a block of letters to be a maximal contiguous subse-
quence of consecutive letters. For example, the word aabbbcaaa
has four blocks, namely aa, bbb, c, aaa, appearing in that or-
der.

• If you are defining an object, consider whether it makes sense to
name it. For example, if you find yourself writing “the set of bad
numbers” over and over, consider naming it B instead.4

Given a word A, we introduce the following notation for its m
blocks:

A = A1A2 . . . Am = a1 . . . a1︸ ︷︷ ︸
x1

a2 . . . a2︸ ︷︷ ︸
x2

. . . am . . . am︸ ︷︷ ︸
xm

.

• Never write the words “worst case” unless you really, really know
what you are doing. This term is tantamount to saying to the reader,
“I’m only going to consider this case, but I won’t explain why”, and is
quite commonly accompanied by false or circular reasoning.

§1.3 Problems
Problem 7. Determine, with proof, the smallest positive integer c such that
for any positive integer n, the decimal representation of the number cn +2014
has digits all less than 5.

Problem 8. The numbers 1, 2, …, 10 are written on a board. Every minute,
one can select three numbers a, b, c on the board, erase them, and write√
a2 + b2 + c2 in their place. This process continues until no more numbers

can be erased. What is the largest possible number that can remain on the
board at this point?

4One subtle side effect of this habit is that it will also remind you to check that you gave
a definition of “bad number” to begin with. If you try to name an object you never gave
a full definition of, it will tend to jump out at you.

15



May 18, 2025 The OTIS Excerpts, by Evan Chen

Problem 9 (Putnam 2017). Find the smallest set S of positive integers such
that

(a) 2 ∈ S,

(b) n ∈ S whenever n2 ∈ S,

(c) (n+ 5)2 ∈ S whenever n ∈ S.

(The set S is “smallest” in the sense that S is contained in any other such set.)

Problem 10 (USAMO 2015). Steve is piling m ≥ 1 indistinguishable stones
on the squares of an n × n grid. Each square can have an arbitrarily high
pile of stones. After he finished piling his stones in some manner, he can
then perform stone moves, defined as follows. Consider any four grid squares,
which are corners of a rectangle, i.e. in positions (i, k), (i, l), (j, k), (j, l) for
some 1 ≤ i, j, k, l ≤ n, such that i < j and k < l. A stone move consists of
either removing one stone from each of (i, k) and (j, l) and moving them to
(i, l) and (j, k) respectively, or removing one stone from each of (i, l) and (j, k)
and moving them to (i, k) and (j, l) respectively.

Two ways of piling the stones are equivalent if they can be obtained from
one another by a sequence of stone moves. How many different non-equivalent
ways can Steve pile the stones on the grid?
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§1.4 Solutions

Solution 7 (None). The answer is c = 10. In what follows we say that a
number is good if all its decimal digits are less than 5.

We first prove c = 10 is a working example for all n. When n = 1, 2, 3, we
have 2024, 2114 and 3014, which are all good. When n ≥ 4, we find that

10n + 2014 = 1 000 . . . 000︸ ︷︷ ︸
n − 4 zeros

2014

which is good. This shows that c = 10 is works.
Next, we show that c ≥ 10 is necessary.

• For c = 1, 2, 3, 4, 5, taking n = 1 gives the numbers 2015, 2016, …, 2019,
none of which are good.

• On the other hand, for c = 6, 7, 8, 9, taking n = 2 gives the numbers
2050, 2063, 2078, 2095, none of which are good.

Solution 8 (None). The answer is
√
384 = 8

√
6.

We begin by observing that the sum of the squares of all numbers on the
board is preserved. Moreover, there are initially 10 numbers, and we erase 2
at a time, so at the end of the process there will be exactly two numbers, call
them a and b. By our observation, these numbers are supposed to satisfy

a2 + b2 = 12 + 22 + · · ·+ 102 = 385. (?)

We now claim that
√
384 is achievable. Indeed, suppose we always avoid

erasing the number 1 that was initially on the board. Then at the end of the
process, one of the numbers on the board is a = 1; thus the other one is

√
384

by (?).
On the other hand, observe that since all initial numbers on the board are

at least 1, every number that ever appears is at least 1 as well. Consequently,
in (?) we always have a ≥ 1. Thus b ≤

√
384, so this is indeed maximal.

Solution 9 (Putnam 2017). The answer is that S contains the positive
integers greater than 1 which are not divisible by 5.

First, we check this satisfies the properties.

(a) We have 2 ∈ S by construction.

(b) If n > 1 then n2 > 1, and if 5 - n then 5 - n2.

(c) If 5 - n then 5 - (n+ 5)2 and moreover (n+ 5)2 > 1.
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Next, we check that any set S satisfying the property must contain all such
integers claimed. Most solutions will involve some computation (and there
isn’t a real reason to try to optimize it too much).

The shortest solution is to compute

2 ∈ S =⇒ (2 + 5)2 = 49 ∈ S =⇒ (49 + 5)2 = 2916 ∈ S.

Thus by (b) and (c) together we have 2916 + 5k ∈ S for every integer k. Now
if n > 1 and 5 - n then n16 ≥ 65536 > 2916 and n16 ≡ 1 (mod 5). The end.

Solution 10 (USAMO 2015). The answer is
(
m+n−1
n−1

)2. The main observa-
tion is that the ordered sequence of column counts (i.e. the number of stones
in the first, second, etc. column) is invariant under stone moves, as does the
analogous sequence of row counts.

Definitions. Call these numbers (c1, c2, . . . , cn) and (r1, r2, . . . , rn) respec-
tively, with

∑
ci =

∑
ri = m. We say that the sequence (c1, . . . , cn, r1, . . . , rn)

is the signature of the configuration. These are the 2m blue and red numbers
shown in the example below (in this example we have m = 8 and n = 3).

c1 = 5 c2 = 2 c3 = 1

r1 = 3

r2 = 3

r3 = 2

Signature: (5, 2, 1; 3, 3, 2)

By stars-and-bars, the number of possible values (c1, . . . , cn) is
(
m+n−1
n−1

)
. The

same is true for (r1, . . . , rn). So if we’re just counting signatures, the total
number of possible signatures is

(
m+n−1
n−1

)2.

Outline and setup. We are far from done. To show that the number of
non-equivalent ways is also this number, we need to show that signatures
correspond to pilings. In other words, we need to prove:

1. Check that signatures are invariant around moves (trivial; we did this
already);
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2. Check conversely that two configurations are equivalent if they have the
same signatures (the hard part of the problem); and

3. Show that each signature is realized by at least one configuration (not
immediate, but pretty easy).

Most procedures to the second step are algorithmic in nature, but Ankan
Bhattacharya gives the following far cleaner approach. Rather than having a
grid of stones, we simply consider the multiset of ordered pairs (x, y) corre-
sponding to the stones. Then:

• a stone move corresponds to switching two y-coordinates in two different
pairs.

• we redefine the signature to be the multiset (X,Y ) of x and y coordinates
which appear. Explicitly, X is the multiset that contains ci copies of the
number i for each i.

For example, consider the earlier example which had
• Two stones each at (1, 1), (1, 2).

• One stone each at (1, 3), (2, 1), (2, 3), (3, 2).
Its signature can then be reinterpreted as

(5, 2, 1; 3, 3, 2)←→

{
X = {1, 1, 1, 1, 1, 2, 2, 3}
Y = {1, 1, 1, 2, 2, 2, 3, 3}.

In that sense, the entire grid is quite misleading!

Proof that two configurations with the same signature are equivalent. The
second part is completed just because transpositions generate any permuta-
tion. To be explicit, given two sets of stones, we can permute the labels so
that the first set is (x1, y1), …, (xm, ym) and the second set of stones is (x1, y′1),
…, (xm, y′m). Then we just induce the correct permutation on (yi) to get (y′i).

Proof that any signature has at least one configuration. Sort the elements
of X and Y arbitrarily (say, in non-decreasing order). Put a stone whose x-
coordinate is the ith element of X, and whose y-coordinate is the ith element
of Y , for each i = 1, 2, . . . ,m. Then this gives a stone placement of m stones
with signature (X,Y ).

For example, if

X = {1, 1, 1, 1, 1, 2, 2, 3}
Y = {1, 1, 1, 2, 2, 2, 3, 3}

then placing stones at (1, 1), (1, 1), (1, 1), (1, 2), (1, 2), (2, 2), (2, 3), (3, 3) gives
a valid piling with this signature.
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2 Fundamentals of Inequalities
This chapter covers some basic theory for olympiad inequalities, but nothing

super fancy.
For those who have not seen it before, we will make extensive use of the cyclic

sum notation
∑

cyc and the symmetric sum notation
∑

sym. For a problem
involving n variables, these respectively mean to cycle through the n variables,
and to go through all n! permutations. To provide an example, in a three-
variable problem we might write∑

cyc
a2 = a2 + b2 + c2

∑
cyc

a2b = a2b+ b2c+ c2a

∑
sym

a2 = a2 + a2 + b2 + b2 + c2 + c2

∑
sym

a2b = a2b+ a2c+ b2c+ b2a+ c2a+ c2b.

§2.1 Brief warning for beginners
§2.1.1 On flipped inequalities
Two points:

• If you have X ≥ Y and Y ≤ Z, it does not follow X ≥ Z.

• If you have X ≥ Y and Z ≤ W , you can’t add the two; no comparison
on X + Z and Y +W .

This may sound obvious, but when you’re doing a full-fledged olympiad in-
equality it can be easy to mess up signs.

If your solution flips an inequality somewhere, it is not “just” an error; often
the error is fatal, meaning there is no way to repair it.

For example, suppose you are trying to prove that

a3 + b3 + c3 ≥ a2b+ b2c+ c2a

for a, b, c > 0. You might first write down a3 + b3 + c3 ≥ 3abc by AM-GM. So
you’d be happy if you could show that 3abc ≥ a2b+ b2c+ c2a.

Unfortunately this is false! And you are dead — it is impossible to complete
this line of thought; you will have to abandon this approach completely and
try something else.
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§2.1.2 Writing chains of inequalities
If you’re trying to prove A ≥ B, a good way to style the proof is by a “chain”
of inequalities

A ≥ something
≥ something else
≥ . . .
≥ B.

This way you will be less likely to make a mistake because it’s clear which way
everything is going.

I should also mention that the comments from Section 1.1.2 apply here as
well. Be careful not to show ineq =⇒ true. Either deduce the desired
inequality as mentioned above, or else be very careful that all your steps are
reversible, indicating this explicitly with ⇐⇒ .

§2.2 Polynomial inequalities
§2.2.1 AM-GM and Muirhead
The most basic inequality to start out with is the following.

Theorem 2.1 (AM-GM). For nonnegative real numbers a1, a2, …, an we have
a1 + a2 + · · ·+ an

n
≥ n
√
a1 . . . an.

Equality holds if and only if a1 = a2 = · · · = an.

The abbreviation stands from “Arithmetic Mean, Geometric Mean” (with
the left-hand side being “arithmetic mean”, the right-hand side being “geo-
metric mean”). For example, this implies that for a, b, c > 0 we have

a2 + b2 ≥ 2ab, a3 + b3 + c3 ≥ 3abc.

The simplest problems can be solved by summing applications of AM-GM.

Example 11. For a, b, c > 0 prove the following results:

• a2 + b2 + c2 ≥ ab+ bc+ ca;

• a4 + b4 + c4 ≥ a2bc+ b2ca+ c2ab.

Solution 11. For the first part, we consider the following three applications
of AM-GM:

a2 + b2 ≥ 2ab

b2 + c2 ≥ 2bc

c2 + a2 ≥ 2ca.
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The second example is a little more subtle than the previous one, but it has
the same shape. By AM-GM,

a4 + a4 + b4 + c4 ≥ 4a2bc

b4 + b4 + c4 + a4 ≥ 4ab2c

c4 + c4 + a4 + b4 ≥ 4abc2.

Summing these and dividing by 4 yields the correct result. �

Exercise. If a, b, c > 0 prove that a3 + b3 + c3 ≥ a2b+ b2c+ c2a.

Exercise. If a, b, c > 0 prove that a5 + b5 + c5 ≥ a3bc+ b3ca+ c3ab ≥ abc(ab+
bc+ ca).

§2.2.2 Some vague cheerleading
You might already be picking up some connotations of the types of problems
we consider:

• In a “stereotypical” symmetric inequality, both sides will be equal when
we set all variables equal.

• Moreover, in the absence of other conditions, we often compare expres-
sions which are the same degree, or homogeneous. For example when we
write a2 + b2 + c2 ≥ ab+ bc+ ca, both sides are degree 2. (Notice that
the AM-GM inequality itself has the same property!)

There is a good reason for this: x5 and x3 are not comparable for generic
x > 0, since the behaviors when x is very small and x is very large are
different. So a non-homogeneous inequality like a2+b2+c2 ≥ a3+b3+c3
will definitely not be true in general, since the behaviors if I take a =
b = c = 0.01 and a = b = c = 100 will be different.

You may also already be picking up some intuition: more “mixed” terms
are smaller. For example, for degree 3, the polynomial a3+ b3+ c3 is biggest
and 3abc is the smallest. Roughly, the more “mixed” polynomials are the
smaller.

If you internalize this intuition well, you might already be able to see that

(a+ b+ c)3 ≥ a3 + b3 + c3 + 24abc

must be true, just by looking. Indeed, it is homegeneous with equality when
a = b = c. But more importantly, since upon expanding the LHS and can-
celling a3 + b3 + c3, we find that the RHS contains only the piddling term
24abc. That means a straight AM-GM will suffice.
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§2.2.3 Muirhead’s inequality
In the case of a symmetric inequality, this intuition has actually been formal-
ized, by the so-called Muirhead’s inequality.

Definition 2.2. Suppose we have two sequences x1 ≥ x2 ≥ · · · ≥ xn and
y1 ≥ y2 ≥ · · · ≥ yn such that

x1 + x2 + · · ·+ xn = y1 + y2 + · · ·+ yn,

and for k = 1, 2, . . . , n− 1,

x1 + x2 + · · ·+ xk ≥ y1 + y2 + · · ·+ yk.

Then we say that (xn) majorizes (yn), written (xn) � (yn).

Using the above, we have the following theorem.

Theorem 2.3 (Muirhead’s inequality). If a1, a2, …, an are nonnegative real
numbers and the sequence (x1, . . . , xn) majorizes the sequence (y1, . . . , yn) then
we have the inequality∑

sym
ax1
1 a

x2
2 . . . axn

n ≥
∑
sym

ay1

1 a
y2

2 . . . ayn
n .

For example, since (5, 0, 0) � (3, 1, 1) � (2, 2, 1), Muirhead implies that

a5 + a5 + b5 + b5 + c5 + c5 ≥ a3bc+ a3bc+ b3ca+ b3ca+ c3ab+ c3ab

≥ a2b2c+ a2b2c+ b2c2a+ b2c2a+ c2a2b+ c2a2b.

From this we derive a5 + b5 + c5 ≥ a3bc+ b3ca+ c3ab ≥ abc(ab+ bc+ ca), one
of the earlier exercises.

Remark 2.4. It can be shown that, if one could prove an inequality by Muir-
head, then one could also have proved it by repeated AM-GM with carefully
chosen weights. However, it is much simpler to simply quote Muirhead directly,
so that one does not need to refer to explicit weights.

Notice that Muirhead is symmetric, not cyclic. For example, even though
(3, 0, 0) � (2, 1, 0), Muirhead’s inequality only gives that

2(a3 + b3 + c3) ≥ a2b+ a2c+ b2c+ b2a+ c2a+ c2b

and in particular this does not imply that a3+b3+c3 ≥ a2b+b2c+c2a. These
situations must still be resolved by AM-GM.
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§2.2.4 Non-homogeneous inequalities
Consider the following example.

Example 12. Let a, b, c > 0 and assume abc = 1. Prove that a2 + b2 + c2 ≥
a+ b+ c.

The inequality has a degree 2 left-hand side, and a degree 1 right-hand
side. It also has a condition abc = 1. Both of these are undesirable, and the
following solution shows how can deal with them.

Solution 12. AM-GM alone on the left-hand terms won’t work easily, because
whenever we apply AM-GM, the left and right hand sides of the inequality all
have the same degree. So we want to use the condition abc = 1 to force
the problem to have the same degree. The trick is to notice that the given
inequality can be rewritten as

a2 + b2 + c2 ≥ a1/3b1/3c1/3 (a+ b+ c) .

Now the inequality is homogeneous.
An important point now is that, once written this way, the restriction

abc = 1 stops mattering. Because observe that if we multiply a, b, c by any
real number k > 0, all that happens is that both sides of the inequality are
multiplied by k2, which doesn’t change anything. So if the inequality is true
for all abc = 1, it is also true for all abc = 8 (by doubling each of a, b, c) or all
abc = 27 (by tripling each of a, b, c), or indeed regardless of what abc equals.
So we can treat this reduced problem without the condition, at which point it
looks like the examples we did earlier.

In particular, (2, 0, 0) � ( 43 ,
1
3 ,

1
3 ), and so applying Muirhead’s inequality

solves the problem. �

The importance of this problem is that it shows us how to eliminate a
given condition by homogenizing the inequality. This is an absolutely
critical technique, so we give one more example, although for now we only show
how to eliminate the condition and defer the full solution to after Theorem 2.5.

Example 13. Prove that if a, b, c are positive real numbers satisfying ab +
bc+ ca = 3 then

a2 + b2 + c2 +
3
√
abc ≥ 4.

The entire inequality is a mess of three different degrees:

• The term a2 + b2 + c2 is degree 2.

• The term 3
√
abc is degree 1.

• The term 4 is degree 0.
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By using the condition ab+bc+ca
3 = 1, we can rewrite every term so that the

degree becomes uniform. For example, if we want everything to be degree 2,
• The term a2 + b2 + c2 is degree 2 (unchanged).

• The term (abc)1/3 ·
√

ab+bc+ca
3 is degree 2.

• The term 4 · ab+bc+ca
3 is degree 2.

So, the homogenized inequality is properly written as:

a2 + b2 + c2 + (abc)1/3
√
ab+ bc+ ca

3
≥ 4

3
(ab+ bc+ ca).

Now that everything is degree 2, the condition ab + bc + ca = 3 becomes
irrelevant: if this inequality is true when ab+ bc+ ca = 3, it remains true for
all a, b, c > 0.

You might object this looks uglier. But I need to stress this is what the
problem is asking, for a strong sense of the word “is”. You can think of it as
“this is what the problem looks like with no condition”. (We will soon see that
we can use this in reverse, too — we can impose an arbitrary condition on a
homogeneous inequality.)

§2.2.5 Practice with homogenization
You should now try homogenization below on the two exercises below. To
re-iterate, the two-step process is:

• Use the given condition to write an inequality that is homogeneous (all
terms are the same degree, so replacing (a, b, c) with (10a, 10b, 10c), say,
doesn’t change anything).

• And then try to solve the resulting inequality.
Exercise. Let a, b, c > 0 with a+ b+ c = 1. Show that

1

a
+

1

b
+

1

c
− 3 ≤ 2 · (a

3 + b3 + c3)

abc
.

Exercise. Let a, b, c > 0 with 1
a + 1

b + 1
c = 1. Prove that

(a+ 1)(b+ 1)(c+ 1) ≥ 64.

§2.3 Three polynomial tricks
§2.3.1 The special case of product 1

If an inequality has the condition abc = 1, one can also sometimes use the sub-
stitution (a, b, c) = (x/y, y/z, z/x) which will transform it into a homogeneous
inequality automatically.
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§2.3.2 Ravi substitution
Sometimes, an inequality will refer to the a, b, c as the sides of a triangle. In
that case, one can replace (a, b, c) = (y + z, z + x, x+ y) where x, y, z > 0 are
real numbers. This is colloquially known as the Ravi substitution, in folklore.

§2.3.3 Schur’s inequality
The following inequality, despite being polynomial in nature, cannot be proven
using AM-GM easily, and so we record it here as a separate theorem.

Theorem 2.5 (Schur). Let a, b, c be nonnegative real numbers and let r > 0
be any positive real number. Then∑

cyc
ar(a2 + bc) ≥

∑
cyc

ar+1(b+ c).

Equality occurs if a = b = c or two of the variables are equal and the last is
zero.

For example, the r = 1 case of this theorem says that

a3 + b3 + c3 + 3abc ≥
∑
sym

a2b

and is perhaps the most commonly used variant.

Proof. Assume without loss of generality a ≥ b ≥ c. Rewrite the inequality as

(a− b) [ar(a− c)− br(b− c)]
+ cr(c− a)(c− b) ≥ 0.

Since a ≥ b, we have ar(a − c) ≥ br(b − c), and from this it’s clear that each
term on the left-hand side is nonnegative, as needed.

We can use this to solve Example 13 from before now.

Solution 13. We prove the homogenized inequality:

a2 + b2 + c2 + (abc)1/3
√
ab+ bc+ ca

3
≥ 4

3
(ab+ bc+ ca).

First, note that

a2 + b2 + c2

3
+ (abc)1/3

√
ab+ bc+ ca

3
≥ a2 + b2 + c2

3
+ (abc)2/3

≥ 1

3

∑
sym

a4/3b2/3

≥ 2

3
(ab+ bc+ ca)
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by AM-GM, Schur’s inequality, and Muirhead’s inequality, respectively. Adding
this to 2

3 times a2 + b2 + c2 ≥ ab+ bc+ ca finishes the problem. �

The main point of Schur here is that it lets us “use up” the really weak
(abc)2/3 term on the left-hand side, which is the major sore point for any
approach using just AM-GM. (To elaborate, if you try to use AM-GM with
an (abc)2/3 in it, the GM’s will always have all three of a, b, c in them, which
is bad because your right-hand side does not.)

§2.4 Eliminating radicals and fractions
§2.4.1 Weighted Power Mean
AM-GM has the following natural generalization.

Theorem 2.6 (Weighted Power Mean). Let a1, …, an be positive real numbers.
Let w1, w2, …, wn be positive real numbers with w1 + w2 + · · ·+ wn = 1. For
any real number r, we define

P(r) =

(w1a
r
1 + w2a

r
2 + · · ·+ wna

r
n)

1/r
r 6= 0

aw1
1 aw2

2 . . . awn
n r = 0.

If r > s, then P(r) ≥ P(s). Equality occurs if and only if a1 = a2 = · · · = an.

The quantity P(r) is called the rth power mean. Note that if we set all the
weights equal, that is w1 = w2 = · · · = wn = 1

n , then

P(r) =


(
ar1 + ar2 + · · ·+ arn

n

)1/r

r 6= 0

n
√
a1a2 . . . an r = 0.

Corollary 2.7 (QM-AM-GM-HM theorem). Let a1, …, an be positive real
numbers. Then√

a21 + · · ·+ a2n
n

≥ a1 + · · ·+ an
n

≥ n
√
a1a2 . . . an ≥

n
1
a1

+ · · ·+ 1
an

.

Proof. Set r ∈ {2, 1, 0,−1} we obtain the inequality

Here “QM” and “HM” stand for “quadratic mean” and “harmonic mean”
Here is an application of a 1

3 -power mean.

Example 14 (Taiwan TST 2014). Let a, b, c > 0. Prove that

3(a+ b+ c) ≥ 8
3
√
abc+

3

√
a3 + b3 + c3

3
.
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Solution 14. By Power Mean with r = 1, s = 1
3 , and weights 1

9 + 8
9 = 1 we

have the inequality(
1

9
· RHS

)3

=

(
1

9

3

√
a3 + b3 + c3

3
+

8

9
3
√
abc

)3

≤ 1

9

(
a3 + b3 + c3

3

)
+

8

9
(abc)

=
a3 + b3 + c3 + 24abc

27
.

We needed to prove the right-hand side is at most 3(a + b + c). Thus it is
enough to prove a3 + b3 + c3 + 24abc ≤ (a+ b+ c)3, which is clear. �

§2.4.2 Cauchy and Hölder
We now present Hölder’s inequality; we state the two-variable form for con-
creteness but the obvious generalization to any number of sequences is valid.

Theorem 2.8 (Hölder’s inequality). Let p and q be positive real numbers. Let
a1, …, an, b1, …, bn be nonnegative real numbers. Then(

n∑
i=1

ai

)p( n∑
i=1

bi

)q

≥

(
n∑

i=1

p+q

√
api b

q
i

)p+q

.

Proof. We will only address the case where the left hand side is not zero (since
otherwise one of the sequences is entirely zero, and there is nothing to prove).
By scaling the ai’s (since both sides have the same degree), we may as well
assume that

∑
ai = 1. Similarly we assume

∑
ai =

∑
bi = 1. Then by

AM-GM,
n∑

i=1

p+q

√
api b

q
i ≤

n∑
i=1

p · ai + q · bi
p+ q

= 1.

Hölder is often useful for eliminating radicals. The situation p = q = 1 gives
the famous Cauchy inequality, which can be rewritten as

x21
y1

+
x22
y2

+ · · ·+ x2n
yn
≥ (x1 + x2 + · · ·+ xn)

2

y1 + · · ·+ yn
.

This form is often called Titu’s Lemma in the United States, where it is used
to eliminate fractions.

Here are two examples for illustration. The first has a denominator; the
second has both a denominator and a radical.

Example 15 (Nesbitt’s inequality). For a, b, c > 0 prove that

a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3

2
.
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Solution 15. By Cauchy,(∑
cyc

a

b+ c

)1(∑
cyc

a(b+ c)

)1

≥

(∑
cyc

√
a

b+ c
· a(b+ c)

)2

= (a+ b+ c)
2
.

Therefore, it is enough to prove that

(a+ b+ c)2 ≥ 3

2

∑
cyc

a(b+ c)

which follows by expanding and applying Muirhead’s inequality. �

Remark 2.9. The solution above can also be rewritten to use Titu’s lemma:∑
cyc

a2

a(b+ c)
≥ (a+ b+ c)2∑

cyc a(b+ c)
.

Example 16. For a, b, c > 0 prove that

a√
b+ c

+
b√
c+ a

+
c√
a+ b

≥
√

3

2
(a+ b+ c).

Solution 16. This time, we use Hölder with slightly changed weights in order
to remove the square root:(∑

cyc

a√
b+ c

)2(∑
cyc

a(b+ c)

)
≥ (a+ b+ c)

3
.

Again it is enough to prove (a + b + c)2 ≥ 3
2

∑
cyc a(b + c) which is true by

expanding. �

Exercise. Show that if one sets bi = 1 for each i, then Hölder’s inequality
reduces to a power mean inequality with all weights equal.

§2.5 Inequalities in arbitrary functions
Let I be an open interval (for example I = (0,∞) or I = (0, 1)) and let
f : (u, v)→ R be a function and let a1, a2, . . . , an ∈ (u, v). Suppose that we fix
a1+a2+···+an

n = a (if the inequality is homogeneous, we will often insert such a
condition) and we want to prove that

f(a1) + f(a2) + · · ·+ f(an)

is at least (or at most) nf(a).
In this section we provide two methods for doing so. Both require being

able to differentiate a function. If you don’t know how to do this, you can
watch the 20-minute crash-course at https://youtu.be/rTyXHyu8_pA.
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Definition 2.10. Let f be a twice differentiable function. We say that func-
tion f is convex if the second derivative f ′′ is nonnegative over all of (u, v).
Similarly we say it is concave if f ′′(x) ≤ 0 for all x. Note that f is convex if
and only if −f is concave.

Remark 2.11. You can define convexity for functions which aren’t differen-
tiable too, but we won’t need to do so for this textbook.

§2.5.1 Jensen and Karamata
We have the following analog of AM-GM now.

Theorem 2.12 (Jensen’s inequality). Let f : I → R be a convex function.
Then for any a1, . . . , an ∈ I we have

f(a1) + · · ·+ f(an)

n
≥ f

(
a1 + · · ·+ an

n

)
.

The reverse inequality holds when f is concave.

Exercise. Show that if one takes I = (0,∞) and f to be the natural logarithm,
then Jensen reduces to AM-GM with all weights equal.

Just as Muirhead is repeated AM-GM, there is an analog of repeated Jensen;
however its use is somewhat rarer.

Theorem 2.13 (Karamata’s inequality). Let f : I → R be convex. Suppose
the sequence (xn) majorizes (yn), with each xi and yi in I. Then

f(x1) + · · ·+ f(xn) ≥ f(y1) + · · ·+ f(yn).

The reverse inequality holds when f is concave.

§2.5.2 Tangent line trick
Again fix a = a1+···+an

n . If f is not convex, we can sometimes still prove the
inequality

f(x) ≥ f(a) + f ′(a) (x− a) .

If this inequality manages to hold for all x, then simply summing the inequality
will give us the desired conclusion. This method is called the tangent line trick.

Example 17 (Japanese Olympiad 1997). Let a, b, c be positive reals. Prove
that

(b+ c− a)2

a2 + (b+ c)2
+

(c+ a− b)2

b2 + (c+ a)2
+

(a+ b− c)2

c2 + (a+ b)2
≥ 3

5
.
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Solution 17. Since the inequality is homogeneous, we may assume WLOG
that a+ b+ c = 3. So the inequality we wish to prove is

∑
cyc

(3− 2a)2

a2 + (3− a)2
≥ 3

5
.

Let f(x) = (3−2x)2

x2+(3−x)2 . In an ideal world, f would be convex, and we could
finish by applying Jensen’s inequality. We do not live in an ideal world, and
f is not convex.

Nonetheless, we can work around the issue by trying to prove that f lies
above its tangent line at x = 1. A computation gives that f ′(1) = − 18

25 and so
we are motivated to try and prove

(3− 2x)2

(3− x)2 + x2
≥ −18

25
(x− 1) +

1

5
.

In fact, if we expand and factor the resulting inequality, we find that it actually
is equivalent to

18(x− 1)2(2x+ 1)

25(2x2 − 6x+ 9)
≥ 0

which is obviously true. �

§2.6 Philosophy of inequalities: sharpness vs.
tractability

Competition inequalities occupy a bit of a strange place because there are sort
of two different, orthogonal forms of difficulty. I call them sharpness
and tractability.

§2.6.1 Sharpness
The first is sharpness. Roughly, we say an inequality L ≥ R is “sharp”,
“strong”, or “tight” if L and R are close to each other for a lot of inputs.
Conversely, if L and R are far away from each other then we might say the
inequality is “weak” or “loose”. This isn’t strictly formalizable, but a couple
simple examples:

• a3 + b3 + c3 ≥ 3abc is considered a pretty loose inequality, whereas
a3 + b3 + c3 ≥ a2b + b2c + c2a is less loose. This is because in fact
a2b+ b2c+ c2a ≥ 3abc, always.

• Schur’s inequality might be considered “sharper than AM-GM”, because
it has additional equality cases when a = b and c = 0.
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• The inequality (a − b)2(b − c)2(c − a)2 ≥ 0 is considered really sharp,
because it has lots of equality cases.

• Tongue-in-cheek example: x ≥ x is the sharpest inequality of all. (This
is really just saying, equalities are safer to use than estimates, as we’ll
soon see.)

§2.6.2 Sharpness continued — blackjack analogy
From this “sharpness” perspective, proving an inequality L ≥ R is sort of like
playing a game of blackjack, where you want to ideally hit 21, be okay with
going a little under, but never overshoot the threshold.

Let’s return to the Nesbitt inequality (Example 15) from before, namely
(Nesbitt) For a, b, c > 0 prove that a

b+c
+ b

c+a
+ c

a+b
≥ 3

2
.

Suppose we had instead tried to use Cauchy-Schwarz as follows:

a

b+ c
+

b

c+ a
+

c

a+ b

C-S
≥ (
√
a+
√
b+
√
c)2

2(a+ b+ c)
.

Then, it would suffice to prove the right-hand side is at least 3
2 .

This is like trying to hit in blackjack: we make some estimate. So rather
than prove L ≥ R directly, we are trying to show

L
C-S
≥ A

?
≥ R

for some intermediate quantity A. However, we don’t know whether the “?”
inequality is even true or not!

• If it is true, then actually it is a stronger inequality than the original
one that have reduced to proving. (Put another way, every irreversible
move you do makes the inequality you wish to prove sharper.)

• If it is not true, that’s like busting in Blackjack. You’re dead. Try
something else.

In this case, the inequality turns out to be false. To see why, just plug in
a = b = 1 and c = 0.

Let’s summarize the blackjack analogy. Formally, an inequality proof can
often be written as having a chain of relations

L = A0 ≥ A1 ≥ A2 ≥ · · · ≥ Ak = R.

Each estimate (hit) makes the inequality tighter. So, if you use sharper es-
timates, you are less likely to bust. In particular, equalities will never break
anything, so it is good to do as much exact calculation as possible before
making estimates.

Thus, an inequality might be difficult if it is extremely sharp; these means
that most estimates you try to apply end up busting, and thus you are hindered
by having few feasible options.
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§2.6.3 Tractability
So, why not just always use the sharpest inequalities possible? In the Nesbitt
example, rather than play “let’s guess which Cauchy-Schwarz application will
lead to a solution”, one might argue that one should just expand — there is
no risk of busting if you do this.

This illustrates something strange about competition inequalities. If you
have access to a computer algebra system, then you can try to stick to using
super sharp estimates, or better yet, always use equalities up until the end.

Unfortunately, time and computational power are both precious resources in
an olympiad exam. Therefore, one has to also factor in tractability: whether
the expressions can be manipulated quickly enough to execute a certain solu-
tion during an exam. Nesbitt’s inequality is a small enough example that you
could expand it easily. In practice, inequalities will frequently have longer de-
nominators, square roots, or strange conditions that prevent such brute-force
approaches.

§2.6.4 Sharpness vs. tractability
Sharpness and tractability are the yin and yang of olympiad in-
equalities. When considering different approaches, one is usually weighing
the sharpness of the approach, versus its tractability. Approaches that are
both sharp and tractable should be used, if possible. Barring that, one has to
make more judgment calls.

Usually, I try to do estimates which are not that sharp but extremely
tractable first, because these are the quick to verify. If they work, great;
if not, they shouldn’t take much time, and they give me a better sense of how
sharp the inequality is (by seeing “how far off” the weak estimate is). As time
progresses, I tend to turn the dial up on sharpness and down on tractability.
But it is hard to give a good general rule, since the exact parameters depend
much on the specific problem. As always, experience is the best teacher.

§2.7 Walkthroughs
Problem 18. If abcd = 1 for a, b, c, d > 0, prove that

a4b+ b4c+ c4d+ d4a ≥ a+ b+ c+ d.

Walkthrough. There are two possible solutions I know of, one by Hölder
and one by AM-GM. I find the latter much more natural. (And no, Muirhead
doesn’t apply, because it’s cyclic not symmetric.)

(a) Homogenize the inequality to eliminate the condition (while keeping the
inequality fifth-degree).
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(b) Fill in the blanks in the following AM-GM:

? · a4b+ ? · b4c+ ? · c4d+ ? · d4a ≥ a2bcd.

(c) Cyclically sum to finish.

Depending on how you did this, the number 51 might appear.

Problem 19 (IMO 2001). Let a, b, c be positive reals. Prove that

a√
a2 + 8bc

+
b√

b2 + 8ca
+

c√
c2 + 8ab

≥ 1.

Walkthrough. There are a few ways to set up, but the general idea is to
use Hölder in the form(∑

cyc

a√
a2 + 8bc

)p(∑
cyc

?

)q

≥

(∑
cyc

?

)p+q

for some choice of weights p and q to eliminate the radicals and get a polyno-
mial inequality.

(a) Pick a choice of weights p, q > 0 eliminate the radicals.

(b) Decide on values to fill in the ? above. (You probably want to eliminate
the denominator, i.e. the left sum should be some multiple of a2 + 8bc.)

(c) Try to prove the resulting inequality. Depending on what choices you
made in (a) or (b), this may be relatively easy, or it may be impossible
(because the inequality may not even be true.)

Problem 20 (IMO Shortlist 2009). Let a, b, c be positive real numbers such
that 1

a + 1
b + 1

c = a+ b+ c. Prove that:

1

(2a+ b+ c)2
+

1

(a+ 2b+ c)2
+

1

(a+ b+ 2c)2
≤ 3

16
.

Walkthrough. This is sort of a canonical Jensen problem.
The first step is almost forced upon us.

(a) Homogenize the inequality to eliminate the constraint.

It’s not 100% true that we always want to homogenize right away, although it
is quite often a good start. Sometimes there is some reason not to homogenize.
But this is not the case here. The condition 1

a + 1
b +

1
c = a+ b+ c is not even

tangentially related to the inequality we want to prove, and is in any case an
abomination. So for this problem I think it would be hard to come up for a
reason not to eliminate the constraint.

However, we will immediately turn around and recognize that if we set
a + b + c = 3, we can turn it into a sum of functions. And so we just follow
through:
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(b) De-homogenize the inequality in such a way that one can rewrite the
inequality in the form f(a) + f(b) + f(c) ≤ 0 where a+ b+ c = 3.

(c) Assuming you defined f correctly, show that (up to constant factors,
depending on how you defined f),

f ′′(x) =
96

(x+ 3)4
− 2

x3
.

(d) Prove that f is concave over the interval [0, 3].

(e) Finish by Jensen.

Problem 21 (ELMO Shortlist 2013). Let a, b, c be positive real numbers
with a+ b+ c = 3. Prove that

18

(3− a)(4− a)
+

18

(3− b)(4− b)
+

18

(3− c)(4− c)
+ 2(ab+ bc+ ca) ≥ 15.

Walkthrough. This is a fairly token application of the so-called tangent line
trick.

(a) Rewrite the inequality in the form f(a) + f(b) + f(c) ≥ 6 for some
function f : (0, 3)→ R (where a+ b+ c = 3).

(b) Check that f(1) = 2, so equality holds when a = b = c = 1.

The tangent line trick then leads us to conjecture that

f(x) ≥ f ′(1)(x− 1) + 2

is true for all real numbers x ∈ (0, 3). (Here f ′(1) is the derivative of f at 1.)

(c) Show that the inequality is valid for all real numbers x ∈ (0, 3).

(d) Sum up to finish.

§2.8 Problems
Problem 22 (Canadian Olympiad 2002). Let a, b, c be positive reals. Prove
that

a3

bc
+
b3

ca
+
c3

ab
≥ a+ b+ c.

Problem 23 (USAJMO 2012). For a, b, c > 0 prove that

a3 + 3b3

5a+ b
+
b3 + 3c3

5b+ c
+
c3 + 3a3

5c+ a
≥ 2

3
(a2 + b2 + c2).
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Problem 24 (IMO 2000). Let a, b, c be positive real numbers with abc = 1.
Show that (

a− 1 +
1

b

)(
b− 1 +

1

c

)(
c− 1 +

1

a

)
≤ 1.

Problem 25 (ELMO 2003). Let x, y, z > 1 be real numbers such that

1

x2 − 1
+

1

y2 − 1
+

1

z2 − 1
= 1.

Prove that
1

x+ 1
+

1

y + 1
+

1

z + 1
≤ 1.

Problem 26 (USAMO 2003). Let a, b, c be positive real numbers. Prove
that

(2a+ b+ c)2

2a2 + (b+ c)2
+

(2b+ c+ a)2

2b2 + (c+ a)2
+

(2c+ a+ b)2

2c2 + (a+ b)2
≤ 8.

Problem 27 (USAMO 2017). Find the minimum possible value of

a

b3 + 4
+

b

c3 + 4
+

c

d3 + 4
+

d

a3 + 4

given that a, b, c, d are nonnegative real numbers such that a+ b+ c+ d = 4.

Problem 28 (USAMO 2004). Let a, b, c be positive reals. Prove that

(a5 − a2 + 3)(b5 − b2 + 3)(c5 − c2 + 3) ≥ (a+ b+ c)
3
.

Problem 29 (TSTST 2012). Positive real numbers x, y, z satisfy xyz + xy +
yz + zx = x+ y + z + 1. Prove that

1

3

(√
1 + x2

1 + x
+

√
1 + y2

1 + y
+

√
1 + z2

1 + z

)
≤
(
x+ y + z

3

)5/8

.

Problem 30 (IMO Shortlist 2003). Let n be a positive integer and let (x1, . . . , xn),
(y1, . . . , yn) be two sequences of positive real numbers. Suppose (z2, . . . , z2n)
is a sequence of positive real numbers such that z2i+j ≥ xiyj for all 1 ≤ i, j ≤ n.
Let M = max {z2, . . . , z2n}. Prove that(

M + z2 + z3 + · · ·+ z2n
2n

)2

≥
(
x1 + · · ·+ xn

n

)(
y1 + · · ·+ yn

n

)
.

Problem 31 (ELMO 2013). Let a, b, c be positive reals satisfying a+ b+ c =
7
√
a+ 7
√
b+ 7
√
c. Prove that aabbcc ≥ 1.
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§2.9 Solutions

Solution 18 (None). We present two solutions.

First solution by weighted AM-GM. By AM-GM,

23a4b+ 7b4c+ 11c4d+ 10d4a

51
≥ 51
√
a102b51c51d51 = a2bcd = a.

You could find this solution by searching for weights w, x, y, z with sum 1 for
which w · a4b + x · b4c + y · c4d + z · d4a ≥ a2bcd holds; this amounts to the
system of equations

4w + z = 2

4x+ w = 1

4y + x = 1

4z + y = 1

which when solved gives the weights above.

Second solution by Hölder. By Hölder,(∑
cyc

a4b

)(∑
cyc

a

)(∑
cyc

c

)(∑
cyc

d

)
≥

(∑
cyc

4
√
a4 · abcd

)4

= (a+ b+ c+ d)4.

Thus done.

Solution 19 (IMO 2001). By Holder, we have(∑
cyc

a√
a2 + 8bc

)2(∑
cyc

a(a2 + 8bc)

)
≥ (a+ b+ c)3.

So it suffices to show (a + b + c)3 ≥ a3 + b3 + c3 + 24abc which is clear by
expanding.

Solution 20 (IMO Shortlist 2009). Homogenize to get rid of constraint:

∑
cyc

(
16

(2a+ b+ c)2
− 3

a(a+ b+ c)

)
≤ 0
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To make this a sum of functions, we then de-homogenize with the condition
a+ b+ c = 3; thus we wish to show

∑
cyc

(
16

(a+ 3)2
− 1

a

)
≤ 0 a+ b+ c = 3.

Let f(x) = 16/(x+ 3)2 − 1/x, so f(1) = 0. Then

f ′′(x) =
96

(x+ 3)4
− 2

x3
≤ 0

This is concave for x ∈ [0, 3] since for x in this interval we have (x+3)4−48x3 =
(x− 3)(x3 − 33x2 − 45x− 27) ≥ 0. (In fact f ′′(3) = 0.) Consequently we are
done as

f(a) + f(b) + f(c) ≤ 3f

(
a+ b+ c

3

)
= 3f(1) = 0

by Jensen.

Solution 21 (ELMO Shortlist 2013). Since 2(ab+bc+ca) = (a+b+c)2−
(a2 + b2 + c2) = 9− (a2 + b2 + c2), we can rewrite the given inequality as

∑
cyc

(
18

(3− c)(4− c)
− c2

)
≥ 6.

Using the tangent line trick lets us obtain the magical inequality

18

(3− c)(4− c)
− c2 ≥ c+ 3

2
⇐⇒ c(c− 1)2(2c− 9) ≤ 0

and summing cyclically yields the result.

Solution 22 (Canadian Olympiad 2002). By the AM-GM inequality, we
have

2a3

bc + b3

ca + c3

ab

4
≥ 4

√
a3 · a3 · b3 · c3
bc · bc · ca · ab

= a.

Thus we are done by summing cyclically. Alternatively, one can just quote
Muirhead as the sequence (3,−1,−1) majorizes (1, 0, 0).

Solution 23 (USAJMO 2012). Here are two possible approaches.
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Cauchy-Schwarz approach. Apply Titu lemma to get∑
cyc

a3

5a+ b
=
∑
cyc

a4

5a2 + ab
≥ (a2 + b2 + c2)2∑

cyc(5a
2 + ab)

≥ a2 + b2 + c2

6

where the last step follows from the identity
∑

cyc(5a
2 + ab) ≤ 6(a2 + b2 + c2).

Similarly,∑
cyc

b3

5a+ b
=
∑
cyc

b4

5ab+ b2
≥ (a2 + b2 + c2)2∑

cyc(5ab+ b2)
≥ a2 + b2 + c2

6

using the fact that
∑

cyc 5ab+ b2 ≤ 6(a2 + b2 + c2).
Therefore, adding the first display to three times the second display implies

the result.

Second linearization approach. The main magical claim is:

Claim. We have
a3 + 3b3

5a+ b
≥ 25

36
b2 − 1

36
a2.

Proof. Let x = a/b > 0. The desired inequality is equivalent to

x3 + 3

5x+ 1
≥ 25− x2

36
.

However,

36(x3 + 3)− (5x+ 1)(25− x2) = 41x3 + x2 − 125x+ 83

= (x− 1)2(41x+ 83) ≥ 0.

Sum the claim cyclically to finish.

Remark (Derivation of the main claim). The overall strategy is to hope for
a constant k such that

a3 + 3b3

5a+ b
≥ ka2 +

(
2

3
− k
)
b2.

is true. Letting x = a/b as above and expanding, we need a value k such that
the cubic polynomial

P (x) := (x3+3)−(5x+1)

(
kx2 +

(
2

3
− k
))

= (1−5k)x3−kx2+
(
5k − 10

3

)
x+

(
k +

7

3

)
is nonnegative everywhere. Since P (1) = 0 necessarily, in order for P (1 − ε)
and P (1+ε) to both be nonnegative (for small ε), the polynomial P must have
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a double root at 1, meaning the first derivative P ′(1) = 0 needs to vanish. In
other words, we need

3(1− 5k)− 2k +

(
5k − 10

3

)
= 0.

Solving gives k = −1/36. One then factors out the repeated root (x−1)2 from
the resulting P .

Solution 24 (IMO 2000). Let a = x/y, b = y/z, c = z/x for x, y, z > 0.
Then the inequality rewrites as

(−x+ y + z)(x− y + z)(x+ y − z) ≤ xyz

which when expanded is equivalent to Schur’s inequality. Alternatively, if one
wants to avoid appealing to Schur, then the following argument works:

• At most one term on the left-hand side is negative; if that occurs we are
done from xyz > 0 > (−x+ y + z)(x− y + z)(x+ y − z).

• If all terms in the left-hand side are nonnegative, let us denote m =
−x+ y + z ≥ 0, n = x− y + z ≥ 0, p = x+ y − z ≥ 0. Then it becomes

mnp ≤ (m+ n)(n+ p)(p+m)

8

which follows by AM-GM.

Solution 25 (ELMO 2003). We give two solutions. One is a tricky Cauchy-
Schwarz application, the second is a straightforward Jensen.

First solution (Evan Chen). The key identity is(∑
cyc

1

x2 − 1

)(∑
cyc

x− 1

x+ 1

)
≥

(∑
cyc

1

(x+ 1)

)2

.

which is of course Cauchy-Schwarz. Thus if we denote the sum in question by
S ≥ 0 we then have

1 · (3− 2S) ≥ S2 =⇒ S ≤ 1.
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Second solution by Jensen (Ryan Kim). Let a = 1
x2−1 , so x =

√
1 + 1/a,

et cetera. Then a+ b+ c = 1 and we wish to show∑
cyc

1√
1 + 1

a + 1
≤ 1.

But the function f(x) = 1√
1+ 1

x+1
is concave, and so we are done by Jensen

inequality.

Solution 26 (USAMO 2003). This is a canonical example of tangent line
trick. Homogenize so that a+ b+ c = 3. The desired inequality reads∑

cyc

(a+ 3)2

2a2 + (3− a)2
≤ 8.

This follows from

f(x) =
(x+ 3)2

2x2 + (3− x)2
≤ 1

3
(4x+ 4)

which can be checked as 1
3 (4x+4)(2x2+(3−x)2)−(x+3)2 = (x−1)2(4x+3) ≥ 0.

Solution 27 (USAMO 2017). The minimum 2
3 is achieved at (a, b, c, d) =

(2, 2, 0, 0) and cyclic permutations.
The problem is an application of the tangent line trick: we observe the

miraculous identity
1

b3 + 4
≥ 1

4
− b

12

since 12− (3− b)(b3 + 4) = b(b+ 1)(b− 2)2 ≥ 0. Moreover,

ab+ bc+ cd+ da = (a+ c)(b+ d) ≤
(
(a+ c) + (b+ d)

2

)2

= 4.

Thus ∑
cyc

a

b3 + 4
≥ a+ b+ c+ d

4
− ab+ bc+ cd+ da

12
≥ 1− 1

3
=

2

3
.

Remark. The main interesting bit is the equality at (a, b, c, d) = (2, 2, 0, 0).
This is the main motivation for trying tangent line trick, since a lower bound
of the form

∑
a(1− λb) preserves the unusual equality case above. Thus one

takes the tangent at b = 2 which miraculously passes through the point (0, 1/4)
as well.
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Solution 28 (USAMO 2004). Observe that for all real numbers a, the
inequality

a5 − a2 + 3 ≥ a3 + 2

holds. Then the problem follows by Hölder in the form

(a3 + 1 + 1)(1 + b3 + 1)(1 + 1 + c3) ≥ (a+ b+ c)3.

Solution 29 (TSTST 2012). The key is the identity

x2 + 1

x+ 1
=

(x2 + 1)(y + 1)(z + 1)

(x+ 1)(y + 1)(z + 1)

=
x(xyz + xy + xz) + x2 + yz + y + z + 1

2(1 + x+ y + z)

=
x(x+ y + z + 1− yz) + x2 + yz + y + z + 1

2(1 + x+ y + z)

=
(x+ y)(x+ z) + x2 + (x− xyz + y + z + 1)

2(1 + x+ y + z)

=
2(x+ y)(x+ z)

2(1 + x+ y + z)

=
(x+ y)(x+ z)

1 + x+ y + z
.

Remark. The “trick” can be rephrased as (x2 + 1)(y + 1)(z + 1) = 2(x +
y)(x+ z).

After this, straight Cauchy in the obvious way will do it (reducing everything
to an inequality in s = x+ y + z). One writes

(∑
cyc

√
(x+ y)(x+ z)√

1 + s

)2

≤

(∑
cyc x+ y

)(∑
cyc x+ z

)
1 + s

=
4s2

1 + s

and so it suffices to check that 4s2

1+s ≤ 9(s/3)5/4, which is true because

(s/3)5 · 94 · (1 + s)4 − (4s2)4 = s5(s− 3)2(27s2 + 14s+ 3) ≥ 0.
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Solution 30 (IMO Shortlist 2003). For the record, this problem seems
to be very difficult, but here’s the very nice solution. We’ll assume zk are as
small as possible.

The first step is to scale such that

max {x1, . . . , xn} = max {y1, . . . , yn} = 1 =⇒ M = 1.

Here is an example picture, with M and zk bolded (the xi are columns,
the yj are rows, hence the diagonals correspond to fixing i + j and zk =
maxi+j=k xiyj).

M = 1 0.81 1.00 0.49 0.16
1.00 0.90 1.00 0.70 0.40
0.36 0.54 0.60 0.42 0.24
0.64 0.72 0.80 0.56 0.32
0.25 0.45 0.50 0.35 0.20

After this we claim that:

Claim. We have

M + z2 + z3 + · · ·+ z2n ≥ x1 + · · ·+ xn + y1 + · · ·+ yn

In fact, one can bijectively pair each of the 2n terms on the right-hand side to
a term on the left-hand side exceeding it.

Proof. Enough to prove that for a given 0 ≤ r ≤ 1, at least as many terms at
least r on the left-hand side compared to the right-hand side. To this end, let

I = {i | xi ≥ r}
J = {j | yj ≥ r} .

Thus the right-hand side has |I| + |J | terms exceeding r. But the left-hand
side has at least 1+ |I + J | (the 1 coming from M = 1). From the well-known
fact that

|I + J | ≥ |I|+ |J | − 1

for sets I and J , we are done.

Solution 31 (ELMO 2013). This problem admits several approaches; here
are a few.

First solution (original). By weighted AM-GM we have that

1 =
∑
cyc

(
7
√
a

a+ b+ c

)
=
∑
cyc

(
a

a+ b+ c
· 1

7
√
a6

)
≥
(

1

aabbcc

) 6/7
a+b+c

.

Rearranging yields aabbcc ≥ 1.
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Second solution (chronodecay). From et ≥ 1 + t for t = log x−
6
7 , we find

6

7
log x ≥ 1− x− 6

7 .

Thus
6

7

∑
cyc

a log a ≥
∑
cyc

a− a 1
7 = 0.
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3 Functional Equations
This chapter is concerned with functional equations, which typically ask you

to find all functions satisfying a certain property. For many problems, there is
an obvious solution that works, but the main difficulty is to prove that those
are all solutions.

§3.1 Definitions
I need to define a function first.
Definition 3.1. LetX and Y be sets. A function f : X → Y is an assignment
of a value in Y for each x ∈ X; we denote this value f(x) ∈ Y .

