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The solutions to all four problems we mentioned are included in full below. In addition
to showing how to solve the problems, we think they are good templates to show how
we expect a correct solution to be written. (Actually, they are a little bit on the verbose
side, and during the competition you could get away with being more succinct. However,
if in doubt it is always better to include more details.)
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§1 Solution to 2010/J6

We prove that it is not even possible that AB, AC, CI, IB are all integers.

B

A C

I

D

E

First, we claim that ∠BIC = 135◦. To see why, note that

∠IBC + ∠ICB =
∠B
2

+
∠C
2

=
90◦

2
= 45◦.

So, ∠BIC = 180◦ − (∠IBC + ∠ICB) = 135◦, as desired.
We now proceed by contradiction. The Pythagorean theorem implies

BC2 = AB2 + AC2

and so BC2 is an integer. However, the law of cosines gives

BC2 = BI2 + CI2 − 2BI · CI cos∠BIC

= BI2 + CI2 + BI · CI ·
√

2.

However,
√

2 is irrational, and yet the above equations imply that
√

2 = (AB2+AC2)−(BI2+CI2)
BI·CI .

This produces the desired contradiction.

This problem was proposed by Zuming Feng.
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§2 Solution to 2012/J2

The answer is all n ≥ 13.
Define (Fn) as the sequence of Fibonacci numbers, by F1 = F2 = 1 and Fn+1 =

Fn + Fn−1. We will find that Fibonacci numbers show up naturally when we work
through the main proof, so we will isolate the following calculation now to make the
subsequent solution easier to read.

Lemma. For positive integers m, we have Fm ≤ m2 if and only if m ≤ 12.

Proof. A table of the first 14 Fibonacci numbers is given below.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

1 1 2 3 5 8 13 21 34 55 89 144 233 377

By examining the table, we see that Fm ≤ m2 is true for m = 1, 2, . . . 12,
and in fact F12 = 122 = 144. However, Fm > m2 for m = 13 and m = 14.

Now it remains to prove that Fm > m2 for m ≥ 15. The proof is by induction
with base cases m = 13 and m = 14 being checked already. For the inductive
step, if m ≥ 15 then we have

Fm = Fm−1 + Fm−2 > (m− 1)2 + (m− 2)2

= 2m2 − 6m + 5 = m2 + (m− 1)(m− 5) > m2

as desired.

We now proceed to the original problem. Denote by (†) the standing assumption that
max(a1, a2, . . . , an) ≤ n ·min(a1, a2, . . . , an). The solution is divided into two parts.

Proof that all n ≥ 13 have the property. We first show now that every n ≥ 13 has
the desired property. Suppose for contradiction that no three numbers are the sides
of an acute triangle. Assume without loss of generality (by sorting the numbers) that
a1 ≤ a2 ≤ · · · ≤ an. Then since ai−1, ai, ai+1 are not the sides of an acute triangle for
each i ≥ 2, we have that a2i+1 ≥ a2i + a2i−1; writing this out gives

a23 ≥ a22 + a21 ≥ 2a21

a24 ≥ a23 + a22 ≥ 2a21 + a21 = 3a21

a25 ≥ a24 + a23 ≥ 3a21 + 2a21 = 5a21

a26 ≥ a25 + a24 ≥ 5a21 + 3a21 = 8a21

and so on. The Fibonacci numbers appear naturally and by induction, we conclude that
a2i ≥ Fia

2
1. In particular, a2n ≥ Fna

2
1.

However, we know max(a1, . . . , an) = an and min(a1, . . . , an) = a1, so (†) reads an ≤
n · a1. Therefore we have Fn ≤ n2, and so n ≤ 12, contradiction!

Proof that no n ≤ 12 have the property. Assume that n ≤ 12. The above calculation
also suggests a way to pick the counterexample: we choose ai =

√
Fi for every i. Then

min(a1, . . . , an) = a1 = 1 and max(a1, . . . , an) =
√
Fn, so (†) is true as long as n ≤ 12.

And indeed no three numbers form the sides of an acute triangle: if i < j < k, then
a2k = Fk = Fk−1 + Fk−2 ≥ Fj + Fi = a2j + a2i .

This problem was proposed by Titu Andreescu.
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§3 Solution to 2014/J5

The answer is k = 6. The solution is divided into two parts.

Proof that A cannot win if k = 6. We give a strat-
egy for B to prevent A’s victory. Shade in every
third cell, as shown in the right figure. Then A can
never cover two shaded cells simultaneously on her
turn. Now suppose B always removes a counter
on a shaded cell (and otherwise does whatever he
wants). Then he can prevent A from ever getting
six consecutive counters, because any six consecu-
tive cells contain two shaded cells.

Example of a winning strategy for A when k = 5.
We describe a winning strategy for A explicitly. Note that after B’s first turn there is
one counter, so then A may create an equilateral triangle, and hence after B’s second
turn there are two consecutive counters. Then, on her third turn, A places a pair of
counters two spaces away on the same line. Label the two inner cells x and y as shown
below.

x y

Now it is B’s turn to move; in order to avoid losing immediately, he must remove either
x or y. Then on any subsequent turn, A can replace x or y (whichever was removed) and
add one more adjacent counter. This continues until either x or y has all its neighbors
filled (we ask A to do so in such a way that she avoids filling in the two central cells
between x and y as long as possible).

So, let’s say without loss of generality (by symmetry) that x is completely surrounded
by tokens. Again, B must choose to remove x (or A wins on her next turn). After x is
removed by B, consider the following figure.

x y

We let A play in the two marked green cells. Then, regardless of what move B plays,
one of the two choices of moves marked in red lets A win. Thus, we have described a
winning strategy when k = 5 for A.

This problem was proposed by Palmer Mebane.
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§4 Solution to 2016/J2

We will prove that n = 20 + 219 = 524308 fits the bill.

Claim. For this n we have 5n ≡ 520 (mod 1020).

Proof. Since 520 divides 5n − 520, we just need to prove 220 divides 5n − 520.
This may be factored as

520+219 − 520 = 520
(

52
19 − 1

)
= 520 (5− 1) (5 + 1)

(
52 + 1

) (
54 + 1

)
. . .

(
52

18
+ 1

)
and each factor in parentheses is even, as needed.1

Putting these two together now implies

5n ≡ 520 (mod 1020).

In other words, the last 20 digits of 5n will match the decimal representation of 520, with
leading zeros.

However, we have

520 =
1

220
· 1020 <

1

10002
· 1020 = 10−6 · 1020

and hence the first 6 of those 20 digits will all be zero. This completes the proof! (To
be concrete, it turns out that 520 = 95367431640625 and so the last 20 digits of 5n will
be 00000095367431640625.)

This problem was proposed by Evan Chen. Side note: despite the apparently simplicity
of the solution, less than 10% of contestants solved it. It is not easy at all.

One way to think of this: the first time the digit 0 appears at all is 58 = 390625. The
fact that 625 = 54 shows the key idea in miniature; 58 ≡ 625 (mod 10000). The above
problem uses the same approach with 4 replaced by the much larger 20, so that more
zeros appear.

1An alternative approach for students who know Euler’s theorem is to simply notice ϕ(220) = 219,

where ϕ is the Euler phi function. Therefore 52
19

≡ 1 (mod 220) and so 52
19+20 ≡ 520 (mod 220).

The hands-on proof gives a tad more; since 5− 1 = 22, in fact 221 divides 52
19

− 1, not just 220.
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