§3.1.1 On the generality of functions
Beginners are often surprised how general this definition is. Here are some
examples of functions f : R→ R.

f(x) = bxc
f(x) = exp(sin(x))

f(x) =

{
1 x ∈ Z
0 x /∈ Z

f(x) =

{
1/q x = p/q in lowest terms
0 x /∈ Q

f(x) = number of sloths with age ≤ x.
and so on. There’s also no restriction on “closed forms”: In particular,

• A function need not be a polynomial.

• A function need not be increasing.

• A function need not be continuous.

• A function need not be differentiable.

• The graph of the function need not be well behaved.
Exercise (For experts). Show that there are infinitely many functions which
cannot be expressed in LATEX in any way.

Essentially, anything that can’t be proved using manipulations in some way
is likely wrong. Any argument that appeals to pictures or graphs for proofs is
definitely wrong (helpful as they may be for intuition).
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§3.1.2 Special types of functions
In solving functional equations, the following adjectives are convenient.

Definition 3.2. A function f : X → Y is injective if it is “one-to-one” in the
following sense: if f(x) = f(x′) then x = x′. In other words, for any y ∈ Y ,
there is at most one x ∈ X such that f(x) = y.

Definition 3.3. A function f : X → Y is surjective if it is “onto” in the
following sense: for any y ∈ Y there is at least one x ∈ X such that f(x) = y.

Definition 3.4. A function f : X → Y is bijective if it is both injective and
surjective. In other words, for each y ∈ Y , there is exactly one x ∈ X such
that f(x) = y.

Here are some examples.

• There’s a function from living humans to Z≥0 by taking every human to
their age in years (rounded to the nearest integer). This function is not
injective, because for example there are many people with age 20. This
function is also not surjective: no one has age 10000.

• There’s also a function taking every American citizen to their social
security number (SSN), which we view as a function from citizens to
Z≥0. This is also not surjective (no one has SSN equal to 3), but at least
it is injective (no two people have the same SSN).

Here is a common situation in which you get such hypotheses.

Definition 3.5. A function f : X → X is called an involution if f(f(x)) = x
for every x ∈ X.

Lemma 3.6. If f : X → X is an involution, then f is a bijection.

Proof. To see f is injective, note that if f(a) = f(b) then a = f(f(a)) =
f(f(b)) = b. And f is clearly surjective, since it maps f(a) to a for each a.

If you have never seen these concepts before, don’t worry about them yet;
it will become clear with examples why these are useful notions.

§3.2 First example
For concreteness, let me start off with a standard example, that shows a lot
of the types of things that often come up in these sorts of problems.

Example 32 (Kyrgyzstan Olympiad 2012). Find all functions f : R→ R such
that

f(f(x)2 + f(y)) = xf(x) + y

for all x, y ∈ R.
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Before I begin solving the problem, I want to make two initial remarks on
“finding the answer”, which apply to nearly every problem.

Guessing the answer Clearly, f(x) = +x works. But there’s actually a second
solution: f(x) = −x. In general, a “garden-variety” functional equation
will have f(x) = x as a solution, but sometimes also f(x) = 0, f(x) = kx,
f(x) = x+ c, or even f(x) = kx+ c. So therefore, I recommend at the
start of every problem that you start by seeing which linear
functions work, and to just keep these in your head.

(If it is not too much trouble, try also checking degree n polynomials in
general. This is often easier than it seems, since degrees usually end up
not matching except for finitely many n.)

For this problem, it looks like f(x) = ±x is a solution, so we just need
to keep in mind that we need to allow for this case.1

Verifying it Officially, every functional equation is a two-directional problem
(as warned in Section 1.1.1.) If we think the answer is f(x) = ±x, then
we need to check that these do indeed work, and more importantly prove
they are the only solutions.

Solution 32. We claim the answers are f(x) = ±x. Obviously they work, so
we will now prove they are the only ones.

Well, one can simply start off by plugging stuff in, and grabbing whatever
low-hanging fruit we can. Usually, the first thing I try is setting all zeros; this
is often helpful, and in general your first attempts should try to make a lot of
terms vanish. When we do this here, we get

f(f(0)2 + f(0)) = 0.

The inner term is pretty messy, but let me for now just denote it u, i.e. we
have some u such that f(u) = 0. This is still useful, because we can use it to
make things disappear! By plugging in x = u we obtain that

f(f(y)) = y

and so f is an involution; hence a bijection by Theorem 3.6.
Of course, this is not all it gives us. In the given equation, we can now put

x = f(t) in order to replace all the f(x)’s with f(f(t)) = t’s (thus paradoxically
we’re decreasing the number of nested terms by adding an extra f into the

1In general, the set of solutions you find also motivates which claims may be helpful to
prove. For example, if f(x) = x and f(x) = 2− x then you can’t hope to prove f(0) = 0
or f(xy) = f(x)f(y). But maybe we can getf(1) = 1?
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given!). This gives us:

f(f(x)2 + f(y)) = xf(x) + y given
f(f(f(t))2 + f(y)) = (f(t))f(f(t)) + y put x = f(t)

f(t2 + f(y)) = f(t) · t+ y since f(f(t)) = t

= f(f(t)2 + f(y)) by given.

We arrive at the conclusion that

f(t2 + f(y)) = f(f(t)2 + f(y)).

But since f is injective, we can now conclude that

t2 + f(y) = f(t)2 + f(y) =⇒ f(t)2 = t2

for every t!
There’s still a little more to go, even though this looks like almost what we

want — this is the so-called pointwise trap. If we are careful, we find that
the statement we have proved is

f(t) ∈ {−t, t} for every t.

This is different from our claim that f is one of the two linear functions we
noticed! There are infinitely many other functions still in contention, like
f(t) = |t|. The issue is that f(t) might change signs as t varies. (Ankan Bhat-
tacharya has the following to say: if a person is either happy or unhappy at any
particular time, does that mean they are always happy or always unhappy?)

So, we need to rule out these unruly functions. This turns out to not be so
hard. Suppose that f(a) = +a and f(b) = −b for now, for some nonzero a
and b. Substituting these into the given (for x and y) gives that

f(a2 − b) = a2 + b.

The left-hand side should either equal a2−b or b−a2. However these then give
b = 0 and a = 0, respectively. This contradiction completes the proof. �

§3.3 Second example (or non-example)
Our second example is a USAJMO problem, for which we begin by presenting
solutions that don’t work, illustrating some of the pitfalls earlier.

Example 33 (USAJMO 2015). Find all functions f : Q→ Q such that

f(x) + f(t) = f(y) + f(z)

for all rational numbers x < y < z < t that form an arithmetic progression.
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Bogus Solution. Let f(x) = a0 + a1x+ · · ·+ anx
n. Then…

This is an instant zero. You can’t assume f is a polynomial.

Bogus Solution. Let d be the common difference of the arithmetic pro-
gressions; then the given rearranges to

f(x+ 3d)− f(x+ 2d) = f(x+ d)− f(x)

so the function has constant slope. Thus it is linear.

This doesn’t make sense since one can’t talk about slopes of nonlinear func-
tions. You might try to use a derivative instead, but one does not know that
f is differentiable. Basically, any solution of this shape is not going to work.

Bogus Solution. Define g(x) = f(x+ 1)− f(x). Then from the givens,

f(x) + f(x+ 3) = f(x+ 1) + f(x+ 2) =⇒ g(x+ 2) = g(x)

so g is constant. Thus, f(x+ 1)− f(x) = c for some constant c. Thus f
is linear.

There is no reason that g(x) = g(x + 2) means g is constant: for example,
consider g(x) = {x} the fractional part of x. Similarly, there is no reason
f(x+ 1)− f(x) = c implies linear; consider f(x) = bxc.

Bogus Solution. Note that for positive rational numbers a, d > 0 we have

f(a) + f(a+ 3d) = f(a+ d) + f(a+ 2d)

f(a− d) + f(a+ 2d) = f(a) + f(a+ d)

=⇒ f(a− d) + f(a+ 3d) = 2f(a+ d).

This is enough to imply

f(x) + f(y) = 2f

(
x+ y

2

)
for distinct rational numbers x and y; but clearly this holds when x = y
and so the relation holds whenever x < y.

This shows that given two points on the graph of f , the midpoint also
lies on the graph. This implies f is linear.

The first paragraph is correct (and the right way to start), but the part about
the graph of f doesn’t make sense. The graphs of functions can be arbitrarily
weird; they don’t need to be continuous in any way. In general, I’ve never
heard of any reasonable way to make “graphical” arguments work. It might
help to just never try to use them.
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We now give a correct solution, but only for contrast with the preceding
solution. We present it temporarily, with no motivation, since the correct
motivation will come from later results. Thus it may make sense to not read
the following solution, but merely to look at it and convince yourself that you
could read it if you wanted to.

Solution 33. Let d > 0 be a positive integer, and let n be an integer. Consider
the two equations

f

(
2n− 1

2d

)
+ f

(
2n+ 2

2d

)
= f

(
2n

2d

)
+ f

(
2n+ 1

2d

)
f

(
2n− 2

2d

)
+ f

(
2n+ 1

2d

)
= f

(
2n− 1

2d

)
+ f

(
2n

2d

)
Summing them and simplifying implies that

f

(
n− 1

d

)
+ f

(
n+ 1

d

)
= 2f

(n
d

)
or equivalently f

(
n
d

)
− f

(
n−1
d

)
= f

(
n+1
d

)
− f

(
n
d

)
. This implies that on the

set of rational numbers with denominator dividing d, the function f is linear.
In particular, we should have f

(
n
d

)
= f(0) + n

d (f(1) − f(0)) since n
d , 0,

1 have denominators dividing d. This is the same as saying f(q) = f(0) +
q(f(1)− f(0)) for any q ∈ Q, which is what we wanted to prove. �

§3.4 Four techniques for motivating substitutions
As you saw from the first example, a lot of functional equations involve ex-
tensive substitutions, which can seem almost random at first glance. In fact,
many substitutions are simply the result of extensive trial and error.

Nonetheless, there is some method to this madness. For example, one heuris-
tic might be to make substitutions which cause any many terms to vanish as
possible. In this section we present four less obvious techniques which can help
with finding the correct substitutions.

§3.4.1 Forced cancellation
This is best done by example; the following one was invented by David Yang.

Example 34. Find all functions f : R→ R such that

f(x2 + y) = f(x27 + 2y) + f(x4)

for all x, y ∈ R.
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Solution 34. For this problem, we claim the only answer is the constant
function f = 0, which evidently works. As usual our first move is to take the
all-zero setting, which gives f(0) = 0.

Now, let’s step back: can we do anything that will make lots of terms go
away? There’s actually a very artificial choice that will do wonders. It is
motivated by the following battle cry:

“DURR WE WANT STUFF TO CANCEL.”

So we do the most blithely stupid thing possible. See that x2 + y and x27 +2y
up there? Let’s make them equal in the rudest way possible:

x2 + y = x27 + 2y ⇐⇒ y = x2 − x27.

Plugging in this choice of y, this gives us f(x4) = 0, so f is zero on all
nonnegatives.

All that remains is to get f zero on all reals. The easiest way to do this is
put y = 0 since this won’t hurt the already positive x2 and x4 terms there. �

This is a common trick: see if you can make a substitution that will kill off
two terms. We will see this technique in Problem 41.

§3.4.2 The fff trick
The situation f(f(x)) = x is great. However, sometimes we will run into
problems where f(f(x)) might be something else. In this case, considering
f(f(f(x))) in two different ways can often be helpful. Here is an artificial
example showing the technique; Problem 41 will give another example.

Example 35. Find all strictly increasing functions f : Z → Z such that
f(f(x)) = x+ 2 for all integers x.

Solution 35. The answer is f(x) = x+ 1 only, which obviously works.
We now consider f(f(f(x))) in two ways.

• On the one hand, it should be equal to f(x+ 2), by replacing two inner
f ’s to the statement.

• On the other hand, by replacing x with f(x) in the given, we should also
have f(f(f(x))) = f(x) + 2.

In summary,
f(x+ 2) = f(f(f(x))) = f(x) + 2.

We are now essentially done. Indeed, f(x) < f(x+1) < f(x+2) = f(x)+2
and all three expressions must be integers, so this can only occur if f(x+1) =
f(x) + 1. In other words, f(x) = x+ f(0) for all integers x. Finally, checking
we find that only f(x) = x+ 1 works. �
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§3.4.3 Symmetry
If significant parts of your functional equation are symmetric with respect to x
and y, then swapping x and y can yield good information. Here is an artificial
example.
Example 36. Find all functions f : R→ R such that

xf(x) + y2 + f(xy) = f(x+ y)2 − f(x)f(y).

for all real numbers x and y.

Solution 36. The answer is f(x) = x only, which works.
To prove that is all, we compare the result of swapping x and y:

xf(x) + y2 + f(xy) = f(x+ y)2 − f(x)f(y)
yf(y) + x2 + f(xy) = f(x+ y)2 − f(x)f(y).

Subtracting the two now gives xf(x)+y2 = yf(y)+x2, or equivalently xf(x)−
x2 = yf(y) − y2. Thus xf(x) − x2 is equal to some fixed constant c. Taking
x = 0 we get c = 0. Thus xf(x) = x2 and so f(x) = x for every x 6= 0.

Finally, put x = y = 0 in the original given to get f(0) = 0 as well. �

§3.4.4 Isolated parts
Sometimes, a variable is “isolated” in such a way that you can read off injec-
tivity or surjectivity.

For injectivity, one can for example try to express y as a function of f(y),
no matter how ugly. For example, suppose f is a nonzero function satisfying
the ugly condition

f(x+ 2xf(y)2) = yf(x) + f(f(y) + 1).

Fix any value x0 such that f(x0) 6= 0. Then one can write

y =
f(x0 + 2x0f(y)

2)− f(f(y) + 1)

f(x0)
.

Observe that the right-hand side, as hideous as it is, is determined by the
value of f(y). In other words, given the value of f(y) we can find y. This is
just saying that f is injective.

Proving surjectivity can often be done in similar spirit. For example, suppose
we have an equation like

f(f(y) + x3f(x)) = y + f(x2)2.

Again fix some value of x. Then varying y, the right-hand side takes all real
values, while the left-hand side is of the form f(something). Thus we conclude
right away that f is surjective!

Incidentally, both techniques work well in the given equation of Example 32,
so feel free to try it out!
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§3.5 Cauchy’s equation
One common situation that arises is the functional equation f(x+y) = f(x)+
f(y). This entire section is dedicated to the study of this equation.

§3.5.1 Cauchy’s equation over Q
We begin with the case where the function is Q → Q. We highly encourage
the reader to try these examples on their own before reading the solutions;
they are good practice problems!

Example 37 (Cauchy’s functional equation over Q). Find all functions f : Q→
Q satisfying

f(x+ y) = f(x) + f(y)

for all x, y ∈ Q.

Solution 37. As before we begin by examining which functions we think the
answers are. Trying out the most general f(x) = kx + c, we find that c = 0
but k can be anything. So our guess is that the answer is f(x) = kx.

We now prove this guess is right. First of all, all such functions clearly work.
Now, to prove the reverse, observe we have “one degree of freedom”: the

family of solutions has a free variable. So it makes sense to set, say, k = f(1)
and try to solve everything else in terms of k.

We begin now by setting x = y = 0 to derive f(0) = 0. Then, we can put
x = 1, y = 1 to get f(2) = f(1) + f(1) = 2k. Now, (x, y) = (2, 1) gives
f(3) = 3k, and so on, so by induction we get f(n) = kn for any integer n ≥ 1.

What about the negative integers? Well, by putting x = −y we get f(x) +
f(−x) = 0, and so in fact f is odd. Thus the result f(n) = kn holds for the
negative integers.

We’re still stuck with the problem of getting all of Q. As a thought experi-
ment, let’s see what we can do to get f( 12 ). We have that

f

(
1

2

)
+ f

(
1

2

)
= f(1) = k

whence f( 12 ) =
1
2k. And now the path is clear for general p/q: we have

f(p/q) + · · ·+ f(p/q)︸ ︷︷ ︸
q

= f(p) = kp

and hence f(p/q) = k · p/q. Thus, we conclude that f(x) = kx for all x. �

Remark 3.7. Notice how the choice of Q as domain is critical: this all works
out because we are able to do induction in order to get the function f over Z
inputs, and then over Q. This fails if f : R→ R, as the next section shows.

In contrast, the choice of codomain is irrelevant, we run into no problem if
we repeat this proof for f : Q→ R.
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Example 38 (Jensen’s functional equation over Q). Find all functions f : Q→
Q satisfying

f(x) + f(y) = 2f

(
x+ y

2

)
.

for all x, y ∈ Q.

Solution 38. This time, our preliminary checks reveal that f(x) = kx + c
works for any k and c.2 We prove these are the only solutions.

So now we do the following trick: we can shift the function f by c without
changing the function. To be clear, this means that we rewrite the given as

(f(x)− f(0)) + (f(y)− f(0)) = 2

(
f

(
x+ y

2

)
− f(0)

)
.

If we now let g(x) = f(x)− f(0), then we derive

g(x) + g(y) = 2g

(
x+ y

2

)
so this is the same functional equation; but now, we know g(0) = 0.

So, setting (x, y) = (t, 0) gives g(t) = 2g(t/2). We might try the same trick
as before with Cauchy, say setting (x, y) = (1, 2) to get

g(1) + g(2) = 2g(3/2)

which seems non-useful until we remember we have g(t) = 2g(t/2). Indeed,
the given functional equation can be rewritten as

g(x) + g(y) = 2g

(
x+ y

2

)
= g (x+ y)

with t = x+ y. So g is Cauchy!
Therefore, g must be linear, and so f must be linear too. �

We now remark that the earlier equation

f

(
n− 1

d

)
+ f

(
n+ 1

d

)
= 2f

(n
d

)
which we used in our solution to USAJMO 2015/4 is more or less the same
as the preceding example, if we drop the constraint that n and d are integers
(and allow them to be any positive rational numbers).

(Sidenote: Beginners should not worry about remembering the name or
statement of Example 38; the name is only included for completeness.)

2In a vague sense, the fact that c is free to vary is manifested in the fact that plugging in
all zeros yields the tautology 0 = 0.
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§3.5.2 Cauchy’s equation over R
As I alluded to earlier, the situation becomes very different if we replace Q by
R, since induction is no longer valid. Actually, over R, we get new pathological
(or just “bad”) solutions to Cauchy’s equation that weren’t there before. Such
functions are discussed more carefully in the next chapter.

In general, however, if you end up with Cauchy’s Functional Equation, then
often a judicious use of some other known equation will work. The relation
f(x+y) = f(x)+f(y) is very powerful, and usually just using the multiplicative
structure a little bit will get you what you need.

One common criteria is the following theorem (which we will not prove).

Theorem 3.8 (Cauchy + Continuous =⇒ Linear). Suppose f : R → R
satisfies f(x+ y) = f(x) + f(y). Then f(qx) = qf(x) for any q ∈ Q.

Moreover, f is linear if any of the following are true:

• f is continuous in any interval.

• f is bounded (either above or below) in any nontrivial interval.

• There exists (a, b) and ε > 0 such that (x − a)2 + (f(x) − b)2 > ε for
every x (i.e. the graph of f omits some disk, however small).

Here’s an example of how it can be used.

Example 39. Find all functions f : R → R such that for any x, y ∈ R, we
have both f(x+ y) = f(x) + f(y) and f(xy) = f(x)f(y).

Solution 39. We claim f(x) = x and f(x) = 0 are the only solutions (which
both work). According to the theorem, to prove f is linear it suffices to show
f is nonnegative over some nontrivial interval. Now,

f(t2) = f(t)2 ≥ 0

for any t, meaning f is bounded below on [0,∞) and so we conclude f(x) = cx
for some c. Then cxy = (cx)(cy) implies c ∈ {0, 1}, as claimed. �

In general, as far as olympiad contexts, the most common ways to get from
additive to linear are:

• Being able to prove bounded conditions (such as f ≥ 0), or

• The problem gives you that the function f is continuous3, inviting you
to quote the above theorem.

3It is extremely rare that you need to prove continuity yourself; in fact I personally cannot
think of any examples off-hand.
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§3.6 Walkthroughs
Problem 40 (USAMO 2002). Determine all functions f : R→ R such that

f(x2 − y2) = xf(x)− yf(y)

for all pairs of real numbers x and y.

Walkthrough. This is a classic example of getting down to a Cauchy equa-
tion, and then pushing just a little harder.

(a) Find all linear solutions and show there are no higher-degree polynomial
ones.

(b) Show that f is odd and hence f(0) = 0.

(c) Show that f is additive and f(x2) = xf(x).

(d) Optionally: prove that the problem statement is equivalent to the rela-
tions in (c). Hence we can more or less ignore the given equation now.

(e) Prove that f is linear, by inserting x = a+ b into f(x2) = xf(x).

Problem 41 (IMO 2017). Solve over R the functional equation

f (f(x)f(y)) + f(x+ y) = f(xy).

Walkthrough. This problem is sort of divided into two parts. One is the
“standard” part, which is not easy per se, but which experienced contestants
won’t find surprising. However, the argument in the final part is quite nice
and conceptual, and much less run-of-the-mill.

We begin with some standard plug/chug.

(a) Find all three linear solutions and convince yourself there are no other
polynomial solutions.

(b) Check that if f is a solution, then so is −f .

(c) Show there exists z such that f(z) = 0. (We’ll find the exact value later;
for now just show it exists.)

(d) Show that if f(0) = 0 then f ≡ 0. So we henceforth assume f(0) 6= 0.

(e) Using the cancellation trick, prove that if f(z) = 0 (and f(0) 6= 0) for
some z, then z = 1. Then show that f(0) = ±1.

From (b) and (e), we assume f(0) = 1, f(1) = 0 in what follows, and will try
to show f(x) ≡ 1− x. This lets us plug in some more stuff.

(f) Show that f(x+ 1) = f(x)− 1 and compute f on all integer values.
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(g) Show that f(f(x)) = 1 − f(x). Thus if f was surjective we would be
done. However, this seems hard to arrange, since the original equation
has everything wrapped in f ’s.

(h) Using the triple involution trick, prove that f(1− f(x)) = f(x). Thus if
f was injective, we would also be done.

So we will now prove f is injective: this is the nice part. Assume f(a) = f(b);
we will try to prove a = b.

(i) Show that if N is a sufficiently large integer, then we can find x and
y such that x + y = a + N and xy = b + N . Use this to prove that
f(f(x)f(y)) = 0 for that pair (x, y) and hence thus f(x)f(y) = 1.

(j) The previous part shows us how we might think about using the can-
cellation trick. However, it is basically useless since f(x)f(y) = 1 is not
really a useful condition.

However, modify the approach of (i) so that instead the conclusion ends
up as f(x)f(y) = 0 instead. Deduce that 1 ∈ {x, y} in that case.

(k) Using the argument in (j) prove that a = b.

Some historical lore about this problem: this was shortlisted as A6, and in
my opinion too hard for the P2 position, despite being nice for a functional
equation. Most countries did poorly, with USA and China having only two
solves, but the Korean team had an incredibly high five solves. However, an
unreasonably generous 4 points was awarded for progress up to part (h), thus
cancelling a lot of the advantage from the Korean team. Thus I was relieved
that the Korean team still finished first.

Problem 42 (USAMO 2018). Find all functions f : (0,∞) → (0,∞) such
that

f

(
x+

1

y

)
+ f

(
y +

1

z

)
+ f

(
z +

1

x

)
= 1

for all x, y, z > 0 with xyz = 1.

Walkthrough. This is long and technical, but easier than its length might
make it appear.

(a) Eliminate the condition xyz = 1 by writing x = a/b and so on. (This
shouldn’t involve any cube roots or high degrees. You’ll see a+b

c appear
if you do this right.)

(b) Guess a nonconstant solution after this substitution.

(c) Using your answer to (b), find a family of solutions.
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(d) By making substitutions, reduce the problem to solving the functional
equation

g(a) + g(b) + g(c) = 1 ∀a+ b+ c = 1

for g : (0, 1)→ (0, 1).

At this point, your intuition should be that this feels like Jensen’s functional
equation, and a priori any additive function should work. The good news is
that this is where the condition g ≥ 0 gets used: you also know that any addi-
tive function which is bounded works. So, we’ll need a carefully choreographed
ballet of manipulations in order to get to the point we want.

(e) Show that g satisfies Jensen’s functional equation over the interval (0, 1/2).

We define h : [0, 1]→ R by

h(t) = g

(
2t+ 1

8

)
− (1− t)g(1/8)− tg(3/8).

This function mimics g across [1/8, 3/8].

(f) Show that h(0) = h(1) = h(1/2) = 0.

(g) Prove that h can be extended “modulo 1” to a function h̃ : R→ R. (You
may need h(1/2) = 0 for this.)

(h) Prove that h̃ satisfies Jensen’s functional equation over all of R and
deduce that h̃ is additive.

(i) Conclude that h is zero everywhere, and hence g is linear over [1/8, 3/8].

We write g(x) = kx + ` for x ∈ [1/8, 3/8] where k, ` are constants. Now to
carry this back:

(j) Use (e) to prove that g(x) = kx+ ` over [0, 1/8].

(k) Prove that k + 3` = 1.

(l) Use (d) to show that g(x) = kx+ ` over [3/8, 1].

(m) Find the range of acceptable values of k, and write down the final answer.

§3.7 Problems
Problem 43 (IMO 2008). Find all functions f from the positive reals to the
positive reals such that

f(w)2 + f(x)2

f(y2) + f(z2)
=
w2 + x2

y2 + z2

for all positive real numbers w, x, y, z satisfying wx = yz.
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Problem 44 (IMO 2010). Find all functions f : R → R such that for all
x, y ∈ R,

f(bxc y) = f(x) bf(y)c .

Problem 45 (IMO 2009). Find all functions f : Z>0 → Z>0 such that for
positive integers a and b, the numbers

a, f(b), f(b+ f(a)− 1)

are the sides of a non-degenerate triangle.

Problem 46 (USAMO 2000). Call a real-valued function f very convex if

f(x) + f(y)

2
≥ f

(
x+ y

2

)
+ |x− y|

holds for all real numbers x and y. Prove that no very convex function exists.

Problem 47 (IMO Shortlist 2015). Determine all functions f : Z → Z with
the property that

f(x− f(y)) = f(f(x))− f(y)− 1

holds for all x, y ∈ Z.

Problem 48 (ELMO 2014). Find all triples (f, g, h) of injective functions
from the set of real numbers to itself satisfying

f(x+ f(y)) = g(x) + h(y)

g(x+ g(y)) = h(x) + f(y)

h(x+ h(y)) = f(x) + g(y)

for all real numbers x and y.

Problem 49 (IMO Shortlist 2016). Find all functions f : (0,∞) → (0,∞)
such that for any x, y ∈ (0,∞),

xf(x2)f(f(y)) + f(yf(x)) = f(xy)
(
f(f(x2)) + f(f(y2))

)
.

Problem 50 (ELMO Shortlist 2013). Find all f : R → R such that for all
x, y ∈ R,

f(x) + f(y) = f(x+ y) and f(x2013) = f(x)2013.

Problem 51 (TSTST 2013). Let N be the set of positive integers. Find all
functions f : N→ N that satisfy the equation

fabc−a(abc) + fabc−b(abc) + fabc−c(abc) = a+ b+ c

for all a, b, c ≥ 2. (Here fk means f applied k times.)
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§3.8 Solutions

Solution 40 (USAMO 2002). The answer is f(x) = cx, c ∈ R (these
obviously work).

First, by putting x = 0 and y = 0 respectively we have

f(x2) = xf(x) and f(−y2) = −yf(y).

From this we deduce that f is odd, in particular f(0) = 0. Then, we can
rewrite the given as f(x2 − y2) + f(y2) = f(x2). Combined with the fact that
f is odd, we deduce that f is additive (i.e. f(a+ b) = f(a) + f(b)).

Remark (Philosophy). At this point we have f(x2) ≡ xf(x) and f additive,
and everything we have including the given equation is a direct corollary of
these two. So it makes sense to only focus on these two conditions.

Then

f((x+ 1)2) = (x+ 1)f(x+ 1)

=⇒ f(x2) + 2f(x) + f(1) = (x+ 1)f(x) + (x+ 1)f(1)

which readily gives f(x) = f(1)x.

Solution 41 (IMO 2017). The only solutions are f(x) = 0, f(x) = x − 1
and f(x) = 1− x, which clearly work.

Note that

• If f is a solution, so is −f .

• Moreover, if f(0) = 0 then setting y = 0 gives f ≡ 0. So henceforth we
assume f(0) > 0.

Claim. We have f(z) = 0 ⇐⇒ z = 1. Also, f(0) = 1 and f(1) = 0.

Proof. For the forwards direction, if f(z) = 0 and z 6= 1 one may put (x, y) =(
z, z(z − 1)−1

)
(so that x+ y = xy) we deduce f(0) = 0 which is a contradic-

tion.
For the reverse, f(f(0)2) = 0 by setting x = y = 0, and use the previous

part. We also conclude f(1) = 0, f(0) = 1.

Claim. If f is injective, we are done.

Proof. Setting y = 0 in the original equation gives f(f(x)) = 1 − f(x). We
apply this three times on the expression f3(x):

f(1− f(x)) = f(f(f(x))) = 1− f(f(x)) = f(x).

Hence 1− f(x) = x or f(x) = 1− x.
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Remark. The result f(f(x)) + f(x) = 1 also implies that surjectivity would
solve the problem.

Claim. f is injective.

Proof. Setting y = 1 in the original equation gives f(x + 1) = f(x) − 1, and
by induction

f(x+ n) = f(x)− n. (3.1)

Assume now f(a) = f(b). By using (3.1) we may shift a and b to be large
enough that we may find x and y obeying x+ y = a+1, xy = b. Setting these
gives

f(f(x)f(y)) = f(xy)− f(x+ y) = f(b)− f(a+ 1)

= f(b) + 1− f(a) = 1

from which we conclude

f (f(x)f(y) + 1) = 0.

Hence by the first claim we have f(x)f(y)+ 1 = 1, so f(x)f(y) = 0. Applying
the first claim again gives 1 ∈ {x, y}. But that implies a = b.

Remark. Jessica Wan points out that for any a 6= b, at least one of a2 >
4(b− 1) and b2 > 4(a− 1) is true. So shifting via (3.1) is actually unnecessary
for this proof.

Remark. One can solve the problem over Q using only (3.1) and the easy
parts. Indeed, that already implies f(n) = 1− n for all n. Now we induct to
show f(p/q) = 1 − p/q for all 0 < p < q (on q). By choosing x = 1 + p/q,
y = 1 + q/p, we cause xy = x+ y, and hence 0 = f (f(1 + p/q)f(1 + q/p)) or
1 = f(1 + p/q)f(1 + q/p).

By induction we compute f(1+ q/p) and this gives f(p/q+1) = f(p/q)−1.

Solution 42 (USAMO 2018). The main part of the problem is to show
all solutions are linear. As always, let x = b/c, y = c/a, z = a/b (classical
inequality trick). Then the problem becomes∑

cyc
f

(
b+ c

a

)
= 1.

Let f(t) = g( 1
t+1 ), equivalently g(s) = f(1/s − 1). Thus g : (0, 1) → (0, 1)

which satisfies
∑

cyc g
(

a
a+b+c

)
= 1, or equivalently

g(a) + g(b) + g(c) = 1 ∀a+ b+ c = 1.
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The rest of the solution is dedicated to solving this equivalent functional
equation in g. It is a lot of technical details and I will only outline them (with
apologies to the contestants who didn’t have that luxury).

Claim. The function g is linear.

Proof. This takes several steps, all of which are technical. We begin by proving
g is linear over [1/8, 3/8].

• First, whenever a+ b ≤ 1 we have

1− g(1− (a+ b)) = g(a) + g(b) = 2g

(
a+ b

2

)
.

Hence g obeys Jensen’s functional equation over (0, 1/2).

• Define h : [0, 1] → R by h(t) = g( 2t+1
8 ) − (1 − t) · g(1/8) − t · g(3/8),

then h satisfies Jensen’s functional equation too over [0, 1]. We have also
arranged that h(0) = h(1) = 0, hence h(1/2) = 0 as well.

• Since

h(t) = h(t) + h(1/2) = 2h(t/2 + 1/4) = h(t+ 1/2) + h(0) = h(t+ 1/2)

for any t < 1/2, we find h is periodic modulo 1/2. It follows one can
extend h̃ by

h̃ : R→ R by h̃(t) = h(t− btc)

and still satisfy Jensen’s functional equation. Because h̃(0) = 0, it’s well-
known this implies h̃ is additive (because h̃(x + y) = 2h̃ ((x+ y)/2) =

h̃(x) + h̃(y) for any real numbers x to y).

But h̃ is bounded below on [0, 1] since g ≥ 0, and since h̃ is also additive, it
follows (well-known) that h̃ is linear. Thus h is the zero function. So, the
function g is linear over [1/8, 3/8]; thus we may write g(x) = kx+ `, valid for
1/8 ≤ x ≤ 3/8.

Since 3g(1/3) = 1, it follows k + 3` = 1.
For 0 < x < 1/8 we have g(x) = 2g(0.15) − g(0.3 − x) = 2(0.15k + `) −

(k(0.3 − x) + `) = kx + `, so g is linear over (0, 3/8) as well. Finally, for
3/8 < x < 1, we use the given equation

1 = g

(
1− x
2

)
+g

(
1− x
2

)
+g(x) =⇒ g(x) = 1−2

(
k · 1− x

2
+ `

)
= kx+`

since 1−x
2 < 5

16 <
3
8 . Thus g is linear over all.

Putting this back in, we deduce that g(x) = kx+ 1−k
3 for some k ∈ [−1/2, 1],

and so
f(x) =

k

x+ 1
+

1− k
3
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for some k ∈ [−1/2, 1]. All such functions work.

Solution 43 (IMO 2008). The answers are f(x) ≡ x and f(x) ≡ 1/x. These
work, so we show they are the only ones.

First, setting (t, t, t, t) gives f(t2) = f(t)2. In particular, f(1) = 1. Next,
setting (t, 1,

√
t,
√
t) gives

f(t)2 + 1

2f(t)
=
t2 + 1

2t

which as a quadratic implies f(t) ∈ {t, 1/t}.
Now assume f(a) = a and f(b) = 1/b. Setting (

√
a,
√
b, 1,
√
ab) gives

a+ 1/b

f(ab) + 1
=

a+ b

ab+ 1
.

One can check the two cases on f(ab) each imply a = 1 and b = 1 respectively.
Hence the only answers are those claimed.

Solution 44 (IMO 2010). The only solutions are f(x) ≡ c, where c = 0 or
1 ≤ c < 2. It’s easy to see these work.

Plug in x = 0 to get f(0) = f(0) bf(y)c, so either

1 ≤ f(y) < 2 ∀y or f(0) = 0

In the first situation, plug in y = 0 to get f(x) bf(0)c = f(0), thus f is
constant. Thus assume henceforth f(0) = 0.

Now set x = y = 1 to get

f(1) = f(1) bf(1)c

so either f(1) = 0 or 1 ≤ f(1) < 2. We split into cases:

• If f(1) = 0, pick x = 1 to get f(y) ≡ 0.

• If 1 ≤ f(1) < 2, then y = 1 gives

f(bxc) = f(x)

from y = 1, in particular f(x) = 0 for 0 ≤ x < 1. Choose (x, y) =
(
2, 12
)

to get f(1) = f(2)
⌊
f
(
1
2

)⌋
= 0.

Solution 45 (IMO 2009). The only function is the identity function (which
works). We prove it is the only one.

Let P (a, b) denote the given statement.
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Claim. We have f(1) = 1, and f(f(n)) = n. (In particular f is a bijection.)

Proof. Note that

P (1, b) =⇒ f(b) = f(b+ f(1)− 1).

Otherwise, the function f is periodic modulo N = f(1) − 1 ≥ 1. This is
impossible since we can fix b and let a be arbitrarily large in some residue
class modulo N .

Hence f(1) = 1, so taking P (n, 1) gives f(f(n)) = n.

Claim. Let δ = f(2)− 1 > 0. Then for every n,

f(n+ 1) = f(n) + δ or f(n− 1) = f(n) + δ

Proof. Use
P (2, f(n)) =⇒ n− 2 < f(f(n) + δ) < n+ 2.

Let y = f(f(n) + δ), hence n − 2 < y < n + 2 and f(y) = f(n) + δ. But,
remark that if y = n, we get δ = 0, contradiction. So y ∈ {n + 1, n − 1} and
that is all.

We now show f is an arithmetic progression with common difference +δ.
Indeed we already know f(1) = 1 and f(2) = 1+ δ. Now suppose f(1) = 1, …,
f(n) = 1 + (n − 1)δ. Then by induction for any n ≥ 2, the second case can’t
hold, so we have f(n+ 1) = f(n) + δ, as desired.

Combined with f(f(n)) = n, we recover that f is the identity.

Solution 46 (USAMO 2000). For C ≥ 0, we say a function f is C-convex

f(x) + f(y)

2
≥ f

(
x+ y

2

)
+ C |x− y| .

Suppose f is C-convex. Let a < b < c < d < e be any arithmetic progression,
such that t = |e− a|. Observe that

f(a) + f(c) ≥ 2f(b) + C · 1
2
t

f(c) + f(e) ≥ 2f(d) + C · 1
2
t

f(b) + f(d) ≥ 2f(c) + C · 1
2
t

Adding the first two to twice the third gives

f(a) + f(e) ≥ 2f(c) + 2C · t.

So we conclude C-convex function is also 2C-convex. This is clearly not okay
for C > 0.
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Solution 47 (IMO Shortlist 2015). The answer is f(x) ≡ x + 1 and
f(x) ≡ −1, which both work.

Claim. There exists a with f(a) = −1, and thus we have f(x+ 1) = f(f(x))
for all x.

Proof. By setting (x, y) = (1000, f(1000)) we see −1 is in the range of f , and
choosing y with f(y) = −1 gives the latter claim.

We now outline two approaches.

First approach using images. In what follows, let

S := {f(y) + 1 | y ∈ Z} .

Note 0 ∈ S.
Now replacing f(f(x)) with f(x+1) in the given, then using the S notation,

we obtain
f(x+ s) = f(x) + s

for all s ∈ S. Thus S is closed under addition/subtraction, meaning S = nZ
for some n ≥ 0 (namely n = gcdS).

We now consider three cases.

• First, if n = 0 then f ≡ −1.

• If n = 1, then f(x) ≡ x+ 1.

• Finally we contend n > 1 is impossible. Indeed, this means that f(x) ≡
−1 (mod n) for all x. Thus we may select a ≡ 0 (mod n) and b ≡ 1
(mod n) such that f(a) = f(b) whence

f(a+ 1) = f(f(a)) = f(f(b)) = f(b+ 1).

Then continuing we find that f(a + 2) = f(b + 2) and so on, so for
sufficiently large x, we have f(x) = f(x + d) where d = |b − a| ≡ ±1
(mod n). Then f(x) = f(x+ nd) = f(x) + nd which is a contradiction.

Second approach using direct substitution. Taking P (f(t)− 1, t) gives

f(−1) + 1 = f(f(f(t)− 1))− f(t)
= f([f(t)− 1] + 1)− f(t) = f(f(t))− f(t)
= f(t+ 1)− f(t).

Here we have used f(x+ 1) = f(f(x)) from the Claim twice. Thus f is linear
and it is not hard to see that the claimed solutions are the only linear ones.
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Solution 48 (ELMO 2014). Let a, b, c denote the values f(0), g(0) and
h(0). Notice that by putting y = 0, we can get that

f(x+ a) = g(x) + c

g(x+ b) = h(x) + a

h(x+ c) = f(x) + b.

Thus the given equation may be rewritten in the form

f(x+ f(y)) = [f(x+ a)− c] + [f(y − c) + b] .

At this point, we may set x = y−c−f(y) and cancel the resulting equal terms
to obtain

c− b = f (y + a− c− f(y)) .

Since f is injective, this implies that y + a − c − f(y) is constant, so that
y−f(y) is constant. Thus, f is linear, and f(y) ≡ y+a. Similarly, g(x) ≡ x+b
and h(x) ≡ x+ c.

Finally, we just need to notice that upon placing x = y = 0 in all the
equations, we get 2a = b+ c, 2b = c+ a and 2c = a+ b, whence a = b = c.

So, the family of solutions is f(x) = g(x) = h(x) = x + c, where c is an
arbitrary real. One can easily verify these solutions are valid.

Solution 49 (IMO Shortlist 2016). The answer is f(x) = 1/x only which
works.

We start with a series of substitutions. Letting P (x, y) be as usual; noting
the left-hand side is asymmetric but the right-hand side is symmetric, we will
usually consider P (x, y) in tandem with P (y, x) (so-called “symmetry trick”).

• Put P (1, 1) to conclude f(1) = 1 .

• Put P (x, 1) and P (1, x) to get

xf(x2) + f(f(x)) = f(f(x)) + f(x) = f(x)
[
1 + f(f(x2))

]
.

Comparing the left and middle, and the middle and right gives two im-
portant corollaries:

f(x)

x
= f(x2) and f(f(x))

f(x)
= f(f(x2)) . (♥)

(The second identity could also be motivated by the cancellation trick.)

In fact (♥) is enough to get the following.
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Claim. If f is injective, we are done.

Proof. Using (♥) thrice, we evaluate f(f(x)2) in two ways:

f

(
f(x)

x

)
= f(f(x2)) =

f(f(x))

f(x)
= f(f(x)2)

so if f is injective we could conclude f(x)/x = f(x)2, meaning f(x) = 1/x.

Motivated by our quest for injectivity we now use (♥) to eliminate all
squares which gives

f(x)f(f(y)) + f(yf(x)) = f(xy)

(
f(f(x))

f(x)
+
f(f(y))

f(y)

)
. (♠)

We are now ready to prove:

Claim. f is injective.

Proof. Assume c = f(a) = f(b) for some a and b. First, taking (a, b) and (b, a)
in (♠)

cf(c) + f(bf(a))︸ ︷︷ ︸
=f(bc)

(♠)
= f(ab) · 2f(c)

c

(♠)
= cf(c) + f(af(b))︸ ︷︷ ︸

=f(ac)

.

So f(ac) = f(bc). Similarly putting (a, a) and (b, b) gives

cf(c) + f(af(a))︸ ︷︷ ︸
=f(ac)

(♠)
= f(a2)

2f(c)

c

cf(c) + f(bf(b))︸ ︷︷ ︸
=f(bc)

(♠)
= f(b2)

2f(c)

c
.

Thus
f(a2) = f(b2)

(♥)
=⇒ f(a)

a
=
f(b)

b
=⇒ a = b.

Solution 50 (ELMO Shortlist 2013). The answer is f(x) ≡ +x, f(x) ≡
−x, and f(x) ≡ 0.

First slick approach (Daniel Xia). By scaling, assume f(1) = 1 (if f(1) = 0,
the proof if similar). Notice that

f
(
(1 + x)2013 + (1− x)2013

)
= (f(1) + f(x))

2013
+(f(1)− f(x))2013 = P (f(x))

where P (t) = (1 + t)2013 + (1 − t)2013 is a polynomial of degree 2012 (the
leading term 4026t2012). Since P has even degree, it is bounded below. So f
is bounded on a nontrivial interval (actually the image of P ), hence linear.
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Second approach (official solution). Let n = 2013 be odd. Set c = f(1), so
f(q) = cq for any rational number q.

We know f(q) = cq for any q ∈ Q. Thus for any x ∈ R and q ∈ Q we have∑
k

(
n

k

)
qkf(xn−k) = f ((x+ q)n) = f(x+ q)n =

∑
k

(
n

k

)
f(x)n−k(qc)k.

For any particular x, both left and right hand side are polynomials in q, so the
coefficients must agree for each x.

Now matching q1 terms, f(xn−1) = cf(x)n−1 for all x. In particular, by
choosing any odd n ≥ 3 (so n − 1 ≥ 2 is even), we find that f has fixed sign
over nonnegative reals, and is thus linear; this concludes the proof.

Remark. Over C this problem is false: actually, there exist so called “wild
automorphisms” of the complex numbers, i.e. functions that are both additive
and multiplicative.

Solution 51 (TSTST 2013). The answer is f(n) = n − 1 for n ≥ 3 with
f(1) and f(2) arbitrary; check these work.

Lemma. We have f t2−t(t2) = t for all t.

Proof. We say 1 ≤ k ≤ 8 is good if f t9−tk(t9) = tk for all t. First, we observe
that

f t
9−t3(t9) = t3 and f t

3−t(t3) = t =⇒ f t
9−t(t9) = t.

so k = 1 and k = 3 are good. Then taking (a, b, c) = (t, t4, t4), (a, b, c) =
(t2, t3, t4) gives that k = 4 and k = 2 are good, respectively. The lemma
follows from this k = 1 and k = 2 being good.

Now, letting t = abc we combine

f t−a(t) + f t−b(t) + f t−c(t) = a+ b+ c

f t
2−ab(t2) + f t

2−t(t2) + f t
2−c(t2) = ab+ t+ c

=⇒
[
f t−a(t)− a

]
+
[
f t−b(t)− b

]
=
[
f t−ab(t)− ab

]
by subtracting and applying the lemma repeatedly. In other words, we have
proven the second lemma:

Lemma. Let t be fixed, and define gt(n) = f t−n(t)− n for n < t. If a, b ≥ 2
and ab | t, ab < t, then gt(a) + gt(b) = gt(ab).

Now let a, b ≥ 2 be arbitrary, and let p > q > max{a, b} be primes. Suppose
s = apbq and t = s2; then

pgt(a) + qgt(b) = gt (a
pbq) = gt(s) = fs

2−s(s2)− s = 0.

72

https://aops.com/community/p3181484


3 Functional Equations May 18, 2025

Now
q | gt(a) > −a and p | gt(b) > −b =⇒ gt(a) = gt(b) = 0.

and so we conclude f t−a(t) = a and f t−b(t) = b for a, b ≥ 2.
In particular, if a = n and b = n + 1 then we deduce f(n + 1) = n for all

n ≥ 2, as desired.

Remark. If you let c = (ab)2 after the first lemma, you recover the 2-variable
version!
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4 Monstrous Functional
Equations

§4.1 Introduction
Your typical garden-variety functional equation will ask “find all functions f”,
and there will be an obvious function like f(x) = x which works. Most of the
time your job will be to prove these are the only solutions.

Sometimes, though, the functional equation will have a nasty surprise: the
obvious solutions aren’t the only ones! The classic example is the relatively
innocent-looking Cauchy equation

f : R→ R f(x+ y) = f(x) + f(y).

It is easy enough to get that f(x) = x · f(1) for x ∈ Q, yet there exist plenty
more pathological solutions: we will discuss this example in depth later.

Monsters are most dangerous when you don’t know they are there. If you
stubbornly try to prove that f(x) = x is the only solution when it isn’t, you
are destined to fail. On the flip side, if you correctly guess the existence of a
pathological solution, this gives you a huge upper hand!

§4.2 Clues
Here are some clues that you might be dealing with a functional equation with
some bizarre solutions.

• Some stubborn case appears that can’t be resolved. For example,
suppose you obtain that f(0) ∈ {0, 1}, and you try without success to
dispel the f(0) = 1 case. Might it be possible there is actually a solution?
Check to see if f(x) = 1− x might be a solution too. What if you have
f(x)2 = x2 for all x, but you can’t get the sign? Might the function
change sign at some values of x?

• Values of the function seem “too discrete”. For example, you have
f : Z→ Z and kind of find a way to relate f(n+1) to f(n), but there is
still some degree of freedom left. The first walkthrough Problem 53 will
give you some practice with this.

• You have some values of f down, but others seem out of reach.
This usually happens when f : R → R. Cauchy’s Functional Equation
is the classical example of this: you can get f(x) at rational values, but
how on Earth are you going to get f(

√
2)?
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• All values are “wrapped by f ’s” in the equation. In such cases you
should immediately check for constant solutions. But it’s also possible
for the function to have a small range in a bizarre way. The legendary
example of this is Problem 54.

• The problem only uses one operation. The real numbers have two
operations, + and ×. So it loses some of its structure if, say, there
is no multiplication. This is the real reason that Cauchy’s Functional
Equation has bad solutions: it ignores the multiplication structure of R
and only looks at the additive structure.

Similarly, you can generally classify monsters into a few types.

• The mildest type of extra solution is when you get an extra function like
f(x) = 1− 2x when you originally were only expecting f(x) = x.
As suggested last chapter, it may be worth it to begin by checking
for all linear or polynomial solutions. This will help you notice
solutions like x + c or cx or 0, and it will give you a huge advantage
should there be an unexpected solution.

• Some monsters take the form of functions f : Z → Z that behave in
cases based on the inputs mod n. You often pick up such functions when
you try to compute f inductively, but find that the proof just won’t go
through due to some degrees of freedom.

• Still other monsters might take values or signs at certain inputs and
other values at different inputs. For example, you might have a case
f(x)2 = 1 for all x, and be unable to progress past that. This is more
likely to happen in the “limited range” case specified earlier.

• Finally, you might be dealing with a functional equation f : R → R
which requires a Hamel basis (explained below). This probably won’t
happen in a real olympiad any time soon…but it is good to at least be
aware of it.

§4.3 Linear algebra terminology
Before I proceed, I want to introduce some linear algebra terms, so that I can
explain things the “morally correct” way, rather than having to use clumsy
terminology. If you know linear algebra well, you should skip this section.

Let K be a field (for our purposes, either Q or R).

Definition 4.1. Informally, a K-vector space is a set V such that

• One can add any two elements of V , and

• One can scale elements of V by scalars in K.
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There are some exact axioms1 (addition should be commutative, 0 ∈ V , and
−v ∈ V for all v ∈ V ) but we won’t concern ourselves with these.

The two best examples I have:

• The set of real polynomial of degree ≤ 2, that is,

W =
{
ax2 + bx+ c | a, b, c ∈ R

}
,

is a real vector space. You can add any two such polynomials, and you
can multiply them by real numbers. (Here, possibly a = 0; what goes
wrong if I try to force a 6= 0?).

• The set of real polynomials is a real vector space, full stop. The sum
of two polynomials is a polynomial, and if P is a polynomial then so is
c · P .

Stranger example: R is a Q-vector space. This will be important later.
Now, let’s return to the example W = {ax2 + bx+ c | a, b, c ∈ R}. You’ll in-

stantly recognize that the set {1, x, x2} plays some special role: these elements
generate all of W in some clean fashion.

To make this formal:

Definition 4.2. A set B of vectors is a basis for a vector space V if every
vector v ∈ V can be written uniquely as a finite sum of the form

v = t1e1 + t2e2 + · · ·+ tmem (4.1)

where ti ∈ K, ei ∈ B.

So, {1, x, x2} is a basis of W . It’s not the only one: {2, x, x2} and {x+4, x−
2, x2 + x} are other examples of bases, though not as natural. However, the
set S = {3+ x2, x+1, 5+ 2x+ x2} is not a basis: it fails for the following two
reasons.

• Note that
0 = (3 + x2) + 2(x+ 1)− (5 + 2x+ x2).

This violates our uniqueness condition, since 0 = 0. In this way, we say
the elements of S are not linearly independent.

• It’s not possible to write x2 as a sum of elements of S. (Try it and see
why not.) So S fails to be spanning.

With these new terms, we can just say a basis is a linearly independent, span-
ning set.

As you might guess, you always need exactly three elements for W . More
generally:

1Reminder for experts: it’s an abelian group under addition with a compatible multiplica-
tion by scalars in K.
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Theorem 4.3 (Dimension Theorem). Let V be a vector space which has a
basis of size n.

(a) Any other basis of V has size n, so we say V is n-dimensional.

(b) Given n linearly independent elements, they form a basis.

(c) Given n spanning elements, they form a basis.

It’s also possible to have an infinite basis. For example, consider the set of
polynomials. It has a basis {1, x, x2, . . . } in the sense that any polynomial is
just a finite sum

∑
ckx

k. (Note that (4.1) only permits finite sums!)

Remark 4.4. Possible spoiler: the Axiom of Choice is actually equivalent to
the fact that every vector space has a (possibly infinite) basis.

§4.4 Cauchy’s equation over R
We are now ready to address.

Example 52 (Cauchy’s functional equation over R). Describe all functions
f : R→ R satisfying f(x+ y) = f(x) + f(y).

Solution 52. Let’s do this example in closer detail. Of course, our first naïve
guess is that the solution set is f(x) = cx for some real number c. So, we let
f(1) = c (as we may, you can think of this as “scaling”). Then

f(2) = f(1) + f(1) = 2c.

Next
f(3) = f(2) + f(1) = 3c

and readily we discover f(n) = nc, which is right on track. We can extend
this to get all rational numbers, as for any integers p, q we see that

f (p) = f

(
p

q
+ · · ·+ p

q

)
= qf

(
p

q

)
so f(p/q) = f(p)/q = c · (p/q), which is still spot on.

However, if you try solving the rest of the problem from here you will quickly
get stuck. We’ve pinned down the value of f for all rational numbers, but how
would we get f(

√
2), for example? Try all you want, but it won’t work.

Here’s why. What if, rather than talking about f : R → R, I asked for
solutions of f : Q[

√
2] → R? You might at this point be able to guess a

solution:
f
(
a+ b

√
2
)
= a+ 2015b.
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Convince yourself that this is well-defined and works – the point is that
√
2

and 1 don’t talk to each other. Analogously, the function

f
(
a+ b

√
2 + c

√
3
)
= a+ 2015b+

√
11c

is a perfectly good solution for the inputs on which it’s defined.
At this point you might guess how to construct a monster: keep throwing

in “foreign” (linearly independent) elements in this way until you get all of R.
The bad news is that you will need not only infinitely many elements, but in
fact uncountably many elements, so this can’t be done with normal induction.
The good news is that this has all been worked out for you, and this is where
the Axiom of Choice gets used in a so-called transfinite induction.

For us, we will just state the technical result. If you’re interested in the
details, see the chapter on Zorn’s Lemma in [Che19]. For this handout I will
just state the result.

Proposition 4.5 (Hamel Basis). R has a basis as a Q-vector space. Thus,
there exists an infinite collection of real numbers {eα} such that for any real
number x ∈ R, there is a unique way to write x as a finite linear combination

x = a1eα1 + a2eα2 + · · ·+ aneαn .

The numbers {eα} are called a Hamel basis.

As a metaphor, you can almost think of this as saying something like

R =
{
a1 +

√
2a2 +

√
3a3 + a4π + a5e+ · · · | a1, · · · ∈ Q

}
.

One literally just keeps throwing in elements until we get all of R, and the
Axiom of Choice is used to make this rigorous.

In any case, this resolves the original Cauchy’s Functional Equation. We
simply take a Hamel basis, and assign f(eα) arbitrarily for each α. Then,
declare

f
(∑

aαeα

)
=
∑

aαf(eα).

Those of you very familiar with linear algebra may recognize this as the fol-
lowing assertion: to specify a linear map, it suffices to specify it on the basis
elements. �

Exercise (Combinatorics Practice). Show that any Hamel basis has uncount-
ably infinitely many elements. (This is why I insist on calling it {eα} rather
than e1, e2, ….)

If you know linear algebra well, then you can summarize the entire section
as follows: view R as a Q-vector space. The Axiom of Choice lets you take a
basis, which trivializes Cauchy’s Functional Equation.
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§4.4.1 Back to earth
As a reminder, for actual contests, we will almost never really have to deal with
the full pathology. In particular, Theorem 3.8 gives us one way of finishing
once we have gotten our additivity, and in many cases even this is not necessary
(see the solution to Problem 40).

§4.5 Walkthroughs
Problem 53 (Gabriel Dospinescu). Find all f : Z≥0 → R satisfying

f(x+ y) + f(1) + f(xy) = f(x) + f(y) + f(1 + xy)

for nonnegative integers x and y.

Walkthrough. This is an example of a functional equation with a couple
instructive properties: (i) you really see what it means when you get an f -
recursion that pins down f mostly, but not completely, and (ii) why linear
algebra intuition can be really helpful. It’s one of my favorite examples.

First, let’s find as many solutions as we can.

(a) Check that the set of solutions forms a real vector space.

(b) Find all polynomial solutions. There are nonlinear solutions!

(c) Check that f(x) = x2 mod 3 is a solution.

(d) Guess another non-polynomial solution, not in the span of the solutions
in (b) or (c). This is a lot easier to do than it seems; many people get it
on their first guess.

(e) Collate the previous parts to show that the space of solutions has dimen-
sion at least five.

At this point, we want to start bounding the set of solutions above.

(f) Try plugging in x = 0 or x = 1. Why does this make you sad?

(g) Plug in (x, y) = (n, 2) to get a recursion for f(2n+1) in terms of smaller
f -inputs (for n large enough).

(h) Let’s keep pushing. Express f(4n+1) in two different ways, and use this
to find a recursion for f(2n+2) in terms of smaller f -inputs (for n large
enough).

(i) Use (g) and (h) to show that the set of solutions is at most six-dimensional:
i.e. there exist six initial values a1, …, a6 for which the values f(a1), …,
f(a6) give at most one function f .
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(j) At this point we have a crisis: we have a five-dimensional space of solu-
tions found, but an upper bound of six dimensions. Is the answer five
or six dimensional? So far we have only used the given equation when
x = 2 or x = 4.
Well, here’s one way to try and tell: pick your six favorite values in (i),
and pump the recursion to get a function f . If f doesn’t satisfy the
conditions, then you know there is some relation you haven’t found yet.
But if it does, then there’s a good chance we’re missing a sixth solution.

(k) Depending on what you found in (j), do either :
• Find a sixth solution you did not find in (e), showing that there is

indeed a six-dimensional space of solutions.
• Find a relation between the six initial values in (i), showing that

the solutions you found in (e) were the only ones.
Possible hint: think about the value of f(0), and part (f).

Problem 54 (IMO Shortlist 2004). Find all functions f : R→ R which obey

f(x2 + y2 + 2f(xy)) = (f(x+ y))2

for all real numbers x and y.

Walkthrough. Fasten your seat belts!

(a) Find all linear solutions, and show there are no nonlinear polynomial
solutions.

(b) There is no reason not to work with x + y and xy as variables here, so
show that the problem is the same as

f(s2 + g(p)) = f(s)2 ∀s2 ≥ 4p

where g(p) = 2f(p)− 2p.

(c) Prove that |f(x)| = |f(−x)| for all x, and f is eventually nonnegative.

Suppose that f(x) 6≡ x + c, so g is nonconstant. We will use this to prove
that f is eventually constant. Intuitively this makes sense: the equation in
(b) gives two incompatible equations if the g values are different. The details
require significant care, though. (You are welcome to secretly skip the next
few parts, as the fun part is after this.)

(d) Show that there is a constant c 6= 0 such that if u2 − v2 = c, then
f(u) = f(v) for u, v � 0.

(e) For u and v as in (d), prove that g(v)− g(u) = k
u+v for some constant k.
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(f) The trick is now to use u and v as values of p: show that for s large
enough in terms of u and v we have

f(s)2 = f
(
s2 + g(u)

)
= f

(
s2 + g(v)

)
.

(g) Let u and v vary now in an interval [M, 3M ], where M is huge. Show
there is a constant δ with the property: if a2 − b2 = [δ, 2δ] and a > b >
12M then f(a) = f(b).

(h) Deduce f is eventually constant.

So assume eventually f is some constant k. Now for the fun part!

(i) Prove that k = 0 or k = 1.

(j) Show that f(s)2 = k for every s by taking p to be a large negative
constant in the original equation.

(k) Deduce that if k = 0 then f ≡ 0.

Henceforth, assume k = 1.

(l) Prove that f(0) = +1 (probably by contradiction). Conclude that
f(x) = +1 for x ≥ 2.

(m) If f(t) = −1, try to pick x and y such that x2 + y2 − 2 = xy = t, which
would give a contradiction. You will find this is only possible for certain
t. Which ones?

(n) The result in (j) is no surprise: come up with an example of a function
for which f = 1 eventually but f(−10000) = −1.

(o) Figure out the set of solutions to the original problem. You should find
the number of solutions has cardinality 2|R|, the so-called hypercontin-
uum!

§4.6 Problems
Problem 55 (HMMT November 2015). Consider functions f : Z → Z satis-
fying

f(f(x) + 2x+ 20) = 15.

An integer n is called undetermined if f(n) could take any value, i.e. for every
integer y, some function f as above satisfies f(n) = y. Which integers are
undetermined?

Problem 56 (IMO 2012). Find all functions f : Z → Z such that, for all
integers a, b, c that satisfy a+ b+ c = 0, the following equality holds:

f(a)2 + f(b)2 + f(c)2 = 2f(a)f(b) + 2f(b)f(c) + 2f(c)f(a).
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Problem 57 (USA TST 2015). Let f : Q → Q be a function such that for
any x, y ∈ Q, the number f(x+ y)− f(x)− f(y) is an integer. Decide whether
there must exist a constant c such that f(x)−cx is an integer for every rational
number x.

Problem 58. Let f : R→ R be a function such that f(x+ y) = f(x) + f(y)
and f(f(x)) = x for all real numbers x and y. Must f be linear?

Problem 59 (IMO Shortlist 2001). Find all functions f : R→ R satisfying

f(xy)(f(x)− f(y)) = (x− y)f(x)f(y)

for all real numbers x and y.

Problem 60 (ELMO Shortlist 2013). Let N denote the set of positive integers,
and for a function f , let fk(n) denote the function f applied k times. Call a
function f : N→ N saturated if

ff
f(n)(n)(n) = n

for every positive integer n. Find all positive integers m for which the following
holds: every saturated function f satisfies f2014(m) = m.

Problem 61 (EGMO 2014). Solve over R the functional equation

f(y2 + 2xf(y) + f(x)2) = (y + f(x))(x+ f(y)).

Problem 62 (IMO 2015). Solve the functional equation

f(x+ f(x+ y)) + f(xy) = x+ f(x+ y) + yf(x)

for f : R→ R.

Problem 63 (IMO 1998). Classify all functions f : N → N satisfying the
identity

f(n2f(m)) = mf(n)2.
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§4.7 Solutions

Solution 53 (Gabriel Dospinescu). First, note the set of solutions is a real
vector space and the following are six linearly independent solutions:

• f(x) ≡ 1

• f(x) ≡ x

• f(x) ≡ x2

• f(x) ≡ x (mod 2) (or equivalently f(x) ≡ x2 (mod 4))

• f(x) ≡ x2 (mod 3) (which is motivated from x2 (mod 4) working!)

• f(0) = 1 and f(x) = 0 for x > 0.

So we only need to show the solution set has dimension at most 6. Plug in
(x, y) = (n, 2) to get

f(2n+ 1) = f(n+ 2) + f(1) + f(2n)− f(n)− f(2).

Plug in (x, y) = (2n, 2) and (x, y) = (n, 4) gives

f(4n+ 1) = f(2n+ 2) + f(1) + f(4n)− f(2n)− f(2).
f(4n+ 1) = f(n+ 4) + f(1) + f(4n)− f(n)− f(4).

=⇒ f(2n+ 2) = f(2n) + f(n+ 4) + f(2)− f(4)− f(n).

One can check that these two recursions let us determine f from the values of
f at 0, 1, 2, 3, 4, 6.

Solution 54 (IMO Shortlist 2004). The answer is f(x) ≡ x, f(x) ≡ 0 and

f(x) =

{
+1 x /∈ S
−1 x ∈ S

where S is any subset of (−∞,− 2
3 ).

It will be more economical to write the given condition as

f(s)2 = f
(
s2 + g(p)

)
∀s2 ≥ 4p

where g(x) = 2(f(x)− x). (Here s = x+ y and p = xy.)
First, note that if g is a constant function, it follows f(x) ≡ x + f(0) in

which case we derive immediately that f(x) ≡ x. So let us assume g is not a
constant function in the sequel.

First, note that by taking p = 0 we derive the following claim.
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Claim 4.6. |f(−x)| = |f(x)| for every real number x, and f(x) ≥ 0 for x� 0
(in fact for x ≥ g(0)).

Now we claim that:

Claim 4.7. The function f is eventually constant, that is f(x) = k for x� 0.

Proof. Since g is not constant, pick c1 = g(p1), c2 = g(p2) with c1 > c2. Then
we remark that

If u > v � 0 and u2 − v2 = c1 − c2 then f(u) = f(v).

since f(u)2 = f(u2 + c2) = f(v2 + c1) = f(v)2 for any u and v satisfying
u > v > 4max(p1, p2); and if u, v > g(0) as well then the f are nonnegative.
(To be explicit, the u > v � 0 dependence is u > v > max(2

√
p1, 2
√
p2, g(0)).)

Now the trick is to use u and v as values of s; we have

g(v)− g(u) = 2 ((f(v)− f(u)) + u− v) = 2(u− v) = 2(c1 − c2)
u+ v

.

So let u and v vary with u, v ∈ [M, 3M ] and u2 − v2 = c1 − c2 for large
M > max(2

√
p1, 2
√
p2, g(0)). Then g(v) − g(u) achieves all values between

[δ, 2δ] for some small δ. Then by repeating the argument with these u and v
in place of p1 and p2, we find

If a > b > L and a2 − b2 ∈ [δ, 2δ] then f(a) = f(b)

where L = 12M ensures L = 12M ≥ max(2
√
p1, 2
√
p2, g(0)).

Then f is eventually constant on the interval [
√
L2 + δ,

√
L2 + 2δ], since it

equals f(L) there. Similarly, it is constant on the intervals [
√
L2 + 2δ,

√
L2 + 3δ],

[
√
L2 + 3δ,

√
L2 + 4δ], and so on. Therefore the function f is eventually con-

stant.

Remark. It is necessary to introduce the upper cap 3M on the values of u
and v. Otherwise the threshold values of L may become arbitrarily large as
u, v →∞.

So, we may assume f(x) = k for x� 0. From large s and p = 0 we conclude
k2 = k, so

k = 0 or k = 1.

Claim 4.8. For every s ∈ R, f(s)2 = k.

Proof. The idea is to make g(p) large for p < 0 (since this enables us to select
any s).

Let p = −N for a large value N � 0. Then g(p) = 2(N+f(−N)) ≥ 2N−2,
so

f(s)2 = f(s2 + 2g(p)) = f(large) = k.
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Now if k = 0 we are done; we have f ≡ 0. So we are left with the case where

f(x) ∈ {−1, 1}

for every x.

Claim 4.9. Assume f(x) = ±1 for every x. If f(t) = −1 then t < − 2
3 .

Proof. Now the condition becomes

f(x2 + y2 + 2f(xy)) = 1 ∀x, y ∈ R.

Note that f(0) = +1 since otherwise we can put (x, y) = (
√
2, 0). Hence for

x ≥ 2 we have f(x) = 1.
Now assume for contradiction that − 2

3 ≤ t ≤ 2. Then we can find x and y
such that

x2 + y2 − 2 = xy = t.

since t+ 2 ≥ |2t|. But then f(t) = +1, contradiction.

This concludes the proof.

Solution 55 (HMMT November 2015). The answer is that −35 is the
only undetermined integer.

First, suppose n is undetermined. Then, there should be an f such that
f(n) = −n− 20. Putting this into the given then gives

15 = f(f(n) + 2n+ 20) = f((−n− 20) + 2n+ 20) = f(n) = −n− 20

so we must have n = −35.
Conversely, for any integer y, we construct the function

f(x) =

{
y x = −35
15 x 6= −35.

This function f apparently satisfies the given condition. Therefore, −35 is
indeed undetermined.

Solution 56 (IMO 2012). Answer: for arbitrary k ∈ Z, we have

(i) f(x) = kx2,

(ii) f(x) = 0 for even x, and f(x) = k for odd x, and

(iii) f(x) = 0 for x ≡ 0 (mod 4), f(x) = k for odd x, and f(x) = 4k for
x ≡ 2 (mod 4).
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These can be painfully seen to work. (It’s more natural to think of these as
f(x) = x2, f(x) = x2 (mod 4), f(x) = x2 (mod 8), and multiples thereof.)

Set a = b = c = 0 to get f(0) = 0. Then set c = 0 to get f(a) = f(−a), so
f is even. Now

f(a)2 + f(b)2 + f(a+ b)2 = 2f(a+ b) (f(a) + f(b)) + 2f(a)f(b)

or
(f(a+ b)− (f(a) + f(b)))

2
= 4f(a)f(b).

Hence f(a)f(b) is a perfect square for all a, b ∈ Z. So there exists a λ such
that f(n) = λg(n)2, where g(n) ≥ 0. From here we recover

g(a+ b) = ±g(a)± g(b) .

Also g(0) = 0.
Let k = g(1) 6= 0. We now split into cases on g(2):

• g(2) = 0. Put b = 2 in original to get g(a+ 2) = ±g(a) = +g(a).

• g(2) = 2k. Cases on g(4):
– g(4) = 0, then we get (g(n))n≥0 = (0, 1, 2, 1, 0, 1, 2, 1, . . . ). This

works.
– g(4) = 4k. This only happens when g(1) = k, g(2) = 2k, g(3) = 3k,
g(4) = 4k. Then

∗ g(5) = ±3k ± 2k = ±4k ± k.
∗ g(6) = ±4k ± 2k = ±5k ± k.
∗ …

and so by induction g(n) = nk.

Solution 57 (USA TST 2015). No, such a constant need not exist.
One possible solution is as follows: define a sequence by x0 = 1 and

2x1 = x0

2x2 = x1 + 1

2x3 = x2

2x4 = x3 + 1

2x5 = x4

2x6 = x5 + 1

...
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Set f(2−k) = xk and f(2k) = 2k for k = 0, 1, . . . . Then, let

f

(
a · 2k +

b

c

)
= af

(
2k
)
+
b

c

for odd integers a, b, c. One can verify this works.
A second shorter solution (given by the proposer) is to set, whenever gcd(p, q) =

1 and q > 0,

f

(
p

q

)
=
p

q
(1! + 2! + · · ·+ q!) .

Remark. Silly note: despite appearances, f(x) = bxc is not a counterexample
since one can take c = 0.

Solution 58 (None). The answer is no. Fix (eα)α a Hamel basis of R (viewed
as a Q-vector space). A function sending

f(eα) = ±eα

with f extended linearly will then work, for any choice of ± signs for each
α. The linear solutions correspond to always picking + or always picking −,
but there are uncountably many other solutions obtained by varying the signs
across α.

Solution 59 (IMO Shortlist 2001). Answer: any function f of the form

f(x) =

{
Cx x ∈ G
0 x /∈ G

where G is a multiplicatively closed subgroup of the real numbers, and C is
an arbitrary real number.

One can check mechanically that such solutions work. Now we prove they
are the only ones. Indeed, let C = f(1) and put y = 1 into the given to get

f(x) (f(x)− C) = C(x− 1)f(x)

whence we obtain that f(x) ∈ {0, Cx} for each x. In particular f(0) = 0.
Now assume C 6= 0 else f ≡ 0 follows. Let G = {x | f(x) 6= 0 ⇐⇒ f(x) =

Cx}. We make the following remarks:

• 1 ∈ G.

• If a ∈ G, then 1/a ∈ G as well. Indeed a = −1 is clear and otherwise
substitute (x, y) = (a, 1/a).
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• If a 6= b ∈ G, then ab ∈ G as well, just by setting (x, y) = (a, b).

• If a ∈ G, then a2 ∈ G. To see this, put x = a2 and y = 1/a to get

Ca ·
(
f(a2)− C

a

)
=

(
a2 − 1

a

)
· f(a2) · Ca.

Then f(a2) 6= 0.

Thus G contains 1, and is closed under multiplication and division; so it is a
group.

Solution 60 (ELMO Shortlist 2013). The answer is all n dividing 2014.
First, one observes that f is both surjective and injective, so f is a permu-

tation of the positive integers; and moreover all the cycles have finite length.
Actually, we claim that the functions f are exactly those for which in any cycle
C of f , all elements are divisible by the length of C. It’s easy to see this is
sufficient; we prove it is necessary.

Let C be a cycle with length d. Then the condition is that d | ff(n)(n) for
any n ∈ C. Consequently, we have that

d | f(n) =⇒ d | n.

But obviously d divides some element of C, and so we conclude d divides all
elements of C, as desired.

Solution 61 (EGMO 2014). A key motivation throughout the problem is
that the left-hand side is asymmetric while the right-hand side is symmetric.
Thus any time we plug in two values for x and y we will also plug in the
opposite pair. Once f is injective this will basically kill the problem.

First, we prove the following.

Lemma. There is a unique z ∈ R such that f(z) = 0.

Proof. Clearly by putting y = −f(x) such z exists. Now, suppose f(u) =
f(v) = 0. Then:

• Plug (x, y) = (u, v) gives f(v2) = uv.

• Plug (x, y) = (v, u) gives f(u2) = uv.

• Plug (x, y) = (u, u) gives f(u2) = u2.

• Plug (x, y) = (v, v) gives f(v2) = v2.

Consequently u2 = uv = v2 which yields u = v.
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Next let (x, y) = (z, 0) and (x, y) = (0, z) to get

f (2zf(0)) = f
(
z2 + f(0)2

)
= 0

=⇒ 2zf(0) = z2 + f(0)2 = z

=⇒ f(0) = z ∈
{
0,

1

2

}
.

We now set to prove:

Lemma. The function f is injective.

Proof. By putting (x, y) = (x, z) and (x, y) = (z, x) we get

f
(
f(x)2 + z2

)
= f

(
2zf(x) + x2

)
= x(z + f(x)).

Now suppose f(x1) = f(x2) but x1 6= x2. This can only happen if f(x1) =
f(x2) = −z. And now

f(xi)
2 + z2 = 2zf(xi) + x2i = z i = 1, 2.

Solving, we have xi = ±1, z = 1
2 , (since z = 0 is not permissible). Thus we

have “almost injectivity”.
Now plug in (x, y) = (−1, 0) and (x, y) = (0,−1) in the original and equate

in order to obtain f(− 3
4 ) = f( 54 ), which contradicts the work above.

Finally we may use the symmetry trick in full to obtain

y2 + 2xf(y) + f(x)2 = x2 + 2yf(x) + f(y)2. (♥)

In particular, by setting y = 0 we obtain

f(x)2 = (z − x)2 .

Two easy cases remain:

• In the z = 0 case simply note that (♥) gives 2xf(y) = 2yf(x), so for
x 6= 0 the value f(x)/x is constant and hence f(x) ≡ ±x follows.

• In the z = 1
2 case (♥) becomes (2f(y) + 1)x = (2f(x) + 1) y and hence

we’re done again by the same reasoning.

Solution 62 (IMO 2015). The answers are f(x) ≡ x and f(x) ≡ 2 − x.
Obviously, both of them work.

Let P (x, y) be the given assertion. We also will let S = {t | f(t) = t} be the
set of fixed points of f .

90

https://aops.com/community/p5083463


4 Monstrous Functional Equations May 18, 2025

• From P (0, 0) we get f(f(0)) = 0.

• From P (0, f(0)) we get 2f(0) = f(0)2 and hence f(0) ∈ {0, 2}.

• From P (x, 1) we find that x+ f(x+ 1) ∈ S for all x.

We now solve the case f(0) = 2.

Claim. If f(0) = 2 then f(x) ≡ 2− x.

Proof. Let t ∈ S be any fixed point. Then P (0, t) gives 2 = 2t or t = 1; so
S = {1}. But we also saw x+ f(x+ 1) ∈ S, which implies f(x) ≡ 2− x.

Henceforth, assume f(0) = 0.

Claim. If f(0) = 0 then f is odd.

Proof. Note that P (1,−1) =⇒ f(1) + f(−1) = 1 − f(1) and P (−1, 1) =⇒
f(−1) + f(−1) = −1 + f(1), together giving f(1) = 1 and f(−1) = −1. To
prove f odd we now obtain more fixed points:

• From P (x, 0) we find that x+ f(x) ∈ S for all x ∈ R.

• From P (x− 1, 1) we find that x− 1 + f(x) ∈ S for all x ∈ R.

• From P (1, f(x) + x− 1) we find x+ 1 + f(x) ∈ S for all x ∈ R.

Finally P (x,−1) gives f odd.

To finish from f odd, notice that

P (x,−x) =⇒ f(x) + f(−x2) = x− xf(x)
P (−x, x) =⇒ f(−x) + f(−x2) = −x+ xf(−x)

which upon subtracting gives f(x) ≡ x.

Solution 63 (IMO 1998). Let P be the set of primes, and let g : P → P be
any involution on them. Extend g to a completely multiplicative function on
N. Then f(n) = dg(n) is a solution for any d ∈ N which is fixed by g.

It’s straightforward to check these all work, since g : N→ N is an involution
on them. So we prove these are the only functions.

Let d = f(1).

Claim. We have df(n) = f(dn) and d · f(ab) = f(a)f(b).

Proof. Let P (m,n) denote the assertion in the problem statement. Off the
bat,

• P (1, 1) implies f(d) = d2.
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• P (n, 1) implies f(f(n)) = d2n. In particular, f is injective.

• P (1, n) implies f(dn2) = f(n)2.

Then

f(a)2f(b)2 = f(da2)f(b)2 by third bullet
= f(b2f(f(da2))) by problem statement
= f(b2 · d2 · da2) by second bullet
= f(dab)2 by third bullet

=⇒ f(a)f(b) = f(dab).

This implies the first claim by taking (a, b) = (1, n). Then df(a) = f(da), and
so we actually have f(a)f(b) = df(ab).

Claim. All values of f are divisible by d.

Proof. We have

f(n2) =
1

d
f(n)2

f(n3) =
f(n2)f(n)

d
=
f(n)3

d2

f(n4) =
f(n3)f(n)

d
=
f(n)4

d3

and so on, which implies the result.

Then, define g(n) = f(n)/d. We conclude that g is completely multiplica-
tive, with g(1) = 1. However, f(f(n)) = d2n also implies g(g(n)) = n, i.e. g is
an involution. Moreover, since f(d) = d2, g(d) = d.

All that remains is to check that g must map primes to primes to finish the
description in the problem. This is immediate; since g is multiplicative and
g(1) = 1, if g(g(p)) = p then g(p) can have at most one prime factor, hence
g(p) is itself prime.

Remark. The IMO problem actually asked for the least value of f(1998).
But for instruction purposes, it is probably better to just find all f . Since
1998 = 2 · 33 · 37, this answer is 23 · 3 · 5 = 120, anyways.
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5 Graph Theory Terminology
Graph theory is a pretty field of mathematics which is remarkably accessible

even without much prerequisites, but which is still an active field of research.
It is, in my opinion, one of the best fields of post-high-school math to learn
first if you wish to get comfortable with proof-based problems, for the following
reasons:

• You will be able to get used to logical thinking and real proofs.

• The field is not overly technical, making it more intuitive.

• Nevertheless, you will still be proving results that feel concrete, interest-
ing, and substantial.

Despite this, we will not use any serious graph theory in this textbook.
Instead, we are only going to use some basic terminology for con-
venience, and will not use any deep theorems (or barely theorems at all).
The purpose of this chapter is to provide a list of some common terms that
we will be using. Some other terms may appear in solutions to more difficult
problems, which you are responsible for looking up yourself.

You should spend at most 15 minutes reading this chapter as there is nothing
to “get”. (And if you are already familiar with graph theory, everything here
will be review.)

§5.1 Textbook references
If you are interested in learning more graph theory (beyond the pitifully narrow
scope of this book), here are some textbook recommendations.

• As a high school student, I liked Chartrand and Zhang, A First Course
in Graph Theory.

• Another classical standard textbook is Diestel, Graph Theory.

In general, a lot of textbooks on graph theory are quite similar to each other,
so I think you can’t really go wrong with most of them.
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§5.2 Graphs
A graph is a collection of vertices together with some number of edges
which connect pairs of different vertices. In this book, repeated edges aren’t
allowed.1

Figure 5.1 shows a finite simple graph with six vertices and seven edges.

Figure 5.1: An example of a graph, with six vertices and seven edges. Image
taken from Wikipedia, explicitly in the public domain.

The graph is finite if there are finitely many vertices, and assumption you
can make throughout this textbook (although we will sometimes include the
word “finite” for emphasis anyways).

§5.3 Degree
The degree of a vertex is the number of edges it touches, or put another way,
the number of neighbors it has. So in Figure 5.1

• Vertex 1 has degree two (it has neighbors 2 and 5)

• Vertex 2 has degree three (it has neighbors 1, 3, and 5)

• Vertex 3 has degree two (it has neighbors 2 and 4)

• Vertex 4 has degree three (it has neighbors 3, 5 and 6)

• Vertex 5 has degree three (it has neighbors 1, 2, and 4)

• Vertex 6 has degree one (its only neighbor is 4).

Remark. The sum of the degrees is 2+3+2+3+3+1 = 14, an even number.
In the next chapter, the first example (Example 75) will ask you to prove this
sum is an even number for any finite graph G. This is called the “handshake
lemma”, after a silly real-world interpretation where some people are shaking
hands. If you are new to this, you can try to prove this now, or at least draw
some more examples of graphs to convince yourself that this is true.

1We write “simple” to emphasize this, sometimes, but you can ignore this word each time
you see it.
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§5.4 Paths, cycles, connectedness
A path is exactly what it sounds like: a sequence of vertices which are adjacent
and get you from one vertex to another. So,

1→ 5→ 4→ 6

is an example of a path in Figure 5.1. We don’t allow repeated vertices in a
path.

A cycle is exactly what it sounds like: a path where you start and end at
the same vertex (and, other than this, no repeated vertices are allowed). So

2→ 3→ 4→ 5→ 2

is an example of a cycle in Figure 5.1.
A graph is connected if there is a path between any two vertices in the

graph (again, what it sounds like). So the above graph is connected. If a graph
is not connected, it instead consists of several connected components; you
can guess what this means. For example, Figure 5.2 is a graph which is not
connected, but has three connected components.

Figure 5.2: An example of a disconnected graph. It has three connected com-
ponents. Image taken from Wikipedia, explicitly in public domain.

The complete graph or clique on n vertices, denoted Kn, is the n-vertex
graph where all

(
n
2

)
possible edges are drawn. We draw K5 in Figure 5.3.

97

https://commons.wikimedia.org/wiki/File:Pseudoforest.svg


May 18, 2025 The OTIS Excerpts, by Evan Chen

Figure 5.3: The complete graph K5, with its
(
5
2

)
= 10 edges.

§5.5 Bipartite graphs
There’s one special class of graph worth mentioning: a bipartite graph is
one for which you can color the vertices in two colors red or blue (or whatever
your two favorite colors are), such that each edge has one red and one blue
endpoint (so there are no red-red or blue-blue edges).

You’ll often see these drawn with the vertices split into two halves by color,
say all the red vertices on the left and blue vertices on the right. Then the
bipartite condition means all the edges go “between” the two parts. See Fig-
ure 5.4 for an example of such an illustration.

Figure 5.4: An example of a bipartite graph, with its accompanying coloring.

As long as I’m here, I may as well mention the following alternative defini-
tion, since it would be kind of mean to not tell you. But we won’t use this
result later on in this book.

Proposition 5.1. A graph is bipartite if and only if it has no cycles of odd
length.
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6 Two-Part Problems
In the first chapter of this book, we described how any “find all” or “find

the min/max” problem is actually a two-part problem. This is a skill worth
practicing in its own right, and so this chapter is dedicated towards to giving
you some practice with it.

§6.1 Making ends meet
A general outline for an approach to these problems:

Step 1 Play with some examples of x to get a sense for what the answer is.

Step 2 Make a guess what you think the valid x are. Let A be your claimed
set of x for which you think the task is possible.

Step 3a For x ∈ A, describe an algorithm that works, using ideas gathered
from Step 1.

Step 3b For x /∈ A show that the task is impossible.

There is an analogous recipe for “find the maximum possible x” problems (for
“minimum”, just change all ≤ to ≥):

Step 1 Play with some examples of x to get a sense for what the answer is.

Step 2 Make a guess what the maximum is, say M .

Step 3a Give an example that shows x =M can be achieved.

Step 3b Prove that x ≤M in all situations.

Steps 3a and 3b can be performed in either order, and often one of them is
obvious, and the other is less obvious. In fact, one thing you will soon find out
is that these steps are closely related: in fact, rather than thinking of them as
two separate steps, I would rather describe them as making two ends meet.
Pictorially, you have two opposite forces and you’d like to push them together.

Examples of this interplay:

• You may often find that there is some boundary case and the answer
you thought you had is wrong.

• Perhaps you have a construction that gets 100 points, and you ask your-
self “how can I (or why can’t I) modify this construction to improve the
100 to something better?”.
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• Or in the other direction, you have a proof that at most 100 is possible,
and you can use that proof to try and guide you towards finding an
example that actually achieves 100.

§6.2 Ideas
Here are some common ideas that may help you in one or both directions.

• Don’t be surprised if one direction is obvious. This happens a
lot, where one direction takes almost no effort while the other direction
is the entirety of the problem.

• Get used to specifying algorithms. Often a problem will ask you
to show that something is always possible, and the way you do so is by
giving a procedure to do it, i.e. a series of steps. This is totally normal
and in fact you should get used to doing this sort of thing for existence
problems.

• Invariants can show impossibility. Conversely, if you want to show
something is never possible, one typical way to do it is to define an invari-
ant, i.e. a quantity that never changes during a step of some operation.
This is valuable too in find-all problems, maybe especially so. For exam-
ple, suppose you are confronted with a problem about whether a certain
task is possible on n×n board. One common thing to do is just try
the simplest invariant and see which n (if any) are ruled out.
Sometimes it won’t do much, but often you’ll get a few free cases this
way1, and trying this is often so simple it would be silly not to take a
quick look.

§6.3 Walkthroughs
Problem 64 (HMMT February 2016). Let n > 1 be an odd integer. On an
n × n chessboard the center square and four corners are deleted. We wish to
group the remaining n2 − 5 squares into 1

2 (n
2 − 5) pairs, such that the two

squares in each pair intersect at exactly one point (i.e. they are diagonally
adjacent, sharing a single corner).

For which odd integers n > 1 is this possible?

Walkthrough. Let’s do some cases first.

(a) Can one do n = 3?
1If you’ve done Diophantine equations before, this is similar to how you might often start

by taking a few mods to get a bit of starting information. You don’t expect to solve the
problem instantly, just get a bit of opening information to begin a proper line of attack.
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(b) Can one do n = 5?

(c) Can one do n = 7?

In fact, for most n the task is impossible. This is a parity argument: we seek
a coloring the cells by black and white (not the usual checkerboard) so that
any valid pair has different colors.

(d) Find a coloring of the squares by black and white so that diagonally
adjacent squares are opposite colors. (Optionally, find all such colorings.)

(e) Use this to narrow down the set of possible n to two values.

(f) Wrap up the problem using your earlier work.

Problem 65 (USAJMO 2019). There are a + b bowls arranged in a row,
numbered 1 through a+ b, where a and b are given positive integers. Initially,
each of the first a bowls contains an apple, and each of the last b bowls contains
a pear. A legal move consists of moving an apple from bowl i to bowl i + 1
and a pear from bowl j to bowl j − 1, provided that the difference i − j is
even. We permit multiple fruits in the same bowl at the same time. The goal
is to end up with the first b bowls each containing a pear and the last a bowls
each containing an apple. Show that this is possible if and only if the product
ab is even.

Walkthrough. First we show that if ab is even then the goal is possible.
The basic idea is to use induction.

(a) If min(a, b) ≥ 1, and a and b are opposite parity, show that in one swap
one can reduce from (a, b) to (a− 1, b− 1).

(b) If min(a, b) ≥ 2, and a and b are both even, show that in two swaps one
can reduce from (a, b) to (a− 2, b− 2).

(c) Formulate a set of base cases and complete the proof via induction.

Conversely, we need to show the task is impossible if ab is odd.

(d) Let X denote the number of apples in odd-numbered bowls, and let Y
denote the number of pears in odd-numbered bowls. Find a relation
between X and Y that does not change under the operation.

(e) Use this to show that the task is impossible when ab is odd.

§6.4 Problems
Problem 66 (Pan-African Girls MO 2021). Lucía multiplies some positive
one-digit numbers (not necessarily distinct) and obtains a number n greater
than 10. Then, she multiplies all the digits of n and obtains an odd number.
Find all possible values of the units digit of n.
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Problem 67 (USAJMO 2016). Find, with proof, the least integer N such
that if any 2016 elements are removed from the set {1, 2, . . . , N}, one can still
find 2016 distinct numbers among the remaining elements with sum N .

Problem 68 (IMO 1974). Consider a sequence a1 < a2 < · · · < ap of p posi-
tive integers. We wish to partition an 8× 8 chessboard into p non-overlapping
rectangles (whose sides are aligned with that of the grid) such that the ith rect-
angle has exactly ai black squares and exactly ai white squares inside it. Find
the largest value of p for which such a decomposition could occur. Moreover,
determine all sequences (a1, a2, . . . , ap) that achieve this maximum.

Problem 69 (USAMO 2012). Find all integers n ≥ 3 such that among any
n positive real numbers a1, a2, …, an with

max(a1, a2, . . . , an) ≤ n ·min(a1, a2, . . . , an),

there exist three that are the side lengths of an acute triangle.

Problem 70 (IMO 2017). For each integer a0 > 1, define the sequence a0,
a1, a2, …, by

an+1 =

{√
an if √an is an integer,

an + 3 otherwise

for each n ≥ 0. Determine all values of a0 for which there is a number A such
that an = A for infinitely many values of n.

Problem 71 (Pan-African Girls MO 2021). There are n ≥ 2 coins numbered
from 1 to n. These coins are placed around a circle, not necessarily in order.

In each turn, if we are on the coin numbered i, we will jump to the one i
places from it, always in a clockwise order, beginning with coin number 1.

Find all values of n for which there exists an arrangement of the coins in
which every coin will be visited.

Problem 72 (IMO Shortlist 2022). Determine the smallest positive integer
that has three distinct positive divisors whose sum is 2022.

Problem 73 (Pan-African Girls MO 2021). Celeste has an unlimited amount
of each type of n types of candy, numbered type 1, type 2, …, type n. Initially
she takes m > 0 candy pieces and places them in a row on a table. Then, she
chooses one of the following operations (if available) and executes it:

• She eats a candy of type k, and in its position in the row she places one
candy type k − 1 followed by one candy type k + 1, indices modulo n.

• She chooses two consecutive candies which are the same type, and eats
them.

Find all positive integers n for which Celeste can leave the table empty for any
value of m and any configuration of candies on the table.
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Problem 74 (USAMO 2021). A finite set S of positive integers has the prop-
erty that, for each s ∈ S, and each positive integer divisor d of s, there exists
a unique element t ∈ S satisfying gcd(s, t) = d. (The elements s and t could
be equal.)

Given this information, find all possible values for the number of elements
of S.
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§6.5 Solutions

Solution 64 (HMMT February 2016). Constructions for n = 3 and n = 5
are easy. For n > 5, color the odd rows black and the even rows white. If the
squares can be paired in the way desired, each pair we choose must have one
black cell and one white cell, so the numbers of black cells and white cells are
the same.

The number of black cells is n+1
2 n− 4 or n+1

2 n− 5 depending on whether the
removed center cell is in an odd row. The number of white cells is n−1

2 n or
n−1
2 n− 1. But (

n+ 1

2
n− 5

)
− n− 1

2
n = n− 5

so for n > 5 this pairing is impossible. Thus the answer is n = 3 and n = 5.

Solution 65 (USAJMO 2019). First we show that if ab is even then the
goal is possible. We prove the result by induction on a+ b.

• If min(a, b) = 0 there is nothing to check.

• If min(a, b) = 1, say a = 1, then b is even, and we can swap the (only)
leftmost apple with the rightmost pear by working only with those fruits.

• Now assume min(a, b) ≥ 2 and a + b is odd. Then we can swap the
leftmost apple with rightmost pear by working only with those fruits,
reducing to the situation of (a− 1, b− 1) which is possible by induction
(at least one of them is even).

• Finally assume min(a, b) ≥ 2 and a + b is even (i.e. a and b are both
even). Then we can swap the apple in position 1 with the pear in position
a + b − 1, and the apple in position 2 with the pear in position a + b.
This reduces to the situation of (a − 2, b − 2) which is also possible by
induction.
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Now we show that the result is impossible if ab is odd. Define

X = number apples in odd-numbered bowls
Y = number pears in odd-numbered bowls.

Note that X − Y does not change under this operation. However, if a and b
are odd, then we initially have X = 1

2 (a + 1) and Y = 1
2 (b − 1), while the

target position has X = 1
2 (a− 1) and Y = 1

2 (b+ 1). So when ab is odd this is
not possible.

Remark. Another proof that ab must be even is as follows.
First, note that apples only move right and pears only move left, a successful

operation must take exactly ab moves. So it is enough to prove that the number
of moves made must be even.

However, the number of fruits in odd-numbered bowls either increases by
+2 or −2 in each move (according to whether i and j are both even or both
odd), and since it ends up being the same at the end, the number of moves
must be even.

Alternatively, as pointed out in the official solutions, one can consider the
sums of squares of positions of fruits. The quantity changes by[

(i+ 1)2 + (j − 1)2
]
− (i2 + j2) = 2(i− j) + 2 ≡ 2 (mod 4)

at each step, and eventually the sums of squares returns to zero, as needed.

Solution 66 (Pan-African Girls MO 2021). So in the OTIS server some-
one told me that https://aops.com/community/p25871435 exists, that is:

Claim. The tens digit of powers of 3 are always even.

Proof. Modulo 20, we have 34k ≡ 1, 34k+1 ≡ 3, 34k+2 ≡ 9, 34k+3 ≡ 7.

The answer is 5 only, achieved by 5 · 7 = 35. If n is the product of one-
digit numbers, has all odd digits, and does not end in 5, then n is odd and
n = 3a7b for some nonnegative integers a and b. However, 7 ≡ 33 (mod 20),
so n ≡ 3a+3b (mod 20) and the claim now kills the problem.

Solution 67 (USAJMO 2016). The answer is

N = 2017 + 2018 + · · ·+ 4032 = 1008 · 6049 = 6097392.

Proof that N ≥ 6097392 is necessary. To see that N must be at least this
large, consider the situation when 1, 2, …, 2016 are removed. Among the
remaining elements, any sum of 2016 elements is certainly at least 2017 +
2018 + · · ·+ 4032.
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Proof that N = 6097392 does in fact work. Consider the 3024 pairs of num-
bers (1, 6048), (2, 6047), …, (3024, 3025). Regardless of which 2016 elements of
{1, 2, . . . , N} are deleted, at least 3024− 2016 = 1008 of these pairs have both
elements remaining. Since each pair has sum 6049, we can take these pairs to
be the desired numbers.

Solution 68 (IMO 1974).

Answers. The largest value of p is p = 7. The four possible sequences
(a1, . . . , a7) for that maximum are

(1, 2, 3, 5, 6, 7, 8)

(1, 2, 3, 4, 6, 7, 9)

(1, 2, 3, 4, 5, 8, 9)

(1, 2, 3, 4, 5, 7, 10).

Proof that p ≤ 7. The ith rectangle has area 2ai, and obviously ai ≥ i. Then

64 = 2a1 + 2a2 + · · ·+ 2ap ≥ 2 + 4 + 6 + · · ·+ 2p = p(p+ 1)

which implies p ≤ 7.

Possible partitions when p = 7. An exhaustive check shows that the possible
ways to write 64 as the sum of seven distinct even positive integers is

64 = 2 + 4 + 6 + 10 + 12 + 14 + 16

= 2 + 4 + 6 + 8 + 12 + 14 + 18

= 2 + 4 + 6 + 8 + 10 + 16 + 18

= 2 + 4 + 6 + 8 + 10 + 14 + 20

= 2 + 4 + 6 + 8 + 10 + 12 + 22.

This gives five candidates for (a1, . . . , a7). The last one is not possible, because
if 2a7 = 22, then we would have an area of rectangle 22 in our decomposition;
but there is no way to fit either a 1× 22 or 2× 11 into an 8× 8 grid.

However, the other four can be done, as the following examples show.
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64 = 2 + 4 + 6 + 10 + 12 + 14 + 16

2 14

4 12

6 10

16

64 = 2 + 4 + 6 + 8 + 12 + 14 + 18

2 14

4 12

6 18

8

64 = 2 + 4 + 6 + 8 + 10 + 16 + 18

2 4 10

16

6 18

8
64 = 2 + 4 + 6 + 8 + 10 + 14 + 20

2 14

10

4

6
20

8

Solution 69 (USAMO 2012). The answer is all n ≥ 13.
Define (Fn) as the sequence of Fibonacci numbers, by F1 = F2 = 1 and

Fn+1 = Fn + Fn−1. We will find that Fibonacci numbers show up naturally
when we work through the main proof, so we will isolate the following calcu-
lation now to make the subsequent solution easier to read.

Claim. For positive integers m, we have Fm ≤ m2 if and only if m ≤ 12.

Proof. A table of the first 14 Fibonacci numbers is given below.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

1 1 2 3 5 8 13 21 34 55 89 144 233 377

107

https://aops.com/community/p2669112


May 18, 2025 The OTIS Excerpts, by Evan Chen

By examining the table, we see that Fm ≤ m2 is true for m = 1, 2, . . . 12, and
in fact F12 = 122 = 144. However, Fm > m2 for m = 13 and m = 14.

Now it remains to prove that Fm > m2 for m ≥ 15. The proof is by
induction with base cases m = 13 and m = 14 being checked already. For the
inductive step, if m ≥ 15 then we have

Fm = Fm−1 + Fm−2 > (m− 1)2 + (m− 2)2

= 2m2 − 6m+ 5 = m2 + (m− 1)(m− 5) > m2

as desired.

We now proceed to the main problem. The hypothesis max(a1, a2, . . . , an) ≤
n ·min(a1, a2, . . . , an) will be denoted by (†).

Proof that all n ≥ 13 have the property. We first show now that every
n ≥ 13 has the desired property. Suppose for contradiction that no three
numbers are the sides of an acute triangle. Assume without loss of generality
(by sorting the numbers) that a1 ≤ a2 ≤ · · · ≤ an. Then since ai−1, ai, ai+1 are
not the sides of an acute triangle for each i ≥ 2, we have that a2i+1 ≥ a2i +a2i−1;
writing this out gives

a23 ≥ a22 + a21 ≥ 2a21

a24 ≥ a23 + a22 ≥ 2a21 + a21 = 3a21

a25 ≥ a24 + a23 ≥ 3a21 + 2a21 = 5a21

a26 ≥ a25 + a24 ≥ 5a21 + 3a21 = 8a21

and so on. The Fibonacci numbers appear naturally and by induction, we
conclude that a2i ≥ Fia

2
1. In particular, a2n ≥ Fna

2
1.

However, we know max(a1, . . . , an) = an and min(a1, . . . , an) = a1, so (†)
reads an ≤ n · a1. Therefore we have Fn ≤ n2, and so n ≤ 12, contradiction!

Proof that no n ≤ 12 have the property. Assume that n ≤ 12. The
above calculation also suggests a way to pick the counterexample: we choose
ai =

√
Fi for every i. Then min(a1, . . . , an) = a1 = 1 and max(a1, . . . , an) =√

Fn, so (†) is true as long as n ≤ 12. And indeed no three numbers form
the sides of an acute triangle: if i < j < k, then a2k = Fk = Fk−1 + Fk−2 ≥
Fj + Fi = a2j + a2i .

Solution 70 (IMO 2017). The answer is a0 ≡ 0 (mod 3) only.

First solution. We first compute the minimal term of any sequence, periodic
or not.

Lemma. Let c be the smallest term in an. Then either c ≡ 2 (mod 3) or
c = 3.
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Proof. Clearly c 6= 1, 4. Assume c 6≡ 2 (mod 3). As c is not itself a square, the
next perfect square after c in the sequence is one of (b

√
cc+ 1)

2, (b
√
cc+ 2)

2,
or (b

√
cc+ 3)

2. So by minimality we require

c ≤
⌊√

c
⌋
+ 3 ≤

√
c+ 3

which requires c ≤ 5. Since c 6= 1, 2, 4, 5 we conclude c = 3.

Now we split the problem into two cases:

• If a0 ≡ 0 (mod 3), then all terms of the sequence are 0 (mod 3). The
smallest term of the sequence is thus 3 by the lemma and we have

3→ 6→ 9→ 3

so A = 3 works fine.

• If a0 6≡ 0 (mod 3), then no term of the sequence is 0 (mod 3), and so in
particular 3 does not appear in the sequence. So the smallest term of the
sequence is 2 (mod 3) by lemma. But since no squares are 2 (mod 3),
the sequence ak grows without bound forever after, so no such A can
exist.

Hence the answer is a0 ≡ 0 (mod 3) only.

Second solution. We clean up the argument by proving the following lemma.

Lemma. If an is constant modulo 3 and not 2 (mod 3), then an must even-
tually cycle in the form (m,m+ 3,m+ 6, . . . ,m2), with no squares inside the
cycle except m2.

Proof. Observe that an must eventually hit a square, say ak = c2; the next
term is ak+1 = c. Then it is forever impossible to exceed c2 again, by what is
essentially discrete intermediate value theorem. Indeed, suppose a` > c2 and
take ` > k minimal (in particular a` 6=

√
a`−1). Thus a`−1 ∈ {c2−2, c2−1, c2}

and thus for modulo 3 reasons we have a`−1 = c2. But that should imply
a` = c < c2, contradiction.

We therefore conclude sup{an, an+1, . . . } is a decreasing integer sequence in
n. It must eventually stabilize, say at m2. Now we can’t hit a square between
m and m2, and so we are done.

Now, we contend that all a0 ≡ 0 (mod 3) work. Indeed, for such a0 we have
an ≡ 0 (mod 3) for all n, so the lemma implies that the problem statement is
valid.

Next, we observe that if ai ≡ 2 (mod 3), then the sequence grows without
bound afterwards since no squares are 2 (mod 3). In particular, if a0 ≡ 2
(mod 3) the answer is no.
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Finally, we claim that if a0 ≡ 1 (mod 3), then eventually some term is 2
(mod 3). Assume for contradiction this is not so; then an ≡ 1 (mod 3) must
hold forever, and the lemma applies to give us a cycle of the form (m,m +
3, . . . ,m2) where m ≡ 1 (mod 3). In particular m ≥ 4 and

m ≤ (m− 2)2 < m2

but (m− 2)2 ≡ 1 (mod 3) which is a contradiction.

Solution 71 (Pan-African Girls MO 2021). Because the coin n is a sink,
a valid path must start at 1, visit every other coin in {2, . . . , n − 1} exactly
once, and finally end at coin n. The total distance traveled before reaching n
is 1 + 2 + · · ·+ (n− 1) = 1

2n(n− 1). This means that

• When n is odd, the total distance is a multiple of n, but that’s impossible
as 1 and n don’t occupy the same place.

• When n is even, it hints that any valid construction must start with 1
diametrically opposite n and wind around exactly 1

2n times.

For the construction, see the following example for n = 20 which obviously
generalizes to any even n.

2

3

4

5

6

7

8

9

1011

12

13

14

15

16

17

18

19

1

20

Solution 72 (IMO Shortlist 2022). The answer is 1344, based on the
divisors 1344 + 672 + 6 = 2022.
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The proof of optimality is, unsurprisingly, a bunch of casework. Fix n and
take divisors 1 ≤ d1 < d2 < d3 such that

n

d1
+

n

d2
+

n

d3
= 2022 ⇐⇒ n =

2022
1
d1

+ 1
d2

+ 1
d3

.

Assume that n ≤ 1344.

Claim (First casework bash). We need d1 = 1 and d2 = 2.

Proof. We do a lot of cases.

• If d1 ≥ 2, then
n ≥ 2022

1
2 + 1

3 + 1
4

≈ 1866.46 > 1866

which is a contradiction. Thus, assume d1 = 1 henceforth.

• If d2 ≥ 4, then
n ≥ 2022

1
1 + 1

4 + 1
5

≈ 1394.48 > 1394

which is a contradiction. Thus, assume d2 ∈ {2, 3} henceforth.

• We rule out the case d2 = 3 now. In the case where d2 = 3, we have

1344 ≥ 2022
1
1 + 1

3 + 1
d3

=⇒ 1

d3
≥ 0.1711 =⇒ d3 < 6.

Thus we need to check the cases d3 ∈ {4, 5}. These cases give n = 2022
1+ 1

3+
1
4

and n = 2022
1+ 1

3+
1
5

respectively, but neither of these is an integer.

In the remainder of the solution, let d = n
d3

. We then obtain

2022 = n+
n

2
+ d

= d ·
(
3

2
d3 + 1

)
=⇒ 22 · 3 · 337 = 4044 = d (3d3 + 2) .

The only solution in positive integers is d = 6, which corresponds to the
solution n = 1344 we found earlier.

Solution 73 (Pan-African Girls MO 2021). The answer is 3 - n.
If n is not divisible by 3, notice that from a single candy of type 1 Celeste

can perform the following moves:

1 7→ 02 7→ 013 7→ 0023 7→ 00224 7→ 224 7→ 4.
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In other words, Celeste can apply +3 shifts to any candy type. So if 3 - n,
this is the same as being able to transform the type of any candy on the row
however she wishes without affecting the rest of the row. Clearly that means
the task is possible.

Conversely, suppose 3 | n. We claim Celeste cannot complete the task
starting from a single candy, The invariant is as follows:

Claim. Let x, y, z respectively denote the number of candies whose labels
are 0 mod 3, 1 mod 3, 2 mod 3 respectively. Then every operation toggles the
parity of either all three variables, or none of them.

Proof. The first operation toggles the parity of all three; the second operation
toggles none of them.

This invariant solves the problem.

Remark. A humorous way to phrase this proof using the language of group
theory: Define the Klein four group

G = {1, a, b, c} ∼= Z/2⊕ Z/2

with multiplication table a2 = b2 = c2 = 1 and bc = cb = a, ca = ac = b,
ab = ba = c. We’ll assign candies of types 0, 1, 2 mod 3 a label a, b, c.
Then any row can be interpreted as a string of elements of G, and thus (by
group multiplication) an element of G. By construction, the operation leaves
this element invariant. Because the end state is the empty string which has
product 1, we’re done.

Remark. Metagaming the problem statement a bit, it’s sufficient to consider
starting positions with only one candy. If the task is possible in that case,
then of course it’s possible in general by treating each individual candy in the
initial configuration separately.

Solution 74 (USAMO 2021). The answer is that |S| must be a power of 2
(including 1), or |S| = 0 (a trivial case we do not discuss further).

Construction. For any nonnegative integer k, a construction for |S| = 2k is
given by

S = {(p1 or q1)× (p2 or q2)× · · · × (pk or qk)}

for 2k distinct primes p1, …, pk, q1, …, qk.
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Converse. The main claim is as follows.

Claim. In any valid set S, for any prime p and x ∈ S, νp(x) ≤ 1.

Proof. Assume for contradiction e = νp(x) ≥ 2.

• On the one hand, let s = x in the statement. Vary t ∈ S across all the
elements in S to get each divisor of x once. Since e

e+1 of the divisors of
x are divisible by p, it thus follows that e

e+1 of the elements are divisible
by p.

• On the other hand, consider a y ∈ S such that νp(y) = 1, which must
exist (say if gcd(x, y) = p). Taking s = y in the statement and repeating
the same argument, we see 1

2 of the elements of S are divisible by p.

So e = 1, contradiction.

Now since |S| equals the number of divisors of any element of S, we are
done.
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7 Global
This chapter is dedicated to the idea that you can often extract nontrivial

information about a problem by looking at the entire structure at once.

§7.1 A simple example, the handshake lemma
The simplest example that many of you have already heard of is:

Example 75 (Handshake lemma). Let G be a finite simple graph. Then the
sum of all the degrees of vertices of G is an even number.

Solution 75. We claim that the sum of the degrees is equal to twice the
number of edges. In fact both quantities are equal to the cardinality of the set

{(v, e) | v vertex, e edge containing v} .

In particular, this is even. �

This example is a little surprising because this seems to actually be the
shortest way to show that the degree sum is even, despite the fact that we
were not initially interested in edges or the set above.

We will see some more examples in the walkthrough.

§7.2 Expected value
However, for the theoretical part of this chapter, I want to introduce a useful
notion that will allow us to let us capture the “boiler-plate” of having to
construct a double-indexed set, like the “subset of V ×E” above. That is the
notion of expected value and linearity of expectation. Here are the blueprints.

§7.2.1 Definitions and notation
Nothing tricky here, just setting up notation. I’ll try not to be overly formal.

A random variable is just a quantity that we take to vary randomly. For
example, the outcome of a standard six-sided dice roll, say D6, is a random
variable. We can now discuss the probability of certain events, which we’ll
denote P(•). For instance, we can write

P(D6 = 1) = P(D6 = 2) = · · · = P(D6 = 6) =
1

6

or P(D6 = 0) = 0 and P(D6 ≥ 4) = 1
2 .
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We can also discuss the expected value of a random variable X, which is
the “average” value. The formal definition is

E[X] :=
∑
x

P(X = x) · x.

But an example for our dice roll D6 makes this clearer:

E[D6] =
1

6
· 1 + 1

6
· 2 + · · ·+ 1

6
· 6 = 3.5.

In natural language, we just add up all the outcomes weighted by probability
they appear.

§7.2.2 Another motivating example

It is an unspoken law that any introduction to expected value begins with the
following classical example.

Example 76. At MOP, there are n people, each of who has a name tag. We
shuffle the name tags and randomly give each person one of the name tags.
Let S be the number of people who receive their own name tag. Prove that
the expected value of S is 1.

This result might seem surprising, as one might intuitively expect E[S] to
depend on the choice of n.

Solution 76. For simplicity, let us call a person a fixed point if they receive
their own name tag.1 Thus S is just the number of fixed points, and we wish to
show that E[S] = 1. If we’re interested in the expected value, then according
to our definition we should go through all n! permutations, count up the total
number of fixed points, and then divide by n! to get the average. Since we
want E[S] = 1, we expect to see a total of n! fixed points.

Let us begin by illustrating the case n = 4 first, calling the people W , X,
Y , Z.

1This is actually a term used to describe points which are unchanged by a permutation.
So the usual phrasing of this question is “what is the expected number of fixed points of
a random permutation?”
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W X Y Z Σ

1 W X Y Z 4
2 W X Z Y 2
3 W Y X Z 2
4 W Y Z X 1
5 W Z X Y 1
6 W Z Y X 2
7 X W Y Z 2
8 X W Z Y 0
9 X Y W Z 1

10 X Y Z W 0
11 X Z W Y 0
12 X Z Y W 1
13 Y W X Z 1
14 Y W Z X 0
15 Y X W Z 2
16 Y X Z W 1
17 Y Z W X 0
18 Y Z X W 0
19 Z W X Y 0
20 Z W Y X 1
21 Z X W Y 1
22 Z X Y W 2
23 Z Y W X 0
24 Z Y X W 0
Σ 6 6 6 6 24

We’ve listed all 4! = 24 permutations, and indeed we see that there are a
total of 24 fixed points, which I’ve bolded in red. Unfortunately, if we look at
the rightmost column, there doesn’t seem to be a pattern, and it seems hard
to prove that this holds for larger n.

However, suppose that rather than trying to add by rows, we add by columns.
There’s a very clear pattern if we try to add by the columns: we see a total of
6 fixed points in each column. Indeed, the six fixed W points correspond to
the 3! = 6 permutations of the remaining letters X, Y , Z. Similarly, the six
fixed X points correspond to the 3! = 6 permutations of the remaining letters
W , Y , Z.

This generalizes very nicely: if we have n letters, then each letter appears
as a fixed point (n− 1)! times.

Thus the expected value is

E[S] =
1

n!

(n− 1)! + (n− 1)! + · · ·+ (n− 1)!︸ ︷︷ ︸
n times

 =
1

n!
· n · (n− 1)! = 1.

Cute, right? Now let’s bring out the artillery. �
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§7.2.3 Linearity of expectation
The crux result of this section is the following theorem.

Theorem 7.1 (Linearity of Expectation). Given any random variables X1,
X2, …, Xn, we always have

E[X1 +X2 + · · ·+Xn] = E[X1] + E[X2] + · · ·+ E[Xn].

This theorem is obvious if the X1, X2, …, Xn are independent of each other
– if I roll 100 dice, I expect an average of 350. Duh. The wonderful thing is
that this holds even if the variables are not independent. And the basic idea
is just the double-counting we did in the earlier example: even if the variables
depend on each other, if you look only at the expected value, you can still
add just by columns. The proof of the theorem is just a bunch of sigma signs
which say exactly the same thing, so I won’t include it.

Anyways, that means we can now nuke our original problem. The trick is
to define indicator variables as follows: for each i = 1, 2, . . . , n let

Si :=

{
1 if person i gets his own name tag
0 otherwise.

Obviously,
S = S1 + S2 + · · ·+ Sn.

Moreover, it is easy to see that E[Si] = P(Si = 1) = 1
n for each i: if we look at

any particular person, the probability they get their own name tag is simply
1
n . Therefore,

E[S] = E[S1] + E[S2] + · · ·+ E[Sn] =
1

n
+

1

n
+ · · ·+ 1

n︸ ︷︷ ︸
n times

= 1.

Now that was a lot easier! By working in the context of expected value, we get
a framework where the “double-counting” idea is basically automatic. In other
words, linearity of expectation lets us only focus on small, local components
when computing an expected value, without having to think about why it
works.

Here is another example which captures the same boiler-plate.

Example 77 (HMMT 2006). At a nursery, 2006 babies sit in a circle. Sud-
denly, each baby randomly pokes either the baby to its left or to its right.
What is the expected value of the number of unpoked babies?

Solution 77. Number the babies 1, 2, …, 2006. Define

Xi :=

{
1 if baby i is unpoked
0 otherwise.
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We seek E[X1+X2+· · ·+X2006]. Note that any particular baby has probability(
1
2

)2
= 1

4 of being unpoked (if both its neighbors miss). Hence E[Xi] =
1
4 for

each i, and

E[X1 +X2 + · · ·+X2006] = E[X1] + E[X2] + · · ·+ E[X2006]

= 2006 · 1
4

=
1003

2

which is the answer. �

Seriously, this should feel like cheating.

§7.3 The so-called pigeonhole principle
In its simplest form, we can use expected value to show existence as follows:
suppose we know that the average score of the USAMO 2014 was 12.51. Then
there exists a contestant who got at least 13 points, and a contestant who got
at most 12 points.

This is isomorphic to the pigeonhole principle, but the probabilistic phrasing
is far more robust.

Example 78 (International Math Competition 2002). An olympiad has six
problems and 200 contestants. The contestants are very skilled, so each prob-
lem is solved by at least 120 of the contestants. Prove that there exist two
contestants such that each problem is solved by at least one of them.

Solution 78. We randomly pick two contestants (possibly even the same
contestant). Note that the probability they both miss the first problem is at
most

(
2
5

)2
= 4

25 . So the expected value of the number of problems that both
miss is at most 6 · 4

25 < 1. Therefore there certainly exists a pair of students
who together miss less than one problem, which is what we wanted. �

You will also see applications of pigeonhole that are the same in spirit, but
which are not formulated in terms of probability.

§7.4 Walkthroughs
Problem 79 (Canadian Olympiad 2006). Consider a round-robin tournament
with 2k + 1 teams, where each team plays each other team exactly once. We
say that three teams X, Y and Z, form a cyclic triplet if X beats Y , Y beats Z
and Z beats X. There are no ties. Find the minimum and maximum possible
number of cyclic triplets.

Walkthrough. The minimum bound is not that interesting.
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(a) Give an example of a tournament with no cyclic triplet. This finds the
minimum.

It’s the maximum that we’ll be most interested in. For a team v, let outdeg v
denote the number of teams beaten by v. (This notation is the standard graph-
theoretic one.) In order to count it, it will actually be parametrize our target
in terms of degrees.

(b) Rephrase the “maximum” problem in terms of the number of non-cyclic
triplets.

(c) By double-counting, find an expression for the number of non-cyclic
triplets in terms of the outdegrees of the vertices. (Possible hint: ev-
ery non-cyclic triplet can be labeled vwx with v → w, v → x.)

Thus we are reduced to an algebraic calculation.

(d) Use Jensen’s inequality to show there are at least (2k+1)
(
k
2

)
non-cyclic

triplets. (If you’ve never seen Jensen’s inequality before, you can read
about it in Section 2.5.1 of the OTIS Excerpts.)

(e) Give an example where equality holds; thus the maximum is
(
2k+1

3

)
−

(2k + 1)
(
k
2

)
.

Problem 80 (IMO Shortlist 2016). Let n ≥ 5 be a positive integer such that
gcd(n, 6) = 1. We color the vertices of a regular n-gon either red, blue, or
black, such that each color is used on an odd number of vertices. Prove that
there exists an isosceles triangle whose vertices are all different colors.

Walkthrough. This is almost a canonical double-counting problem, in that
if you decide to try and write down some equations which count the data
in two ways, then there is only really one thing you can write down, and
unsurprisingly it works. The problem leaves some visible clues this is what
you should be doing, such as:

(a) Use the condition gcd(n, 6) = 1 to show that every segment is the side
of three distinct isosceles triangles.

This is one big hint that a double-counting approach will work, as is the fact
that each color is used an odd number of times. In fact, the solution here will
get us that the number of rainbow isosceles triangles is odd. This hints the
only obstructions are “global mod 2”, whatever that means.

Let Y denote the number of monochromatic isosceles triangles, and X the
remaining isosceles triangles. Let a, b, c denote the number of vertices of each
color.

(b) Find X + Y in terms of n.

(c) Express N =
(
a
2

)
+
(
b
2

)
+
(
c
2

)
in terms of X and Y . (There is essentially

only one way to do this.)
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(d) Using the answer to (c), show that N ≡ X + Y (mod 2).

(e) Use this to derive a contradiction.

A solution using ab+bc+ca instead of
(
a
2

)
+
(
b
2

)
+
(
c
2

)
is possible (and cleaner).

It’s actually not hard, now that we have this solution, to establish more.

(f) Show more strongly that the number of rainbow isosceles triangles is
odd.

(g) Show that the condition gcd(n, 6) = 1 can be dropped entirely — even
without it, the number of rainbow isosceles triangles is still odd. (Of
course, the problem is only interesting for n odd.)

§7.5 Problems
Problem 81 (HMMT February 2013). Values a1, . . . , a2013 are chosen inde-
pendently and at random from the set {1, . . . , 2013}. What is the expected
number of distinct values in the set {a1, . . . , a2013}?

Problem 82 (AIME 1985). In a tournament each player played exactly one
game against each of the other players. In each game the winner was awarded
1 point, the loser got 0 points, and each of the two players earned 1/2 point
if the game was a tie. After the completion of the tournament, it was found
that exactly half of the points earned by each player were earned against the
ten players with the least number of points. (In particular, each of the ten
lowest scoring players earned half of her/his points against the other nine of
the ten.) What was the total number of players in the tournament?

Problem 83 (Bay Area Olympiad 2013). For a positive integer n > 2, con-
sider the n − 1 fractions 2

1 , 3
2 , …, n

n−1 . The product of these fractions equals
n, but if you reciprocate (i.e. turn upside down) some of the fractions, the
product will change. For which n can the product be made into 1?

Problem 84 (ELMO 2015). Let m, n, and x be positive integers. Prove that
n∑

i=1

min
(⌊x

i

⌋
,m
)
=

m∑
i=1

min
(⌊x

i

⌋
, n
)
.

Problem 85 (Russia 1996). In the Duma there are 1600 delegates, who have
formed 16000 committees of 80 people each. Prove that one can find two
committees having no fewer than four common members.

Problem 86 (IMO 1998). In a competition, there are a contestants and b
judges, where b ≥ 3 is an odd integer. Each judge rates each contestant as
either “pass” or “fail”. Suppose k is a number such that for any two judges,
their ratings coincide for at most k contestants. Prove that

k

a
≥ b− 1

2b
.
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Problem 87 (USAMO 2012). A circle is divided into congruent arcs by 432
points. The points are colored in four colors such that some 108 points are
colored red, some 108 points are colored green, some 108 points are colored
blue, and the remaining 108 points are colored yellow. Prove that one can
choose three points of each color in such a way that the four triangles formed
by the chosen points of the same color are congruent.

Problem 88 (IMO 2016). Find all integers n for which each cell of n × n
table can be filled with one of the letters I, M and O in such a way that:

• In each row and column, one third of the entries are I, one third are M
and one third are O; and

• in any diagonal, if the number of entries on the diagonal is a multiple of
three, then one third of the entries are I, one third are M and one third
are O.

Note that an n× n table has 4n− 2 diagonals.

Problem 89 (Online Math Open 2013). Kevin has 2n−1 cookies, each labeled
with a unique nonempty subset of {1, 2, . . . , n}. Each day, he chooses one
cookie uniformly at random out of the cookies not yet eaten. Then, he eats
that cookie, and all remaining cookies that are labeled with a subset of that
cookie. Determine the expected value of the number of days that Kevin eats
a cookie before all cookies are gone.

Problem 90 (IMO 2005). In a mathematical competition 6 problems were
posed to the contestants. Each pair of problems was solved by more than 2

5 of
the contestants. Nobody solved all 6 problems. Show that there were at least
2 contestants who each solved exactly 5 problems.
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§7.6 Solutions

Solution 79 (Canadian Olympiad 2006). In what follows, we replace
the word “team” with “vertex” (to match the terms from graph theory). For
a team/vertex v, outdeg v denotes the number of teams/vertices which were
beaten by v.

Minimum. The minimum is clearly zero — consider a tournament where
there are teams of different skill levels, and no upsets.

Maximum. For the maximum, count the number of non-cyclic triplets. In
any non-cyclic triplet there is exactly one vertex dominating the other two.
So the number of non-cyclic triplets is equal to∑

v

(
outdeg v

2

)

which by Jensen is at least (2k+1)
(
k
2

)
. Hence the answer is

(
2k+1

3

)
−(2k+1)

(
k
2

)
.

Solution 80 (IMO Shortlist 2016). Observe that from gcd(n, 6) = 1 we
find there are no equilateral triangles, and

• Every segment is the base of exactly one isosceles triangle.

• Every segment is the left leg of exactly one isosceles triangle.

• Every segment is the right leg of exactly one isosceles triangle.

Now, assume for contradiction there are no rainbow isosceles triangles. Let
Y be the number of monochromatic isosceles triangles, and X the number
of isosceles triangles with two vertices of one color and the last vertex of a
different color.

Let a, b, c be the number of vertices of each color. On the one hand, we
have

X + 3Y = 3

[(
a

2

)
+

(
b

2

)
+

(
c

2

)]
just by double-counting the triangles: the conditions gcd(n, 6) = 1 imply
that exactly three isosceles triangles use any given edge. (To be precise, we
are counting pairs (4, e), where 4 is isosceles and has edge e with matching
colors. The left-hand side counts by 4 while the right-hand side counts by e.)

On the other hand, we have

X + Y =

(
n

2

)
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since an isosceles triangle is determined by its base (again since gcd(n, 6) = 1).
Therefore we have the following equality modulo 2:(

n

2

)
≡
(
a

2

)
+

(
b

2

)
+

(
c

2

)
(mod 2).

Doubling and expanding we get

n2 − n ≡ (a2 − a) + (b2 − b) + (c2 − c) (mod 4)

≡ a2 + b2 + c2 − n (mod 4).

But since n, a, b, c are odd this is impossible.

Remark. One can equally well work with ab+bc+ca instead of
(
a
2

)
+
(
b
2

)
+
(
c
2

)
,

which turns out be somewhat cleaner technically, although it feels less natural
to me.

Remark. I think the conditions gcd(n, 6) = 1 and a, b, c odd are huge give-
aways that this will be “global obstructions modulo 2”. I solved this during a
Synco concert.

Remark. In fact one can drop the condition that gcd(n, 3) = 1. Indeed, the
only change is that fixing any two vertices A, B, either exactly one or exactly
three isosceles triangles pass through them (instead of always exactly three).
These are the same modulo two anyways.

Solution 81 (HMMT February 2013). The probability a given 1 ≤ n ≤
2013 appears is 1 − (2012/2013)2013. Thus by linearity of expectation, the
answer is

2013

(
1−

(
2012

2013

)2013
)
.

Solution 82 (AIME 1985). Call the players n strong players and 10 weak
players. There are three categories of points given:

• In games between two strong players, a total of A =
(
n
2

)
points are given

out.

• In games between a strong player and a weak player, a total of B = 10n
points are given out.

• In games between two weak players, a total of C =
(
10
2

)
points are given

out.

Breaking down further, the points in category B are divided into two sub-
categories:
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• Points given where strong players beat weak players. Each individual
strong player earns the same number of points from this category as
points in category A. So summing over all strong players, there are
A =

(
n
2

)
points in this sub-category.

• Points given where weak players beat strong players. Each individual
weak player earns the same number of points from this category as points
in category C. So summing over all weak players, there are C =

(
10
2

)
points in this sub-category.

So, we conclude
A+ C = B.

Solving gives n2 − 21n + 90 = 0, so either n = 6 or n = 15. Finally, note
that the strong players have an average score of 2A/n while the weak players
have an average score of 2C/10. As 2A/n > 2C/10, we require n > 10. So
n = 15 and n+ 10 = 25 .

Solution 83 (Bay Area Olympiad 2013). This is possible if and only if n
a perfect square.

To see such n work, just take(
1

2
× 2

3
× . . .

√
n− 1√
n

)
×
(√

n+ 1√
n
× · · · × n

n− 1

)
=

1√
n
×
√
n = 1

as a construction.
Now we show n must be a square. If we divide

2

1
× 3

2
× · · · × n

n− 1
= n

with a construction equal to 1, we will get(
2

1

)1+ε1

×
(
3

2

)1+ε2

× · · · ×
(

n

n− 1

)1+εn−1

= n

where εi ∈ {−1, 1} for each i. Since 1 + εi is even for each i, this means n is
the square of a rational number. Thus n must be itself a perfect square.

Solution 84 (ELMO 2015). Construct a m× n multiplication table: both
sides are counting the number of terms ≤ x. In other words, both sides count
the number of ordered pairs

(i, j) ∈ {1, . . . , n} × {1, . . . ,m} such that ij ≤ x.

Alternatively, induction on x works fine.
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Solution 85 (Russia 1996). Let a1, …, a1600 denote the number of commit-
tees the ith delegate is in. Thus

∑
ai = 16000 · 80, and 1

1600

∑
ai = 800.

Now sample a random pair of committees. The expected number of common
members is ∑(

ai

2

)(
16000

2

) Jensen
≥

1600 ·
(
800
2

)(
16000

2

)
=

1600 · 800 · 799
16000 · 15999

=
800 · 799
10 · 15999

> 3

(in fact quite close to 4).

Remark (Allen Wang). There’s a common wrong solution that gets an ex-
pected value of exactly 4, which cannot work because in fact the expected value
may be strictly less than 4 in certain configurations. The following comment
was posted on AoPS:

After a (retrospectively) surprisingly long discussion on Discord
we have finally figured out why any solution that claims the ex-
pected number to be exactly 4 is wrong: for a given delegate, the
probability that they are in a randomly selected committee is not
80

1600 = 1
20 , but instead depends on the number of committees that

specific delegate is in. The probability is different if they’re in every
committee or in only one.
Of course, when laid out like this it seems rather obvious, but I
think it’s difficult to notice that it’s wrong. Without knowledge of
proofs that (implicitly) show that an EV of 4 − ε is achievable, I
wouldn’t have batted an eye at the erroneous solutions.

Solution 86 (IMO 1998). This is a “routine” problem with global ideas.
We count pairs of coinciding ratings, i.e. the number N of tuples

({J1, J2}, C)

of two distinct judges and a contestant for which the judges gave the same
rating.

On the one hand, if we count by the judges, we have

N ≤
(
b

2

)
k
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by he problem condition.
However, if we write b = 2m + 1 (so m := b−1

2 ), then each contestant C
contributes at least

(
m
2

)
+
(
m+1
2

)
= m2 to N , and so

N ≥ a ·
(
b− 1

2

)2

Putting together the two estimates for N yields the conclusion.

Solution 87 (USAMO 2012). First, consider the 431 possible non-identity
rotations of the red points, and count overlaps with green points. If we select a
rotation randomly, then each red point lies over a green point with probability
108
431 ; hence the expected number of red-green incidences is

108

431
· 108 > 27

and so by pigeonhole, we can find a red 28-gon and a green 28-gon which are
rotations of each other.

Now, look at the 430 rotations of this 28-gon (that do not give the all-red
or all-green configuration) and compare it with the blue points. The same
approach gives

108

430
· 28 > 7

incidences, so we can find red, green, blue 8-gons which are similar under
rotation.

Finally, the 429 nontrivial rotations of this 8-gon expect
108

429
· 8 > 2

incidences with yellow. So finally we have four monochromatic 3-gons, one of
each color, which are rotations of each other.

Solution 88 (IMO 2016). The answer is n divisible by 9.
First we construct n = 9 and by extension every multiple of 9.

I I I M M M O O O
M M M O O O I I I
O O O I I I M M M
I I I M M M O O O
M M M O O O I I I
O O O I I I M M M
I I I M M M O O O
M M M O O O I I I
O O O I I I M M M
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We now prove 9 | n is necessary.
Let n = 3k, which divides the given grid into k2 sub-boxes (of size 3 × 3

each). We say a multiset of squares S is clean if the letters distribute equally
among them; note that unions of clean multisets are clean.

Consider the following clean sets (given to us by problem statement):

• All columns indexed 2 (mod 3),

• All rows indexed 2 (mod 3), and

• All 4k − 2 diagonals mentioned in the problem.

Take their union. This covers the center of each box four times, and every
other cell exactly once. We conclude the set of k2 center squares are clean,
hence 3 | k2 and so 9 | n, as desired.

Shown below is the sums over all diagonals only, and of the entire union.

1 1 1 1 1 1
2 2 2

1 1 1 1 1 1
1 1 1 1 1 1

2 2 2
1 1 1 1 1 1
1 1 1 1 1 1

2 2 2
1 1 1 1 1 1

1 1 1 1 1 1 1 1 1
1 4 1 1 4 1 1 4 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 4 1 1 4 1 1 4 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 4 1 1 4 1 1 4 1
1 1 1 1 1 1 1 1 1

Solution 89 (Online Math Open 2013). The key insight is that the
number of days that elapse is exactly equal to the number of cookies that
are chosen. Thus we can compute the probability each given cookie is chosen
(which is easy, since if a cookie is alive so are all supersets), and sum using
linearity of expectation.

Given a cookie labelled with S, the probability it is chosen at all is 1/2n−|S|,
and the expected value of the number of days that pass is (by linearity) the
sum of all these. By the Binomial Theorem, we obtain an answer of∑

cookie C

P(C chosen) =
∑
C

1

2n−|C|

=

n∑
k=1

(
n
k

)
2n−k

=

(
3

2

)n

−
(
1

2

)n

.

We obtain an answer 3n−1
2n .
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Note that omitting ∅ is red herring, since one can read off that it adds 2−n.
It was added just to make answer harder to guess.

Solution 90 (IMO 2005). Assume not and at most one contestant solved
five problems. By adding in solves, we can assume WLOG that one contestant
solved problems one through five, and every other contestant solved four of
the six problems.

We split the remaining contestants based on whether they solved P6. Let
ai denote the number of contestants who solved {1, 2, . . . , 5} \ {i} (and missed
P6). Let bij denote the number of contestants who solved {1, 2, . . . , 5, 6}\{i, j},
for 1 ≤ i < j ≤ 5 (thus in particular they solved P6). Thus

n = 1 +
∑

1≤i≤5

ai +
∑

1≤i<j≤5

bij

denotes the total number of contestants.
Considering contestants who solved P1/P6 we have

t1 := b23 + b24 + b25 + b34 + b35 + b45 ≥
2

5
n+

1

5

and we similarly define t2, t3, t4, t5. (We have written 2
5n+ 1

5 since we know
the left-hand side is an integer strictly larger than 2

5n.) Also, by considering
contestants who solved P1/P2 we have

t12 = 1 + a3 + a4 + a5 + b34 + b35 + b45 ≥
2

5
n+

1

5

and we similarly define tij for 1 ≤ i < j ≤ 5.

Claim. The number 2n+1
5 is equal to some integer k, fourteen of the t’s are

equal to k, and the last one is equal to k + 1.

Proof. First, summing all fifteen equations gives

6n+ 4 = 10 + 6(n− 1) = 10 +
∑

1≤i≤5

6ai +
∑

1≤i<j≤5

6bij

=
∑

1≤i≤5

ti +
∑

1≤i<j≤5

tij .

Thus the sum of the 15 t’s is 6n+ 4. But since all the t’s are integers at least
2n+1

5 = 6n+3
15 , the conclusion follows.

However, we will also manipulate the equations to get the following.

Claim. We have

t45 ≡ 1 + t1 + t2 + t3 + t12 + t23 + t31 (mod 3).
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Proof. This follows directly by computing the coefficient of the a’s and b’s.
We will nonetheless write out a derivation of this equation, to motivate it, but
the proof stands without it.

Let B =
∑

1≤i<j≤5 bij be the sum of all b’s. First, note that

t1 + t2 = B + b34 + b45 + b35 − b12
= B + (t12 − 1− a3 − a4 − a5)− b12

=⇒ b12 = B − (t1 + t2) + t12 − 1− (a3 + a4 + a5).

This means we have more or less solved for each bij in terms of only t and a
variables. Now

t45 = 1 + a1 + a2 + a3 + b12 + b23 + b31

= 1 + a1 + a2 + a3

+ [B − (t1 + t2) + t12 − 1− (a3 + a4 + a5)]

+ [B − (t2 + t3) + t23 − 1− (a1 + a4 + a5)]

+ [B − (t3 + t1) + t13 − 1− (a2 + a4 + a5)]

≡ 1 + t1 + t2 + t3 + t12 + t23 + t31 (mod 3)

as desired.

However, we now show the two claims are incompatible (and this is easy,
many ways to do this). There are two cases.

• Say t5 = k+1 and the others are k. Then the equation for t45 gives that
k ≡ 6k+1 (mod 3). But now the equation for t12 give k ≡ 6k (mod 3).

• Say t45 = k + 1 and the others are k. Then the equation for t45 gives
that k + 1 ≡ 6k (mod 3). But now the equation for t12 give k ≡ 6k + 1
(mod 3).

Remark. It is significantly easier to prove that there is at least one contestant
who solved five problems. One can see it by dropping the +10 in the proof
of the claim, and arrives at a contradiction. In this situation it is not even
necessary to set up the many a and b variables; just note that the expected
number of contestants solving any particular pair of problems is (42)n

(62)
= 2

5n.

The fact that 2n+1
5 should be an integer also follows quickly, since if not one

can improve the bound to 2n+2
5 and quickly run into a contradiction. Again

one can get here without setting up a and b.
The main difficulty seems to be the precision required in order to nail down

the second 5-problem solve.

Remark. The second claim may look miraculous, but the proof shows that it
is not too unnatural to consider t1 + t2 − t12 to isolate b12 in terms of a’s and
t’s. The main trick is: why mod 3?
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The reason is that if one looks closely, for a fixed k we have a system of 15
equations in 15 variables. Unless the determinant D of that system happens
to be zero, this means there will be a rational solution in a and b, whose
denominators are bounded by D. However if p | D then we may conceivably
run into mod p issues.

This motivates the choice p = 3, since it is easy to see the determinant is
divisible by 3, since constant shifts of ~a and ~b are also solutions mod 3. (The
choice p = 2 is a possible guess as well for this reason, but the problem seems
to have better 3-symmetry.)
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§8.1 Synopsis
Last chapter I talked about using a “global” argument, looking at the entire
problem at once and e.g. summing, in order to get a problem. This lecture
is about the opposite idea: making small disturbances in a concentrated
area.

Unlike the last chapter, there is no theory I want to develop, and it will be
better for you to jump straight into the walkthroughs after this short inter-
ruption.

The idea is to look at a small part of the structure, rather than the whole
problem at once. The most common thing to do is to then perturb the problem
a little by making a small disturbance. Then, repeat until stuck.

Examples of this idea:

• (Greedy) algorithms: for example, to find n objects satisfying so-and-so
condition, one might try to grab them one at a time without causing any
issues. Then look at the situation in which we can’t add any more.

• Extremal principle: often used as a write-up mechanic, e.g. many greedy
algorithms may be rephrased in terms of “look at a maximal set”.

• Smoothing: inequalities technique involving moving variables. For ex-
ample, if we find that we can replace two variables a and b with their
average, the resulting inequality still must be true.
As a simple example, suppose we want to prove abc ≤ 1 subject to
a, b, c > 0 and a + b + c = 3. Note that if a > b, then one can replace
(a, b) with (a−ε, b+ε) for ε < 1

2 (a−b), and this will increase the product.
By doing this operation we can arrive at a situation in which a = b = c
at which point the inequality is obviously true.

In many cases the small changes made follow a heuristic, like in a greedy
algorithm. In the best cases they are optimizations in the sense that the
problem has to “remain true” after the operation.

§8.2 Walkthroughs
Problem 91 (USAMO 2017). Let P1, P2, …, P2n be 2n distinct points on
the unit circle x2 + y2 = 1, other than (1, 0). Each point is colored either
red or blue, with exactly n red points and n blue points. Let R1, R2, …, Rn
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be any ordering of the red points. Let B1 be the nearest blue point to R1

traveling counterclockwise around the circle starting from R1. Then let B2

be the nearest of the remaining blue points to R2 traveling counterclockwise
around the circle from R2, and so on, until we have labeled all of the blue
points B1, …, Bn. Show that the number of counterclockwise arcs of the form
Ri → Bi that contain the point (1, 0) is independent of the way we chose the
ordering R1, …, Rn of the red points.

Walkthrough. There is actually a fairly nice characterization of the number
of such arcs, which leads to a satisfying “rigid” characterization of the number.
(You can try to find it yourself, or read the official solution.)

However, suppose one does not care about having a satisfying solution, and
only cares about having any solution. Then it is much easier to simply mess
with the permutation (Ri)i a small amount, and show that the number of arcs
does not change. And in fact, this is much easier to do.

(a) Make sense of the following picture, where we swap Ri and Ri+1.

RiRi+1

BiBi+1

Ri+1Ri

BiBi+1

(b) Figure out what the possible other pictures might look like, if we try to
swap Ri and Ri+1.

(c) Draw the other two cases, and verify that swapping Ri and Ri+1 does not
change the number of arcs containing any point on the circumference.

Then we “repeat until stuck”; fortunately in this case we don’t get stuck at
all, and simply solve the problem outright.

(d) Show that the operation of (c) is enough to imply the problem. (You
may have seen this before.)

(e) Does the same proof work if you try to swap Ri and Rj for any i < j?

In some sense this solution should seem unsatisfying, since we still do not really
understand why the result “should be true”. However, it is strictly speaking a
correct solution.

Problem 92. Suppose 4951 distinct points in the plane are given such that
no four points are collinear. Show that it is possible to select 100 of the points
for which no three points are collinear.

Walkthrough. Following RUST, keep grabbing points until we cannot take
any more. Suppose at this point we have n points.
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(a) Show that 4951− n ≤
(
n
2

)
.

(b) Prove that n ≥ 100.

So this is an example of a greedy algorithm of the most direct sort.

Problem 93 (Putnam 1979). Given n red points and n blue points in the
plane, no three collinear, prove that we can draw n segments, each joining a
red point to a blue point, such that no segments intersect.

Walkthrough. Starting from an arbitrary configuration, we will use the
algorithm “given a crossing, un-cross it”. This is a very natural algorithm to
come up with, and playing with some simple examples one finds that it always
work. So we just have to prove that.

(a) Show that a step of this algorithm does not necessarily decrease the total
number of intersections. (But this is the first thing we should try, given
that our goal is to get zero intersections at the end.)

(b) Find a different monovariant M which does decrease at each step of the
algorithm.

(c) Remark on the finiteness of the configuration space, and complete the
problem using (b).

I want to say a few words about why I chose this example. This problem
is touted in olympiad cultures as an example of “extremal principle”, with
“choose the minimal M” as the poster description. In my humble opinion,
I think this is hogwash. The motivation should be the natural algorithm we
used; the monovariant comes after the fact.

Indeed, the fact that the natural guess of the monovariant in (a) fails is
what makes this problem a little interesting (and not completely standard).
However, it doesn’t change the fact that the algorithm comes before the mono-
variant in our thought process.

§8.3 Problems
Problem 94 (Princeton Competition 2013). Let G be a graph and let k be
a positive integer. A k-star is a set of k edges with a common endpoint and
a k-matching is a set of k edges such that no two have a common endpoint.
Prove that if G has more than 2(k − 1)2 edges then it either has a k-star or a
k-matching.

Problem 95 (IMO Shortlist 2013). Let n be a positive integer. Find the
smallest integer k (in terms of n) with the following property: given any finite
multiset of real numbers in [0, 1] whose sum is n, it is possible to partition
these numbers into k groups (some of which may be empty) such that the sum
of the numbers in each group is at most 1.
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Problem 96. Let G be a finite simple graph. Show that one can partition the
vertices into two groups such that for each vertex, at least half the neighbors
are in the other group.

Problem 97 (IMO 2003). LetA be a 101-element subset of S = {1, 2, . . . , 106}.
Prove that there exist numbers t1, t2, . . . , t100 in S such that the sets

Aj = {x+ tj | x ∈ A}, j = 1, 2, . . . , 100

are pairwise disjoint.

Problem 98. Let G be a finite simple graph with m > 0 edges and n > 1
vertices. Show that one can delete some number of vertices of G to obtain a
graph with at least one vertex whose minimum degree is at least m/n.

Problem 99 (USA TST 2017). In a sports league, each team uses a set of
at most t signature colors. A set S of teams is color-identifiable if one can
assign each team in S one of their signature colors, such that no team in S is
assigned any signature color of a different team in S. For all positive integers n
and t, determine the maximum integer g(n, t) such that: In any sports league
with exactly n distinct colors present over all teams, one can always find a
color-identifiable set of size at least g(n, t).

Problem 100 (IMO 2014). A set of lines in the plane is in general position
if no two are parallel and no three pass through the same point. A set of lines
in general position cuts the plane into regions, some of which have finite area;
we call these its finite regions. Prove that for all sufficiently large n, in any
set of n lines in general position it is possible to colour at least

√
n lines blue

in such a way that none of its finite regions has a completely blue boundary.

Problem 101 (USA TST 2018). At a university dinner, there are 2017 math-
ematicians who each order two distinct entrées, with no two mathematicians
ordering the same pair of entrées. The cost of each entrée is equal to the
number of mathematicians who ordered it, and the university pays for each
mathematician’s less expensive entrée (ties broken arbitrarily). Over all pos-
sible sets of orders, what is the maximum total amount the university could
have paid?
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§8.4 Solutions

Solution 91 (USAMO 2017). We present two solutions, one based on
swapping and one based on an invariant.

First “local” solution by swapping two points. Let 1 ≤ i < n be any index
and consider the two red points Ri and Ri+1. There are two blue points Bi

and Bi+1 associated with them.

Claim. If we swap the locations of points Ri and Ri+1 then the new arcs
Ri → Bi and Ri+1 → Bi+1 will cover the same points.

Proof. Delete all the points R1, …, Ri−1 and B1, …, Bi−1; instead focus on the
positions of Ri and Ri+1.

The two blue points can then be located in three possible ways: either 0,
1, or 2 of them lie on the arc Ri → Ri+1. For each of the cases below, we
illustrate on the left the locations of Bi and Bi+1 and the corresponding arcs
in green; then on the right we show the modified picture where Ri and Ri+1

have swapped. (Note that by hypothesis there are no other blue points in the
green arcs).

RiRi+1

BiBi+1

Ri+1Ri

BiBi+1

RiRi+1

Bi

Bi+1

Ri+1Ri

Bi

Bi+1

RiRi+1

Bi Bi+1

Ri+1Ri

Bi Bi+1

Case 1

Case 2

Case 3
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Observe that in all cases, the number of arcs covering any given point on the
circumference is not changed. Consequently, this proves the claim.

Finally, it is enough to recall that any permutation of the red points can be
achieved by swapping consecutive points (put another way: (i i+1) generates
the permutation group Sn). This solves the problem.

Remark. This proof does not work if one tries to swap Ri and Rj if |i−j| 6= 1.
For example if we swapped Ri and Ri+2 then there are some issues caused by
the possible presence of the blue point Bi+1 in the green arc Ri+2 → Bi+2.

Second longer solution using an invariant. Visually, if we draw all the seg-
ments Ri → Bi then we obtain a set of n chords. Say a chord is inverted if
satisfies the problem condition, and stable otherwise. The problem contends
that the number of stable/inverted chords depends only on the layout of the
points and not on the choice of chords.

(1, 0)

−1

0−1

0

+1

0 −1

0

In fact we’ll describe the number of inverted chords explicitly. Starting from
(1, 0) we keep a running tally of R − B; in other words we start the counter
at 0 and decrement by 1 at each blue point and increment by 1 at each red
point. Let x ≤ 0 be the lowest number ever recorded. Then:

Claim. The number of inverted chords is −x (and hence independent of the
choice of chords).

This is by induction on n. I think the easiest thing is to delete chord R1B1;
note that the arc cut out by this chord contains no blue points. So if the
chord was stable certainly no change to x. On the other hand, if the chord is
inverted, then in particular the last point before (1, 0) was red, and so x < 0.
In this situation one sees that deleting the chord changes x to x+1, as desired.

Solution 92 (None). This is an example of a direct greedy algorithm: we
will simply grab points until we are stuck.
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Consider a maximal set S of the points as described (meaning no more
additional points can be added), and suppose |S| = n. Then the 4951 − n
other points must each lie on a line determined by two points in S, meaning

4951− n ≤
(
n

2

)
=⇒ n+

(
n

2

)
≥ 4951.

This requires n ≥ 100.

Solution 93 (Putnam 1979). The idea is that given any two segments
which cross, then we can un-cross them.

Unfortunately, this does not necessarily decrease the number of intersections,
but it does decrease the sum of the Euclidean lengths. Hence this serves as a
monovariant that shows the “uncross any intersection” algorithm works.

In other words, if we take the connection for which the sum of the lengths
is minimal, then there will necessarily be no intersections.

Solution 94 (Princeton Competition 2013). Assume for contradiction
there is neither a k-matching nor a k-star. Take a maximal matching of size
m ≤ k − 1.

· · ·

a1 a2 am

b1 b2 bm

Every edge must touch an edge in the matching. But the degrees of all vertices
are all bounded by k − 1, so the number of edges not in the matching is at
most 2m(k − 2). Hence the total number of edges in G is

2m(k − 2) +m ≤ 2(k − 1)(k − 2) + (k − 1) = (k − 1)(2k − 3) < 2(k − 1)2

140

https://aops.com/community/p3286455


8 Local May 18, 2025

contradicting the hypothesis.

Solution 95 (IMO Shortlist 2013). Answer: k = 2n − 1. To see that at
least 2n− 1 groups may be necessary, take 2n− 1 copies of the number n

2n−1 .
To see 2n− 1 groups is sufficient, consider a minimal partitions into groups

with sums g1 ≤ g2 ≤ · · · ≤ gm. That implies that gi + gj > 1 for any
distinct i, j (otherwise we could merge those two groups together). Moreover,
g1 + · · ·+ gm = n. Then

2n = (g1 + g2) + (g2 + g3) + · · ·+ (gm + g1) > 1 + 1 + · · ·+ 1 = m

as required.

Solution 96 (None). Take a partition A ∪ B which maximizes the number
of edges between A and B.

Then this partition works, because if a vertex v ∈ A has the property that
less than half its neighbors are in B, we could move v from A to B and increase
the number of edges.

Remark. Equivalently (and more naturally): start with an arbitrary partition
A ∪B, and move a vertex if more than half its neighbors are in the same set.
This increases the number of edges, so eventually this process terminates, and
it terminates at a desired partition.

Solution 97 (IMO 2003). A greedy algorithm works: suppose we have
picked

T = {t1, . . . , tn}

as large as possible, meaning it’s impossible to add any more elements to T .
That means, for each t ∈

{
1, . . . , 106

}
either t ∈ T already or there exists two

distinct elements a, b ∈ A and ti ∈ T such that

t = ti + b− a (?).

There are at most |T | · |A| · (|A| − 1) = n · 101 · 100 possible values for the
right-hand side of (?). So we therefore must have

101 · 100 · n+ n ≥ 106

which implies n > 99, as desired.

Remark. It is possible to improve the bound significantly with a small opti-
mization; rather than adding any t, we require that t1 < · · · < tn and that at
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each step we add the least t ∈ S which is permitted. In that case, one finds we
only need to consider b > a in (?), and so this will save us a factor of 2 + o(1)
as the main term 101 · 100 becomes

(
101
2

)
instead. This proves it’s possible to

choose 198 elements.
See, e.g., https://aops.com/community/p22959828 for such a write-up.

Solution 98 (None). For a graph Γ, we let a(Γ) denote the average degree.
A vertex of Γ is called deficient if its degree is less than 1

2a(Γ).

Claim. Let Γ be any graph, and suppose it has a deficient vertex v. Then
Γ− v has average degree at least that of Γ.

Proof. Deleting a deficient vertex does not decrease the average degree, since
the new graph has average degree at least

a(Γ− v) ≥ 2 · #E(Γ)−#E(Γ)/#V (Γ)

#V (Γ)− 1
= 2

#E(Γ)

#V (Γ)
= a(Γ).

Thus if we repeatedly delete a single deficient vertex from G, we get a
sequence of graphs G = G0 ⊃ G1 ⊃ . . . with

a(G0) ≤ a(G1) ≤ a(G2) ≤ . . . .

This process terminates only when we have a graph H = GN with no defi-
cient vertices. Since the graph with one vertex has average degree zero, H is
nonempty, and every vertex of H has degree at least 1

2a(H) ≥ 1
2a(G).

Remark. Note that one must delete vertices with degree ≤ m/n anyways,
which motivates this solution.

Solution 99 (USA TST 2017). Answer: dn/te.
To see this is an upper bound, note that one can easily construct a sports

league with that many teams anyways.
A quick warning:

Remark (Misreading the problem). It is common to misread the problem by
ignoring the word “any”. Here is an illustration.

Suppose we have two teams, MIT and Harvard; the colors of MIT are
red/gray/black, and the colors of Harvard are red/white. (Thus n = 4 and
t = 3.) The assignment of MIT to gray and Harvard to red is not acceptable
because red is a signature color of MIT, even though not the one assigned.

We present two proofs of the lower bound.
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Approach by deleting teams (Gopal Goel). Initially, place all teams in a set
S. Then we repeat the following algorithm:

If there is a team all of whose signature colors are shared by some
other team in S already, then we delete that team.

(If there is more than one such team, we pick arbitrarily.)
At the end of the process, all n colors are still present at least once, so at

least dn/te teams remain. Moreover, since the algorithm is no longer possible,
the remaining set S is already color-identifiable.

Remark (Gopal Goel). It might seem counter-intuitive that we are deleting
teams from the full set when the original problem is trying to get a large set
S.

This is less strange when one thinks of it instead as “safely deleting useless
teams”. Basically, if one deletes such a team, the problem statement implies
that the task must still be possible, since g(n, t) does not depend on the number
of teams: n is the number of colors present, and deleting a useless team does
not change this. It turns out that this optimization is already enough to solve
the problem.

Approach by adding colors. For a constructive algorithmic approach, the
idea is to greedy pick by color (rather than by team), taking at each step the
least used color. Select the color C1 with the fewest teams using it, and a
team T1 using it. Then delete all colors T1 uses, and all teams which use C1.
Note that

• By problem condition, this deletes at most t teams total.

• Any remaining color C still has at least one user. Indeed, if not, then C
had the same set of teams as C1 did (by minimality of C), but then it
should have deleted as a color of T1.

Now repeat this algorithm with C2 and T2, and so on. This operations uses
at most t colors each time, so we select at least dn/te colors.

Remark. A greedy approach by team does not work. For example, suppose
we try to “grab teams until no more can be added”.

As before, assume our league has teams, MIT and Harvard; the colors of
MIT are red/gray/black, and the colors of Harvard are red/white. (Thus n = 4
and t = 3.) If we start by selecting MIT and red, then it is impossible to select
any more teams; but g(n, t) = 2.

Solution 100 (IMO 2014). Suppose we have colored k of the lines blue,
and that it is not possible to color any additional lines. That means any of the

143

https://aops.com/community/p3543151


May 18, 2025 The OTIS Excerpts, by Evan Chen

n−k non-blue lines is the side of some finite region with an otherwise entirely
blue perimeter. For each such line `, select one such region, and take the next
counterclockwise vertex; this is the intersection of two blue lines v. We’ll say
` is the eyelid of v.

ℓ

v

You can prove without too much difficulty that every intersection of two
blue lines has at most two eyelids. Since there are

(
k
2

)
such intersections, we

see that
n− k ≤ 2

(
k

2

)
= k2 − k

so n ≤ k2, as required.

Remark. In fact, k =
√
n is “sharp for greedy algorithms”, as illustrated

below for k = 3:

Solution 101 (USA TST 2018). In graph theoretic terms: we wish to
determine the maximum possible value of

S(G) :=
∑
e=vw

min (deg v, degw)

across all graphs G with 2017 edges. For each edge e = vw, we refer to
min (deg v, degw) as the label.

We claim the answer is 63 ·
(
64
2

)
+ 1 = 127009.

First solution (combinatorial, Evan Chen). First define Lk to consist of a
clique on k vertices, plus a single vertex connected to exactly one vertex of the
clique. Hence Lk has k+1 vertices,

(
k
2

)
+1 edges, and S(Lk) = (k− 1)

(
k
2

)
+1.

In particular, L64 achieves the claimed maximum, so it suffices to prove the
upper bound.

Lemma. Let G be a graph such that either
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• G has
(
k
2

)
edges for some k ≥ 3 or

• G has
(
k
2

)
+ 1 edges for some k ≥ 4.

Then there exists a graph G∗ with the same number of edges such that S(G∗) ≥
S(G), and moreover G∗ has a universal vertex (i.e. a vertex adjacent to every
other vertex).

Proof. Fix k and the number m of edges. We prove the result by induction on
the number n of vertices in G. Since the lemma has two parts, we will need
two different base cases:

1. Suppose n = k and m =
(
k
2

)
. Then G must be a clique so pick G∗ = G.

2. Suppose n = k + 1 and m =
(
k
2

)
+ 1. If G has no universal vertex, we

claim we may take G∗ = Lk. Indeed each vertex of G has degree at most
k − 1, and the average degree is

2m

n
=
k2 − k + 2

k + 1
< k − 1

using here k ≥ 4. Thus there exists a vertex w of degree 1 ≤ d ≤ k − 2.
The edges touching w will have label at most d and hence

S(G) ≤ (k − 1)(m− d) + d2 = (k − 1)m− d(k − 1− d)

≤ (k − 1)m− (k − 2) = (k − 1)

(
k

2

)
+ 1 = S(G∗).

Now we settle the inductive step. Let w be a vertex with minimal degree
0 ≤ d < k − 1, with neighbors w1, …, wd. By our assumption, for each wi

there exists a vertex vi for which viwi /∈ E. Now, we may delete all edges wwi

and in their place put viwi, and then delete the vertex w. This gives a graph
G′, possibly with multiple edges (if vi = wj and wj = vi), and with one fewer
vertex.

w

G G′ G′′

We then construct a graph G′′ by taking any pair of double edges, deleting
one of them, and adding any missing edge of G′′ in its place. (This is always
possible, since when m =

(
k
2

)
we have n − 1 ≥ k and when m =

(
k
2

)
+ 1 we

have n− 1 ≥ k + 1.)
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Thus we have arrived at a simple graph G′′ with one fewer vertex. We also
observe that we have S(G′′) ≥ S(G); after all every vertex in G′′ has degree at
least as large as it did in G, and the d edges we deleted have been replaced with
new edges which will have labels at least d. Hence we may apply the inductive
hypothesis to the graph G′′ to obtain G∗ with S(G∗) ≥ S(G′′) ≥ S(G).

The problem then is completed once we prove the following:

Claim. For any graph G,

• If G has
(
k
2

)
edges for k ≥ 3, then S(G) ≤

(
k
2

)
· (k − 1).

• If G has
(
k
2

)
+ 1 edges for k ≥ 4, then S(G) ≤

(
k
2

)
· (k − 1) + 1.

Proof. We prove both parts at once by induction on k, with the base case
k = 3 being plain (there is nothing to prove in the second part for k = 3).
Thus assume k ≥ 4. By the earlier lemma, we may assume G has a universal
vertex v. For notational convenience, we say G has

(
k
2

)
+ε edges for ε ∈ {0, 1},

and G has p+ 1 vertices, where p ≥ k − 1 + ε.
Let H be the subgraph obtained when v is deleted. Then m =

(
k
2

)
+ ε − p

is the number of edges in H; from p ≥ k− 1+ ε we have m ≤
(
k−1
2

)
and so we

may apply the inductive hypothesis to H to deduce S(H) ≤
(
k−1
2

)
· (k − 2).

. . .
w1 w2 wp

v

H

Now the labels of edges vwi have sum

p∑
i=1

min (degG v, degG wi) =

p∑
i=1

degG wi =

p∑
i=1

(degH wi + 1) = 2m+ p.

For each of the edges contained in H, the label on that edge has increased by
exactly 1, so those edges contribute S(H) +m. In total,

S(G) = 2m+ p+ (S(H) +m) = (m+ p) + 2m+ S(H)

≤
(
k

2

)
+ ε+ 2

(
k − 1

2

)
+

(
k − 1

2

)
(k − 2) =

(
k

2

)
(k − 1) + ε.
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Second solution (algebraic, submitted by contestant James Lin). We give
a different proof of S(G) ≤ 127009. The proof proceeds using the following
two claims, which will show that S(G) ≤ 127010 for all graphs G. Then a
careful analysis of the equality cases will show that this bound is not achieved
for any graph G. Since the example L64 earlier has S(L64) = 127009, this will
solve the problem.

Lemma (Combinatorial bound). Let G be a graph with 2017 edges and let
d1 ≥ d2 ≥ · · · ≥ dn be the degree sequence of the graph (thus n ≥ 65). Then

S(G) ≤ d2 + 2d3 + 3d4 + · · ·+ 63d64 + d65.

Proof. Let v1, …, vn be the corresponding vertices. For any edge e = {vi, vj}
with i < j, we consider associating each edge e with vj , and computing the
sum S(G) indexing over associated vertices. To be precise, if we let ai denote
the number of edges associated to vi, we now have ai ≤ i − 1,

∑
ai = 2017,

and

S(G) =

n∑
i=1

aidi.

The inequality
∑
aidi ≤ d2 + 2d3 + 3d4 + · · · + 63d64 + d65 then follows for

smoothing reasons (by “smoothing” the ai), since the di are monotone. This
proves the given inequality.

Once we have this property, we handle the bounding completely algebraically.

Lemma (Algebraic bound). Let x1 ≥ x2 ≥ · · · ≥ x65 be any nonnegative
integers such that

∑65
i=1 xi ≤ 4034. Then

x2 + 2x3 + · · ·+ 63x64 + x65 ≤ 127010.

Moreover, equality occurs if and only if x1 = x2 = x3 = · · · = x64 = 63 and
x65 = 2.

Proof. Let A denote the left-hand side of the inequality. We begin with a
smoothing argument.

• Suppose there are indices 1 ≤ i < j ≤ 64 such that xi > xi+1 ≥ xj−1 >
xj . Then replacing (xi, xj) by (xi − 1, xj + 1) strictly increases A pre-
serving all conditions. Thus we may assume all numbers in {x1, . . . , x64}
differ by at most 1.

• Suppose x65 ≥ 4. Then we can replace (x1, x2, x3, x4, x65) by (x1+1, x2+
1, x3 + 1, x4 + 1, x65 − 4) and strictly increase A. Hence we may assume
x65 ≤ 3.

We will also tacitly assume
∑
xi = 4034, since otherwise we can increase x1.

These two properties leave only four sequences to examine:
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• x1 = x2 = x3 = · · · = x63 = 63, x64 = 62, and x65 = 3, which gives
A = 126948.

• x1 = x2 = x3 = · · · = x63 = x64 = 63 and x65 = 2, which gives
A = 127010.

• x1 = 64, x2 = x3 = · · · = x63 = x64 = 63 and x65 = 1, which gives
A = 127009.

• x1 = x2 = 64, x3 = · · · = x63 = x64 = 63 and x65 = 0, which gives
A = 127009.

This proves that A ≤ 127010. To see that equality occurs only in the second
case above, note that all the smoothing operations other than incrementing
x1 were strict, and that x1 could not have been incremented in this way as
x1 = x2 = 63.

This shows that S(G) ≤ 127010 for all graphs G, so it remains to show
equality never occurs. Retain the notation di and ai of the combinatorial
bound now; we would need to have d1 = · · · = d64 = 63 and d65 = 2 (in
particular, deleting isolated vertices from G, we may assume n = 65). In that
case, we have ai ≤ i− 1 but also a65 = 2 by definition (the last vertex gets all
edges associated to it). Finally,

S(G) =

n∑
i=1

aidi = 63(a1 + · · ·+ a64) + a65

= 63(2017− a65) + a65 ≤ 63 · 2015 + 2 = 126947

completing the proof.

Remark. Another way to finish once S(G) ≤ 127010 is note there is a unique
graph (up to isomorphism and deletion of universal vertices) with degree se-
quence (d1, . . . , d65) = (63, . . . , 63, 2). Indeed, the complement of the graph
has degree sequence (1, . . . , 1, 63), and so it must be a 63-star plus a single
edge. One can then compute S(G) explicitly for this graph.

Some further remarks.

Remark. Interestingly, the graph C4 has
(
3
2

)
+ 1 = 4 edges and S(C4) = 8,

while S(L3) = 7. This boundary case is visible in the combinatorial solution
in the base case of the first claim. It also explains why we end up with the
bound S(G) ≤ 127010 in the second algebraic solution, and why it is necessary
to analyze the equality cases so carefully; observe in k = 3 the situation
d1 = d2 = d3 = d4 = 2.

Remark. Some comments about further context for this problem:
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• The obvious generalization of 2017 to any constant was resolved in
September 2018 by Mehtaab Sawhney and Ashwin Sah. The relevant
paper is On the discrepancy between two Zagreb indices, published in
Discrete Mathematics, Volume 341, Issue 9, pages 2575-2589. The arXiv
link is https://arxiv.org/pdf/1801.02532.pdf.

• The quantity
S(G) =

∑
e=vw

min (deg v, degw)

in the problem has an interpretation: it can be used to provide a bound
on the number of triangles in a graph G. To be precise, #E(G) ≤ 1

3S(G),
since an edge e = vw is part of at most min(deg v, degw) triangles.

• For planar graphs it is known S(G) ≤ 18n − 36 and it is conjectured
that for n large enough, S(G) ≤ 18n−72. See https://mathoverflow.
net/a/273694/70654.
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9 Rigid

§9.1 Synopsis
By “rigid” problems, I mean a class of problems which focus on a specific
concrete structure. This can’t be defined formally, but here are some charac-
teristics:

• Often the problem has very few degrees of freedom.

• The structure is often pretty complex, and understanding it well is the
entire point of the problem.

• The particular task you’re asked to prove can feel very superficial, almost
like an answer extraction (like on the AIME). For example, you might
be asked to count the number of objects satisfying P , but in fact you
simply characterize all the objects satisfying P and then do the counting
as a little step at the end.

• One feels that one is discovering mathematics, rather than inventing it
— the properties which you prove are forced upon you, rather than your
design.

• Often there is only one solution to the problem, up to isomorphism.

You will hopefully begin to see what I mean from the two examples below.

§9.2 Walkthroughs
Problem 102 (TSTST 2016). Prove that if n and k are positive integers
satisfying ϕk(n) = 1, then n ≤ 3k. (Here ϕk denotes k applications of the
Euler phi function.)

Walkthrough. Let a, b, c, …, denote positive integers.

(a) For positive integers a, b, show that n = 2a · 3b takes a+ b steps.

(b) How many steps does each of n = 2a5b, n = 2a17b, 2a3b7c, 2a11b take?

(c) Show that 2a2017b takes a+ 9b steps.

(d) Define the function w : N→ Z≥0 by w(ab) = w(a)+w(b), w(2) = 1, and
w(p) = w(p − 1) for odd primes p. Figure out the connection between
the values of w(p) and your answer in (b).
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(e) By looking at ν2 prove the conjecture in (d).

(f) Show that w(n) is the number of steps required for n, if n is even. What
if n is odd?

(g) Show that w(n) ≥ log3 n by induction on n ≥ 1. (The case where n is
composite is immediate, so the only work is when n is prime.)

(h) In fact, prove that the stronger estimate n ≤ 2 · 3k−1 holds (and is best
possible).

As a rigid problem, this is a chief example: the point of the problem is to
determine the function w, and the “extraction” of comparing to log3 occurs at
the end. It’s important to realize that w is “God-given”; we were not permitted
any decisions in deriving it.

It might be tempting to try and prove ϕ(n) ≥ n/3 or similar statements, but
this is false, and in any case not representative of small cases. However, I think
trying the “small cases”: which in this situation are those n with relatively
few prime factors — suggests that this is the wrong approach.

Problem 103 (IMO Shortlist 2015). Suppose that a0, a1, . . . and b0, b1, . . .
are two sequences of positive integers satisfying a0, b0 ≥ 2 and

an+1 = gcd(an, bn) + 1, bn+1 = lcm(an, bn)− 1

for all n ≥ 0. Prove that the sequence (an) is eventually periodic.

Walkthrough. The rigid philosophy is great here because you can get a lot
of concrete data by just picking your two favorite choices of (a0, b0). We start
by doing that:

(a) Work through the case (a0, b0) = (2, 4).

(b) Work through the case (a0, b0) = (2, 10).

(c) Work through the case (a0, b0) = (2, 16).

(d) Work through the case (a0, b0) = (2, 58).

With these tables in front of you, you should be able to start seeing some
patterns, or find some counterexamples to hopeful conjectures.

(e) A term ai in the sequence is said to be a peak if ai+1 ≤ ai. Show that if
ai is not a peak then ai+1 = ai + 1.

(f) Make a conjecture about the terms in the sub-sequence of peaks which
would imply that the peaks are eventually constant.

(g) Prove your conjecture in (f).

(h) Finish the problem with the claim.
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§9.3 Problems
Problem 104 (USAJMO 2013). Each cell of an m × n board is filled with
some nonnegative integer. Two numbers in the filling are said to be adjacent
if their cells share a common side. The filling is called a garden if it satisfies
the following two conditions:

(i) The difference between any two adjacent numbers is either 0 or 1.

(ii) If a number is less than or equal to all of its adjacent numbers, then it
is equal to 0.

Determine the number of distinct gardens in terms of m and n.

Problem 105 (IMO Shortlist 1995). For an integer x ≥ 1, let p(x) be the
least prime that does not divide x, and define q(x) to be the product of all
primes less than p(x). In particular, p(1) = 2. For x having p(x) = 2, define
q(x) = 1. Consider the sequence x0, x1, x2, . . . defined by x0 = 1 and

xn+1 =
xnp(xn)

q(xn)

for n ≥ 0. Find all n such that xn = 1995.

Problem 106 (EGMO 2014). Let n be a positive integer. We have n boxes
where each box contains a non-negative number of pebbles. In each move we
are allowed to take two pebbles from a box we choose, throw away one of the
pebbles and put the other pebble in another box we choose. An initial con-
figuration of pebbles is called solvable if it is possible to reach a configuration
with no empty box, in a finite (possibly zero) number of moves. Determine all
initial configurations of pebbles which are not solvable, but become solvable
when an additional pebble is added to a box, no matter which box is chosen.

Problem 107 (TSTST 2014). Let← denote the left arrow key on a standard
keyboard. If one opens a text editor and types the keys “ab← cd ←← e ←←
f”, the result is “faecdb”. We say that a string B is reachable from a string A if
it is possible to insert some amount of←’s in A, such that typing the resulting
characters produces B. So, our example shows that “faecdb” is reachable from
“abcdef”.

Prove that for any two strings A and B, A is reachable from B if and only
if B is reachable from A.

Problem 108 (IMO 2005). Let a1, a2, … be a sequence of integers with
infinitely many positive and negative terms. Suppose that for every positive
integer n the numbers a1, a2, …, an leave n different remainders upon division
by n. Prove that every integer occurs exactly once in the sequence.
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Problem 109 (USAMO 2010). There are n students standing in a circle, one
behind the other. The students have heights h1 < h2 < · · · < hn. If a student
with height hk is standing directly behind a student with height hk−2 or less,
the two students are permitted to switch places. Prove that it is not possible
to make more than

(
n
3

)
such switches before reaching a position in which no

further switches are possible.

Problem 110 (IMO Shortlist 2017). Let f : Z>0×Z>0 → {0, 1} be a function
such that f(2, 1) = f(1, 1) = 0. Assume that for any relatively prime positive
integers (a, b) not both equal to 1, we have

f(a, b) = 1− f(b, a) = f(a+ b, b).

Let p be an odd prime. Prove that

p−1∑
n=1

f(n2, p) ≥
√
2p− 2.
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§9.4 Solutions

Solution 102 (TSTST 2016). The main observation is that the exponent
of 2 decreases by at most 1 with each application of ϕ. This will give us the
desired estimate.

Define the weight function w on positive integers as follows: it satisfies

w(ab) = w(a) + w(b);

w(2) = 1; and
w(p) = w(p− 1) for any prime p > 2.

By induction, we see that w(n) counts the powers of 2 that are produced as ϕ
is repeatedly applied to n. In particular, k ≥ w(n).

From w(2) = 1, it suffices to prove that w(p) ≥ log3 p for every p > 2. We
use strong induction and note that

w(p) = w(2) + w

(
p− 1

2

)
≥ 1 + log3(p− 1)− log3 2 ≥ log3 p

for any p > 2. This solves the problem.
Remark. One can motivate this solution through small cases 2x3y like 2x17w,
2x3y7z, 2x11t.

Moreover, the stronger bound

n ≤ 2 · 3k−1

is true and best possible.

Solution 103 (IMO Shortlist 2015). Here are, first, several examples:

2 4
3 3
4 2
3 3
4 2
3 3
...

...

2 10
3 9
4 8
5 7
2 34
3 33
4 32
5 31
2 154
3 153
...

...

2 16
3 15
4 14
3 27
4 26
3 51
4 50
3 99
...

...

2 58
3 57
4 56
5 55
6 54
7 53
2 370
3 369
4 368
5 367
2 1834
3 1833
4 1832
5 1831
2 9064
...

...
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Define an index i to be a peak if ai+1 ≤ ai. Note that if i is not a peak then
(ai+1, bi+1) = (ai + 1, bi − 1).

Claim. The sub-sequences of peaks is non-increasing.

Proof. Equivalently, if i < k are adjacent peaks, we show ai ≥ ak. Assume not.
Set (ai, bi) = (dx, dy) where gcd(x, y) = 1. Then (ai+1, bi+1) = (d+1, dxy−1).
By assumption, we then arrive at the pair (aj , bj) = (dx, dxy + d− dx) later,
where j < k. At this point the GCD of these two numbers is d < dx, so j
must be a peak, contradiction.

Thus, the peaks are monotonic, so (an) bounded. Let M = (max ai)!. Now,
note that (ai, bi mod M) determines (ai+1, bi+1 mod M) since gcd(ai, bi) is
determined by bi mod M , and also

bi+1 =
ai

gcd(ai, bi)︸ ︷︷ ︸
∈Z

bi + 1.

Since the number of such pairs is finite, ai is eventually periodic. Alternatively,
using a direct calculation one can show that after the peaks stabilize, the
sequence becomes periodic.

Solution 104 (USAJMO 2013). The numerical answer is 2mn− 1. But we
claim much more, by giving an explicit description of all gardens:

Let S be any nonempty subset of the mn cells. Suppose we fill
each cell θ with the minimum (taxicab) distance from θ to some
cell in S (in particular, we write 0 if θ ∈ S). Then

• This gives a garden, and
• All gardens are of this form.

Since there are 2mn−1 such nonempty subsets S, this would finish the problem.
An example of a garden with |S| = 3 is shown below.

2 1 2 1 0 1
1 0 1 2 1 2
1 1 2 3 2 3
0 1 2 3 3 4


It is actually fairly easy to see that this procedure always gives a garden; so

we focus our attention on showing that every garden is of this form.
Given a garden, note first that it has at least one cell with a zero in it —

by considering the minimum number across the entire garden. Now let S be
the (thus nonempty) set of cells with a zero written in them. We contend that
this works, i.e. the following sentence holds:
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Claim. If a cell θ is labeled d, then the minimum distance from that cell to a
cell in S is d.

Proof. The proof is by induction on d, with d = 0 being by definition. Now,
consider any cell θ labeled d ≥ 1. Every neighbor of θ has label at least d− 1,
so any path will necessarily take d− 1 steps after leaving θ. Conversely, there
is some d−1 adjacent to θ by (ii). Stepping on this cell and using the minimal
path (by induction hypothesis) gives us a path to a cell in S with length exactly
d. So the shortest path does indeed have distance d, as desired.

Solution 105 (IMO Shortlist 1995). We write out a few terms:

x1 = 21

x2 = 20 × 31

x3 = 21 × 31

x4 = 20 × 30 × 51

x5 = 21 × 30 × 51

x6 = 20 × 31 × 51

x7 = 21 × 31 × 51

x8 = 20 × 30 × 50 × 71

x9 = 21 × 30 × 50 × 71

x10 = 20 × 31 × 50 × 71

...

We observe that the exponents are 0 and 1, and moreover encode n in binary.
More precisely, if n = . . . b2b1(2) in binary, then we have the explicit form

xn = 2b1 × 3b2 × 5b3 × . . . .

This is more or less tautological by induction.
In particular, 1995 = 3 × 5 × 7 × 19, so xn = 1995 exactly when n =

10001110(2) = 142.

Solution 106 (EGMO 2014). The point of the problem is to characterize
all the solvable configurations. We claim that it is given by the following:

Claim. A configuration (a1, . . . , an) is solvable if and only if
n∑
1

⌈ai
2

⌉
≥ n.
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Proof. The proof is by induction on the number of stones. If there are fewer
than n stones there is nothing to prove. Now assume there are at least n
stones, and let S =

∑
dai/2e. Then:

• If S < n, this remains true after any operation, so by induction the
configuration is not solvable.

• Suppose S ≥ n, and also that there is an empty box (else we are already
done). Then there must be some box with at least two stones. In that
case, using those two stones to fill the empty box does not change the
value of S, but decreases the total number of stones by one, as desired.

From here we may then extract the answer to the original problem: we
require all ai to be even and

∑
ai = 2n− 2.

Remark. It should be unsurprising that a criteria of this form exists, since
(1) intuitively, one loses nothing by filling empty boxes as soon as possible,
and then ignoring boxes with one pebble in them, (2) the set of configurations
is a graded partially ordered set, so one can inductively look at small cases.

Solution 107 (TSTST 2014). Obviously A and B should have the same
multiset of characters, and we focus only on that situation.

Claim. If A = 123 . . . n and B = σ(1)σ(2) . . . σ(n) is a permutation of A,
then B is reachable if and only if it is 213-avoiding, i.e. there are no indices
i < j < k such that σ(j) < σ(i) < σ(k).

Proof. This is clearly necessary. To see its sufficient, one can just type B
inductively: after typing k, the only way to get stuck is if k+1 is to the right
of k and there is some character in the way; this gives a 213 pattern.

Claim. A permutation σ on {1, . . . , n} is 213-avoiding if and only if the inverse
σ−1 is.

Proof. Suppose i < j < k and σ(j) < σ(i) < σ(k). Let i′ = σ(j), j′ = σ(i),
k′ = σ(k); then i′ < j′ < k′ and σ−1(j′) < σ−1(i′) < σ−1(k′).

This essentially finishes the problem. Suppose B is reachable from A. By
using the typing pattern, we get some permutation σ : {1, . . . , n} such that the
ith character of A is the σ(i)th character of B, and which is 213-avoiding by
the claim. (The permutation is unique if A has all distinct characters, but
there could be multiple if A has repeated ones.) Then σ−1 is 213-avoiding too
and gives us a way to change B into A.
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Solution 108 (IMO 2005). Obviously every integer appears at most once
(otherwise take n much larger). So we will prove every integer appears at least
once.

Claim. For any i < j we have |ai − aj | < j.

Proof. Otherwise, let n = |ai − aj | 6= 0. Then i, j ∈ [1, n] and ai ≡ aj
(mod n), contradiction.

Claim. For any n, the set {a1, . . . , an} is of the form {k + 1, . . . , k + n} for
some integer k.

Proof. By induction, with the base case n = 1 being vacuous. For the inductive
step, suppose {a1, . . . , an} = {k + 1, . . . , k + n} are determined. Then

an+1 ≡ k (mod n+ 1).

Moreover by the earlier claim we have

|an+1 − a1| < n+ 1.

From this we deduce an+1 ∈ {k, k + n+ 1} as desired.

This gives us actually a complete description of all possible sequences sat-
isfying the hypothesis: choose any value of a1 to start. Then, for the nth
term, the set S = {a1, . . . , an−1} is (in some order) a set of n− 1 consecutive
integers. We then let an = maxS + 1 or an = minS − 1. A picture of six
possible starting terms is shown below.

6

a1

5

a2

7

a3

4

a4

3

a5

8

a6

Finally, we observe that the condition that the sequence has infinitely many
positive and negative terms (which we have not used until now) implies it is
unbounded above and below. Thus it must contain every integer.
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Solution 109 (USAMO 2010). The main claim is the following observation,
which is most motivated in the situation j − i = 2.

Claim. The students with heights hi and hj switch at most |j − i| − 1 times.

Proof. By induction on d = |j− i|, assuming j > i. For d = 1 there is nothing
to prove.

For d ≥ 2, look at only students hj , hi+1 and hi ignoring all other students.
After hj and hi switch the first time, the relative ordering of the students
must be hi → hj → hi+1. Thereafter hj must always switch with hi+1 before
switching with hi, so the inductive hypothesis applies to give the bound 1 +
j − (i+ 1)− 1 = j − i− 1.

Hence, the number of switches is at most∑
1≤i<j≤n

(|j − i| − 1) =

(
n

3

)
.

Solution 110 (IMO Shortlist 2017). Incredibly, we have the following
description of f .

Lemma. For any relatively prime (a, b) 6= (1, 1),

f(a, b) =

{
1 (a−1 mod b) ≤ b/2
0 (a−1 mod b) > b/2.

We give the short self-contained induction proof for now; see the remarks
for a more reasonable and motivated proof.

Inductive proof by Ankan Bhattacharya. It is enough to show that if a, b > 1
are relatively prime then a−1 (mod b) ≤ b/2 iff b−1 (mod a) > a/2. Let (x, y)
be a minimal positive integer pair with ax−by = 1. Then x ≤ b−1, y ≤ a−1,
and

a−1 ≡ x (mod b)

b−1 ≡ a− y (mod a).

Thus a−1 (mod b) = x, b−1 (mod a) = a− y. Finally

x ≤ b/2 ⇐⇒ ax ≤ ab/2 ⇐⇒ by < ab/2 ⇐⇒ y < a/2 ⇐⇒ a− y > a/2.

In particular, for any n such that n ≡ ±1/k (mod p) with k ∈ {1, . . . ,
⌊√

p/2
⌋
},

we have f(n2, p) = 1, so this implies the result.
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Remark. In general, we have

f(a, p) = 1−f(p, a) = 1−f(p−a, a) = f(a, p−a) = f(p, p−a) = 1−f(p−a, p)

and so f(a, p) + f(p− a, p) = 1.
Note that if p ≡ 1 (mod 4), this already solves the problem. If r is any

quadratic residue, so is −r, and accordingly f(−r, p) + f(r, p) = 1; so we have
actually ∑

n

f(n2, p) =
1

2
(p− 1) ∀p ≡ 1 (mod 4).

Remark. In fact, for p ≡ 3 (mod 4) it turns out the number of quadratic
residues in [1, p/2] is more than the number in [p/2, p − 1], and hence the
1
2 (p− 1) is actually sharp.

Indeed, if one defines the Dirichlet L-function

L(s) =
∑
n

(
n

p

)
n−s

then it is known that

L(1) =
π(

2−
(

2
p

))√
p

p−1
2∑

n=1

(
n

p

)
> 0

which is the result we wanted. It seems no elementary proof is known, though.

Remark (Yang Liu). The key lemma in the problem seems to come out of
nowhere. Here is one way you can come up with it.

Denote by GL2(Z) the set of 2 × 2 integer matrices with determinant ±1.
Suppose we consider only coprime pairs (a, b) with a ≥ b ≥ 0.

Consider first running the Euclidean algorithm backwards; starting from
(1, 0) and trying to reach a given pair. An any point we can go from (a, b)→
(a+ b, b) or (a, b)→ (a+ b, a); the latter operation involves a switch and we’re
trying to count the parity of switches. (We don’t count (1, 1) → (2, 1) as a

switch.) If we interpret our pair as a column vector
[
a
b

]
, then this means

we are multiplying by either multiplying by T =

[
1 1
0 1

]
or S =

[
1 1
1 0

]
(for

“switch”), one after another, several times. (For experts, I think T and S
generate GL2(Z).) As an example, to reach (18, 7) from (1, 0) we do[

1
0

]
×S−−→

[
1
1

]
×T−−→

[
2
1

]
×T−−→

[
3
1

]
×S−−→

[
4
3

]
×S−−→

[
7
4

]
×S−−→

[
11
7

]
×T−−→

[
18
7

]
.
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The punch line is that the overall matrix M we have is one whose first column

is
[
a
b

]
, and we want to count the number of times we used the matrix S. But

detT = +1 and detS = −1, so this is given by the sign of detM ∈ {±1}, as
we wanted!

Going forwards again, the idea is that given
[
a
b

]
that we are processing with

the Euclidean algorithm, we can annotate by completing it to a 2× 2 matrix
in GL2(Z) with nonnegative entries, such that the first row exceeds the second
row. As an example, for (a, b) = (18, 7) the process goes (18, 7) → (7, 4) →
(4, 3)→ (3, 1)→ (1, 0), and the set of accompanying annotated matrices is[

18 5
7 2

]
→
[
7 2
4 1

]
→
[
4 1
3 1

]
→
[
3 1
1 0

]
→
[
1 0
0 1

]
.

Each steps corresponds to doing row reductions and then swapping rows; the
determinant flips sign at every switch. The left column contains the actual
(a, b) that are being processed while the right column contains the suitable
inverses.

Thus the sign of the determinant of the initial matrix, when populated with
nonnegative entries, determines the eventual parity. Essentially, there is a
unique nonnegative pair of integers (x, y) for which ay − bx = ±1, x ≥ y and
x ≤ a/2, y ≤ b/2. (You can prove this, but it’s annoying.)

Note here y ≡ ±a−1 (mod b), with the choice of sign determining the sign
of the determinant and hence the fate. So this implies the key lemma falls out.
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10 Free

§10.1 Synopsis
This lecture discusses the other extreme to the rigid one: the problem gives
you lots of freedom. It’s impossible in these cases to try and understand the
structure completely, but the problem will ask you only to do a small part of
it (e.g. an existence proof). Often you have to impose the structure yourself
so that you have something to work with.

Many of these problems end up being constructions. I think you can often
think about these problems in two directions.

• Experimenting: in which you go forwards and write down an example,
and hope that it works (or see why it doesn’t work and adjust).

• Restricting: in which you add constraints on the thing you’re con-
structing.
The best case is if you can prove that the constraints you’ve added must
be true for any example. For example if you’re trying to construct n ∈ Z
with a certain property, and you can prove that n even all fail, then of
course you only look at odd n henceforth.
However, if you’re willing to take a gamble (which you should be willing
to do sometimes), you can also narrow your search even more, even if
it’s not true (or you can’t prove) that the condition is necessary. For
example you might focus your attention to the case n is prime, because
it helps simplify your experimentation, and you think that a prime n
should exist anyways. This can turn an otherwise free problem into a
more rigid one.

Most problems will involve a bit of both (and if you’re working on a yes/no
problem, it’s super important to do both).

§10.2 Walkthroughs
Problem 111 (USAMO 2011). Consider the assertion that for each positive
integer n ≥ 2, the remainder upon dividing 22

n by 2n − 1 is a power of 4.
Either prove the assertion or find (with proof) a counterexample.

Walkthrough. This is a quick problem showing that you can (and should)
often do constructions using both directions: parts (b) and (c) are restrictive,
part (d) is experimental.
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(a) Show that the problem is equivalent to whether there exists n such that
the remainder 2n mod n is odd.

(b) Prove that any working n must be odd.

(c) Prove that any working n is composite.

(d) Guess values of n until you find one that works.

In (b) and (c) we were even able to prove n must be odd composite in order to
have a chance of working. In other problems you might not be so lucky that
you can prove your restrictions are necessary, but it’s often correct to take the
restriction anyways.

Problem 112 (USAMO 2010). The 2010 positive real numbers a1, a2, …,
a2010 satisfy the inequality aiaj ≤ i + j for all 1 ≤ i < j ≤ 2010. Determine,
with proof, the largest possible value of the product a1a2 . . . a2010.

Walkthrough. While it’s possible to write down a formula that achieves
the maximum, I want to push the point of view that this is a problem which
should be done almost entirely by restriction.

First, let’s get a sense of what we expect the optimum to be.

(a) We can get an upper bound by multiplying 1005 disjoint inequalities
together. For example, you can show 20111005 is an upper bound by
using a1a2010 ≤ 2011, a2a2009 ≤ 2011, and so on.
However, this is far from optimal: find the best possible bound you can
get by multiplying 1005 disjoint inequalities. (You can even prove your
answer is the best possible.)

(b) Convince yourself you are on the right track by showing the analo-
gous upper bound where 2010 is replaced by 4 actually has an existing
(a1, a2, a3, a4) with a1a2a3a4 achieving your conjectured maximum.

(c) For any sequence achieving the bound found in (a), write down 1005
equalities which must be true.

(d) Find constants c, λ such that one expects an ≈ (cn)λ in any valid con-
struction. (Possible hint: AM-GM.)

Now we can start thinking about how to construct the optimum.

(e) Based on your answer to (d), which of the
(
2010
2

)
inequalities are the

sharpest?

(f) Try to come up with a construction by choosing an additional 1004
inequalities to set to equalities.

(g) If you made the right choice in (f), you can already prove that aiaj ≤ i+j
when i and j are different parity, using only the inequalities you chose
in (c) and (f). Do so. The proof will be along the same lines as in (a).
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(h) Show that with the additional condition a2008a2010 = 4018, we are done.
Why might we pick this one and not a1a3 = 4?

Thus we solve the problem almost entirely by adding restrictions. As men-
tioned, there does exist a solution which explicitly defines an but this one
makes no attempt to do so whatsoever. Rather, one comes up with a heuristic
reason to believe that certain inequalities are more important than others, and
then sets those “sharpest” inequalities to equalities, and watches the problem
solve itself.

After part (g), the following program might be fun to play with, to get a
sense of why the answer to (h) is what it is. (Note: contains spoilers for the
earlier parts).

def check ( x ) :
a = [ x ]
for t in range ( 3 , 4 0 2 1 , 2 ) :

a . append ( t /a [ −1])
for i in range ( 1 , 2 0 1 1 ) :

for j in range ( i +1 ,2011):
i f a [ i −1] ∗ a [ j −1] > i+j+1e −10:

return ( i , j )
return None

§10.3 Problems
Problem 113 (USAMO 1985). Determine whether or not there are any pos-
itive integral solutions of the simultaneous equations

x21 + x22 + · · ·+ x21985 = y3

x31 + x32 + · · ·+ x31985 = z2

with distinct integers x1, x2, …, x1985.

Problem 114 (RMM 2015). Does there exist an infinite sequence of integers
a1, a2, …such that gcd(am, an) = 1 if and only if |m− n| = 1?

Problem 115 (IMO 2015). We say that a finite set S of points in the plane
is balanced if, for any two different points A and B in S, there is a point C in
S such that AC = BC. We say that S is center-free if for any three different
points A, B and C in S, there are no points P in S such that PA = PB = PC.

(a) Show that for all integers n ≥ 3, there exists a balanced set consisting
of n points.

(b) Determine all integers n ≥ 3 for which there exists a balanced center-free
set consisting of n points.
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Problem 116 (IMO 2014). Let n ≥ 2 be an integer. Consider an n × n
chessboard consisting of n2 unit squares. A configuration of n rooks on this
board is peaceful if every row and every column contains exactly one rook.
Find the greatest positive integer k such that, for each peaceful configuration
of n rooks, there is a k× k square which does not contain a rook on any of its
k2 unit squares.

Problem 117 (IMO 2016). The equation

(x− 1)(x− 2) . . . (x− 2016) = (x− 1)(x− 2) . . . (x− 2016)

is written on the board, with 2016 linear factors on each side. What is the
least possible value of k for which it is possible to erase exactly k of these 4032
linear factors so that at least one factor remains on each side and the resulting
equation has no real solutions?

Problem 118 (IMO Shortlist 2011). Prove that for every positive integer n,
the set {2, 3, 4, . . . , 3n + 1} can be partitioned into n triples in such a way
that the numbers from each triple are the lengths of the sides of some obtuse
triangle.

Problem 119 (USAMO 2014). Prove that there exists an infinite set of points

. . . , P−3, P−2, P−1, P0, P1, P2, P3, . . .

in the plane with the following property: For any three distinct integers a, b,
and c, points Pa, Pb, and Pc are collinear if and only if a+ b+ c = 2014.

Problem 120 (TSTST 2015). A Nim-style game is defined as follows. Two
positive integers k and n are specified, along with a finite set S of k-tuples
of integers (not necessarily positive). At the start of the game, the k-tuple
(n, 0, 0, . . . , 0) is written on the blackboard.

A legal move consists of erasing the tuple (a1, a2, . . . , ak) which is written
on the blackboard and replacing it with (a1 + b1, a2 + b2, . . . , ak + bk), where
(b1, b2, . . . , bk) is an element of the set S. Two players take turns making legal
moves, and the first to write a negative integer loses. In the event that neither
player is ever forced to write a negative integer, the game is a draw.

Prove that there is a choice of k and S with the following property: the first
player has a winning strategy if n is a power of 2, and otherwise the second
player has a winning strategy.
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§10.4 Solutions

Solution 111 (USAMO 2011). We claim n = 25 is a counterexample.
Since 225 ≡ 20 (mod 225 − 1), we have

22
25

≡ 22
25 mod 25 ≡ 27 mod 225 − 1

and the right-hand side is actually the remainder, since 0 < 27 < 225. But 27

is not a power of 4.

Remark. Really, the problem is just equivalent for asking 2n to have odd
remainder when divided by n.

Solution 112 (USAMO 2010). The answer is 3 × 7 × 11 × · · · × 4019,
which is clearly an upper bound (and it’s not too hard to show this is the
lowest number we may obtain by multiplying 1005 equalities together; this is
essentially the rearrangement inequality). The tricky part is the construction.
Intuitively we want ai ≈

√
2i, but the details require significant care.

Note that if this is achievable, we will require anan+1 = 2n + 1 for all odd
n. Here are two constructions:

• One can take the sequence such that a2008a2010 = 4018 and anan+1 =
2n + 1 for all n = 1, 2, . . . , 2009. This can be shown to work by some
calculation. As an illustrative example,

a1a4 =
a1a2 · a3a4

a2a3
=

3 · 7
5

< 5.

• In fact one can also take an =
√
2n for all even n (and hence an−1 =√

2n− 1√
2n

for such even n).

Remark. This is a chief example of an “abstract” restriction-based approach.
One can motivate it in three steps:

• The bound 3 · 7 · · · · · 4019 is provably best possible upper bound by
pairing the inequalities; also the situation with 2010 replaced by 4 is
constructible with bound 21.

• We have an ≈
√
2n heuristically; in fact an =

√
2n satisfies inequalities

by AM-GM.

• So we are most worried about aiaj ≤ i + j when |i − j| is small, like
|i− j| = 1.

I then proceeded to spend five hours on various constructions, but it turns out
that the right thing to do was just require akak+1 = 2k+1, to make sure these
pass: and the problem almost solves itself.
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Remark. When 2010 is replaced by 4 it is not too hard to manually write an
explicit example: say a1 =

√
3

1.1 , a2 = 1.1
√
3, a3 =

√
7

1.1 and a4 = 1.1
√
7. So this

is a reason one might guess that 3× 7× · · · × 4019 can actually be achieved in
the large case.
Remark. Victor Wang says: I believe we can actually prove that WLOG (!)
assume aiai+1 = 2i + 1 for all i (but there are other ways to motivate that
as well, like linear programming after taking logs), which makes things a bit
simpler to think about.

Solution 113 (USAMO 1985). Yes, take

xk = k · (12 + 22 + · · ·+ 19852)4

which works (noting 13 + · · ·+ 19853 = (1 + · · ·+ 1985)2 is a square).

Solution 114 (RMM 2015). The answer is yes. Let p1 = 2, q1 = 3, p2 = 5,
q2 = 7, p3 = 11, …denote the sequence of prime numbers. Define

an = pnqn ·

{∏n−2
k=1 pk n even∏n−2
k=1 qk n odd.

This works by construction.
Remark. Here is an idea of how to come up with this. The idea is that
you just take every pair i < j you want not to be relatively prime (meaning
|i− j| ≥ 2) and throw in a prime. You can’t do this by using a different prime
for every pair (since each ai must be finite) and you can’t use the same prime
for a fixed i, so you do the next best thing and alternate using even and odd
and you’re done.

Solution 115 (IMO 2015). For part (a), take a circle centered at a point
O, and add n− 1 additional points by adding pairs of points separated by an
arc of 60◦ or similar triples. An example for n = 6 is shown below.

O
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For part (b), the answer is odd n, achieved by taking a regular n-gon. To
show even n fail, note that some point is on the perpendicular bisector of⌈

1

n

(
n

2

)⌉
=
n

2

pairs of points, which is enough. (This is a standard double-counting argu-
ment.)

Remark. As an aside, there is a funny joke about this problem. There are
two types of people in the world:

• Those who solve (b) quickly and then take forever to solve (a),

• those who solve (a) quickly and then can’t solve (b) at all.

(Empirically true when the Taiwan IMO 2014 team was working on it.)

Solution 116 (IMO 2014). The answer is k =
⌊√

n− 1
⌋
.

Proof that the property holds when n ≥ k2 + 1. First, assume n > k2 for
some k. We will prove we can find an empty k × k square. Indeed, let R be a
rook in the uppermost column, and draw k squares of size k×k directly below
it, aligned. There are at most k − 1 rooks among these squares, as desired.

S

Construction for all n ≤ k2. We first give an example where for n = k2

showing there may be no empty k× k square. We draw the example for k = 3
(with the generalization being obvious);
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r
r

r
r

r
r

r
r

r

To show that this works, consider for each rook drawing an k × k square of
X’s whose bottom-right hand corner is the rook (these may go off the board).
These indicate positions where one cannot place the upper-left hand corner of
any square. It’s easy to see that these cover the entire board, except parts of
the last k − 1 columns, which don’t matter anyways.

It remains to check that n ≤ k2 also all work (omitting this step is a common
mistake). For this, we can delete rows and column to get an n×n board, and
then fill in any gaps where we accidentally deleted a rook.

Solution 117 (IMO 2016). The answer is 2016. Obviously this is necessary
in order to delete duplicated factors. We now prove it suffices to deleted
2 (mod 4) and 3 (mod 4) guys from the left-hand side, and 0 (mod 4), 1
(mod 4) from the right-hand side.

Consider the 1008 inequalities

(x− 1)(x− 4) < (x− 2)(x− 3)

(x− 5)(x− 8) < (x− 6)(x− 7)

(x− 9)(x− 12) < (x− 10)(x− 11)

...
(x− 2013)(x− 2016) < (x− 2014)(x− 2015).

Notice that in all these inequalities, at most one of them has non-positive
numbers in it, and we never have both zero. If there is exactly one negative
term among the 1008 · 2 = 2016 sides, it is on the left and we can multiply all
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together. Thus the only case that remains is if x ∈ (4m− 2, 4m− 1) for some
m, say the mth inequality. In that case, the two sides of that inequality differ
by a factor of at least 9.

Claim. We have ∏
k≥0

(4k + 2)(4k + 3)

(4k + 1)(4k + 4)
< e.

Proof of claim using logarithms. It’s equivalent to prove∑
k≥0

log

(
1 +

2

(4k + 1)(4k + 4)

)
< 1.

To this end, we use the deep fact that log(1 + t) ≤ t, and thus it follows from∑
k≥0

1
(4k+1)(4k+4) <

1
2 , which one can obtain for example by noticing it’s less

than 1
4
π2

6 .

Remark (Elementary proof of claim, given by Espen Slettnes). To avoid
calculus as above, for each N ≥ 0, note the partial product is bounded by

N∏
k=0

(4k + 2)(4k + 3)

(4k + 1)(4k + 4)
=

2

1
·
(
3

4
· 6
5

)
·
(
7

8
· 10
9

)
· · · · · 4N + 3

4N + 4

< 2 · 1 · 1 · · · · · 4N + 3

4N + 4
< 2 < e.

This solves the problem, because then the factors being multiplied on by
the positive inequalities before the mth one are both less than e, and e2 < 9.
In symbols, for 4m− 2 < x < 4m− 1 we should have

(x− (4m− 6))(x− (4m− 5))

(x− (4m− 7))(x− (4m− 4))
× · · · × (x− 2)(x− 3)

(x− 1)(x− 4)
< e

and

(x− (4m+ 2))(x− (4m+ 3))

(x− (4m+ 1))(x− (4m+ 4))
× · · · × (x− 2014)(x− 2015)

(x− 2013)(x− 2016)
< e

because the (k + 1)st term of each left-hand side is at most (4k+2)(4k+3)
(4k+1)(4k+4) , for

k ≥ 0. As e2 < 9, we’re okay.

Solution 118 (IMO Shortlist 2011). Here is one of many possible construc-
tions. We will prove one can form such a partition such that {2, 3, . . . , n+ 1}
are in different triples; let P (n) denote this statement.

We make the following observation:

Fact. If a < b < c is an obtuse triple, then so is (a, b+x, c+x) for any x > 0.
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Observe P (1) is obviously true.

Claim. We have P (n) =⇒ P (2n) for all n ≥ 1.

Proof. Take the partition for P (n) and use the observation to get a construc-
tion for {2, . . . , n + 1} t {2n + 2, . . . , 4n + 1}. Now consider the following
table:  2 3 . . . n+ 1 n+ 2 n+ 3 . . . 2n+ 1

Induct hypth 4n+ 2 4n+ 3 . . . 5n+ 1
+n 5n+ 2 5n+ 3 . . . 6n+ 1


We claim all the column are obtuse. Indeed, they are obviously the sides of a
triangle; now let 2 ≤ k ≤ n+ 1 and note that

k2 < 8n2 =⇒ (n+ k)2 + (4n+ k)2 < (5n+ k)2

as desired.

Claim. We have P (n) =⇒ P (2n− 1) for all n ≥ 2.

Proof. Take the partition for P (n) and use the observation to get a construc-
tion for {2, . . . , n + 1} t {2n + 1, . . . , 4n + 1}. Now consider the following
table:  2 3 . . . n+ 1 n+ 2 n+ 3 . . . 2n

Induct hypth 4n+ 1 4n+ 2 . . . 5n− 1
+n 5n 5n+ 1 . . . 6n− 2


We claim all the columns are obtuse again. Indeed, they are obviously the
sides of a triangle; now let 1 ≤ k ≤ n− 1 and note that

(k − 2)2 < 8n2 − 12n+ 4 =⇒ (n+ 1 + k)2 + (4n+ k)2 < (5n+ k − 1)2

as desired.

Together with the base case P (1), we obtain P (n) for all n.

Solution 119 (USAMO 2014). The construction

Pn =

(
n− 2014

3
,

(
n− 2014

3

)3
)

works fine, and follows from the following claim:

Claim. If x, y, z are distinct real numbers then the points (x, x3), (y, y3),
(z, z3) are collinear if and only if x+ y + z = 0.
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Proof. Note that by the “shoelace formula”, the collinearity is equivalent to

0 = det

x x3 1
y y3 1
z z3 1


But the determinant equals∑

cyc
x(y3 − z3) = (x− y)(y − z)(z − x)(x+ y + z).

Solution 120 (TSTST 2015). Here we present a solution with 14 registers
and 22 moves. Initially X = n and all other variables are zero.

X Y Go S0
X SX S′

X S0
Y SY S′

Y Cl A B Die Die’
Init -1 1 1 1 1
Begin 1 -1 1 -1 1
Sleep 1 -1
StartX -1 1 -1 1
WorkX -1 -1 1 -1 1
WorkX’ -1 1 1 -1 -1 1
DoneX -1 1 -1 1
WrongX -1 -1 -1
StartY -1 1 -1 1
WorkY -1 -1 1 -1 1
WorkY’ 1 -1 1 -1 -1 1
DoneY 1 -1 -1 1
WrongY -1 -1 -1
ClaimX -1 -1 1 -1 1
ClaimY -1 -1 1 -1 1
FakeX -1 -1 -1
FakeY -1 -1 -1
Win -1 -1
PunA -2
PunB -1 -1
Kill -1 -2 1
Kill’ -1 1 -2

Now, the “game” is played as follows. The mechanics are controlled by the
turn counters A and B.

Observe the game starts with Alice playing Init. Thereafter, we say that
the game is

• In the main part if A+B = 1, and no one has played Init a second time.

• In the death part otherwise.

Observe that in the main state, on Alice’s turn we always have (A,B) = (1, 0)
and on Bob’s turn we always have (A,B) = (0, 1).

Claim. A player who plays Init a second time must lose. In particular, a
player who makes a move when A = B = 0 must lose.

Proof. Situations with A+B ≥ 2 cannot occur during main part, so there are
only a few possibilities.
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• Suppose the offending player is in a situation where A = B = 0. Then
he/she must play Init. At this point, the opposing player can respond
by playing Kill. Then the offending player must play Init again. The
opposing player now responds with Kill’. This iteration continues until
X reaches a negative number and the offending player loses.

• Suppose Alice has (A,B) = (1, 0) but plays Init again anyways. Then
Bob responds with PunB to punish her; he then wins as in the first case.

• Suppose Bob has (A,B) = (0, 1) but plays Init again anyways. Alice
responds with PunA in the same way.

Thus we may assume that players avoid the death part at all costs. Hence
the second moves consist of Bob playing Sleep, and then Alice playing Begin
(thus restoring the value of n in X), then Bob playing Sleep.

Now we return to analysis of the main part. We say the game is in state
S for S ∈ {S0

X , SX , S
′
X , S

0
Y , SY , S

′
Y ,Cl} if S = 1 and all other variables are

zero. By construction, this is always the case. From then on the main part is
divided into several phases:

• An X-phase: this begins with Alice at S0
X , and ends when the game is

in a state other than SX and S′
X . (She can never return to S0

X during
an X-phase.)

• A Y -phase: this begins with Alice at S0
Y , and ends when the game is in

a state other than SY and S′
Y . (She can never return to S0

Y during a
Y -phase.)

Claim. Consider an X-phase in which (X,Y ) = (x, 0), x > 1. Then Alice can
complete the phase without losing if and only if x is even; if so she begins a
Y -phase with (X,Y ) = (0, x/2).

Proof. As x > 1, Alice cannot play ClaimX since Bob will respond with FakeX
and win. Now by alternating between WorkX and WorkX’, Alice can repeat-
edly deduct 2 from X and add 1 to Y , leading to (x− 2, y+1), (x− 4, y+2),
and so on. (During this time, Bob can only play Sleep.) Eventually, she must
stop this process by playing DoneX, which begins a Y -phase.

Now note that unless X = 0, Bob now has a winning move WrongX. Con-
versely he may only play Sleep if X = 0.

We have an analogous claim for Y -phases. Thus if n is not a power of 2, we
see that Alice eventually loses.

Now suppose n = 2k; then Alice reaches (X,Y ) = (0, 2k−1), (2k−2, 0), . . .
until either reaching (1, 0) or (0, 1). At this point she can play ClaimX or
ClaimY, respectively; the game is now in state Cl. Bob cannot play either
FakeX or FakeY, so he must play Sleep, and then Alice wins by playing Win.
Thus Alice has a winning strategy when n = 2k.
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11 Anti-Problems
This is a silly chapter dedicated to problems whose solutions make you

groan. No particular theory, other than advice: keep things simple.

§11.1 Walkthroughs
Problem 121. Let ABCDEZY XWV be an equilateral decagon with interior
angles ∠A = ∠V = ∠E = ∠Z = ∠C = 90◦, ∠W = ∠Y = 135◦, ∠B =
∠D = 225◦, and ∠X = 270◦. Determine whether or not one can dissect
ABCDEZY XWV into four congruent polygons.

Walkthrough. Stare at the shape until you either give up or figure out
what’s going on.

Problem 122 (Math Prize for Girls 2017). Define a lattice line as a line
containing at least 2 lattice points. Is it possible to color every lattice point
red or blue such that every lattice line contains exactly 2017 red points?

Walkthrough. Let L1, L2, …denote the countably many lattice lines, in
some order. It is not hard to do the “finite” step:

(a) Show that for every integer n, we can construct a set Tn of lattice points
such that each line L1, …, Ln passes through exactly 2017 points in Tn.

(b) Make sure your solution to (a) works. Is it possible to get stuck because
you accidentally colored 2018 points on LN already for some N in the
future?

The issue is that we need a set T∞ that works for all lines at once: there is
a difference between “unbounded” and “infinite”! Put another way, we have
proven the statement P (n) that “there exists a set Tn as in (a)” for every
n = 1, 2, . . . , by induction of the usual shape P (n) =⇒ P (n + 1) but we
really need the statement P (∞), which we cannot reach by using a normal
induction. Thus, we need to do a little more work.
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(c) Modify your approach to (a) such that we have the additional property
T1 ⊆ T2 ⊆ . . . . (For some people, no additional modification is needed.)

(d) Prove that
T∞ =

⋃
n≥1

Tn

fits the bill.

(e) Why was part (c) necessary? (In other words, what goes wrong if you
try to fix over-red lines retroactively?)

As an aside, this is sort of a simple case of a “transfinite induction”: the last
step breaks the realm of normal induction and brings us into the world of
statements P (α) for infinite ordinals α. In set theory, transfinite induction
proves a statement P (−) for any ordinal α, and this proof typically involves
both a successor case P (α) =⇒ P (α + 1), as well as a limit case similar to
the above.

§11.2 Problems
Problem 123 (Russian Olympiad 2015). We define a chessboard polygon to
be a polygon in the xy-plane whose edges are situated along lines of the form
x = a and y = b, where a and b are integers. These lines divide the interior
into unit squares, which we call cells.

Let n and k be positive integers. Assume that a square can be partitioned
into n congruent chessboard polygons of k cells each. Prove that this square
may also be partitioned into k congruent chessboard polygons of n cells each.

Problem 124 (IMO Shortlist 2016). Find all positive integers n for which
it is possible to arrange all positive divisors of n (including 1 and n) in a
rectangular grid of some size (with all cells filled) such that

• each divisor appears exactly once,

• all columns have equal sum,

• all rows have equal sum.

Problem 125. Show that one can find a set S of 210 distinct points in R20

and two positive real numbers a and b, such that for any two distinct points
in S, the distance between them is either a or b.

Problem 126 (Putnam 2018 B6). Prove that the number of length 2018-
tuples whose entries are in {1, 2, 3, 4, 5, 6, 10} and sum to 3860 is at most

23860 ·
(
2018

2048

)2018

.
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Problem 127 (USAMO 2002). Prove that any monic polynomial (a polyno-
mial with leading coefficient 1) of degree n with real coefficients is the average
of two monic polynomials of degree n with n real roots.

Problem 128 (China TST 2016). In the coordinate plane the points with
both coordinates being rational numbers are called rational points. For each
positive integer n, determine whether there is a way to use n colours to colour
all rational points, such that any line segment with both endpoints being
rational points contains rational points of all n colours.

Problem 129 (Ankan Bhattacharya). A diamond is a rhombus with side
length 1 whose interior angles are 60◦ and 120◦ (hence with area

√
3/2). A

regular hexagon H of side length 10 is dissected into diamonds. In a move, if
three pairwise adjacent diamonds form a regular hexagon of side length 1, one
may rotate all three 60◦ about the center of that hexagon.

Find the smallest positive integer N such that any tiling of H can be trans-
formed into any other in at most N moves, or show that no such N exists.

Problem 130 (USA TST 2013). In a table with n rows and 2n columns where
n is a fixed positive integer, we write either zero or one into each cell so that
each row has n zeros and n ones. For 1 ≤ k ≤ n and 1 ≤ i ≤ n, we define ak,i
so that the ith zero in the kth row is the ak,ith column. Let F be the set of such
tables with a1,i ≥ a2,i ≥ · · · ≥ an,i for every i with 1 ≤ i ≤ n. We associate
another n× 2n table f(C) for each C ∈ F as follows: for the kth row of f(C),
we write n ones in the columns an,k − k + 1, an−1,k − k + 2, . . . , a1,k − k + n
(and we write zeros in the other cells in the row).

(a) Show that f(C) ∈ F .

(b) Show that f(f(f(f(f(f(C)))))) = C for any C ∈ F .
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§11.3 Solutions

Solution 121 (None). Make a stack of four copies of the same polygon
except with AV = EZ = 1/4.

Solution 122 (Math Prize for Girls 2017). Let L1, L2, …denote the
countably many lattice lines, in some order. We construct by induction a set
Tn of lattice points (for each n ≥ 1) such that each line L1, …, Ln passes
through exactly 2017 points in Tn.

To do this, at the nth step, we take Tn−1 and add in between 2015 and 2017
red points on Ln such that

• no red point we add is on any of L1, …, Ln−1, and

• no red point we add is collinear with any two red points in Tn−1. (This
ensures that at future steps of the algorithm, each line passes through
at most two red points already).

Finally, note that our construction has the property that T1 ⊆ T2 ⊆ . . . ;
thus the union

T∞ =
⋃
n≥1

Tn

satisfies the construction.

Remark. One incorrect approach is to try and edit the choice of red points
retroactively if the line Ln is already full. This makes it impossible to take
the union at the last step.

Solution 123 (Russian Olympiad 2015). Let the side length of the square
be s. Because of the partition, we have

nk = s2.

By the so-called factor lemma, there exist positive integers a, b, c, d with
n = ab, k = cd, and s = ac = bd.

Therefore, we can tile this s× s = ac× bd square with a× b rectangles! Ha,
ha, ha…
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Solution 124 (IMO Shortlist 2016). This is a somewhat silly problem —
it’s impossible for size reasons, except in the trivial situation n = 1. (One can
gain this intuition very quickly from small cases. I solved this problem during
the Synco concert.)

Suppose the grid has dimensions a rows and b columns, a ≥ b > 1 (the b = 1
situation gives n = 1).

Clearly the common sum is more than n. On the other hand, there are at
most b− 1 divisors exceeding n

b . Since there are a > b− 1 rows, some row has
all entries at most n/b. So that row has sum at most b · n/b = n, impossible.

Solution 125 (None). Take the
(
21
2

)
= 210 points on the hyperplane

x0 + x1 + · · ·+ x20 = 2

which have two coordinates equal to one, and the others zero. The hyperplane
is a 20-dimensional space, and using a =

√
2, b = 2 works fine,

Solution 126 (Putnam 2018 B6). Let an be the number of n-tuples if 3860
is replaced by n. Consider the usual generating function

F (X) = (X1 +X2 +X3 +X4 +X5 +X6 +X10)2018 =
∑
n

anX
n.

Observe that

F

(
1

2

)
=

(
1009

1024

)2018

=
∑
n

an

(
1

2

)n

and hence an ≤ 2n
(
1009
1024

)2018 for any integer n.

Remark. Alexendar Givental notes that the bound X−3860F (X) is minimized
when X = 1

2 (which one can check by computing the derivative), i.e. we don’t
get a better bound by replacing X. Therefore, this gives a reason why 3860
might have been chosen.

Solution 127 (USAMO 2002). First,

Lemma. If p is a monic polynomial of degree n, and p(1)p(2) < 0, p(2)p(3) <
0, …, p(n− 1)p(n) < 0 then p has n real roots.

Proof. The intermediate value theorem already guarantees the existence of
n− 1 real roots.

The last root is obtained by considering cases on n (mod 2).
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• If n is even, then p(1) and p(n) have opposite sign, while we must have
either

lim
x→−∞

p(x) = lim
x→∞

p(x) = ±∞

so we get one more root.

• The n odd case is similar, with p(1) and p(n) now having the same sign,
but limx→−∞ p(x) = − limx→∞ p(x) instead.

Let f(n) be the monic polynomial and letM > 1000maxt=1,...,n |f(t)|+1000.
Then we may select reals a1, . . . , an and b1, . . . , bn such that for each k =
1, . . . , n, we have

ak + bk = 2f(k)

(−1)kak > M

(−1)k+1bk > M.

We may interpolate monic polynomials g and h through the ak and bk (if the
ak, bk are selected “generically” from each other). Then one can easily check
f = 1

2 (g + h) works.

Solution 128 (China TST 2016). Always possible.
The number of rational points is countable, and so is the number of line

segments with rational endpoints. Let us list these segments as s1, s2, . . . .
First pick n arbitrary rational points on s1 and give them distinct colors.
Then do the same for s2, except that we need to avoid choosing points that
have already been colored. But that is possible because s2 contains infinitely
many rational points. Keep doing this for each sk, and the desired conclusion
follows. To be complete, give the uncolored points any color at the end.

Remark. CeuAzul in https://aops.com/community/q3h1299532p6916022
recounts a story:

The day before the TST teacher QuZhenHua noticed this and said it will be
obvious using countable, but other teachers don’t think many students would
use this, so they put on a bet. Out of 60 students, the other teachers bet the
number of people who use this way is strictly less than 5 while Qu said more
than 5. The result is, only 4 students during the contest used this.

Solution 129 (Ankan Bhattacharya). As in the AOPS logo, view the
picture in 3-D. Then one imagines a cube of side length 10, which is filled
with some unit cubes under gravity. The operation consists of either adding
or removing a visible unit cube.
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To finish, there are 103 = 1000 unit cubes and we claim the answer is just
N = 1000.

Suppose there are a unit cubes in our starting configuration and b unit
cubes in our ending one. If we remove all a unit cubes and rebuild to get the
desired configuration of b unit cubes in the end, this takes a+ b steps. On the
other hand, if we add unit cubes until we have all 1000, and then delete down
to our desired configuration, this takes (1000 − a) + (1000 − b) steps. Now,
min ((a+ b), 2000− (a+ b)) ≤ 1000, proving the bound. To see the bound
cannot be improved, consider the configuration with a = 0 and b = 1000; it
always takes at least 1000 steps to fill.

Remark. One other nice corollary of the 3D perspective is that the number
of diamonds of each orientation is always equal.

Solution 130 (USA TST 2013). Part (a) is easy and (b) is typically just
a very long calculation.

The official solution to (b) is quite nice, but it is essentially completely
unmotivated. Nonetheless, since I don’t want to type the long calculation
(you can find plenty of those on AOPS), here is the “nice” solution.

We give an interpretation of C in terms of the AOPS logo. Consider subsets
cubes as shown below, supported by gravity in all three directions. Write 1 on
the top of every cube, 0 on the right face. Then we can read off the rows of a
2n× n table in the obvious way.
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Row 3
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Row 5

C f(C)Rotate hexagon 60◦

In that case, f(C) corresponds to rotating the hexagon 60◦. So f(C) ∈ F
and f6(C) = id.
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12 Orders
We will assume general comfort with modular arithmetic; readers without

this background should first consult texts such as [Ste16].

§12.1 Definition and examples of order
Let p be a prime and take a 6≡ 0 (mod p).

Definition 12.1. The order of a (mod p) is defined to be the smallest posi-
tive integer e such that

ae ≡ 1 (mod p).

This order is clearly finite because Fermat’s Little Theorem tells us

ap−1 ≡ 1 (mod p).

As an example, listed below are the orders of each residue a (mod 11) and
a (mod 13).

a mod 11 mod 13
1 1 1
2 10 12
3 5 3
4 5 6
5 5 4
6 10 12

a mod 11 mod 13
7 10 12
8 10 4
9 5 3
10 2 6
11 12
12 2

The most important result about orders is that, due to minimality, they
actually divide all other exponents: for example, they will all divide p− 1, as
the above examples suggest.

Theorem 12.2 (Fundamental theorem of orders). Suppose aN ≡ 1 (mod p).
Then the order of a (mod p) divides N .

Proof. Let e be the order, and let N = de + r by division algorithm (where
0 ≤ r < e). Since aN ≡ 1 (mod p) and ae ≡ 1 (mod p), it follows 1 ≡
aN (ae)−d ≡ ar (mod p). This can only happen if r = 0 since e was minimal,
which is the same as saying e | N .

Although the prime case is the most frequently used, we note here that the
order of a (mod m) can be defined as long as gcd(a,m) = 1; in that case it is
the smallest exponent e > 0 such that ae ≡ 1 (mod m). In this situation, we
have e | ϕ(m).
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§12.2 Application: Fermat’s Christmas theorem
The upshot is that existence of elements with a certain order modulo p can
usually tell you something about the prime p. Here is a classical application,
for which orders are not part of the theorem statement but play an essential
role.

Theorem 12.3. Let a and b be positive integers, and let p ≡ 3 (mod 4) be a
prime. Suppose p divides n = a2 + b2. Then p divides both a and b (and in
particular n is divisible by p2).

Proof. We proceed by contradiction: suppose p is an odd prime, and a, b are
both nonzero modulo p, with

a2 + b2 ≡ 0 (mod p)

We will show that p ≡ 1 (mod 4), which will be the desired contradiction.
Indeed, since b is nonzero we may invert it, and let x = a/b (mod p). Then

x2 + 1 ≡ 0 (mod p)

x2 ≡ −1 (mod p)

x4 ≡ 1 (mod p).

Then, x has order four! Indeed the order should divide four, but x2 ≡ −1 6≡
1 (mod p) since p 6= 2, so it must actually equal four.

In particular, 4 | p− 1, as desired.

Remark 12.4. It turns out that a strong converse is true: if p ≡ 1 (mod 4),
then p can be written as a sum of squares. The most natural proofs of this
result are not elementary so we will not prove it here, but it is good to know.

§12.3 Primitive roots
We now state an existence result, which we will not prove. The first is about
orders modulo a prime being tight:

Theorem 12.5. Let p be a prime. Then there exists an element g (mod p)
of order p− 1.

Definition 12.6. Such an element is known as a primitive root modulo p.

Here is a concrete example. It turns out that g = 2 is a primitive root

190



12 Orders May 18, 2025

modulo both 11 and 13; let’s write out what this means.

2n mod 11 mod 13
21 2 2
22 4 4
23 8 8
24 5 3

25 10 6

26 9 12
27 7 11
28 3 9
29 6 5
210 1 10
211 7
212 1

I’ve boxed the two “half-way” points: 25 ≡ 10 ≡ −1 (mod 11) and 26 ≡ 12 ≡
−1 (mod 13).

Consider p = 11. We already know that −1 cannot be a square modulo
p from the proof of our earlier result, and you can intuitively see this come
through: since p−1

2 = 5 is odd, it’s not possible to cut g5 ≡ −1 into a perfect
square.

On the other hand, if p = 13 then p ≡ 1 (mod 4), and you can see intuitively
why g6 ≡ −1 is a perfect square: just write g6 = (g3)2 and we’re home free!

Based on the following discussion, we can for instance prove:

Example 131. Prove that if p ≡ 1 (mod 4) is prime, then there exists an
element x with x2 ≡ −1 (mod p).

Solution 131. All we need to do is generate an element of order 4. It is
enough to pick x = g

1
4 (p−1) where g is some primitive root. �

§12.4 Walkthroughs
Problem 132. Find all integers n ≥ 1 such that n divides 2n − 1.

Walkthrough. The answer is n = 1 only. Assume for contradiction n > 1
works; consider a p dividing n.

(a) Show that p 6= 2.

(b) Show that if p is a prime dividing n, then the order of 2 (mod p) divides
gcd(n, p− 1).

(c) Prove that for any positive integer n > 1, there exists a prime p | n with
gcd(n, p− 1) = 1. (Hint: try several examples of n.)
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(d) Conclude that the order of 2 (mod p) is 1, which produces the required
contradiction.

Problem 133 (Ali Gurel). Solve a11 + 11b11 + 111c11 = 0 over Z.

Walkthrough. This is sort of the standard example showing how you’re
supposed to pick a modulus when given a generic large power.

(a) Prove that if p ≡ 1 (mod 11), then there are p−1
11 + 1 possible eleventh

powers modulo p. Conversely, show that if p 6≡ 1 (mod 11), then every
number is an 11th power modulo p.

(b) Find the smallest prime which is 1 (mod 11).

(c) Take modulo that prime p. What can we conclude about a, b, c in that
case?

(d) Show that a = b = c = 0 is the only solution.

Problem 134 (Online Math Open 2013). Find the sum of all integers m with
1 ≤ m ≤ 300 such that for any integer n with n ≥ 2, if 2013m divides nn − 1
then 2013m also divides n− 1.

Walkthrough. This is a really good test of how well you understand the
notion of orders modulo a prime. It’s one of my favorite instructional problems
for this reason.

We’ll say an integer M > 1 is good if whenever nn ≡ 1 (mod M) we also
have n ≡ 1 (mod M), and bad otherwise. The goal of this walkthrough will
be to characterize all good integers.

(a) Which of M ∈ {2, 3, 4, 5} are good?

(b) Prove that all odd M are bad.

(c) Prove that M = 6 and M = 8 are good.

(d) Show that M = 10 is good. (General idea: assume nn ≡ 1 (mod 10).
Prove that n is odd, nn ≡ 1 (mod 5) and use this to deduce n ≡ 1
(mod 5)).

So far it looks like even M are good. This luck won’t hold:

(e) Check that M = 12 is good.

(f) Find an example of n such that nn ≡ 1 (mod 14) but n 6≡ 1 (mod 14).
Thus M = 14 is bad.

(g) Prove that M = 42 is good, nonetheless.

(h) Show that M = 30 is good.
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(i) Show that M = 22 is bad.

(j) Formulate a general conjecture about when an integer M is good. This
doesn’t require a new idea, just being able to piece together the general
pattern from the specific cases you did earlier.

It remains to tackle the answer extraction.

(k) Show that if 2013m is good then 10 | m.

(l) Among m ∈ {10, 20, . . . , 300}, only one of these leads to 2013m being
bad. Which m is it?

§12.5 Problems
Problem 135. Let p be a prime. How many nonzero elements modulo p have
order p− 1 (i.e. are primitive roots)?

Problem 136 (HMMT February 2016). For positive integers n, let cn be the
smallest positive integer for which ncn−1 is divisible by 210, if such a positive
integer exists, and cn = 0 otherwise. What is c1 + c2 + · · ·+ c210?

Problem 137. Let p be a prime and n a positive integer. Determine the
remainder when 1n+2n+ · · ·+(p− 1)n is divided by p, as a function of n and
p.

Problem 138 (IMO Shortlist 2000). Determine all positive integers n ≥ 2
that satisfy the following condition: for a and b relatively prime to n we have
a ≡ b (mod n) if and only if ab ≡ 1 (mod n).

Problem 139 (HMMT November 2014). Determine all positive integers 1 ≤
m ≤ 50 for which there exists an integer n for which m divides nn+1 + 1.

Problem 140 (China TST 2006). Find all positive integers a and n for which
n divides (a+ 1)n − an.

Problem 141 (Don Zagier). Let S denote the integers n ≥ 2 with the prop-
erty that for any positive integer a we have

an+1 ≡ a (mod n).

Show that S is finite and determine its elements.

Problem 142. Find all integers n ≥ 1 such that n divides 2n−1 + 1.

Problem 143 (Math Prize for Girls 2017). Determine the value of the sum

11∑
k=1

sin
(
2k+4 π

89

)
sin
(
2k π

89

) .
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§12.6 Solutions

Solution 132 (None). The answer is n = 1 only, which obviously works.
If n > 1, consider the smallest prime p such that p | n. Note p > 2. Then we

have the order of 2 modulo p divides gcd(p−1, n) = 1. This is a contradiction.

Solution 133 (Ali Gurel). The only solution is (a, b, c) = (0, 0, 0), which
obviously works.

Working modulo 23, we observe that x11 (mod 23) is either 0, 1, −1 for each
x. One can check that the only combination for which a11+11b11+111c11 ≡ 0
(mod 23) is when a11 ≡ b11 ≡ c11 ≡ 0 (mod 23), so 23 | a, b, c.

Consequently, whenever (a, b, c) is an integer solution, the triple
(

a
23 ,

b
23 ,

c
23

)
is an integer solution too. Thus by infinite descent, the only solution is (0, 0, 0).

Remark. Note that if p 6≡ 1 (mod 11), then by considering a primitive root
modulo p, it follows that x11 can take any residue modulo p. Conversely, if
p ≡ 1 (mod 11) then x11 can take only p−1

11 residues modulo p. That’s why
taking p = 23 is the natural first prime to try.

Solution 134 (Online Math Open 2013). Call an integer M stable if
nn ≡ 1 (mod M) implies n ≡ 1 (mod M).

Claim. Suppose that for every prime p |M , all prime factors of p− 1 divide
M . Then M is stable.

Proof. We will only prove that if, whenever p | M then all prime factors of
p − 1 divide M , then M is stable. Suppose nn ≡ 1 (mod M). It suffices to
show that n ≡ 1 (mod pk) for each pk |M .

We have nn ≡ 1 (mod M) =⇒ gcd(n,M) = 1. From the problem hypoth-
esis, this means n shares no prime factors with p−1 either. Moreover, n is obvi-
ously coprime to p. From this we conclude n is coprime to ϕ(pk) = pk−1(p−1).

Now consider the order of n modulo pk. It is supposed to divide n, but also
ϕ(pk), so the order is exactly 1, as needed.

Remark. The converse is true too — wheneverM is stable, it has the property
that for p | M , the prime factors of p − 1 all divide M as well. We will only
use this below for p ∈ {3, 11, 29}, and supply a direct proof for those cases,
but those proofs could be generalized straightforwardly to get a full converse
of the preceding claim.

Let M = 2013m. First, we claim that M must be even. Otherwise, take
n = M − 1. Then, we claim that 5 must divide M . Otherwise, take n ≡ 0
(mod 5), n ≡ 3 (mod 11), and n ≡ 1 modulo any other primes powers dividing
M .
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Now for m = 10, 20, . . . , 300, it is easy to check by the condition that M is
stable by our condition above, except for m = 290. It turns out that m = 290
is not stable; simply select n ≡ 0 (mod 7), n ≡ 24 (mod 29), and n ≡ 1
(mod 10 · 2013). It is not hard to check that nn ≡ 1 (mod 29 · 10 · 2013) and
yet n 6≡ 1 (mod 29), as desired.

So, the answer is 10 + 20 + 30 + · · ·+ 280 + 300 = 4360.
In fact, the converse to the stability lemma is true as well. We can generate

the necessary counterexamples using primitive roots.

Solution 135 (None). The answer is ϕ(p− 1).
Indeed, let g be one particular primitive root. Then the nonzero elements

modulo p are 1 = g0, g1, …, gp−2.
In general, the element gk is the smallest exponent e such that (gk)e ≡ 1

(mod p). Since g was primitive, this is the smallest integer e such that ke ≡ 0
(mod p− 1). That integer is p−1

gcd(k,p−1) .
So in particular gk is a primitive root if and only if gcd(k, p− 1) = 1 which

occurs for ϕ(p− 1) values of k.

Remark (Pranav Choudhary). In general, one may replace p by any integer
n; the number of nonzero elements of order ϕ(n) is exactly ϕ(ϕ(n)) when n
has a primitive root.

Remark. It is possible to solve the problem directly without appealing to the
existence of a single primitive root. We briefly outline this approach here. For
each divisor n of p− 1, one may show by strong induction on n that there are
exactly ϕ(n) elements of order n. Indeed for n = 1 this is clear, and for larger
n one considers the polynomial f(X) := Xn − 1 (mod p) (which, by taking
the derivative of f , has no double roots) and subtracts out the roots of smaller
order. Using the identity

∑
d|n ϕ(d) = n then completes the induction.

Solution 136 (HMMT February 2016). In order for cn 6= 0, we must
have gcd(n, 210) = 1, so we need only consider such n. The number ncn − 1 is
divisible by 210 iff it is divisible by each of 2, 3, 5, and 7, and we can consider
the order of n modulo each modulus separately; cn will simply be the LCM of
these orders. We can ignore the modulus 2 because order is always 1. For the
other moduli, the sets of orders are

a ∈ {1, 2} mod 3

b ∈ {1, 2, 4, 4} mod 5

c ∈ {1, 2, 3, 3, 6, 6} mod 7.

By the Chinese Remainder Theorem, each triplet of choices from these three
multisets occurs for exactly one n in the range {1, 2, . . . , 210}, so the answer
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we seek is the sum of lcm(a, b, c) over a, b, c in the Cartesian product of these
multisets. For a = 1 this table of LCMs is as follows:

1 2 3 3 6 6
1 1 2 3 3 6 6
2 2 2 6 6 6 6
4 4 4 12 12 12 12
4 4 4 12 12 12 12

which has a sum of 21 + 56 + 28 + 56 = 161. The table for a = 2 is identical
except for the top row, where 1, 3, 3 are replaced by 2, 6, 6, and thus has a total
sum of 7 more, or 168. So our answer is 161 + 168 = 329 .

This can also be computed by counting how many times each LCM occurs:

• 12 appears 16 times when b = 4 and c ∈ {3, 6}, for a contribution of
12× 16 = 192;

• 6 appears 14 times, 8 times when c = 6 and b ≤ 2 and 6 times when
c = 3 and (a, b) ∈ {(1, 2), (2, 1), (2, 2)}, for a contribution of 6× 14 = 84;

• 4 appears 8 times when b = 4 and a, c ∈ {1, 2}, for a contribution of
4× 8 = 32;

• 3 appears 2 times when c = 3 and a = b = 1, for a contribution of
3× 2 = 6;

• 2 appears 7 times when a, b, c ∈ {1, 2} and (a, b, c) 6= (1, 1, 1), for a
contribution of 2× 7 = 14;

• 1 appears 1 time when a = b = c = 1, for a contribution of 1× 1 = 1.

The result is again 192 + 84 + 32 + 6 + 14 + 1 = 329.

Solution 137 (None). The answer is

1n + · · ·+ (p− 1)n ≡

{
−1 if p− 1 | n
0 otherwise.

Indeed, the first case follows by Fermat’s little theorem, since in that case
every term is 1 (mod p) by Fermat’s little theorem.

Now suppose n - p − 1, and let g be a primitive root modulo p. Then the
above sum rewrites as

S = 1n + · · ·+ (p− 1)n = (g0)n + (g1)n + · · ·+ (gp−2)n

= g0 + gn + · · ·+ g(p−2)n.
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Using the “geometric series” formula, we get

(1− gn)S = (1− gn)(g0 + gn + · · ·+ g(p−2)n)

= 1− g(p−1)n = 1− (gp−1)n

≡ 1− 1n = 1− 1 = 0 (mod p).

Since gn 6≡ 1 (mod p) (as p− 1 - n) dividing gives S ≡ 0 (mod p).

Solution 138 (IMO Shortlist 2000). The answers are n = 2s · 3t for
s ∈ {0, 1, 2, 3}, t ∈ {0, 1} (and n 6= 1).

The problem is equivalent to x2 ≡ 1 (mod n) for all gcd(x, n) = 1. By the
Chinese remainder theorem, this is equivalent to the following property:

For any prime power q | n, the maximal order modulo q is 2.

Now we note that:

• If gcd(q, 2) = 1 we need 22 ≡ 1 (mod q) or q | 3.

• If gcd(q, 3) = 1 we need 32 ≡ 1 (mod q) or q | 8.

Therefore, the only possible q are q ∈ {2, 3, 4, 8} and one may check all of them
work. This gives the answer above.

Remark. This is essentially asking when the https://en.wikipedia.org/
wiki/Carmichael_function is equal to 2. The Carmichael function can be
computed in this same way.

Solution 139 (HMMT November 2014). The answers are odd m, as well
as

m ∈ {2, 2 · 5, 2 · 13, 2 · 17, 2 · 52} = {2, 10, 26, 34, 50} .

First, we show all m must be as above. Assume m is even; then n is odd.
In that case nn+1 + 1 ≡ 2 (mod 4) and moreover is a sum of squares. Thus
by Fermat’s Christmas theorem m must be equal to 2p1 . . . pk where pi ≡ 1
(mod 4) are not necessarily distinct primes.

It remains to do the construction. For odd m, we simply select n = m −
1. For the five special even values m, one can use the Chinese remainder
theorem to generate constructions: just require n ≡ 1 (mod 4) and n2+1 ≡ 0
(mod m/2). We give them explicitly here for concreteness only (one does not
need to compute these values for the proof, as the Chinese remainder theorem
and primitive roots already imply n2 + 1 ≡ 0 (mod m/2) has a solution for
the desired m):

• m = 2: use n = 1.
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• m = 10: use any n ≡ 1 (mod 4), n ≡ 2 (mod 5).

• m = 26: use any n ≡ 1 (mod 4), n ≡ 5 (mod 13).

• m = 34: use any n ≡ 1 (mod 4), n ≡ 4 (mod 17).

• m = 50: use any n ≡ 1 (mod 4), n ≡ 7 (mod 50).

Solution 140 (China TST 2006). The answer is that (a, n) works if and
only if n = 1. When n = 1 there is nothing to prove.

Assume for contradiction n > 1. Look at the smallest prime p dividing n;
note that it does not divide a. Then(

1 +
1

a

)n

≡ 1 (mod p).

Let x = 1 + 1/a and let e be the order of x modulo p (meaning e is the
smallest positive integer with xe ≡ 1 (mod p)). Then e | n, but also e | p− 1
by Fermat’s little theorem. So e | gcd(n, p−1). Since p was the smallest prime
dividing n, we have e = 1. Thus x ≡ 1 (mod p), which is absurd.

Solution 141 (Don Zagier). The answer is n = 2, n = 6, n = 42, n = 1806.
Clearly n must be squarefree (else take a a prime dividing n more than

once). So let us focus our attention on n of the form

n = p1p2 . . . pk p1 < p2 < · · · < pk

with pi prime.
By the Chinese remainder theorem, n works if and only if for every i, the

statement
an ≡ 1 (mod pi) ∀ gcd(a, pi) = 1

holds true. In particular, if we take a to be a primitive root modulo pi then
this is equivalent to

pi − 1 | n = p1 . . . pk

for every i.
This last relation is enough to solve the problem now, since it means

p1 − 1 | 1, p2 − 1 | p1, p3 − 1 | p1p2, p4 − 1 | p1p2p3

and so on. A computation now gives that p1 = 2, p2 = 3 if k ≥ 2, p3 = 7 if
k ≥ 3, p4 = 43 if k ≥ 4, but no possibilities for k ≥ 5.

Solution 142 (None). The answer is n = 1 only which obviously works.
Clearly n is odd. Then:
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• For every prime p | 2n−1 + 1, we must have p ≡ 1 (mod 4) since the
right-hand side is a sum of squares (equivalently, 2n−1

2 has order 4, so
4 | p− 1).
In particular, n ≡ 1 (mod 4) as well, being the product of 1 (mod 4)
primes.

• But now we claim every prime dividing 2n−1 + 1 is 1 (mod 8), by the
same reason! Indeed, the right-hand side is a sum of fourth powers;
equivalently, 2n−1

4 has order 8, forcing 8 | p− 1.
In particular, n ≡ 1 (mod 8) as well, being the product of 1 (mod 8)
primes.

• But then repeating the same argument shows that all prime divisors of
2n−1 + 1 are 1 (mod 16), and so on…

Repeating the same logic we find n ≡ 1 (mod 2k) for any positive integer k.
Thus n = 1.

Solution 143 (Math Prize for Girls 2017). The solution is divided into
three parts.

Part I: complex numbers. We begin (as I always do) by rewriting all the
trigonometry in terms of roots of unity. For brevity, let

ζ = exp

(
2πi

89

)
and zk = ζ2

k

Then sin
(
2k π

89

)
= 1

2i (zk−1 − zk−1), and hence the sum rewrites (shifting in-
dices) as

S =

10∑
k=0

z16k − z
−16
k

zk − z−1
k

=

10∑
k=0

(
z15k + z13k + z11k + · · ·+ z−15

k

)︸ ︷︷ ︸
16 terms

.

Part II: guessing the answer. At this point, we can take all the exponents
in the expression S modulo 89. None of the exponents are zero.

To summarize: we have written S as a linear combination of 16 · 11 = 176
powers of ζ, each in the set {ζ1, ζ2, . . . , ζ88}.

However: the minimal polynomial P of ζ is the 89th cyclotomic polynomial:

P (ζ) = 1 + ζ + ζ2 + · · ·+ ζ88 = 0.
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Now P has 89 terms and degree 88. If we view S as a polynomial in ζ and then
take the remainder modulo P , we’ll get a polynomial of degree at most 87 (due
to the minimality of P ). That suggests S = −2 , as S+2 has 11 ·16+2 = 178
terms, which is exactly the right number of terms in two copies of P . In other
words, our claim is that S(ζ) + 2 = 2P (ζ) as polynomials in ζ.

Let’s see what it would take to check this is correct. The exponents of ζ
that appear in the sum S are exactly the numbers of the form

±2km (mod 89) where 0 ≤ k ≤ 10 and m ∈ {1, 3, 5, . . . 15}.

This is a total of 176 numbers, and we aim to show

Claim. Every nonzero residue modulo 89 appears exactly twice among num-
bers in the above form.

Part III: the grind. We now turn our attention to proving the claim at the end
of Part II. Note that 2 (mod 89) has order 11, since 211 − 1 = 2047 = 89 · 23.
(Actually, that part is guessable from the fact the index k in the original
definition of S runs to 11.)

Let G = (Z/89)× denote the nonzero residues modulo 89. Let H ⊂ G denote
the 11th powers modulo 89, hence |H| = 8. Then the map

ψ : G� H by x 7→ x11

is surjective, and its kernel consists exactly of the powers of 2. Thus to prove
the claim, it suffices to show the pre-image of every element of H contains
exactly two elements from the set {±1,±3,±5, . . . ,±15}.

So, we compute a bunch of 11th powers (whee):

(±1)11 = ±1
(±3)11 = ±37
(±5)11 = ±55
(±7)11 = ±37
(±9)11 = ±34
(±11)11 = ±88
(±13)11 = ±77
(±15)11 = ±77.

From here we see H = {1, 12, 34, 37, 52, 55, 77, 88} and indeed that each ele-
ment appears exactly twice.
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13 Look at the exponent

§13.1 Definition
For a prime p and nonzero integer n, we let νp(n) denote the largest integer
e with pe dividing n. We can extend this valuation to rational numbers by
νp(a/b) = νp(a)− νp(b). Thus we get a function

νp : Q 6=0 → Z.

By convention we then set νp(0) =∞.
Then:

• νp(xy) = νp(x) + νp(y).

• νp(x+ y) ≥ min {νp(x), νp(y)}, and equality holds if νp(x) 6= νp(y).

Note also that for integers x and y we have

νp(x− y) ≥ e ⇐⇒ x ≡ y (mod pe)

and we will use these perspectives interchangeably.
The idea of this lecture is to see just how far we can go using just this rela-

tion. For example, you might try to do Problem 144 now, to see an application
using “bare hands”.

§13.2 Exponent lifting
I am about to state the exponent lifting lemma, which is a useful tool for
evaluating νp(an±bn). However, if you have never seen this lemma before, you
are required to do Problem 145 before continuing, to make sure you actually
internalize the statement of the lemma.

Okay, here is the lemma.

Theorem 13.1 (Exponent lifting lemma). Let a and b be integers and p a
prime. Assume that

(i) a− b is divisible by p,

(ii) p - a, b, and

(iii) p 6= 2.
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Then
νp(a

n − bn) = νp(a− b)︸ ︷︷ ︸
>0

+νp(n).

I want to stress that if you choose to apply this lemma, then you really must
remember to verify all three conditions! It is worse to apply the lemma blindly
and forget a hypothesis (rather than just pretend you did not know it and work
out the special case that you need), because this will lead to plausible-looking
but wrong results.

I highlighted the fact that νp(a− b) > 0 in the conclusion: if you apply the
lemma and find that term is zero, you messed up (probably forgot the first
condition).

§13.3 Walkthroughs
Problem 144. Let a and b be positive integers such that a | b2, b2 | a3, a3 | b4,
b4 | a5, a5 | b6, and so on. Show that a = b.

Walkthrough. This is actually a quite easy problem, but it showcases the
idea well.

(a) Show that
(2n− 1)νp(a) ≤ 2nνp(b)

for any positive integer n and prime p.

(b) What happens as we take n large?

(c) Conclude νp(a) ≤ νp(b) for every prime p.

(d) Show b | a similarly.

(e) Conclude.

Problem 145. For each positive integer n, compute

ν3

(
23

n

+ 1
)
.

Walkthrough. This is an induction, using the fact that each step we get a
sum of cubes. First, here are some base cases:

ν3(2
1 + 1) = ν3(3) = 1

ν3(2
3 + 1) = ν3(9) = ν3(3

2) = 2

ν3(2
9 + 1) = ν3(513) = ν3(3

3 · 19) = 3

ν3(2
27 + 1) = ν3(134217729) = ν3(3

4 · 19 · 87211) = 4

...

So you can probably guess the answer!
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(a) Show that
23

n+1

+ 1

23n + 1

is divisible by 3.

(b) Show that it is not divisible by 9.

(c) Use induction to figure out what the answer is now.

You can think of this without induction by writing

23
n

+ 1 = (2 + 1)(22 − 2 + 1)(82 − 8 + 1)(5122 − 512 + 1) . . .

and then showing that ν3(A2 −A+ 1) = 1.

Problem 146 (AIME 2018). Find the smallest positive integer n such that
3n ends with 01 when written in base 143.

Walkthrough. The idea is that to use the order of 3 (mod p) to get the
order of 3 (mod pe) for e ≥ 1. Naturally, this is exponent lifting lemma.

(a) Find all n for which 3n ≡ 1 (mod 11).

(b) Show that for all n in (a), we also have 3n ≡ 1 (mod 112).

(c) Show that 3n ≡ 1 (mod 13) iff 3 | n.

(d) Prove that 3n ≡ 1 (mod 132) iff 3 · 13 | n. You’ll probably want to use
exponent lifting.

(e) Why do parts (b) and (d) behave differently? Describe what would
happen for a general prime p 6= 3 instead of 11 or 13.

(f) Extract the final answer by combining (b) and (d) together.

(g) Follow-up: for any r ≥ 2, what is the smallest n such that 3n ≡ 1
(mod 143r)?

In general, if p > 3 is a prime, we might be inclined to try and say something
about νp(3e − 1) where e is the order of 3 (mod p). A prime p for which this
quantity is greater than 1 is called an 3-Wieferich prime. Very little is known
about Wieferich primes in general.

Problem 147 (Asian-Pacific Olympiad 2017). Let a, b, c be positive rational
numbers with abc = 1. Suppose there exist positive integers x, y, z for which
ax + by + cz is an integer. Prove that when a, b, c are written as fractions in
lowest terms, the numerators are perfect powers.

Walkthrough. Pick any prime p and look at νp’s.

(a) Note νp(a) + νp(b) + νp(c) = 0.
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(b) Show that it’s impossible to have νp(a) ≥ 0, νp(b) ≥ 0, and νp(c) < 0.
(Some readers prefer to think of this as a corollary of (d), so if you want
you can skip there directly.)

(c) Conclude that if νp(a) > 0, then νp(b) < 0 and νp(c) < 0. We’ll assume
this in what follows, and try to show νp(a) is divisible by some fixed
number.

Note the different behavior between (b) and (c): we run into trouble with (b)
because of the unique minimum νp, but in (c), when the minimum νp’s could
equal, anything goes. As a concrete example, ν2(510+1/1024+2047/1024) =
+9 even though the ν2’s of the three addends were 1, −10, −10.

(d) Prove that in that case we must have νp(by) = νp(c
z).

(e) As an example, if (y, z) = (5, 6) (so that νp(b) : νp(c) = 6 : 5), what
must νp(a) be divisible by?

(f) Show that νp(a) is divisible by y+z
gcd(y,z) .

(g) Conclude.

Problem 148 (USA TST 2008). Prove that n7+7 is not a perfect square for
any integer n.

Walkthrough. We begin by taking mods, to get some preliminary facts.

(a) Resolve the edge cases where n ≤ 0, so we can assume n ≥ 1 in what
follows.

(b) Show that n ≡ 1 (mod 4).

Now, consider the equation n7 + 7 = a2, and assume for contradiction it is
satisfied by some n > 0.

(c) Add a certain three-digit positive integer to both sides that gives you
something to work with. (You’ll know when you have the right constant.)

(d) Prove that n + 2 must be divisible by 11. (Possible hint: Fermat’s
Christmas theorem.)

(e) Show that ν11(n7 + 27) = ν11(n+ 2).

(f) Consider the exponent of 11 carefully to get a contradiction.
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§13.4 Problems
Problem 149. For which primes p is (p− 1)p + 1 a power of p?

Problem 150 (IMO Shortlist 1991). Find the largest integer k for which
1991k divides

19901991
1992

+ 19921991
1990

.

Problem 151 (Putnam 2003 B3). Prove that for any positive integer n, we
have

n∏
k=1

lcm
(
1, 2, . . . ,

⌊n
k

⌋)
= n!.

Problem 152 (Bay Area Olympiad 2018). Let a, b, c be positive integers.
Show that if a/b+ b/c+ c/a is an integer, then 3

√
abc is an integer as well.

Problem 153 (USAMO 2016). Prove that for any positive integer k,

(k2)! ·
k−1∏
j=0

j!

(j + k)!

is an integer.

Problem 154 (IMO Shortlist 2017). A rational number is short if its decimal
representation has finitely many nonzero digits. A triple (t, c,m) of positive
integers is fantastic if c ≤ 2017 and 10t−1

cm is short, but 10i−1
cm is not short for

1 ≤ i < t.
For each positive integer m, let

S(m) = {t ∈ Z>0 | (t, c,m) fantastic for some c}.

Find the largest possible value of |S(m)| over all m.

Problem 155 (IMO 1990). Find all positive integers n for which n2 divides
2n + 1.

Problem 156 (IMO Shortlist 2014). Find all primes p and positive integers
(x, y) such that xp−1 + y and yp−1 + x are powers of p.
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§13.5 Solutions

Solution 144 (None). Let p be any prime. Then νp(a) ≤ 2νp(b), 3νp(a) ≤
4νp(b), etc and in general

νp(a) ≤
2n

2n− 1
νp(b) =

(
1 +

1

2n− 1

)
νp(b)

for any positive integer n. Since this should hold for any positive integer n,
by taking n→∞ we find νp(a) ≤ νp(b).

Since this holds for any prime p, we have a | b. A similar argument shows
b | a.

Solution 145 (None). The answer is ν3(23
n

+1) = n+1. We will prove this
by induction on n ≥ 0.

When n = 0, we have 23
0

+ 1 = 3 which indeed has 31.
For the inductive step, it suffices to check that

23
n+1

+ 1

23n + 1

is divisible by 3 but not 9. Using the fact it is a sum of cubes, it equals
A2 −A+ 1 where A = 23

n .
Since A ≡ −1 (mod 9) for every positive integer n (again by induction on

n), we get
A2 −A+ 1 ≡ 1− (−1) + 1 ≡ 3 (mod 9)

which proves the result.

Remark. You can think of this without induction by writing

23
n

+ 1 = (2 + 1)(22 − 2 + 1)(82 − 8 + 1)(5122 − 512 + 1) . . .

and then showing that ν3(A2 −A+ 1) = 1, as above.

Solution 146 (AIME 2018). The answer is 3 · 5 · 13 = 195.
First note 3n ≡ 1 (mod 11) ⇐⇒ 5 | n and 3n ≡ 1 (mod 13) ⇐⇒ 3 | n.

Now,

ν11(3
n − 1) = ν11(243

n/5 − 1) = 2 + ν11(n/5)

ν13(3
n − 1) = ν13(27

n/3 − 1) = 1 + ν13(n/3).

The answer follows from this.
In general, the smallest n such that 3n ≡ 1 (mod 143r) is 11r−2 · 13r−1 · 15

for r ≥ 2.
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Remark. In general, if p > 3 is a prime, we might be inclined to try and say
something about νp(3e − 1) where e is the order of 3 (mod p). A prime p for
which this quantity is greater than 1 is called an 3-Wieferich prime. Very little
is known about Wieferich primes in general.

Solution 147 (Asian-Pacific Olympiad 2017). It is sufficient to prove the
following claim.

Claim. Let p be a prime. If νp(a) > 0 then νp(a) is divisible by y+z
gcd(y,z) .

Proof. Note νp(a) + νp(b) + νp(c) = 0, so WLOG assume νp(c) < 0 (hence
νp(c

z) < 0). Then since
νp(a

x + by + cz) ≥ 0

and νp(a
x) > 0, we must have

νp(b
y) = νp(c

z) =⇒ yνp(b) = zνp(c).

Thus we may set νp(b) = −z′k and νp(c) = −y′k where y′ = y
gcd(y,z) and

z′ = z
gcd(y,z) . Then

νp(a) = −νp(b)− νp(c) = k · (y′ + z′)

as needed.

Therefore the numerator of a is a perfect y+z
gcd(y,z) th power.

Solution 148 (USA TST 2008). Assume n > 0 since n = 0 and n = −1
are easy and for n ≤ −2 the expression is negative.

Suppose n7 + 7 = a2. Then

n7 + 27 = a2 + 112.

Taking modulo 4 gives n ≡ 1 (mod 4), but n + 2 | a2 + 112, and n + 2 ≡ 3
(mod 4).

Note that a2 + 112 has no 3 mod 4 prime factors except possibly an 112,
by Fermat’s Christmas theorem. Since n + 2 ≡ 3 (mod 4) we would need to
have ν11(n+2) = 1 as a result, since ν11(n+2) should be odd and at most 2.
However, we then get

ν11
(
a2 + 112

)
= ν11

(
n7 + 27

)
= ν11(n+ 2) + ν11(7) = 1 + 0 = 1

by the exponent lifting lemma, which is impossible.
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Solution 149 (None). The answer is p = 2 or p = 3 only, which are checked
to work.

For p > 3 many solutions are possible:

• By Zsigmondy theorem, (p− 1)p + 1 cannot be a power of p.

• Catalan conjecture implies the problem.

• Lifting the exponent implies (p− 1)p + 1 = p2.

• Taking modulo p3 works too: we have

(p− 1)p + 1 = −
(
p

1

)
· p+

(
p

2

)
· p2 ≡ −p2 (mod p3)

and so (p− 1)p + 1 must be either p or p2, which ensures p < 5.

Solution 150 (IMO Shortlist 1991). Let us write the expression as

N = A19911990 +B19911990

where A = 19901991
2 and B = 1992. Observe that

A+B = (1991− 1)
19912

+ 1992

≡ 1991

(
19912

1

)
+ (−1) + 1992 (mod 19912)

≡ 1991 (mod 19912).

Factor 1991 = 11 · 181, so let p ∈ {11, 181} be an odd prime. We then have
νp(A+ B) = 1. Since this is positive, p - AB, and p > 2, the exponent lifting
lemma implies

νp(N) = νp(A+B) + νp
(
19911990

)
= 1990 + 1 = 1991.

Since this holds both for p = 11 and p = 181, we conclude the answer k = 1991.

Solution 151 (Putnam 2003 B3). Actually, we’ll prove the stronger claim
that for any prime power q, the number of terms on each side divisible by q is
exactly the same. By the fundamental theorem of arithmetic, that will imply
the desired equality.

Clearly, the number of terms on the right-hand side which are divisible by
q is bn/qc.

As for the left-hand side, the number of lcm’s on the right which are divisible
by q is given by the number of k for which

⌊
n
k

⌋
≥ q, which is exactly k =

1, . . . , bn/qc.
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Solution 152 (Bay Area Olympiad 2018). Fix any prime p | abc and let
x = νp(a),s y = νp(b), z = νp(c). (Thus x+ y + z > 0.) It is enough to prove
3 | x+ y + z.

If x = y = z we are done, so assume not. Then νp(a/b) = x− y, νp(b/c) =
y − z, νp(c/a) = z − x, and so at least one of these numbers is negative.
However, we also know that

νp(a/b+ b/c+ c/a) ≥ 0.

Claim. The most negative number among the three numbers νp(a/b), νp(b/c),
νp(c/a) must appear twice.

Proof. Suppose for contradiction this wasn’t true and, say, νp(a/b) = −k < 0
and νp(b/c), νp(c/a) ≥ −k. Then it would follow that

νp(a/b+ b/c+ c/a) = −k

which is a contradiction.

But if x−y = y−z, say, then 2y = x+z and so x+y+z = 3y ≡ 0 (mod 3).
Similarly for the other two cases.

Solution 153 (USAMO 2016). We show the exponent of any given prime
p is nonnegative in the expression. Recall that the exponent of p in n! is equal
to
∑

i≥1

⌊
n/pi

⌋
. In light of this, it suffices to show that for any prime power

q, we have ⌊
k2

q

⌋
+

k−1∑
j=0

⌊
j

q

⌋
≥

k−1∑
j=0

⌊
j + k

q

⌋
Since both sides are integers, we show⌊

k2

q

⌋
+

k−1∑
j=0

⌊
j

q

⌋
> −1 +

k−1∑
j=0

⌊
j + k

q

⌋
.

If we denote by {x} the fractional part of x, then bxc = x − {x} so it’s
equivalent to {

k2

q

}
+

k−1∑
j=0

{
j

q

}
< 1 +

k−1∑
j=0

{
j + k

q

}
.

However, the sum of remainders when 0, 1, . . . , k − 1 are taken modulo q is
easily seen to be less than the sum of remainders when k, k+1, . . . , 2k− 1 are
taken modulo q. So

k−1∑
j=0

{
j

q

}
≤

k−1∑
j=0

{
j + k

q

}
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follows, and we are done upon noting
{
k2/q

}
< 1.

Solution 154 (IMO Shortlist 2017). The answer is 807.
We restrict our attention to c and m such that gcd(c, 10) = gcd(m, 10) = 1,

since stripping factors of 2 or 5 doesn’t change anything. In that case, since t
is determined by c and m in a fantastic triple (the order of 10 (mod cm)), we
have

#S(m) ≤ #{1 ≤ c ≤ 2017 | gcd(c, 10) = 1}

= 2017−
⌊
2017

2

⌋
−
⌊
2017

5

⌋
+

⌊
2017

10

⌋
= 807.

The main point of the problem is to achieve this bound.
Let T be a large composite integer such that M = 10T − 1 is divisible by

every prime at most 2017 other than 2 and 5. (Thus T is the order of 10
(mod M).)

Claim. The order of 10 (mod cM) is cT , for 1 ≤ c ≤ 2017 with gcd(c, 10) = 1.

Proof. This essentially follows by exponent lifting lemma. Indeed, the order
of 10 (mod cM) must be divisible by T . Now pick a prime p | c. If T ′ is the
order of 10 (mod cM), then T ′ must be divisible by T ; now compute

νp(c) + νp(M) ≤ νp(10T
′
− 1)

= νp

(
(10T )T

′/T − 1
)

= νp(10
T − 1) + νp(T

′)− νp(T )
⇐⇒ νp(T

′) ≥ νp(cT ).

This completes the proof.

Hence, the relevant fantastic triples are (cT, c,M) for each c ≤ 2017 rela-
tively prime to 10.

Solution 155 (IMO 1990). Answer: n = 1 or n = 3, which clearly work.
So we prove they are the only ones.

Assume now n > 1, and let p | n be a minimal prime. Note that p 6= 2. As
22n ≡ 1 (mod p) and 2p−1 ≡ 1 (mod p) we must have

p | 2gcd(2n,p−1) − 1 | 22 − 1

and so p = 3.

210

https://aops.com/community/p10632689
https://aops.com/community/p366466


13 Look at the exponent May 18, 2025

Now, by lifting the exponent,

2ν3(n) = ν3(n
2) ≤ ν3(2n +1) = ν3(2 + 1) + ν3(n) = 1+ ν3(n) =⇒ ν3(n) ≤ 1.

Now assume for contradiction n > 3, and let q | n/3 be a minimal prime. We
know q /∈ {2, 3}, and yet

q | 2gcd(2n,q−1) − 1 | 26 − 1 = 63

which would require q = 7, but 2n + 1 6≡ 0 (mod 7) for any n, contradiction.

Solution 156 (IMO Shortlist 2014). If p = 2 then any (x, y) with x + y
a power of two is okay. We claim the only other answer is (x, y, p) = (5, 2, 3)
and (x, y, p) = (2, 5, 3); these are seen to work.

Henceforth assume p > 2. Then if νp(x) ≥ νp(y) > 0 we get an immediate
contradiction, thus we may assume p - x, y (ergo gcd(x, y) = 1). So by Fermat’s
Little Theorem, x and y are −1 (mod p).

It is easy to check that when p > 2 we cannot have x = y, since otherwise
x(xp−2+1) is a power of p, which is clearly impossible when p > 2. Moreover, if
p > 2 then xp−1+y 6= yp−1+x, since otherwise (x−y)(xp−2+· · ·+yp−2) = x−y,
which is impossible unless x = y.

Thus, suppose yp−1 + x < xp−1 + y, which is equivalent to y < x. Then in
particular yp−1 + x divides xp−1 + y, so

yp−1 + x | (−yp−1)p + y =⇒ yp−1 + x | yp(p−2) + 1.

By Lifting the Exponent, we thus deduce that

νp(y
p−1 + x) ≤ νp(pp(p−2) + 1) = 1 + νp(y + 1).

Actually, since LHS is a power of p, this informs us that

yp−1 + x | p · (y + 1) =⇒ yp−1 + x ≤ p · (y + 1).

Since x > y, this forces
yp−1 + y ≤ p · (y + 1).

Also, y ≥ p−1 since y ≡ −1 (mod p). This can only occur if y = 2 and p = 3.
Now, yp−1 + x | p · (y+ 1) =⇒ 4 + x | 9, hence x = 5, yielding the solution

set.
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14 Advanced techniques
In this chapter we discuss three more advanced bits of theory.

§14.1 Pell equations
The theory of Pell’s equation

a2 − nb2 = 1

involves some algebraic number theory to motivate properly. We will not dis-
cuss this in detail here, but merely mention (which is enough for our purposes)
how to generate solutions. A more comprehensive treatment can be found in
the bonus chapter on Pell’s equation in [Che19].
Definition 14.1. Let n be a positive integer. Given α ∈ Q(

√
n) we define

‖α‖ =
∥∥a+ b

√
n
∥∥ = a2 − nb2.

Theorem 14.2. This norm is multiplicative.
Proof. Check it directly:(

a2 − nb2
) (
c2 − nd2

)
= (ac+ nbd)

2 − n (ad+ bc)
2
.

Let us see an example of how this can be used. Suppose we want to generate
solutions to x2 − 2y2 = 1. We start by observing that (3, 2) is a solution; this
is the same as saying 3 + 2

√
2 has norm 1. Then we can consider(

3 + 2
√
2
)2

= 17 + 12
√
2

which will also have norm 12 = 1; and indeed (17, 12) is a solution too. Going
further, (

3 + 2
√
2
)3

= 99 + 70
√
2

reveals the solution (99, 70).
It is a theorem (which we will not prove) that in fact (3+2

√
2)n will generate

all solutions. More generally:
Theorem 14.3 (Pell equations generated by a unit). Let n be a positive
squarefree integer and consider the Pell equation x2 − ny2 = 1.

Then there exists a pair (x1, y1) of positive integers satisfying x21 − ny21 = 1
and such that all other solutions (x, y) are obtained by writing

x+ y
√
n =

(
x1 + y1

√
n
)k

for some positive integer k.
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§14.2 Jacobi symbol and quadratic reciprocity
The quadratic reciprocity formula specifies how to check if a (mod p) is a
quadratic residue.

Definition 14.4. For a prime p and integer a, set

(
a

p

)
=


0 p | a
1 a 6≡ 0 is a quadratic residue
−1 a 6≡ 0 is not a quadratic residue.

This is called a Legendre symbol.

Proposition 14.5 (Legendre’s definition). For odd primes p,(
a

p

)
≡ a 1

2 (p−1) (mod p).

It follows that the Legendre symbol
(

•
p

)
is multiplicative in the top.

The Jacobi symbol is cooler than the Legendre symbol.

Definition 14.6. The Jacobi symbol
(
a
n

)
is defined by extending the Leg-

endre symbol multiplicatively in the bottom.

Hence the Jacobi symbol is completely multiplicative in both parts. It also
satisfies:

•
(
a
n

)
=
(
b
n

)
when a ≡ b (mod n).

•
(
a
n

)
= 0 if and only if gcd(a, n) > 1 (and is otherwise ±1).

•
(
a
2

)
∈ {0, 1} for all a.

Remark 14.7. Warning:
(
a
n

)
doesn’t detect quadratic residues modulo n

anymore if n is not prime. For example, 2 isn’t a quadratic residue modulo
either 3 or 5, so it is definitely not a quadratic residue modulo 15 either. But(

2
15

)
=
(
2
3

) (
2
5

)
= (−1)2 = +1.

Most importantly, quadratic reciprocity is usually stated for primes, but the
statement for Jacobi symbols is cooler.

Theorem 14.8 (Quadratic Reciprocity, with Jacobi symbols). Let m and n
be relatively prime positive odd integers. Then(

−1
n

)
= (−1) 1

2 (n−1),

(
2

n

)
= (−1) 1

8 (n
2−1)

and (m
n

)( n
m

)
= (−1) 1

4 (m−1)(n−1).
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The upshot of this is that you can use the quadratic reciprocity law without
having to factor the numerator.

Example 157. Is 481 a quadratic residue modulo 2017?

Solution 157. We have(
481

2017

)
QR
=

(
2017

481

)
=

(
93

481

)
QR
=

(
481

93

)
=

(
16

93

)
= +1.

As 2017 is prime, the answer is “yes”. �

Notice how we did not have to factor the numerator (which by the way is
13 · 37). Thus using the Jacobi symbol instead of the Legendre one makes
quadratic reciprocity more powerful (and is indeed one main reason for intro-
ducing it).

§14.3 Vieta jumping
Vieta jumping first appeared in the infamous closing problem to IMO 1988,
which appears as a walkthrough in Problem 158. This is best seen by example,
so we will not say more here.

§14.4 Walkthroughs
Problem 158 (IMO 1988). Let a and b be positive integers. Prove that if

a2 + b2

ab+ 1

is also an integer, then it is a perfect square.

Walkthrough. Let k = a2+b2

ab+1 be fixed. We will show k is a perfect square.
I want to start with an observation that we’ll need later on. The reason I

put it here this early is to make sure you realize that it’s trivial (and does not
require Vieta jumping), before we get lost in the meat of the solution.

(a) Prove that any solution to this equation must satisfy ab ≥ 0.

The idea behind Vieta jumping is to write this as a quadratic equation

a2 − kb · a+ b2 − k = 0

in a; thus for a fixed value of b, we can then “flip” the quadratic in a to get
the other value. One might write this as

(a, b) 7→ (k · b− a, b) =
(
b2 − k
a

, b

)
.

Let’s do some concrete practice so you can see what I mean.
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(b) Let k = 4 and observe that (a, b) = (30, 8). Write the quadratic and see
how you could realize that (a, b) = (2, 8) was also a solution.

(c) Flip in the other direction: find the other value of b which works with
a = 30.

(d) Now let’s take (a, b) = (2, 8) and flip again, holding a = 2 fixed and
changing the value of b. What do we get for the other value of b this
time?

Thus we see in this problem that every (a, b) automatically has two natural
neighbors, one obtained by flipping a and flipping b.

Our goal is to now do this flipping operation in such a way that the pair
gets smaller, and see what happens if we keep doing this until we get stuck.
(Local, anyone?)

(e) Show that if (a, b) is a solution with a > b > 0, then by Vieta jumping
we can produce a solution (a′, b) with a′ < b (but not necessarily a′ > 0).

(f) Reconcile (a) and (e) to show that we eventually may arrive at a pair in
which one component is zero.

(g) Conclude that k is a perfect square.

Problem 159. Prove that 2n+1 has no prime factors of the form p = 8k+7.

Walkthrough. This is a showcase of quadratic reciprocity.

(a) Show that if n is even then all prime divisors of 2n + 1 are 1 (mod 4).

(b) Show that if n is odd, then −2 is a quadratic residue modulo p.

(c) Compute
(

−2
p

)
for all primes p.

(d) Use (b) and (c) to finish the problem.

§14.5 Problems
Problem 160. Find all integers n ≥ 1 such that n divides 2n−1 + 3n−1.

Problem 161 (Bay Area Olympiad 2011). Decide whether there exists a row
of Pascal’s triangle containing four pairwise distinct numbers a, b, c, d such
that a = 2b and c = 2d.

Problem 162 (EGMO 2016). Let S be the set of all positive integers n such
that n4 has a divisor in the range n2 +1, n2 +2, …, n2 +2n. Prove that there
are infinitely many elements of S of each of the forms 7m, 7m + 1, 7m + 2,
7m+ 5, 7m+ 6 and no elements of S of the form 7m+ 3 and 7m+ 4, where
m is an integer.
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Problem 163 (USA TST 2009). Find all pairs of positive integers (m,n) such
that mn− 1 divides (n2 − n+ 1)2.

Problem 164 (Asian-Pacific Olympiad 1997). Find an integer 100 ≤ n ≤
1997 such that n divides 2n + 2.

Problem 165 (IMO Shortlist 2017). Find the smallest positive integer n such
that the following holds: there exist infinitely many n-tuples (a1, . . . , an) of
positive rational numbers for which

a1 + · · ·+ an and 1

a1
+ · · ·+ 1

an

are both integers.

Problem 166. Exhibit a function s : Z>0 → Z with the following property:
if a and b are positive integers such that p = a2 + b2 is an odd prime, then

s(a) ≡ a
p−1
2 (mod p).

Problem 167 (IMO Shortlist 2016). Let a be a positive integer which is not
a perfect square, and consider the equation

k =
x2 − a
x2 − y2

.

Let A be the set of positive integers k for which the equation admits an integer
solution with x >

√
a, and let B be the set of positive integers for which the

equation admits an integer solution with 0 ≤ x <
√
a. Show that A = B.

Problem 168 (USA TST 2014). Let a1, a2, a3, …be a sequence of integers,
with the property that every consecutive group of ai’s averages to a perfect
square. More precisely, for all positive integers n and k, the quantity

an + an+1 + · · ·+ an+k−1

k

is always the square of an integer. Prove that the sequence must be constant
(all ai are equal to the same perfect square).
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§14.6 Solutions

Solution 158 (IMO 1988). Let k = a2+b2

ab+1 . Then rewrite it as:

a2 − kb · a+ b2 − k = 0.

Then we can do a Vieta jumping argument:
Suppose a > b > 0 is a solution. Then

(a, b)→ (k · b− a, b) =
(
b2 − k
a

, b

)
is also a solution. Notice that b2−k

a < a, so flipping the larger one always
decreases. For example, when k = 4 the chain goes

· · · → (112, 30)→ (30, 8)→ (8, 2)→ (2, 0).

We have to rule out the possibility of negative numbers in chain. Indeed
k > 0, so looking at k = a2+b2

ab+1 shows its impossible for exactly one term to be
negative, so eventually one coordinate is zero.

Visibly if b = 0 then k = a2 as desired.

Solution 159 (None). Suppose 2n ≡ −1 (mod p).
If n is even, then −1 is a quadratic residue, hence p ≡ 1 (mod 4).
If n is odd, then −2 is a quadratic residue, so

+1 =

(
−2
p

)
=

(
−1
p

)(
2

p

)
=

{
1 p ≡ 1, 3 (mod 8)

−1 p ≡ 5, 7 (mod 8).

So p cannot be 7 (mod 8).

Solution 160 (None). The answer is n = 1 only. Assume n > 1 in the
sequel.

Clearly n is odd. Thus for every prime p | 2n−1 +3n−1, we must have p ≡ 1
(mod 4) (sum of squares). Consequently, n ≡ 1 (mod 4) as well.

Continuing, we then see every prime dividing 2n−1 + 3n−1 is 1 (mod 8),
and inductively p ≡ 1 (mod 2k) whenever p | 2n−1 + 3n−1. This is clearly
impossible.

Solution 161 (Bay Area Olympiad 2011). An example is
(
203
68

)
= 2
(
203
67

)
and

(
203
85

)
= 2
(
203
83

)
.
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To get this, the idea is to look for two adjacent entries and two entries off
by one, and solving the corresponding equations. The first one is simple:(

n

j

)
= 2

(
n

j − 1

)
=⇒ n = 3j − 1.

The second one is more involved: (
n

k

)
= 2

(
n

k − 2

)
=⇒ (n− k + 1)(n− k + 2) = 2k(k − 1)

=⇒ 4(n− k + 1)(n− k + 2) = 8k(k − 1)

=⇒ (2n− 2k + 3)2 − 1 = 2
(
(2k − 1)2 − 1

)
=⇒ (2n− 2k + 3)2 − 2(2k − 1)2 = −1

Using standard methods for the Pell equation:

• (7 + 5
√
2)(3 + 2

√
2) = 41 + 29

√
2. So k = 15, n = 34, doesn’t work.

• (41 + 29
√
2)(3 + 2

√
2) = 239 + 169

√
2. Then k = 85, n = 203.

Solution 162 (EGMO 2016). Start from the implication

n2 + k | n4 ⇐⇒ n2 + k | k2.

Since 1 ≤ k ≤ 2n, in fact the quotient k2

n2+k can only take values from 1 to 3.
In other words, S is the set of integers n for which at least one equation

n2 + k = k2

2(n2 + k) = k2

3(n2 + k) = k2

has at least one solution 1 ≤ k ≤ 2n.
The first equation has no solutions with k ≥ 1 since we can put (k − 1)2 <

n2 < k2. The other two are Pell equations, and one can check that n2 ≡ 2
(mod 7) has no solutions at all for k (mod 7) in either case. The assertion
about infinitely many solutions then follows by using the Pell recursion, and
taking modulo 7.

Solution 163 (USA TST 2009). The answers are (2, 2), (c2+1, (c+1)2+1),
and ((c+1)2+1, c2+1), for each integer c ≥ 0. It’s easy to see they work and
we prove they are the only ones.
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Note the condition is equivalent to

mn− 1 | (mn2 −mn+m)2 ⇐⇒ mn− 1 | (m+ n− 1)2

which in particular is symmetric in m and n.
Now we proceed by Vieta jumping. Fix a k > 0 for which there exists

m ≥ n ≥ 1 obeying

(m+ n− 1)2 = k(mn− 1) (?).

We prove k = 3 or k = 4. The given rearranges as

⇐⇒ 0 = m2 + n2 + (2− k)mn− 2m− 2n+ (1− k)
⇐⇒ 0 = m2 − (n(k − 2) + 2)m+ (n− 1)2 + k.

Thus given a solution (m,n) with m ≥ n we may flip

(m,n) 7→
(
n,

(n− 1)2 + k

m

)
.

Observe that all solutions obtained this way always have both m,n > 0. Thus
if we flip repeatedly we ought to eventually, for our fixed k, arrive at a solution
with (n−1)2+k

m ≥ m, otherwise the sum would decrease.
In that situation, we would have

(m+ n− 1)2

mn− 1
= k ≥ m2 − (n− 1)2 = (m+ n− 1)(m− n+ 1)

=⇒ m+ n− 1 ≥ (m− n+ 1)(mn− 1).

This last equation is not difficult now (but annoying); we find that it has two
cases:

• Suppose n = 1. Putting n = 1 in (?) gives m2 = k(m − 1) =⇒ k =
m+ 1 + 1

m−1 , which forces m = 2 and hence k = 4.
In that case, by flipping, all solutions eventually reach (2, 1) after Vieta
jumping. Reversing the Vieta jumping procedure, we work backwards
to obtain the curve

(
(c+ 1)2 + 1, c2 + 1

)
.

• Assume n ≥ 2; then m + n − 1 ≥ mn − 1 ≥ 2m − 1 =⇒ n ≥ m, so
m = n = 2. In that case, k = 3, and all solutions should arrive here by
Vieta jumping. However, (2, 2) is stable, and so this is the only solution
in the k = 3 situations.

Solution 164 (Asian-Pacific Olympiad 1997). The number n = 946 =
2 · 11 · 43 works.

220

https://aops.com/community/p456011


14 Advanced techniques May 18, 2025

The way you construct is: we try to look for examples of the form n = 2pq,
where p and q are distinct odd primes. This amounts to p | 22q−1 + 1 and
q | 22p−1 + 1.

For the second divisibility to hold, it would be nice if we could arrange for

2p− 1 =
q − 1

2
and

(
2

q

)
= −1.

The first equation rewrites as q = 4p − 1. In fact, since this implies q ≡ 3
(mod 8), the second equation would always be true by quadratic reciprocity.
This means that q | 22p−1 + 1 is always true for q = 4p− 1.

Going back to the first divisibility, we are hoping for p | 28p−3 + 1 =⇒ p |
25 + 1 = 33. This gives solutions (p, q) = (3, 11) and (p, q) = (11, 43). These
give n = 66 and n = 946 as candidates; the latter works.

Solution 165 (IMO Shortlist 2017). The answer is n = 3.
First, n = 1 clearly fails.
We show n = 2 fails: if a + b = p and 1

a + 1
b = q for integers p and q. Let

a = x/y with gcd(x, y) = 1; then

q =
1

a
+

1

p− a
=

p

a(p− a)
=

py2

x(py − x)
.

Then x | p, so we may write p = xk and obtain

q =
xk · y2

x2(ky − 1)
=

ky2

x(ky − 1)
.

As gcd(ky−1, ky2) = 1, this forces ky−1 = 1, or ky = 2. If y = 1 then a ∈ Z,
so b ∈ Z, and so either a = b = 1 or a = b = 2. If y = 2, then a and b are both
half-integers, and so we conclude a = b = 1

2 .
Now to show n = 3 works, we take a triple of the form(

1

1 + x+ y
,

x

1 + x+ y
,

y

1 + x+ y

)
where x, y, z are positive integers (in fact if we pick x, y, z ∈ Q this is WLOG).
Then it suffices that

1 + y

x
+

1 + x

y
∈ Z

which is a famous MOP 2007 problem solved by Vieta jumping (there are in
fact infinitely many with 1+y

x + 1+x
y = 3).
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Solution 166 (None). Note gcd(a, p) = 1, and so interpret
(

a
p

)
as a Legen-

dre symbol. We claim that we can use the function

s(a) :=


+1 a ≡ 1 (mod 2)

+1 a ≡ 0 (mod 4)

−1 a ≡ 2 (mod 4).

If p = 2 this is clear so henceforth assume p ≡ 1 (mod 4). The proof is using
the Jacobi symbol.

First, assume a is odd. Then(
a

p

)
=
(p
a

)
=

(
a2 + b2

a

)
=

(
b2

a

)
= +1.

Next, assume a = 2x for x odd. Then p ≡ 5 (mod 8), so
(

2
p

)
= −1. Then(

a

p

)
=

(
2

p

)(
x

p

)
= −1 ·

( p
x

)
= −1.

Finally, assume a = 2ey for e ≥ 2, and y odd. Then p ≡ 1 (mod 8), so(
2
p

)
= 1. Finally (

a

p

)
=

(
2

p

)e(
y

p

)
=

(
p

y

)
= +1.

Remark. Assuming there are infinitely many primes of the form a2 + b2 for
any fixed a > 0 (which seems almost certainly true, although it is open), then
the function s we gave above is the only one.

Solution 167 (IMO Shortlist 2016). The equation (for fixed k, a) is a Pell
equation

ky2 − (k − 1)x2 = a.

(Doing the case k = 2 is good motivation for this.) Based on this we observe
the main claim:

Claim. If (u, v) is a solution, then so is

((2k − 1)u± 2kv, (2k − 1)v ± (2k − 2)u)

where the ± signs correspond.

Idea of proof. The Pell equation X2 − k(k + 1)Y 2 = 1 has a fundamental
solution (X,Y ) = (2k+1, 2). And (u, v) is a solution to the above equation if
and only if (ku)2 − k(k + 1)v2 = a

k .
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Thus one can get larger solutions from small solutions. This implies B ⊆ A;
we now show the reverse direction by proving that we can descend to solutions
with u <

√
a. To be precise:

Claim. Fix a and k, and suppose (u, v) is a solution with u, v > 0 and with
u minimal. Then u <

√
a.

Proof. We will show that that

u >
√
a =⇒ |(2k − 1)u− 2kv| < u.

This consists of two directions, only the latter which requires u >
√
a.

• First, observe unconditionally that

kv2 − (k − 1)u2 = a > 0 =⇒
√
k − 1u <

√
kv.

Consequently,
kv >

√
k(k − 1)u > (k − 1)u

and thus 2kv > (2k − 2)u, so (2k − 1)u− 2kv < u.

• Assume now u >
√
a. Then the original Pell equation implies u > v,

since k(v2 − u2) = a− u2 < 0. So (2k − 1)u− 2kv > −u as well, which
is the desired contradiction.

Thus no minimal solution can obey u >
√
a.

Solution 168 (USA TST 2014). Let νp(n) denote the largest exponent of
p dividing n. The problem follows from the following proposition.

Proposition. Let (an) be a sequence of integers and let p be a prime. Suppose
that every consecutive group of ai’s with length at most p averages to a perfect
square. Then νp(ai) is independent of i.

We proceed by induction on the smallest value of νp(ai) as i ranges (which
must be even, as each of the ai are themselves a square). First we prove two
claims.

Claim. If j ≡ k (mod p) then aj ≡ ak (mod p).

Proof. Taking groups of length p in our given, we find that p | aj+ · · ·+aj+p−1

and p | aj+1 + · · ·+ aj+p for any j. So aj ≡ aj+p (mod p) and the conclusion
follows.

Claim. If some ai is divisible by p then all of them are.
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Proof. The case p = 2 is trivial so assume p ≥ 3. Without loss of generality
(via shifting indices) assume that a1 ≡ 0 (mod p), and define

Sn = a1 + a2 + · · ·+ an ≡ a2 + · · ·+ an (mod p).

Call an integer k with 2 ≤ k < p a pivot if 1− k−1 is a quadratic nonresidue
modulo p.

We claim that for any pivot k, Sk ≡ 0 (mod p). If not, then

a1 + a2 + · · ·+ ak
k

and a2 + · · ·+ ak
k − 1

are both qudaratic residues. Division implies that k−1
k = 1−k−1 is a quadratic

residue, contradiction.
Next we claim that there is an integer m with Sm ≡ Sm+1 ≡ 0 (mod p),

which implies p | am+1. If 2 is a pivot, then we simply take m = 1. Otherwise,
there are 1

2 (p − 1) pivots, one for each nonresidue (which includes neither 0
nor 1), and all pivots lie in [3, p − 1], so we can find an m such that m and
m+ 1 are both pivots.

Repeating this procedure starting with am+1 shows that a2m+1, a3m+1, . . .
must all be divisible by p. Combined with the first claim and the fact that
m < p, we find that all the ai are divisible by p.

The second claim establishes the base case of our induction. Now assume
all ai are divisible by p and hence p2. Then all the averages in our proposi-
tion (with length at most p) are divisible by p and hence p2. Thus the map
ai 7→ 1

p2 ai gives a new sequence satisfying the proposition, and our inductive
hypothesis completes the proof.

Remark. There is a subtle bug that arises if one omits the condition that
k ≤ p in the proposition. When k = p2 the average a1+···+ap2

p2 is not necessarily
divisible by p even if all the ai are. Hence it is not valid to divide through by
p. This is why the condition k ≤ p was added.
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15 Constructions in Number
Theory

§15.1 Synopsis
Unlike some previous number theory chapters, here there is more room for you
to make choices (e.g. in constructions). As we as saw in the Free chapter, you
can often work on a problem in two directions: “experimental” or “restrictive”.
This dichotomy will be useful to keep in mind.

In addition you will often require number theory skill in order to carry
out the correct deductions. (So: globally, it feels like doing a combinatorics
problem, but locally, it feels like doing a number theory problem.) This has
the weird property that sometimes you’d like to rely on statement that is
obviously true (“n2 + 1 is prime infinitely often”), but either hard to prove or
open; if you don’t know, then you have to make a judgment call. (Whereas in
combinatorics, simple true statements are usually easy to prove.)

Two common tropes in this chapter will include:

• Picking really big numbers with lots of prime factors.

• Chinese Remainder Theorem: add modular conditions with reckless
abandon, then let the Chinese Remainder Theorem collate them for you.

§15.2 Walkthroughs
Problem 169 (TSTST 2015). Let ϕ(n) denote the number of positive integers
less than n that are relatively prime to n. Prove that there exists a positive
integer m for which the equation ϕ(n) = m has at least 2015 solutions in n.

Walkthrough. There’s a couple of ways to approach this problem. The
analytic way to go after it is to try and count the number of obtained ϕ values.
Here’s a much more concrete approach. Let’s start with some informative
examples:

(a) Show that ϕ(3 · 5000) = ϕ(2 · 5000).

(b) Show that ϕ(11 · 1000) = ϕ(10 · 1000).

(c) Find another value of n for which ϕ(n) = ϕ(10000).

The idea is that we have a cushion of primes 2∗5∗. This can work, but we can
be much more free with the cushion.
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(d) Let N = 210100000000. Find some examples of n such that ϕ(n) = ϕ(N),
in the spirit of (c).

(e) Construct a set S of 11 prime numbers p for which p− 1 | N .

(f) Finish the problem.

Problem 170 (USA TST 2015). Prove that for every positive integer n, there
exists a set S of n positive integers such that for any two distinct a, b ∈ S,
a− b divides a and b but none of the other elements of S.

Walkthrough. The idea is to write

S = {a, a+ d1, a+ d1 + d2, . . . , a+ d1 + · · ·+ dn−1}

and focus on the difference set first, and only then work on the value of a using
an application of Chinese remainder theorem.

(a) Find a set S of the form S = {a, a+ 2, a+ 5}. (Here d1 = 2, d2 = 3.)

(b) Characterize all the sets S of the form in (a), i.e. those with (d1, d2) =
(2, 3).

(c) Show that one can find S of the form S = {a, a+ 600, a+ 1500}.

(d) Show that one can find S of the form S = {a, a+600, a+1500, a+1507}.

(e) Suppose there is a set S of size n with differences (d1, . . . , dn−1). Prove
that we can find an integer M and prime p, such that there is a set S of
size n+ 1 with difference sequence (Md1, . . . ,Mdn−1, p).

(f) Conclude.

§15.3 Problems
Problem 171 (USAMO 2017). Prove that there exist infinitely many pairs
of relatively prime positive integers a, b > 1 for which a+ b divides ab + ba.

Problem 172 (USAMO 2008). Prove that for each positive integer n, there
are pairwise relatively prime integers k0, …, kn, all strictly greater than 1, such
that k0k1 . . . kn − 1 is the product of two consecutive integers.

Problem 173 (IMO Shortlist 2010). Find the least positive integer n for
which there exists a set {s1 < s2 < · · · < sn} consisting of n distinct positive
integers satisfying(

1− 1

s1

)(
1− 1

s2

)
. . .

(
1− 1

sn

)
=

51

2010
.
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Problem 174 (USA TST 2007). Determine whether or not there exist posi-
tive integers a and b such that a does not divide bn−n for all positive integers
n.

Problem 175 (EGMO 2018). Consider the set

A =

{
1 +

1

k
: k = 1, 2, 3, . . .

}
.

For every integer x ≥ 2, let f(x) denote the minimum integer such that x
can be written as the product of f(x) elements of A (not necessarily distinct).
Prove that there are infinitely many pairs of integers x ≥ 2 and y ≥ 2 for
which

f(xy) < f(x) + f(y).

Problem 176 (USAJMO 2016). Prove that there exists a positive integer
n < 106 such that 5n has six consecutive zeros in its decimal representation.

Problem 177 (EGMO 2014). We denote the number of positive divisors of
a positive integer m by d(m) and the number of distinct prime divisors of m
by ω(m). Let k be a positive integer. Prove that there exist infinitely many
positive integers n such that ω(n) = k and d(n) does not divide d(a2 + b2) for
any positive integers a, b satisfying a+ b = n.

Problem 178 (USAMO 2013). Let m and n be positive integers. Prove that
there exists a positive integer c such that cm and cn have the same nonzero
decimal digits.

Problem 179 (TSTST 2016). Decide whether or not there exists a noncon-
stant polynomial Q(x) with integer coefficients with the following property:
for every positive integer n > 2, the numbers

Q(0), Q(1), Q(2), . . . , Q(n− 1)

produce at most 0.499n distinct residues when taken modulo n.

Problem 180 (IMO 2003). Let p be a prime number. Prove that there exists
a prime number q such that for every integer n, the number np − p is not
divisible by q.
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§15.4 Solutions

Solution 169 (TSTST 2015). Here are two explicit solutions.

First solution with ad-hoc subsets, by Evan Chen. I consider the following
eleven prime numbers:

S = {11, 13, 17, 19, 29, 31, 37, 41, 43, 61, 71} .

This has the property that for any p ∈ S, all prime factors of p − 1 are one
digit.

Let N = (210)billion, and consider M = ϕ (N). For any subset T ⊂ S, we
have

M = ϕ

 N∏
p∈T (p− 1)

∏
p∈T

p

 .

Since 2|S| > 2015 we’re done.

Remark. This solution is motivated by the deep fact that ϕ(11 · 1000) =
ϕ(10 · 1000), for example.

Second solution with smallest primes, by Yang Liu. Let 2 = p1 < p2 <
· · · < p2015 be the smallest 2015 primes. Then the 2015 numbers

n1 = (p1 − 1)p2 . . . p2015

n2 = p1(p2 − 1) . . . p2015

...
n2015 = p1p2 . . . (p2015 − 1)

all have the same phi value, namely

ϕ(p1p2 . . . p2015) =

2015∏
i=1

(pi − 1).

Solution 170 (USA TST 2015). The idea is to look for a sequence d1, . . . , dn−1

of “differences” such that the following two conditions hold. Let si = d1+ · · ·+
di−1, and ti,j = di + · · ·+ dj−1 for i ≤ j.

(i) No two of the ti,j divide each other.

(ii) There exists an integer a satisfying the CRT equivalences

a ≡ −si (mod ti,j) ∀i ≤ j
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Then the sequence a + s1, a + s2, …, a + sn will work. For example, when
n = 3 we can take (d1, d2) = (2, 3) giving

10

5︷ ︸︸ ︷︸︷︷︸
2

12 ︸︷︷︸
3

15

because the only conditions we need satisfy are

a ≡ 0 (mod 2)

a ≡ 0 (mod 5)

a ≡ −2 (mod 3).

But with this setup we can just construct the di inductively. To go from
n to n + 1, take a d1, . . . , dn−1 and let p be a prime not dividing any of the
di. Moreover, let M be a multiple of

∏
i≤j ti,j coprime to p. Then we claim

that d1M,d2M, . . . , dn−1M,p is such a difference sequence. For example, the
previous example extends as follows with M = 300 and p = 7.

a

1507︷ ︸︸ ︷
︸︷︷︸
600

b

907︷ ︸︸ ︷︸︷︷︸
900

c ︸︷︷︸
7

d

The new numbers p, p +Mtn−1,n, p +Mtn−2,n, … are all relatively prime to
everything else. Hence (i) still holds. To see that (ii) still holds, just note that
we can still get a family of solutions for the first n terms, and then the last
(n+ 1)st term can be made to work by Chinese Remainder Theorem since all
the new p+Mtn−2,n are coprime to everything.

Solution 171 (USAMO 2017). One construction: let d ≡ 1 (mod 4), d > 1.
Let x = dd+2d

d+2 . Then set

a =
x+ d

2
, b =

x− d
2

.

To see this works, first check that b is odd and a is even. Let d = a − b be
odd. Then:

a+ b | ab + ba ⇐⇒ (−b)b + ba ≡ 0 (mod a+ b)

⇐⇒ ba−b ≡ 1 (mod a+ b)

⇐⇒ bd ≡ 1 (mod d+ 2b)

⇐⇒ (−2)d ≡ dd (mod d+ 2b)

⇐⇒ d+ 2b | dd + 2d.
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So it would be enough that

d+ 2b =
dd + 2d

d+ 2
=⇒ b =

1

2

(
dd + 2d

d+ 2
− d
)

which is what we constructed. Also, since gcd(x, d) = 1 it follows gcd(a, b) =
gcd(d, b) = 1.

Remark. Ryan Kim points out that in fact, (a, b) = (2n−1, 2n+1) is always
a solution.

Solution 172 (USAMO 2008). In other words, if we let

P (x) = x(x+ 1) + 1

then we would like there to be infinitely many primes dividing some P (t) for
some integer t.

In fact, this result is true in much greater generality. We first state:

Theorem 15.1 (Schur’s theorem). If P (x) ∈ Z[x] is nonconstant and P (0) =
1, then there are infinitely many primes which divide P (t) for some integer t.

Proof. If P (0) = 0, this is clear. So assume P (0) = c 6= 0.
Let S be any finite set of prime numbers. Consider then the value

P

k∏
p∈S

p


for some integer k. It is 1 (mod p) for each prime p, and if k is large enough
it should not be equal to 1 (because P is not constant). Therefore, it has a
prime divisor not in S.

Remark. In fact the result holds without the assumption P (0) 6= 1. The
proof requires only small modifications, and a good exercise would be to write
down a similar proof that works first for P (0) = 20, and then for any P (0) 6= 0.
(The P (0) = 0 case is vacuous, since then P (x) is divisible by x.)

To finish the proof, let p1, …, pn be primes and xi be integers such that

P (x1) ≡ 0 (mod p1)

P (x2) ≡ 0 (mod p2)

...
P (xn) ≡ 0 (mod pn)
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as promised by Schur’s theorem. Then, by Chinese remainder theorem, we
can find x such that x ≡ xi (mod pi) for each i, whence P (x) has at least n
prime factor.

Solution 173 (IMO Shortlist 2010). The answer is n = 39.
To see this is optimal, assume si > 1 for all i forever after. Then for any n,∏(

1− 1

si

)
≥
(
1− 1

2

)(
1− 1

3

)
. . .

(
1− 1

n+ 1

)
=

1

n+ 1

and since 51
2010 <

1
39 , we need n+ 1 > 39, or n > 38.

As for a construction when n = 39, note that(
1

2
· 2
3
· · · · · 32

33

)
·
(
34

35
· · · · · 39

40

)
· 66
67

works, since it equals 1/40
33/34 ·

66
67 = 17

670 = 51
2010 .

Solution 174 (USA TST 2007). The answer is no.
In fact, for any fixed integer b, the sequence

b, bb, bb
b

, . . .

is eventually constant modulo any integer. (This follows by induction on the
exponent: for it to be eventually constant modulo a, it is enough to be even-
tually constant modulo ϕ(a), hence modulo ϕ(ϕ(a)), etc.)

Therefore if n is a suitably tall power-tower of b’s, then we will have bn ≡ n
(mod a).

Solution 175 (EGMO 2018). One of many constructions: let n = 2e + 1
for e ≡ 5 (mod 10) and let x = 11, y = n/11 be our two integers.

We prove two lemmas:

Claim. For any m ≥ 2 we have f(m) ≥ dlog2me.

Proof. This is obvious.

It follows that f(n) = e+ 1, since n = n
n−1 · 2

e.

Claim. f(11) = 5.

Proof. We have 11 = 33
32 ·

4
3 · 2

3. So it suffices to prove f(11) > 4.
Note that a decomposition of 11 must contain a fraction at most 11

10 = 1.1.
But 23 · 1.1 = 8.8 < 11, contradiction.
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To finish, note that

f(11) + f(n/11) ≥ 5 + log2(n/11) = 1 + log2(16n/11) > 1 + e = 1 + f(n).

Remark. Most solutions seem to involve picking n such that f(n) is easy to
compute. Indeed, it’s hard to get nontrivial lower bounds other than the log,
and even harder to actually come up with complicated constructions. It might
be said the key to this problem is doing as little number theory as possible.

Solution 176 (USAJMO 2016). We will prove that n = 20 + 219 = 524308
fits the bill.

First, we claim that

5n ≡ 520 (mod 520) and 5n ≡ 520 (mod 220).

Indeed, the first equality holds since both sides are 0 (mod 520), and the second
by ϕ(220) = 219 and Euler’s theorem. Hence

5n ≡ 520 (mod 1020).

In other words, the last 20 digits of 5n will match the decimal representation
of 520, with leading zeros. However, we have

520 =
1

220
· 1020 < 1

10002
· 1020 = 10−6 · 1020

and hence those first six of those 20 digits will all be zero. This completes the
proof! (To be concrete, it turns out that 520 = 95367431640625 and so the
last 20 digits of 5n will be 00000095367431640625.)

Remark. Many of the first posts in the JMO 2016 discussion thread (see
https://aops.com/community/c5h1230514) claimed that the problem was
“super easy”. In fact, the problem was solved by only about 10% of contestants.

Solution 177 (EGMO 2014). Let n = 2p−1t, where t ≡ 5 (mod 6), ω(t) =
k − 1, and p � t is a sufficiently large prime. Let a+ b = n and a2 + b2 = c.
We claim that p - d(c), which solves the problem since p | d(n).

First, note that 3 - a2 + b2, since 3 - n. Next, note that c < 2n2 < 5p−1

(since p � t) so no exponent of an odd prime in c exceeds p − 2. Moreover,
c < 23p−1.

So, it remains to check that ν2(c) /∈ {p − 1, 2p − 1}. On the one hand, if
ν2(a) < ν2(b), then ν2(a) = p − 1 and ν2(c) = 2ν2(a) = 2p − 2. On the other
hand, if ν2(a) = ν2(b) then ν2(a) ≤ p − 2, and ν2(c) = 2ν2(a) + 1 is odd and
less than 2p− 1.
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Remark. Personally, I find the condition to be artificial, but the construction
is kind of fun.

I also think the scores on this problem during the real contest are low mostly
because of the difficulty of problem 2.

Solution 178 (USAMO 2013). One-line spoiler: 142857.
More verbosely, the idea is to look at the decimal representation of 1/D,

m/D, n/D for a suitable denominator D, which have a “cyclic shift” property
in which the digits of n/D are the digits of m/D shifted by 3.

Remark (An example to follow along). Here is an example to follow along in
the subsequent proof If m = 4 and n = 23 then the magic numbers e = 3 and
D = 41 obey

103 · 4
41

= 97 +
23

41
.

The idea is that
1

41
= 0.02439

4

41
= 0.09756

23

41
= 0.56097

and so c = 2349 works; we get 4c = 9756 and 23c = 56097 which are cyclic
shifts of each other by 3 places (with some leading zeros appended).

Here is the one to use:

Claim. There exists positive integers D and e such that gcd(D, 10) = 1,
D > max(m,n), and moreover

10em− n
D

∈ Z.

Proof. Suppose we pick some exponent e and define the number

A = 10en−m.

Let r = ν2(m) and s = ν5(m). As long as e > max(r, s) we have ν2(A) = r
and ν5(A) = s, too. Now choose any e > max(r, s) big enough that A >
2r5s max(m,n) also holds. Then the number D = A

2r5s works; the first two
properties hold by construction and

10e · n
D
− m

D
=
A

D
= 2r5s

is an integer.

233

https://aops.com/community/p3043754


May 18, 2025 The OTIS Excerpts, by Evan Chen

Remark (For people who like obscure theorems). Kobayashi’s theorem im-
plies we can actually pick D to be prime.

Now we take c to be the number under the bar of 1/D (leading zeros re-
moved). Then the decimal representation of m

D is the decimal representation
of cm repeated (possibly including leading zeros). Similarly, n

D has the deci-
mal representation of cm repeated (possibly including leading zeros). Finally,
since

10e · m
D
− n

D
is an integer

it follows that these repeating decimal representations are rotations of each
other by e places, so in particular they have the same number of nonzero
digits.

Remark. Many students tried to find a D satisfying the stronger hypothesis
that 1/D, 2/D, …, (D−1)/D are cyclic shifts of each other. For example, this
holds in the famous D = 7 case.

The official USAMO 2013 solutions try to do this by proving that 10 is a
primitive root modulo 7e for each e ≥ 1, by Hensel lifting lemma. I think this
argument is actually incorrect, because it breaks if either m or n are divisible
by 7. Put bluntly, 7

49 and 8
49 are not shifts of each other.

One may be tempted to resort to using large primes D rather than powers
of 7 to deal with this issue. However it is an open conjecture (a special case
of Artin’s primitive root conjecture) whether or not 10 (mod p) is primitive
infinitely often, which is the necessary conjecture so this is harder than it
seems.

Solution 179 (TSTST 2016). We claim that

Q(x) = 420(x2 − 1)2

works. Clearly, it suffices to prove the result when n = 4 and when n is an
odd prime p. The case n = 4 is trivial, so assume now n = p is an odd prime.

First, we prove the following easy claim.

Claim. For any odd prime p, there are at least 1
2 (p− 3) values of a for which(

1−a2

p

)
= +1.

Proof. Note that if k 6= 0 and k2 6= −1, then a = 1−k2

k2+1 works.

Remark. The above identity comes from starting with the equation 1− a2 =

b2, and writing it as
(
1
b

)2 − (ab )2 = 1. Then solve 1
b −

a
b = k and 1

b +
a
b = 1/k

for a.
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Let F (x) = (x2 − 1)2. The range of F modulo p is contained within the
1
2 (p+1) quadratic residues modulo p. On the other hand, if for some t neither
of 1± t is a quadratic residue, then t2 is omitted from the range of F as well.
Call such a value of t useful, and let N be the number of useful residues. We
aim to show N ≥ 1

4p− 2.
We compute a lower bound on the number N of useful t by writing

N =
1

4

(∑
t

[(
1−

(
1− t
p

))(
1−

(
1 + t

p

))]
−
(
1−

(
2

p

))
−
(
1−

(
−2
p

)))

≥ 1

4

∑
t

[(
1−

(
1− t
p

))(
1−

(
1 + t

p

))]
− 1

=
1

4

(
p+

∑
t

(
1− t2

p

))
− 1

≥ 1

4

(
p+ (+1) · 12 (p− 3) + 0 · 2 + (−1) · ((p− 2)− 1

2 (p− 3))
)
− 1

≥ 1

4
(p− 5) .

Thus, the range of F has size at most

1

2
(p+ 1)− 1

2
N ≤ 3

8
(p+ 3).

This is less than 0.499p for any p ≥ 11.

Remark. In fact, the computation above is essentially an equality. There are
only two points where terms are dropped: one, when p ≡ 3 (mod 4) there are
no k2 = −1 in the lemma, and secondly, the terms 1 − (2/p) and 1 − (−2/p)
are dropped in the initial estimate for N . With suitable modifications, one
can show that in fact, the range of F is exactly equal to

1

2
(p+ 1)− 1

2
N =


1
8 (3p+ 5) p ≡ 1 (mod 8)
1
8 (3p+ 7) p ≡ 3 (mod 8)
1
8 (3p+ 9) p ≡ 5 (mod 8)
1
8 (3p+ 3) p ≡ 7 (mod 8).

Solution 180 (IMO 2003). By orders, we must have q = pk + 1 for this
to be possible (since if q 6≡ 1 (mod p), then np can be any residue modulo q).
Since p ≡ np (mod q) =⇒ pk ≡ 1 (mod q), it suffices to prevent the latter
situation from happening.

So we need a prime q ≡ 1 (mod p) such that pk 6≡ 1 (mod q). To do this,
we first recall the following lemma.
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Lemma. Let Φp(X) = 1 + X + X2 + · · · + Xp−1. For any integer a, if q
is a prime divisor of Φp(a) other than p, then a (mod q) has order p. (In
particular, q ≡ 1 (mod p).)

Proof. We have ap − 1 ≡ 0 (mod q), so either the order is 1 or p. If it is 1,
then a ≡ 1 (mod q), so q | Φp(1) = p, hence q = p.

Now the idea is to extract a prime factor q from the cyclotomic polynomial

Φp(p) =
pp − 1

p− 1
≡ 1 + p (mod p2)

such that q 6≡ 1 (mod p2); hence k 6≡ 0 (mod p), and as p (mod q) has order
p we have pk 6≡ 1 (mod q).
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16 Challenge Algebra Problems

§16.1 Problems
Problem 181 (USAMO 2018). Let a, b, c be positive real numbers such that
a+ b+ c = 4 3

√
abc. Prove that

2(ab+ bc+ ca) + 4min(a2, b2, c2) ≥ a2 + b2 + c2.

Problem 182 (TSTST 2018). For an integer n > 0, denote by F(n) the set
of integers m > 0 for which the polynomial p(x) = x2 +mx+n has an integer
root.

(a) Let S denote the set of integers n > 0 for which F(n) contains two
consecutive integers. Show that S is infinite but∑

n∈S

1

n
≤ 1.

(b) Prove that there are infinitely many positive integers n such that F(n)
contains three consecutive integers.

Problem 183 (TSTST 2018). Let S = {1, . . . , 100}, and for every positive
integer n define

Tn = {(a1, . . . , an) ∈ Sn | a1 + · · ·+ an ≡ 0 (mod 100)} .

Determine which n have the following property: if we color any 75 elements
of S red, then at least half of the n-tuples in Tn have an even number of
coordinates with red elements.

Problem 184 (USA TST 2016). Let p be a prime number. Let Fp denote
the integers modulo p, and let Fp[x] be the set of polynomials with coefficients
in Fp. Define Ψ: Fp[x]→ Fp[x] by

Ψ

(
n∑

i=0

aix
i

)
=

n∑
i=0

aix
pi

.

Prove that for nonzero polynomials F,G ∈ Fp[x],

Ψ(gcd(F,G)) = gcd(Ψ(F ),Ψ(G)).
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Problem 185 (TSTST 2017). Consider solutions to the equation

x2 − cx+ 1 =
f(x)

g(x)

where f and g are nonzero polynomials with nonnegative real coefficients. For
each c > 0, determine the minimum possible degree of f , or show that no such
f , g exist.

Problem 186 (USA TST 2017). Let P,Q ∈ R[x] be relatively prime noncon-
stant polynomials. Show that there can be at most three real numbers λ such
that P + λQ is the square of a polynomial.

Problem 187 (USA TST 2018). Alice and Bob play a game. First, Alice
secretly picks a finite set S of lattice points in the Cartesian plane. Then, for
every line ` in the plane which is horizontal, vertical, or has slope +1 or −1,
she tells Bob the number of points of S that lie on `. Bob wins if he can then
determine the set S.

Prove that if Alice picks S to be of the form

S =
{
(x, y) ∈ Z2 | m ≤ x2 + y2 ≤ n

}
for some positive integers m and n, then Bob can win. (Bob does not know in
advance that S is of this form.)
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§16.2 Solutions

Solution 181 (USAMO 2018). WLOG let c = min(a, b, c) = 1 by scaling.
The given inequality becomes equivalent to

4ab+ 2a+ 2b+ 3 ≥ (a+ b)2 ∀a+ b = 4(ab)1/3 − 1.

Now, let t = (ab)1/3 and eliminate a+ b using the condition, to get

4t3 + 2(4t− 1) + 3 ≥ (4t− 1)2 ⇐⇒ 0 ≤ 4t3 − 16t2 + 16t = 4t(t− 2)2

which solves the problem.
Equality occurs only if t = 2, meaning ab = 8 and a+ b = 7, which gives

{a, b} =

{
7±
√
17

2

}
with the assumption c = 1. Scaling gives the curve of equality cases.

Solution 182 (TSTST 2018). We prove the following.

Claim. The set S is given explicitly by S = {x(x+ 1)y(y + 1) | x, y > 0}.

Proof. Note that m,m+1 ∈ F(n) if and only if there exist integers q > p ≥ 0
such that

m2 − 4n = p2

(m+ 1)2 − 4n = q2.

Subtraction gives 2m+ 1 = q2 − p2, so p and q are different parities. We can
thus let q−p = 2x+1, q+p = 2y+1, where y ≥ x ≥ 0 are integers. It follows
that

4n = m2 − p2

=

(
q2 − p2 − 1

2

)2

− p2 =

(
q2 − p2 − 1

2
− p
)(

q2 − p2 − 1

2
+ p

)
=
q2 − (p2 + 2p+ 1)

2
· q

2 − (p2 − 2p+ 1)

2

=
1

4
(q − p− 1)(q − p+ 1)(q + p− 1)(q + p+ 1) =

1

4
(2x)(2x+ 2)(2y)(2y + 2)

=⇒ n = x(x+ 1)y(y + 1).

Since n > 0 we require x, y > 0. Conversely, if n = x(x + 1)y(y + 1) for
positive x and y then m =

√
p2 + 4n =

√
(y − x)2 + 4n = 2xy + x + y =

x(y + 1) + (x+ 1)y and m+ 1 = 2xy + x+ y + 1 = xy + (x+ 1)(y + 1). Thus
we conclude the main claim.
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From this, part (a) follows as

∑
n∈S

n−1 ≤

∑
x≥1

1

x(x+ 1)

∑
y≥1

1

y(y + 1)

 = 1 · 1 = 1.

As for (b), retain the notation in the proof of the claim. Now m+ 2 ∈ S if
and only if (m + 2)2 − 4n is a square, say r2. Writing in terms of p and q as
parameters we find

r2 = (m+ 2)2 − 4n = m2 − 4n+ 4m+ 4 = p2 + 2 + 2(2m+ 1)

= p2 + 2(q2 − p2) + 2 = 2q2 − p2 + 2

⇐⇒ 2q2 + 2 = p2 + r2 (†)

with q > p of different parity and n = 1
16 (q−p−1)(q−p+1)(q+p−1)(q+p+1).

Note that (by taking modulo 8) we have q 6≡ p ≡ r (mod 2), and so there
are no parity issues and we will always assume p < q < r in (†). Now, for
every q, the equation (†) has a canonical solution (p, r) = (q − 1, q + 1), but
this leaves n = 0. Thus we want to show for infinitely many q there is a third
way to write 2q2 + 2 as a sum of squares, which will give the desired p.

To do this, choose large integers q such that q2 + 1 is divisible by at least
three distinct 1 mod 4 primes. Since each such prime can be written as a sum
of two squares, using Lagrange identity, we can deduce that 2q2 + 2 can be
written as a sum of two squares in at least three different ways, as desired.

Remark. We can see that n = 144 is the smallest integer such that F(n)
contains three consecutive integers and n = 15120 is the smallest integer such
that F(n) contains four consecutive integers. It would be interesting to deter-
mine whether the number of consecutive elements in F(n) can be arbitrarily
large or is bounded.

Solution 183 (TSTST 2018). We claim this holds exactly for n even.

First solution by generating functions. Define

R(x) =
∑
s red

xs, B(x) =
∑
s blue

xs.

(Here “blue” means “not-red”, as always.) Then, the number of tuples in Tn
with exactly k red coordinates is exactly equal to(

n

k

)
· 1

100

∑
ω

R(ω)kB(ω)n−k
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where the sum is over all 100th roots of unity. So, we conclude the number of
tuples in Tn with an even (resp odd) number of red elements is exactly

X =
1

100

∑
ω

∑
k even

(
n

k

)
R(ω)kB(ω)n−k

Y =
1

100

∑
ω

∑
k odd

(
n

k

)
R(ω)kB(ω)n−k

=⇒ X − Y =
1

100

∑
ω

(B(ω)−R(ω))n

=
1

100

(B(1)−R(1))n +
∑
ω 6=1

(2B(ω))n


=

1

100

[
(B(1)−R(1))n − (2B(1))n + 2n

∑
ω

B(ω)n

]

=
1

100
[(B(1)−R(1))n − (2B(1))n] + 2nZ

=
1

100
[(−50)n − 50n] + 2nZ.

where
Z :=

1

100

∑
ω

B(ω)n ≥ 0

counts the number of tuples in Tn which are all blue. Here we have used the
fact that B(ω) +R(ω) = 0 for ω 6= 1.

We wish to show X − Y ≥ 0 holds for n even, but may fail when n is odd.
This follows from two remarks:

• If n is even, then X − Y = 2nZ ≥ 0.

• If n is odd, then if we choose the coloring for which s is red if and only
if s 6≡ 2 (mod 4); we thus get Z = 0. Then X − Y = − 2

100 · 50
n < 0.

Second solution by strengthened induction and random coloring. We again
prove that n even work. Let us define

Tn(a) = {(a1, . . . , an) ∈ Sn | a1 + · · ·+ an ≡ a (mod 100)} .

Also, call an n-tuple good if it has an even number of red elements. We claim
that Tn(a) also has at least 50% good tuples, by induction.

This follows by induction on n ≥ 2. Indeed, the base case n = 2 can be
checked by hand, since T2(a) = {(x, a− x) | x ∈ S}. With the stronger claim,
one can check the case n = 2 manually and proceed by induction to go from
n− 2 to n, noting that

Tn(a) =
⊔

b+c=a

Tn−2(b)⊕ T2(c)
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where ⊕ denotes concatenation of tuples, applied set-wise. The concatenation
of an (n− 2)-tuple and 2-tuple is good if and only if both or neither are good.
Thus for each b and c, if the proportion of Tn−2(b) which is good is p ≥ 1

2
and the proportion of T2(c) which is good is q ≥ 1

2 , then the proportion of
Tn−2(b)⊕T2(c) which is good is pq+(1−p)(1− q) ≥ 1

2 , as desired. Since each
term in the union has at least half the tuples good, all of Tn(a) has at least
half the tuples good, as desired.

It remains to fail all odd n. We proceed by a suggestion of Yang Liu and
Ankan Bhattacharya by showing that if we pick the 75 elements randomly,
then any particular tuple in Sn has strictly less than 50% chance of being
good. This will imply (by linearity of expectation) that Tn (or indeed any
subset of Sn) will, for some coloring, have less than half good tuples.

Let (a1, . . . , an) be such an n-tuple. If any element appears in the tuple
more than once, keep discarding pairs of that element until there are zero or
one; this has no effect on the good-ness of the tuple. If we do this, we obtain an
m-tuple (b1, . . . , bm) with no duplicated elements where m ≡ n ≡ 1 (mod 2).
Now, the probability that any element is red is 3

4 , so the probability of being
good is

m∑
k even

(
m

k

)(
3

4

)k (
−1

4

)m−k

=
1

2

[(
3

4
+

1

4

)m

−
(
3

4
− 1

4

)m]
=

1

2

[
1−

(
1

2

)m]
<

1

2
.

Remark (Adam Hesterberg). Here is yet another proof that n even works.
Group elements of Tn into equivalence classes according to the n/2 sums of
pairs of consecutive elements (first and second, third and fourth, …). For each
such pair sum, there are at least as many monochrome pairs with that sum
as nonmonochrome ones, since every nonmonochrome pair uses one of the 25
non-reds. The monochromaticity of the pairs is independent.

If pi ≤ 1
2 is the probability that the ith pair is nonmonochrome, then

the probability that k pairs are nonmonochrome is the coefficient of xk in
f(x) =

∏
i(xpi + (1 − pi)). Then the probability that evenly many pairs

are nonmonochrome (and hence that evenly many coordinates are red) is the
sum of the coefficients of even powers of x in f , which is (f(1) + f(−1))/2 =
(1 +

∏
i(1− 2pi))/2 ≥ 1

2 , as desired.

Solution 184 (USA TST 2016). Observe that Ψ is also a linear map of
Fp vector spaces, and that Ψ(xP ) = Ψ(P )p for any P ∈ Fp[x]. (In particular,
Ψ(1) = x, not 1, take caution!)

First solution (Ankan Bhattacharya). We start with:
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Claim. If P | Q then Ψ(P ) | Ψ(Q).

Proof. Set Q = PR, where R =
∑k

i=0 rix
i. Then

Ψ(Q) = Ψ

(
P

k∑
i=0

rix
i

)
=

k∑
i=0

Ψ
(
P · rixi

)
=

k∑
i=0

riΨ(P )p
i

which is divisible by Ψ(P ).

This already implies

Ψ(gcd(F,G)) | gcd(Ψ(F ),Ψ(G)).

For the converse, by Bezout there exists A,B ∈ Fp[x] such that AF + BG =
gcd(F,G), so taking Ψ of both sides gives

Ψ(AF ) + Ψ(BG) = Ψ (gcd(F,G)) .

The left-hand side is divisible by gcd(Ψ(F ),Ψ(G)) since the first term is divis-
ible by Ψ(F ) and the second term is divisible by Ψ(G). So gcd(Ψ(F ),Ψ(G)) |
Ψ(gcd(F,G)) and noting both sides are monic we are done.

Second solution. Here is an alternative (longer but more conceptual) way to
finish without Bezout lemma. Let i ⊆ Fp[x] denote the set of polynomials in
the image of Ψ, thus Ψ: Fp[x]→ i is a bijection on the level of sets.

Claim. If A,B ∈ i then gcd(A,B) ∈ i.

Proof. It suffices to show that if A and B are monic, and degA > degB,
then the remainder when A is divided by B is in i. Suppose degA = pk and
B = xp

k−1 − c2xp
k−2 − · · · − ck. Then

xp
k

≡
(
c2x

pk−2

+ c3x
pk−3

+ · · ·+ ck

)p
(mod B)

≡ c2xp
k−1

+ c3x
pk−2

· · ·+ ck (mod B)

since exponentiation by p commutes with addition in Fp. This is enough to
imply the conclusion. The proof if degB is smaller less than pk−1 is similar.

Thus, if we view Fp[x] and i as partially ordered sets under polynomial
division, then gcd is the “greatest lower bound” or “meet” in both partially
ordered sets. We will now prove that Ψ is an isomorphism of the posets. We
have already seen that P | Q =⇒ Ψ(P ) | Ψ(Q) from the first solution. For
the converse:

Claim. If Ψ(P ) | Ψ(Q) then P | Q.
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Proof. Suppose Ψ(P ) | Ψ(Q), but Q = PA + B where degB < degP . Thus
Ψ(P ) | Ψ(PA) + Ψ(B), hence Ψ(P ) | Ψ(B), but degΨ(P ) > degΨ(B) hence
Ψ(B) = 0 =⇒ B = 0.

This completes the proof.

Remark. In fact Ψ: Fp[x] → i is a ring isomorphism if we equip i with
function composition as the ring multiplication. Indeed in the proof of the
first claim (that P | Q =⇒ Ψ(P ) | Ψ(Q)) we saw that

Ψ(RP ) =

k∑
i=0

riΨ(P )p
i

= Ψ(R) ◦Ψ(P ).

Solution 185 (TSTST 2017). First, if c ≥ 2 then we claim no such f and
g exist. Indeed, one simply takes x = 1 to get f(1)/g(1) ≤ 0, impossible.

For c < 2, let c = 2 cos θ, where 0 < θ < π. We claim that f exists and
has minimum degree equal to n, where n is defined as the smallest integer
satisfying sinnθ ≤ 0. In other words

n =

⌈
π

arccos(c/2)

⌉
.

First we show that this is necessary. To see it, write explicitly

g(x) = a0 + a1x+ a2x
2 + · · ·+ an−2x

n−2

with each ai ≥ 0, and an−2 6= 0. Assume that n is such that sin(kθ) ≥ 0 for
k = 1, . . . , n− 1. Then, we have the following system of inequalities:

a1 ≥ 2 cos θ · a0
a0 + a2 ≥ 2 cos θ · a1
a1 + a3 ≥ 2 cos θ · a2

...
an−5 + an−3 ≥ 2 cos θ · an−4

an−4 + an−2 ≥ 2 cos θ · an−3

an−3 ≥ 2 cos θ · an−2.

Now, multiply the first equation by sin θ, the second equation by sin 2θ, et
cetera, up to sin ((n− 1)θ). This choice of weights is selected since we have

sin (kθ) + sin ((k + 2)θ) = 2 sin ((k + 1)θ) cos θ

so that summing the entire expression cancels nearly all terms and leaves only

sin ((n− 2)θ) an−2 ≥ sin ((n− 1)θ) · 2 cos θ · an−2

247

https://aops.com/community/p8526130


May 18, 2025 The OTIS Excerpts, by Evan Chen

and so by dividing by an−2 and using the same identity gives us sin(nθ) ≤ 0,
as claimed.

This bound is best possible, because the example

ak = sin ((k + 1)θ) ≥ 0

makes all inequalities above sharp, hence giving a working pair (f, g).

Remark. Calvin Deng points out that a cleaner proof of the lower bound is
to take α = cos θ + i sin θ. Then f(α) = 0, but by condition the imaginary
part of f(α) is apparently strictly positive, contradiction.

Remark. Guessing that c < 2 works at all (and realizing c ≥ 2 fails) is the
first part of the problem.

The introduction of trigonometry into the solution may seem magical, but
is motivated in one of two ways:

• Calvin Deng points out that it’s possible to guess the answer from small
cases: For c ≤ 1 we have n = 3, tight at x3+1

x+1 = x2−x+1, and essentially
the “sharpest n = 3 example”. A similar example exists at n = 4 with

x4+1
x2+

√
2x+1

= x2 −
√
2x + 1 by the Sophie-Germain identity. In general,

one can do long division to extract an optimal value of c for any given
n, although c will be the root of some polynomial.

The thresholds c ≤ 1 for n = 3, c ≤
√
2 for n = 4, c ≤ 1+

√
5

2 for
n = 5, and c ≤ 2 for n <∞ suggest the unusual form of the answer via
trigonometry.

• One may imagine trying to construct a polynomial recursively / greedily
by making all inequalities above hold (again the “sharpest situation” in
which f has few coefficients). If one sets c = 2t, then we have

a0 = 1, a1 = 2t, a2 = 4t2 − 1, a3 = 8t3 − 4t, . . .

which are the Chebyshev polynomials of the second type. This means
that trigonometry is essentially mandatory. (One may also run into this
when by using standard linear recursion techniques, and noting that the
characteristic polynomial has two conjugate complex roots.)

Remark. Mitchell Lee notes that an IMO longlist problem from 1997 shows
that if P (x) is any polynomial satisfying P (x) > 0 for x > 0, then (x+1)nP (x)
has nonnegative coefficients for large enough n. This show that f and g at
least exist for c ≤ 2, but provides no way of finding the best possible deg f .

Meghal Gupta also points out that showing f and g exist is possible in the
following way:(

x2 − 1.99x+ 1
) (
x2 + 1.99x+ 1

)
=
(
x4 − 1.9601x2 + 1

)
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and so on, repeatedly multiplying by the “conjugate” until all coefficients be-
come positive. To my best knowledge, this also does not give any way of
actually minimizing deg f , although Ankan Bhattacharya points out that this
construction is actually optimal in the case where n is a power of 2.

Remark. It’s pointed out that Matematicheskoe Prosveshchenie, issue 1,
1997, page 194 contains a nearly analogous result, available at https://
mccme.ru/free-books/matpros/pdf/mp-01.pdf with solutions presented in
https://mccme.ru/free-books/matpros/pdf/mp-05.pdf, pages 221–223; and
https://mccme.ru/free-books/matpros/pdf/mp-10.pdf, page 274.

Solution 186 (USA TST 2017). This is true even with R replaced by C,
and it will be necessary to work in this generality.

First solution using transformations. We will prove the claim in the following
form:

Claim. Assume P,Q ∈ C[x] are relatively prime. If αP + βQ is a square for
four different choices of the ratio [α : β] then P and Q must be constant.

Call pairs (P,Q) as in the claim bad; so we wish to show the only bad pairs
are pairs of constant polynomials. Assume not, and take a bad pair with
degP + degQ minimal.

By a suitable Möbius transformation, we may transform (P,Q) so that the
four ratios are [1 : 0], [0 : 1], [1 : −1] and [1 : −k], so we find there are
polynomials A and B such that

A2 −B2 = C2

A2 − kB2 = D2

where A2 = P + λ1Q, B2 = P + λ2Q, say. Of course gcd(A,B) = 1.
Consequently, we have C2 = (A+B)(A−B) and D2 = (A+ µB)(A− µB)

where µ2 = k. Now gcd(A,B) = 1, so A+B, A−B, A+ µB and A− µB are
squares; id est (A,B) is bad. This is a contradiction, since degA + degB <
degP + degQ.

Second solution using derivatives (by Zack Chroman). We will assume
without loss of generality that degP 6= degQ; if not, then one can replace
(P,Q) with (P + cQ,Q) for a suitable constant c.

Then, there exist λi ∈ C and polynomials Ri for i = 1, 2, 3, 4 such that

P + λiQ = R2
i

=⇒ P ′ + λiQ
′ = 2RiR

′
i

=⇒ Ri | Q′(P + λiQ)−Q(P ′ + λiQ
′) = Q′P −QP ′.
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On the other hand by Euclidean algorithm it follows that Ri are relatively
prime to each other. Therefore

R1R2R3R4 | Q′P −QP ′.

However, we have
4∑
1

degRi ≥
3max(degP, degQ) + min(degP, degQ)

2

≥ degP + degQ > deg(Q′P −QP ′).

This can only occur if Q′P −QP ′ = 0 or (P/Q)′ = 0 by the quotient rule! But
P/Q can’t be constant, the end.

Remark. The result is previously known; see e.g. Lemma 1.6 of https://
mathweb.ucsd.edu/~ebelmont/ec-notes.pdf or Exercise 6.5.L(a) of Vakil’s
notes.

Solution 187 (USA TST 2018). Clearly Bob can compute the number N
of points.

The main claim is that:

Claim. Fix m and n as in the problem statement. Among all sets T ⊆ Z2

with N points, the set S is the unique one which maximizes the value of

F (T ) :=
∑

(x,y)∈T

(x2 + y2)(m+ n− (x2 + y2)).

Proof. Indeed, the different points in T do not interact in this sum, so we
simply want the points (x, y) with x2 + y2 as close as possible to m+n

2 which
is exactly what S does.

As a result of this observation, it suffices to show that Bob has enough
information to compute F (S) from the data given. (There is no issue with
fixing m and n, since Bob can find an upper bound on the magnitude of the
points and then check all pairs (m,n) smaller than that.) The idea is that
he knows the full distribution of each of X, Y , X + Y , X − Y and hence can
compute sums over T of any power of a single one of those linear functions.
By taking linear combinations we can hence compute F (S).

Let us make the relations explicit. For ease of exposition we take Z = (X,Y )
to be a uniformly random point from the set S. The information is precisely
the individual distributions of X, Y , X + Y , and X − Y . Now compute

F (S)

N
= E

[
(m+ n)(X2 + Y 2)− (X2 + Y 2)2

]
= (m+ n)

(
E[X2] + E[Y 2]

)
− E[X4]− E[Y 4]− 2E[X2Y 2].
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On the other hand,

E[X2Y 2] =
E[(X + Y )4] + E[(X − Y )4]− 2E[X4]− 2E[Y 4]

12
.

Thus we have written F (S) in terms of the distributions of X, Y , X − Y ,
X + Y which completes the proof.

Remark (Mark Sellke). • This proof would have worked just as well if
we allowed arbitrary [0, 1]-valued weights on points with finitely many
weights non-zero. There is an obvious continuum generalization one can
make concerning the indicator function for an annulus. It’s a simpler but
fun problem to characterize when just the vertical/horizontal directions
determine the distribution.

• An obstruction to purely combinatorial arguments is that if you take
an octagon with points (±a,±b) and (±b,±a) then the two ways to pick
every other point (going around clockwise) are indistinguishable by Bob.
This at least shows that Bob’s task is far from possible in general, and
hints at proving an inequality.

• A related and more standard fact (among a certain type of person) is
that given a probability distribution µ on Rn, if I tell you the distribution
of all 1-dimensional projections of µ, that determines µ uniquely. This
works because this information gives me the Fourier transform µ̂, and
Fourier transforms are injective.
For the continuum version of this problem, this connection gives a much
larger family of counterexamples to any proposed extension to arbi-
trary non-annular shapes. Indeed, take a fast-decaying smooth function
f : R2 → R which vanishes on the four lines

x = 0, y = 0, x+ y = 0, x− y = 0.

Then the Fourier transform f̂ will have mean 0 on each line ` as in the
problem statement. Hence the positive and negative parts of f̂ will not
be distinguishable by Bob.
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17 Challenge Combinatorics
Problems

§17.1 Problems
Problem 188 (USA TST 2015). Fix a positive integer n. Find the smallest
positive integer χ for which there exists a tournament on n vertices, and a
coloring of each of the tournament’s edges by one of χ colors, such that: any
two directed edges u→ v and v → w have different colors.

Problem 189 (TSTST 2018). In the nation of Onewaynia, certain pairs of
cities are connected by one-way roads. Every road connects exactly two cities
(roads are allowed to cross each other, e.g., via bridges), and each pair of
cities has at most one road between them. Moreover, every city has exactly
two roads leaving it and exactly two roads entering it.

We wish to close half the roads of Onewaynia in such a way that every city
has exactly one road leaving it and exactly one road entering it. Show that
the number of ways to do so is a power of 2 greater than 1 (i.e. of the form 2n

for some integer n ≥ 1).

Problem 190 (TSTST 2018). Let n be a positive integer. A frog starts on
the number line at 0. Suppose it makes a finite sequence of hops, subject to
two conditions:

• The frog visits only points in {1, 2, . . . , 2n − 1}, each at most once.

• The length of each hop is in {20, 21, 22, . . . }. (The hops may be either
direction, left or right.)

Let S be the sum of the (positive) lengths of all hops in the sequence. What
is the maximum possible value of S?

Problem 191 (TSTST 2016). In the coordinate plane are finitely many walls,
which are disjoint line segments, none of which are parallel to either axis. A
bulldozer starts at an arbitrary point and moves in the +x direction. Every
time it hits a wall, it turns at a right angle to its path, away from the wall,
and continues moving. (Thus the bulldozer always moves parallel to the axes.)

Prove that it is impossible for the bulldozer to hit both sides of every wall.

Problem 192 (USA TST 2017). You are cheating at a trivia contest. For
each question, you can peek at each of the n > 1 other contestant’s guesses
before writing your own. For each question, after all guesses are submitted,
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the emcee announces the correct answer. A correct guess is worth 0 points.
An incorrect guess is worth −2 points for other contestants, but only −1 point
for you, because you hacked the scoring system. After announcing the correct
answer, the emcee proceeds to read out the next question. Show that if you
are leading by 2n−1 points at any time, then you can surely win first place.

Problem 193 (TSTST 2018). Show that there is an absolute constant c < 1
with the following property: whenever P is a polygon with area 1 in the plane,
one can translate it by a distance of 1

100 in some direction to obtain a polygon
Q, for which the intersection of the interiors of P and Q has total area at most
c.

Problem 194 (USAMO 2017). Find all real numbers c > 0 such that there
exists a labeling of the lattice points in Z2 with positive integers for which:

• only finitely many distinct labels occur, and

• for each label i, the distance between any two points labeled i is at least
ci.

Problem 195 (USA TST 2019). A snake of length k is an animal which
occupies an ordered k-tuple (s1, . . . , sk) of cells in an n × n grid of square
unit cells. These cells must be pairwise distinct, and si and si+1 must share
a side for i = 1, . . . , k − 1. If the snake is currently occupying (s1, . . . , sk)
and s is an unoccupied cell sharing a side with s1, the snake can move to
occupy (s, s1, . . . , sk−1) instead. The snake has turned around if it occupied
(s1, s2, . . . , sk) at the beginning, but after a finite number of moves occupies
(sk, sk−1, . . . , s1) instead.

Determine whether there exists an integer n > 1 such that one can place
some snake of length at least 0.9n2 in an n× n grid which can turn around.
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§17.2 Solutions

Solution 188 (USA TST 2015). The answer is

χ = dlog2 ne .

First, we prove by induction on n that χ ≥ log2 n for any coloring and
any tournament. The base case n = 1 is obvious. Now given any tournament,
consider any used color c. Then it should be possible to divide the tournament
into two subsets A and B such that all c-colored edges point from A to B (for
example by letting A be all vertices which are the starting point of a c-edge).

A B

all edges colored c

One of A and B has size at least n/2, say A. Since A has no c edges, and uses
at least log2 |A| colors other than c, we get

χ ≥ 1 + log2(n/2) = log2 n

completing the induction.
One can read the construction off from the argument above, but here is

a concrete description. For each integer n, consider the tournament whose
vertices are the binary representations of S = {0, . . . , n − 1}. Instantiate
colors c1, c2, …. Then for v, w ∈ S, we look at the smallest order bit for which
they differ; say the kth one. If v has a zero in the kth bit, and w has a one in
the kth bit, we draw v → w. Moreover we color the edge with color ck. This
works and uses at most dlog2 ne colors.

Remark (Motivation). The philosophy “combinatorial optimization” applies
here. The idea is given any color c, we can find sets A and B such that all
c-edges point A to B. Once you realize this, the next insight is to realize that
you may as well color all the edges from A to B by c; after all, this doesn’t hurt
the condition and makes your life easier. Hence, if f is the answer, we have
already a proof that f(n) = 1+max (f(|A|), f(|B|)) and we choose |A| ≈ |B|.
This optimization also gives the inductive construction.
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Solution 189 (TSTST 2018). In the language of graph theory, we have a
simple digraph G which is 2-regular and we seek the number of sub-digraphs
which are 1-regular. We now present two solution paths.

First solution, combinatorial. We construct a simple undirected bipartite
graph Γ as follows:

• the vertex set consists of two copies of V (G), say Vout and Vin; and

• for v ∈ Vout and w ∈ Vin we have an undirected edge vw ∈ E(Γ) if and
only if the directed edge v → w is in G.

Moreover, the desired sub-digraphs of H correspond exactly to perfect match-
ings of Γ.

However the graph Γ is 2-regular and hence consists of several disjoint (sim-
ple) cycles of even length. If there are n such cycles, the number of perfect
matchings is 2n, as desired.

Remark. The construction of Γ is not as magical as it may first seem.
Suppose we pick a road v1 → v2 to use. Then, the other road v3 → v2 is

certainly not used; hence some other road v3 → v4 must be used, etc. We thus
get a cycle of forced decisions until we eventually return to the vertex v1.

These cycles in the original graph G (where the arrows alternate directions)
correspond to the cycles we found in Γ. It’s merely that phrasing the solu-
tion in terms of Γ makes it cleaner in a linguistic sense, but not really in a
mathematical sense.

Second solution by linear algebra over F2 (Brian Lawrence). This is actu-
ally not that different from the first solution. For each edge e, we create an
indicator variable xe. We then require for each vertex v that:

• If e1 and e2 are the two edges leaving v, then we require xe1 + xe2 ≡ 1
(mod 2).

• If e3 and e4 are the two edges entering v, then we require xe3 + xe4 ≡ 1
(mod 2).

We thus get a large system of equations. Moreover, the solutions come in
natural pairs ~x and ~x+~1 and therefore the number of solutions is either zero,
or a power of two. So we just have to prove there is at least one solution.

For linear algebra reasons, there can only be zero solutions if some nontrivial
linear combination of the equations gives the sum 0 ≡ 1. So suppose we added
up some subset S of the equations for which every variable appeared on the
left-hand side an even number of times. Then every variable that did appear
appeared exactly twice; and accordingly we see that the edges corresponding
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to these variables form one or more even cycles as in the previous solution. Of
course, this means |S| is even, so we really have 0 ≡ 0 (mod 2) as needed.

Remark. The author’s original proposal contained a second part asking to
show that it was not always possible for the resulting H to be connected, even
if G was strongly connected. This problem is related to IMO Shortlist 2002
C6, which gives an example of a strongly connected graph which does have a
full directed Hamiltonian cycle.

Solution 190 (TSTST 2018). We claim the answer is 4n−1
3 .

We first prove the bound. First notice that the hop sizes are in {20, 21, . . . , 2n−1},
since the frog must stay within bounds the whole time. Let ai be the number
of hops of size 2i the frog makes, for 0 ≤ i ≤ n− 1.

Claim. For any k = 1, . . . , n we have

an−1 + · · ·+ an−k ≤ 2n − 2n−k.

Proof. Let m = n − k and look modulo 2m. Call a jump small if its length
is at most 2m−1, and large if it is at least 2m; the former changes the residue
class of the frog modulo 2m while the latter does not.

Within each fixed residue modulo 2m, the frog can make at most 2n

2m − 1

large jumps. So the total number of large jumps is at most 2m
(
2n

2m − 1
)
=

2n − 2m.

(As an example, when n = 3 this means there are at most four hops of
length 4, at most six hops of length 2 or 4, and at most seven hops total. Of
course, if we want to max the length of the hops, we see that we want a2 = 4,
a1 = 2, a0 = 1, and in general equality is achieved when am = 2m for any m.)

Now, the total distance the frog travels is

S = a0 + 2a1 + 4a2 + · · ·+ 2n−1an−1.

We rewrite using the so-called “summation by parts”:

S = a0 + a1 + a2 + a3 + . . .+ an−1

+ a1 + a2 + a3 + . . .+ an−1

+ 2a2 + 2a3 + . . .+ 2an−1

+ 4a3 + . . .+ 4an−1

...
. . .

...
+ 2n−2an−1.
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Hence

S ≤ (2n − 20) + (2n − 21) + 2(2n − 22) + · · ·+ 2n−2(2n − 2n−1)

=
4n − 1

3
.

It remains to show that equality can hold. There are many such construc-
tions but most are inductive. Here is one approach. We will construct two
family of paths such that there are 2k hops of size 2k, for every 0 ≤ k ≤ n− 1,
and we visit each of {0, . . . , 2n − 1} once, starting on 0 and ending on x, for
the two values x ∈ {1, 2n − 1}.

The base case n = 1 is clear. To take a path from 0 to 2n+1 − 1.

• Take a path on {0, 2, 4, . . . , 2n+1 − 2} starting from 0 and ending on 2
(by inductive hypothesis).

• Take a path on {1, 3, 5, . . . , 2n+1 − 1} starting from 1 and ending on
2n+1 − 1 (by inductive hypothesis).

• Link them together by adding a single jump 2→ 1.

The other case is similar, but we route 0 → (2n+1 − 2) → (2n+1 − 1) → 1
instead. (This can also be visualized as hopping along a hypercube of binary
strings; each inductive step takes two copies of the hypercube and links them
together by a single edge.)

Remark (Ashwin Sah). The problem can also be altered to ask for the min-
imum value of the sum of the reciprocals of the hop sizes, where further we
stipulate that the frog must hit every point precisely once (to avoid trivi-
ality). With a nearly identical proof that also exploits the added condition
a0 + · · · + an−1 = 2n − 1, the answer is n. This yields a nicer form for the
generalization. The natural generalization changes the above problem by re-
placing 2k with ak where ak | ak+1, so that the interval covered by hops is of
size an and the hop sizes are restricted to the ai, where a0 = 1. In this case,
similar bounding yields

2n−1∑
i=1

1

bk
≥

n−1∑
i=0

(
ak+1

ak
− 1

)
.

Bounds for the total distance traveled happen in the same way as the solution
above, and equality for both can be constructed in an analogous fashion.

Solution 191 (TSTST 2016). We say a wall v is above another wall w
if some point on v is directly above a point on w. (This relation is anti-
symmetric, as walls do not intersect).

The critical claim is as follows:
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Claim. There exists a lowest wall, i.e. a wall not above any other walls.

Proof. Assume not. Then we get a directed cycle of some length n ≥ 3: it’s
possible to construct a series of points Pi, Qi, for i = 1, . . . , n (indices modulo
n), such that the point Qi is directly above Pi+1 for each i, the segment
QiPi+1 does not intersect any wall in its interior, and finally each segment
PiQi is contained inside a wall. This gives us a broken line on 2n vertices
which is not self-intersecting.

Now consider the leftmost vertical segment QiPi+1 and the rightmost ver-
tical segment QjPj+1. The broken line gives a path from Pi+1 to Qj , as well
as a path from Pj+1 to Qi. These clearly must intersect, contradiction.

Remark. This claim is Iran TST 2010.

Thus if the bulldozer eventually moves upwards indefinitely, it may never
hit the bottom side of the lowest wall. Similarly, if the bulldozer eventually
moves downwards indefinitely, it may never hit the upper side of the highest
wall.

Solution 192 (USA TST 2017). We will prove the result with 2n−1 replaced
even by 2n−2 + 1.

We first make the following reductions. First, change the weights to be +1,
−1, 0 respectively (rather than 0, −2, −1); this clearly has no effect. Also,
WLOG that all contestants except you initially have score zero (and that your
score exceeds 2n−2). WLOG ignore rounds in which all answers are the same.
Finally, ignore rounds in which you get the correct answer, since that leaves
you at least as well off as before — in other words, we’ll assume your score is
always fixed, but you can pick any group of people with the same answers and
ensure they lose 1 point, while some other group gains 1 point.

The key observation is the following. Consider two rounds R1 and R2 such
that:

• In round R1, some set S of contestants gains a point.

• In round R2, the set S of contestants all have the same answer.

Then, if we copy the answers of contestants in S during R2, then the sum of
the scorings in R1 and R2 cancel each other out. In other words we can then
ignore R1 and R2 forever.

We thus consider the following strategy. We keep a list L of subsets of
{1, . . . , n}, initially empty. Now do the following strategy:

• On a round, suppose there exists a set S of people with the same answer
such that S ∈ L. (If multiple exist, choose one arbitrarily.) Then,
copy the answer of S, causing them to lose a point. Delete S from L.
(Importantly, we do not add any new sets to L.)
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• Otherwise, copy any set T of contestants, selecting |T | ≥ n/2 if possible.
Let S be the set of contestants who answer correctly (if any), and add
S to the list L. Note that |S| ≤ n/2, since S is disjoint from T .

By construction, L has no duplicate sets. So the score of any contestant c is
bounded above by the number of times that c appears among sets in L. The
number of such sets is clearly at most 1

2 · 2
n−1. So, if you lead by 2n−2 + 1

then you ensure victory. This completes the proof!

Remark. Several remarks are in order. First, we comment on the bound
2n−2 + 1 itself. The most natural solution using only the list idea gives an
upper bound of (2n− 2)+ 1, which is the number of nonempty proper subsets
of {1, . . . , n}. Then, there are two optimizations one can observe:

• In fact we can improve to the number of times any particular contestant
c appears in some set, rather than the total number of sets.

• When adding new sets S to L, one can ensure |S| ≤ n/2.

Either observation alone improves the bound from 2n − 1 to 2n−1, but both
together give the bound 2n−2 +1. Additionally, when n is odd the calculation
of subsets actually gives 2n−2− 1

2

(n−1
n−1
2

)
+1. This gives the best possible value

at both n = 2 and n = 3. It seems likely some further improvements are
possible, and the true bound is suspected to be polynomial in n.

Secondly, the solution is highly motivated by considering a true/false contest
in which only two distinct answers are given per question. However, a natural
mistake (which graders assessed as a two-point deduction) is to try and prove
that in fact one can “WLOG” we are in the two-question case. The proof of
this requires substantially more care than expected. For instance, set n = 3. If
L = {{1}, {2}, {3}} then it becomes impossible to prevent a duplicate set from
appearing in L if all contestants give distinct answers. One might attempt to
fix this by instead adding to L the complement of the set T described above.
The example L = {{1, 2}, {2, 3}, {3, 1}} (followed again by a round with all
distinct answers) shows that this proposed fix does not work either. This issue
affects all variations of the above approach.

Because the USA TST did not have any solution-writing process at this
time, this issue was not noticed until January 15 (less than a week before the
exam). When it was brought up by email by Evan, every organizer who had
testsolved the problem had apparently made the same error.

Remark. Here are some motivations for the solution:

1. The exponential bound 2n suggests looking at subsets.

2. The n = 2 case suggests the idea of “repeated rounds”. (I think this
n = 2 case is actually really good.)
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3. The “two distinct answers” case suggests looking at rounds as partitions
(even though the WLOG does not work, at least not without further
thought).

4. There’s something weird about this problem: it’s a finite bound over
unbounded time. This is a hint to not worry excessively about the actual
scores, which turn out to be almost irrelevant.

Solution 193 (TSTST 2018). The following solution is due to Brian
Lawrence. We will prove the result with the generality of any measurable
set P (rather than a polygon). For a vector v in the plane, write P + v for the
translate of P by v.

Suppose P is a polygon of area 1, and ε > 0 is a constant, such that for any
translate Q = P+v, where v has length exactly 1

100 , the intersection of P and
Q has area at least 1− ε. The problem asks us to prove a lower bound on ε.

Lemma. Fix a sequence of n vectors v1, v2, …, vn, each of length 1
100 . A

grasshopper starts at a random point x of P, and makes n jumps to x+ v1 +
· · ·+ vn. Then it remains in P with probability at least 1− nε.

Proof. In order for the grasshopper to leave P at step i, the grasshopper’s
position before step i must be inside the difference set P\(P − vi). Since this
difference set has area at most ε, the probability the grasshopper leaves P
at step i is at most ε. Summing over the n steps, the probability that the
grasshopper ever manages to leave P is at most nε.

Corollary. Fix a vector w of length at most 8. A grasshopper starts at
a random point x of P, and jumps to x + w. Then it remains in P with
probability at least 1− 800ε.

Proof. Apply the previous lemma with 800 jumps. Any vector w of length at
most 8 can be written as w = v1 + v2 + · · · + v800, where each vi has length
exactly 1

100 .

Now consider the process where we select a random starting point x ∈ P
for our grasshopper, and a random vector w of length at most 8 (sampled
uniformly from the closed disk of radius 8). Let q denote the probability of
staying inside P we will bound q from above and below.

• On the one hand, suppose we pick w first. By the previous corollary,
q ≥ 1− 800ε (irrespective of the chosen w).

• On the other hand, suppose we pick x first. Then the possible landing
points x + w are uniformly distributed over a closed disk of radius 8,
which has area 64π. The probability of landing in P is certainly at most
[P]
64π .
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Consequently, we deduce

1− 800ε ≤ q ≤ [P]
64π

=⇒ ε >
1− [P]

64π

800
> 0.001

as desired.

Remark. The choice of 800 jumps is only for concreteness; any constant n
for which π(n/100)2 > 1 works. I think n = 98 gives the best bound following
this approach.

Solution 194 (USAMO 2017). The answer is c <
√
2. Here is a solution

with Calvin Deng.
The construction for any c <

√
2 can be done as follows. Checkerboard color

the lattice points and label the black ones with 1. The white points then form
a copy of Z2 again scaled up by

√
2 so we can repeat the procedure with 2 on

half the resulting points. Continue this dyadic construction until a large N for
which cN < 2

1
2 (N−1), at which point we can just label all the points with N .

I’ll now prove that c =
√
2 (and hence c ≥

√
2) can’t be done.

Claim. It is impossible to fill a 2n × 2n square with labels not exceeding 2n.

The case n = 1 is clear. So now assume it’s true up to n − 1; and assume
for contradiction a 2n× 2n square S only contains labels up to 2n. (Of course
every 2n−1 × 2n−1 square contains an instance of a label at least 2n− 1.)

A

B

2 1 2 1

1 5 1 3

2 1 2 1

1 3 1 4

6

Now, we contend there are fewer than four copies of 2n:

Lemma. In a unit square, among any four points, two of these points have
distance ≤ 1 apart.
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Proof. Look at the four rays emanating from the origin and note that two of
them have included angle ≤ 90◦.

So WLOG the northwest quadrant has no 2n’s. Take a 2n− 1 in the north-
west and draw a square of size 2n−1 × 2n−1 directly right of it (with its top
edge coinciding with the top of S). Then A can’t contain 2n − 1, so it must
contain a 2n label; that 2n label must be in the northeast quadrant.

Then we define a square B of size 2n−1 × 2n−1 as follows. If 2n − 1 is at
least as high 2n, let B be a 2n−1 × 2n−1 square which touches 2n − 1 north
and is bounded east by 2n. Otherwise let B be the square that touches 2n− 1
west and is bounded north by 2n. We then observe B can neither have 2n− 1
nor 2n in it, contradiction.

Remark. To my knowledge, essentially all density arguments fail because of
hexagonal lattice packing.

Solution 195 (USA TST 2019). The answer is yes (and 0.9 is arbitrary).

First grid-based solution. The following solution is due to Brian Lawrence.
For illustration reasons, we give below a figure of a snake of length 89 turning
around in an 11× 11 square (which generalizes readily to odd n). We will see
that a snake of length (n− 1)(n− 2)− 1 can turn around in an n× n square,
so this certainly implies the problem.

Figure 1 Figure 2 Figure 3 Figure 4

Figure 5 Figure 6 Figure 7 Figure 8

Figure 9 Figure 10 Figure 11 Figure 12
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Use the obvious coordinate system with (1, 1) in the bottom left. Start with
the snake as shown in Figure 1, then have it move to (2, 1), (2, n), (n, n − 1)
as in Figure 2. Then, have the snake shift to the position in Figure 3; this is
possible since the snake can just walk to (n, n), then start walking to the left
and then follow the route; by the time it reaches the ith row from the top its
tail will have vacated by then. Once it achieves Figure 3, move the head of
the snake to (3, n) to achieve Figure 4.

In Figure 5 and 6, the snake begins to “deform” its loop continuously. In
general, this deformation by two squares is possible in the following way. The
snake walks first to (1, n) then retraces the steps left by its tail, except when it
reaches (n− 1, 3) it makes a brief detour to (n− 2, 3), (n− 2, 4), (n− 1, 4) and
continues along its way; this gives the position in Figure 5. Then it retraces the
entire loop again, except that when it reaches (n−4, 4) it turns directly down,
and continues retracing its path; thus at the end of this second revolution, we
arrive at Figure 6.

By repeatedly doing perturbations of two cells, we can move move all the
“bumps” in the path gradually to protrude from the right; Figure 7 shows a
partial application of the procedure, with the final state as shown in Figure 8.

In Figure 9, we stretch the bottom-most bump by two more cells; this short-
ens the “tail” by two units, which is fine. Doing this for all (n − 3)/2 bumps
arrives at the situation in Figure 10, with the snake’s head at (3, n). We then
begin deforming the turns on the bottom-right by two steps each as in Fig-
ure 11, which visually will increase the length of the head. Doing this arrives
finally at the situation in Figure 12. Thus the snake has turned around.

Second solution phrased using graph theory (Nikolai Beluhov). Let G be
any undirected graph. Consider a snake of length k lying within G, with each
segment of the snake occupying one vertex, consecutive segments occupying
adjacent vertices, and no two segments occupying the same vertex. One move
of the snake consists of the snake’s head advancing to an adjacent empty vertex
and segment i advancing to the vertex of segment i− 1 for i = 2, 3, …, k.

The solution proceeds in two stages. First we construct a planar graph G
such that it is possible for a snake that occupies nearly all of G to turn around
inside G. Then we construct a subgraph H of a grid adjacency graph such
that H is isomorphic to G and H occupies nearly all of the grid.

For the first stage of the solution, we construct G as follows.
Let r and ` be positive integers. Start with r disjoint main paths p1, p2, …,

pr, each of length at least `, with pi leading from Ai to Bi for i = 1, 2, …, r.
Add to those r linking paths, one leading from Bi to Ai+1 for each i = 1, 2,
…, r− 1, and one leading from Br to A1. Finally, add to those two families of
transit paths, with one family containing one transit path joining A1 to each
of A2, A3, …, Ar and the other containing one path joining Br to each of B1,
B2, …, Br−1. We require that all paths specified in the construction have no
interior vertices in common, with the exception of transit paths in the same
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family.
We claim that a snake of length (r − 1)` can turn around inside G.
To this end, let the concatenation A1B1A2B2 . . . ArBr of all main and link-

ing paths be the great cycle. We refer to A1B1A2B2 . . . ArBr as the counter-
clockwise orientation of the great cycle, and to BrArBr−1Ar−1 . . . B1A1 as its
clockwise orientation.

Place the snake so that its tail is at A1 and its body extends counterclockwise
along the great cycle. Then let the snake manoeuvre as follows. (We track
only the snake’s head, as its movement uniquely determines the movement of
the complete body of the snake.)

At phase 1, advance counterclockwise along the great cycle to Br−1, take a
detour along a transit path to Br, and advance clockwise along the great cycle
to Ar.

For i = 2, 3, …, r − 1, at phase i, take a detour along a transit path to A1,
advance counterclockwise along the great cycle to Br−i, take a detour along a
transit path to Br, and advance clockwise along the great cycle to Ar−i+1.

At phase r, simply advance clockwise along the great cycle to A1.
For the second stage of the solution, let n be a sufficiently large positive

integer. Consider an n×n grid S. Number the columns of S from 1 to n from
left to right, and its rows from 1 to n from bottom to top.

Let a1, a2, …, ar+1 be cells of S such that all of a1, a2, …, ar+1 lie in column
2, a1 lies in row 2, ar+1 lies in row n−1, and a1, a2, …, ar+1 are approximately
equally spaced. Let b1, b2, …, br be cells of S such that all of b1, b2, …, br lie
in column n− 2 and bi lies in the row of ai+1 for i = 1, 2, …, r.

Construct H as follows. For i = 1, 2, …, r, let the main path from ai to
bi fill up the rectangle bounded by the rows and columns of ai and bi nearly
completely. Then every main path is of length approximately 1

rn
2.

For i = 1, 2, …, r − 1, let the linking path that leads from bi to ai+1 lie
inside the row of bi and ai+1 and let the linking path that leads from br to a1
lie inside row n, column n, and row 1.

Lastly, let the union of the first family of transit paths be column 1 and
let the union of the second family of transit paths be column n− 1, with the
exception of their bottommost and topmost squares.

As in the first stage of the solution, by this construction a snake of length k
approximately equal to r−1

r n2 can turn around inside an n× n grid S. When
r is fixed and n tends to infinity, k

n2 tends to r−1
r . Furthermore, when r tends

to infinity, r−1
r tends to 1. This gives the answer.
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18 Challenge Number Theory
Problems

§18.1 Problems
Problem 196 (USAMO 2018). Let p be a prime, and let a1, …, ap be integers.
Show that there exists an integer k such that the numbers

a1 + k, a2 + 2k, . . . , ap + pk

produce at least 1
2p distinct remainders upon division by p.

Problem 197 (TSTST 2018). As usual, let Z[x] denote the set of single-
variable polynomials in x with integer coefficients. Find all functions θ : Z[x]→
Z such that for any polynomials p, q ∈ Z[x],

• θ(p+ 1) = θ(p) + 1, and

• if θ(p) 6= 0 then θ(p) divides θ(p · q).

Problem 198 (TSTST 2018). For which positive integers b > 2 do there exist
infinitely many positive integers n such that n2 divides bn + 1?

Problem 199 (USA TST 2018). Let n ≥ 2 be a positive integer, and let
σ(n) denote the sum of the positive divisors of n. Prove that the nth smallest
positive integer relatively prime to n is at least σ(n), and determine for which
n equality holds.

Problem 200 (USA TST 2017). Prove that there are infinitely many triples
(a, b, p) of integers, with p prime and 0 < a ≤ b < p, for which p5 divides
(a+ b)p − ap − bp.

Problem 201 (TSTST 2015). Let P be the set of all primes, and let M be a
non-empty subset of P . Suppose that for any non-empty subset {p1, p2, . . . , pk}
of M , all prime factors of p1p2 . . . pk + 1 are also in M . Prove that M = P .

Problem 202 (USA TST 2019). Let Z/nZ denote the set of integers consid-
ered modulo n (hence Z/nZ has n elements). Find all positive integers n for
which there exists a bijective function g : Z/nZ → Z/nZ, such that the 101
functions

g(x), g(x) + x, g(x) + 2x, . . . , g(x) + 100x

are all bijections on Z/nZ.
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§18.2 Solutions

Solution 196 (USAMO 2018). For each k = 0, . . . , p − 1 let Gk be the
graph on {1, . . . , p} where we join {i, j} if and only if

ai + ik ≡ aj + jk (mod p) ⇐⇒ k ≡ −ai − aj
i− j

(mod p).

So we want a graph Gk with at least 1
2p connected components.

However, each {i, j} appears in exactly one graph Gk, so some graph has at
most 1

p

(
p
2

)
= 1

2 (p−1) edges (by “pigeonhole”). This graph has at least 1
2 (p+1)

connected components, as desired.

Remark. Here is an example for p = 5 showing equality can occur:
0 0 3 4 3
0 1 0 2 2
0 2 2 0 1
0 3 4 3 0
0 4 1 1 4

 .

Ankan Bhattacharya points out more generally that ai = i2 is sharp in general.

Solution 197 (TSTST 2018). The answer is θ : p 7→ p(c), for each choice
of c ∈ Z. Obviously these work, so we prove these are the only ones. In what
follows, x ∈ Z[x] is the identity polynomial, and c = θ(x).

First solution (Merlijn Staps). Consider an integer n 6= c. Because x − n |
p(x)− p(n), we have

θ(x− n) | θ(p(x)− p(n)) =⇒ c− n | θ(p(x))− p(n).

On the other hand, c − n | p(c) − p(n). Combining the previous two gives
c − n | θ(p(x)) − p(c), and by letting n large we conclude θ(p(x)) − p(c) = 0,
so θ(p(x)) = p(c).

Second solution. First, we settle the case deg p = 0. In that case, from
the second property, θ(m) = m + θ(0) for every integer m ∈ Z (viewed as a
constant polynomial). Thus m+ θ(0) | 2m+ θ(0), hence m+ θ(0) | −θ(0), so
θ(0) = 0 by taking m large. Thus θ(m) = m for m ∈ Z.

Next, we address the case of deg p = 1. We know θ(x+ b) = c+ b for b ∈ Z.
Now for each particular a ∈ Z, we have

c+ k | θ(x+ k) | θ(ax+ ak) = θ(ax) + ak =⇒ c+ k | θ(ax)− ac.
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for any k 6= −c. Since this is true for large enough k, we conclude θ(ax) = ac.
Thus θ(ax+ b) = ac+ b.

We now proceed by induction on deg p. Fix a polynomial p and assume it’s
true for all p of smaller degree. Choose a large integer n (to be determined
later) for which p(n) 6= p(c). We then have

p(c)− p(n)
c− n

= θ

(
p− p(n)
x− n

)
| θ (p− p(n)) = θ(p)− p(n).

Subtracting off c− n times the left-hand side gives

p(c)− p(n)
c− n

| θ(p)− p(c).

The left-hand side can be made arbitrarily large by letting n → ∞, since
deg p ≥ 2. Thus θ(p) = p(c), concluding the proof.

Solution 198 (TSTST 2018). This problem is sort of the union of IMO
1990/3 and IMO 2000/5.

The answer is any b such that b + 1 is not a power of 2. In the forwards
direction, we first prove more carefully the following claim.

Claim. If b+ 1 is a power of 2, then the only n which is valid is n = 1.

Proof. Assume n > 1 and let p be the smallest prime dividing n. We cannot
have p = 2, since then 4 | bn + 1 ≡ 2 (mod 4). Thus,

b2n ≡ 1 (mod p)

so the order of b (mod p) divides gcd(2n, p − 1) = 2. Hence p | b2 − 1 =
(b− 1)(b+ 1).

But since b+ 1 was a power of 2, this forces p | b− 1. Then 0 ≡ bn + 1 ≡ 2
(mod p), contradiction.

On the other hand, suppose that b+1 is not a power of 2 (and that b > 2).
We will inductively construct an infinite sequence of distinct primes p0, p1, …,
such that the following two properties hold for each k ≥ 0:

• p20 . . . p
2
k−1pk | bp0...pk−1 + 1,

• and hence p20 . . . p2k−1p
2
k | bp0...pk−1pk + 1 by exponent lifting lemma.

This will solve the problem.
Initially, let p0 be any odd prime dividing b+ 1. For the inductive step, we

contend there exists an odd prime q /∈ {p0, . . . , pk} such that q | bp0...pk + 1.
Indeed, this follows immediately by Zsigmondy theorem since p0 . . . pk divides
bp0...pk−1 + 1. Since (bp0...pk)q ≡ bp0...pk (mod q), it follows we can then take
pk+1 = q. This finishes the induction.
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To avoid the use of Zsigmondy, one can instead argue as follows: let p = pk
for brevity, and let c = bp0...pk−1 . Then cp+1

c+1 = cp−1− cp−2 + · · ·+1 has GCD
exactly p with c + 1. Moreover, this quotient is always odd. Thus as long as
cp+1 > p · (c+1), there will be some new prime dividing cp+1 but not c+1.
This is true unless p = 3 and c = 2, but we assumed b > 2 so this case does
not appear.

Remark (On new primes). In going from n2 | bn+1 to (nq)2 | bnq+1, one does
not necessarily need to pick a q such that q - n, as long as νq(n2) < νq(b

n+1).
In other words it suffices to just check that bn+1

n2 is not a power of 2 in this
process.

However, this calculation is a little more involved with this approach. One
proceeds by noting that n is odd, hence ν2(b

n + 1) = ν2(b + 1), and thus
bn+1
n2 = 2ν2(b+1) ≤ b+ 1, which is a little harder to bound than the analogous
cp + 1 > p · (c+ 1) from the previous solution.

Solution 199 (USA TST 2018). The equality case is n = pe for p prime
and a positive integer e. It is easy to check that this works.

First solution. In what follows, by [a, b] we mean {a, a+ 1, . . . , b}. First, we
make the following easy observation.

Claim. If a and d are positive integers, then precisely ϕ(d) elements of [a, a+
d− 1] are relatively prime to d.

Let d1, d2, …, dk denote denote the divisors of n in some order. Consider
the intervals

I1 = [1, d1],

I2 = [d1 + 1, d1 + d2]

...
Ik = [d1 + · · ·+ dk−1 + 1, d1 + · · ·+ dk].

of length d1, . . . , dk respectively. The jth interval will have exactly ϕ(dj)
elements which are relatively prime dj , hence at most ϕ(dj) which are relatively
prime to n. Consequently, in I =

⋃k
j=1 Ik there are at most

k∑
j=1

ϕ(dj) =
∑
d|n

ϕ(d) = n

integers relatively prime to n. On the other hand I = [1, σ(n)] so this implies
the inequality.

270

https://aops.com/community/p9513094


18 Challenge Number Theory Problems May 18, 2025

We see that the equality holds for n = pe. Assume now p < q are distinct
primes dividing n. Reorder the divisors di so that d1 = q. Then p, q ∈ I1,
and so I1 should contain strictly fewer than ϕ(d1) = q − 1 elements relatively
prime to n, hence the inequality is strict.

Second solution (Ivan Borsenco and Evan Chen). Let n = pe11 . . . pekk , where
p1 < p2 < . . . . We are going to assume k ≥ 2, since the k = 1 case was resolved
in the very beginning, and prove the strict inequality.

For a general N , the number of relatively prime integers in [1, N ] is given
exactly by

f(N) = N −
∑
i

⌊
N

pi

⌋
+
∑
i<j

⌊
N

pipj

⌋
− . . .

according to the inclusion-exclusion principle. So, we wish to show that
f(σ(n)) < n (as k ≥ 2). Discarding the error terms from the floors (not-
ing that we get at most 1 from the negative floors) gives

f(N) < 2k−1 +N −
∑
i

N

pi
+
∑
i<j

N

pipj
− . . .

= 2k−1 +N
∏
i

(
1− p−1

i

)
= 2k−1 +

∏
i

(
1− p−1

i

) (
1 + pi + p2i + · · ·+ peii

)
= 2k−1 +

∏
i

(
peii − p

−1
i

)
.

The proof is now divided into two cases. If k = 2 we have

f(N) < 2 +
(
pe11 − p

−1
1

) (
pe22 − p

−1
2

)
= 2 + n− pe22

p1
− pe11

p2
+

1

p1p2

≤ 2 + n− p2
p1
− p1
p2

+
1

p1p2

= n+
1− (p1 − p2)2

p1p2
≤ n.

On the other hand if k ≥ 3 we may now write

f(N) < 2k−1 +

[
k−1∏
i=2

(peii )

] (
pe11 − p

−1
1

)
= 2k−1 + n−

pe22 . . . pekk
p1

≤ 2k−1 + n− p2p3 . . . pk
p1

.
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If p1 = 2, then one can show by induction that p2p3 . . . pk ≥ 2k+1 − 1, which
implies the result. If p1 > 2, then one can again show by induction p3 . . . pk ≥
2k − 1 (since p3 ≥ 7), which also implies the result.

Solution 200 (USA TST 2017). The key claim is that if p ≡ 1 (mod 3),
then

p(x2 + xy + y2)2 divides (x+ y)p − xp − yp

as polynomials in x and y. Since it’s known that one can select a and b such
that p2 | a2 + ab+ b2, the conclusion follows. (The theory of quadratic forms
tells us we can do it with p2 = a2 + ab + b2; Thue’s lemma lets us do it by
solving x2 + x+ 1 ≡ 0 (mod p2).)

To prove this, it is the same to show that

(x2 + x+ 1)2 divides F (x) := (x+ 1)p − xp − 1.

since the binomial coefficients
(
p
k

)
are clearly divisible by p. Let ζ be a third

root of unity. Then F (ζ) = (1 + ζ)p − ζp − 1 = −ζ2 − ζ − 1 = 0. Moreover,
F ′(x) = p(x+ 1)p−1 − pxp−1, so F ′(ζ) = p− p = 0. Hence ζ is a double root
of F as needed.

(Incidentally, p = 2017 works!)

Remark. One possible motivation for this solution is the case p = 7. It is
nontrivial even to prove that p2 can divide the expression if we exclude the
situation a + b = p (which provably never achieves p3). As p = 3, 5 fails
considering the p = 7 polynomial gives

(x+ 1)7 − x7 − 1 = 7x(x+ 1)
(
x4 + 2x3 + 3x2 + 2x+ 1

)
.

The key is now to notice that the last factor is (x2 + x + 1)2, which suggests
the entire solution.

In fact, even if p ≡ 2 (mod 3), the polynomial x2 + x + 1 still divides
(x+ 1)p − xp − 1. So even the p = 5 case can motivate the main idea.

Solution 201 (TSTST 2015). The following solution was found by user
Aiscrim on AOPS.

Obviously |M | = ∞. Assume for contradiction p /∈ M . We say a prime
q ∈ M is sparse if there are only finitely many elements of M which are q
(mod p) (in particular there are finitely many sparse primes).

Now let C be the product of all sparse primes (note p - C). First, set a0 = 1.
For k ≥ 0, consider then the prime factorization of the number

Cak + 1.
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No prime in its factorization is sparse, so consider the number ak+1 obtained
by replacing each prime in its factorization with some arbitrary rep-
resentative of that prime’s residue class. In this way we select a number
ak+1 such that

• ak+1 ≡ Cak + 1 (mod p), and

• ak+1 is a product of distinct primes in M .

In particular, ak ≡ Ck + Ck−1 + · · ·+ 1 (mod p)
But since C 6≡ 0 (mod p), we can find a k such that ak ≡ 0 (mod p) (namely,

k = p− 1 if C ≡ 1 and k = p− 2 else) which is clearly impossible since ak is a
product of primes in M !

Solution 202 (USA TST 2019). Call a function g valiant if it obeys this
condition. We claim the answer is all numbers relatively prime to 101!.

The construction is to just let g be the identity function.
Before proceeding to the converse solution, we make a long motivational

remark.

Remark (Motivation for both parts). The following solution is dense, and
it is easier to think about some small cases first, to motivate the ideas. We
consider the result where 101 is replaced by 2 or 3.

• If we replaced 101 with 2, you can show 2 - n easily: write∑
x

x ≡
∑
x

g(x) ≡
∑
x

(g(x) + x) (mod n)

which implies
0 ≡

∑
x

x =
1

2
n(n+ 1) (mod n)

which means 1
2n(n+ 1) ≡ 0 (mod n), hence n odd.

• If we replaced 101 with 3, then you can try a similar approach using
squares, since

0 ≡
∑
x

[
(g(x) + 2x)

2 − 2 (g(x) + x)
2
+ g(x)2

]
(mod n)

=
∑
x

2x2 = 2 · n(n+ 1)(2n+ 1)

6

which is enough to force 3 - n.

We now present several different proofs of the converse, all of which gener-
alize the ideas contained here. In everything that follows we assume n > 1 for
convenience.

273

https://aops.com/community/p11419598


May 18, 2025 The OTIS Excerpts, by Evan Chen

First solution (original one). The proof is split into two essentially orthog-
onal claims, which we state as lemmas.
Lemma (Lemma I: elimination of g). Assume valiant g : Z/nZ→ Z/nZ exists.
Then

k!
∑

x∈Z/nZ

xk ≡ 0 (mod n)

for k = 0, 1, . . . , 100.
Proof. Define gx(T ) = g(x) + Tx for any integer T . If we view gx(T )

k as a
polynomial in Z[T ] of degree k with leading coefficient xk, then taking the kth
finite difference implies that, for any x,

k!xk =

(
k

0

)
gx(k)

k−
(
k

1

)
gx(k−1)k+

(
k

2

)
gx(k−2)k−· · ·+(−1)k

(
k

k

)
gx(0)

k.

On the other hand, for any 1 ≤ k ≤ 100 we should have∑
x

gx(0)
k ≡

∑
x

gx(1)
k ≡ · · · ≡

∑
x

gx(k)
k

≡ Sk := 0k + · · ·+ (n− 1)k (mod n)

by the hypothesis. Thus we find

k!
∑
x

xk ≡
[(
k

0

)
−
(
k

1

)
+

(
k

2

)
− · · ·

]
Sk ≡ 0 (mod n)

for any 1 ≤ k ≤ 100, but also obviously for k = 0.

We now prove the following self-contained lemma.
Lemma (Lemma II: power sum calculation). Let p be a prime, and let n, M
be positive integers such that

M divides 1k + 2k + · · ·+ nk

for k = 0, 1, . . . , p− 1. If p | n then νp(M) < νp(n).
Proof. The hypothesis means that that any polynomial f(T ) ∈ Z[T ] with
deg f ≤ p− 1 will have

∑n
x=1 f(x) ≡ 0 (mod M). In particular, we have

0 ≡
n∑

x=1

(x− 1)(x− 2) · · · (x− (p− 1))

= (p− 1)!

n∑
x=1

(
x− 1

p− 1

)
= (p− 1)!

(
n

p

)
(mod M).

But now νp(M) ≤ νp(
(
n
p

)
) = νp(n)− 1.

Now assume for contradiction that valiant g : Z/nZ → Z/nZ exists, and
p ≤ 101 is the smallest prime dividing n. Lemma I implies that k!

∑
x x

k ≡ 0
(mod n) for k = 1, . . . , p− 1 and hence

∑
x x

k ≡ 0 (mod n) too. Thus M = n
holds in the previous lemma, impossible.
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A second solution. Both lemmas above admit variations where we focus on
working modulo pe rather than working modulo n.

Lemma (Lemma I’). Assume valiant g : Z/nZ → Z/nZ exists. Let p ≤ 101
be a prime, and e = νp(n). Then∑

x∈Z/nZ

xk ≡ 0 (mod pe)

for k = 0, 1, . . . , p− 1.

Proof. This is weaker than Lemma I, but we give an independent specialized
proof. Begin by writing∑

x

(g(x) + Tx)
k ≡

∑
x

xk (mod pe).

Both sides are integer polynomials in T , which vanish at T = 0, 1, . . . , p − 1
by hypothesis (since p− 1 ≤ 100).

We now prove the following more general fact: if f(T ) ∈ Z[T ] is an integer
polynomial with deg f ≤ p− 1, such that f(0) ≡ · · · ≡ f(p− 1) ≡ 0 (mod pe),
then all coefficients of f are divisible by pe. The proof is by induction on
e ≥ 1. When e = 1, this is just the assertion that the polynomial has at most
deg f roots modulo p. When e ≥ 2, we note that the previous result implies
all coefficients are divisible by p, and then we divide all coefficients by p.

Applied here, we have that all coefficients of

f(T ) :=
∑
x

(g(x) + Tx)
k −

∑
x

xk

are divisible by pe. The leading T k coefficient is
∑

k x
k as desired.

Lemma (Lemma II’). If e ≥ 1 is an integer, and p is a prime, then

νp
(
1p−1 + 2p−1 + · · ·+ (pe − 1)p−1

)
= e− 1.

Proof. First, note that the cases where p = 2 or e = 1 are easy; since if p = 2

we have
∑2e−1

x=0 x ≡ 2e−1(2e − 1) ≡ −2e−1 (mod 2e), while if e = 1 we have
1p−1 + · · ·+ (p− 1)p−1 ≡ −1 (mod p). Henceforth assume that p > 2, e > 1.

Let g be an integer which is a primitive root modulo pe. Then, we can sum
the terms which are relatively prime to p as

S0 :=
∑

gcd(x,p)=1

xp−1 ≡
ϕ(pe)∑
i=1

g(p−1)·i ≡ gp
e−1(p−1)2 − 1

gp−1 − 1
(mod pe)

which implies νp(S0) = e − 1, by lifting the exponent. More generally, for
r ≥ 1 we may set

Sr :=
∑

νp(x)=r

xp−1 ≡ (pr)p−1

ϕ(pe−r)∑
i=1

g(p−1)·i
r (mod pe)
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where gr is a primitive root modulo pe−r. Repeating the exponent-lifting
calculation shows that νp(Sr) = r(p− 1) + ((e− r)− 1) > e, as needed.

Assume to the contrary that p ≤ 101 is a prime dividing n, and a valiant
g : Z/nZ→ Z/nZ exists. Take k = p− 1 in Lemma I’ to contradict Lemma II’

A third remixed solution. We use Lemma I and Lemma II’ from before. As
before, assume g : Z/nZ→ Z/nZ is valiant, and n has a prime divisor p ≤ 101.
Also, let e = νp(n).

Then (p− 1)!
∑

x x
p−1 ≡ 0 (mod n) by Lemma I, and now

0 ≡
∑
x

xp−1 (mod pe)

≡ n

pe

pe−1∑
x=1

xp−1 6≡ 0 (mod pe)

by Lemma II’, contradiction.

A fourth remixed solution. We also can combine Lemma I’ and Lemma II.
As before, assume g : Z/nZ→ Z/nZ is valiant, and let p be the smallest prime
divisor of n.

Assume for contradiction p ≤ 101. By Lemma I’ we have∑
x

xk ≡ 0 (mod pe)

for k = 0, . . . , p− 1. This directly contradicts Lemma II with M = pe.
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