Greedy Algorithms

Evan Chen

Greedy Algorithms For Zach Chroman

Evan Chen

March 21, 2016

SL 2004 A6

Problem

Greedy Algorithms

Evan Chen

$$f(x^2 + y^2 + 2f(xy)) = f(x + y)^2.$$

By placing y = 0

$$f(x^2 + 2f(0)) = f(x)^2$$

so now we can put

$$f(x^{2} + y^{2} + 2f(xy)) = f(x^{2} + y^{2} + 2xy + 2f(0)).$$

If a = x + y, b = xy then this is

$$f(a^2 - 2b + 2f(b)) = f(a^2 + 2f(0))$$
 $a^2 \ge 4b.$

So suppose there exists a *b* such that $2f(b) - 2b \neq 2f(0)$.

- Either the case where f(x) = x + *, get f(x) = x.
- *f* is periodic for large *x*.
 - Do work to narrow to done f constant for $x \gg 0$.
 - Can show $f(x) \in \{0, \pm 1\}$ for every x.

f(x) = x, f(x) = 0, and $f(x) = \begin{cases} +1 & x \notin S \\ -1 & x \in S \end{cases}$

where $S \subseteq (-\infty, -\frac{2}{3})$ is arbitrary.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?

Global vs. Local

Greedy Algorithms

Evan Chen

- Global methods: double-counting, linearity of expectation, etc. Graph metaphor: $\sum \text{deg } v = 2E$.
- Local methods: greedy algorithms.
 Graph metaphor: start at a vertex and start walking.

Greedy algorithm: you have a search space.

IMO 2014 Problem 6

Greedy Algorithms Evan Chen

Example (IMO 2014/6)

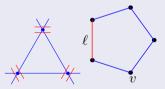
Prove that for all sufficiently large n, in any set of n lines in general position it is possible to colour at least \sqrt{n} lines blue in such a way that none of its finite regions has a completely blue boundary.

Strategy

Color lines blue until stuck.

Proof this strategy works.

Look at a maximal configuration. Claim that in here, at least \sqrt{n} lines are blue.



So suppose there k blue lines and n - k red lines. Then there are $\binom{k}{2}$ intersections of two blue lines. Moreover every red line is part of an almost-blue polygon. So can associate every red line to a blue intersection.

By "geometry", at most two red lines per blue vertex. Thus

$$\binom{k}{2} \ge \frac{1}{2}(n-k) \implies k \ge \sqrt{n}.$$

・白い ・ モ ・ ・ モ ・

Putnam example

Greedy Algorithms

Evan Chen

Example (Putnam 1979)

In the plane are n red points and n blue points, no three collinear. Prove we can join them with n segments, each joining a red point to a blue point, such that no two segments intersect.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Idea: do a "greedy" algorithm
- Start anywhere, and then break intersections.
- Experiment: this algorithm eventually terminates at a good state.
- Number of intersections is not a valid monovariant here.
- Sum of distances works as monovariant.

Dirac

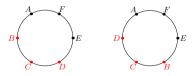
Greedy Algorithms

Evan Chen

Example (Dirac's Theorem)

Show that any graph on *n* vertices, where each vertex has degree at least n/2, has a Hamiltonian cycle.

- Start by arranging the vertices in a circle arbitrarily.
- Say a pair of adjacent vertices is bad if the two vertices are not neighbors of each other.
- Given a situation where there is at least one bad pair is it possible to decrease the number of bad pairs?
- Reflect a block of people: only disrupt two pairs.



Suppose DE is a bad pair. Then want to find a person B such that both DA and EB good.

This is possible by Pigeonhole.

PUMaC Finals

Greedy Algorithms Evan Chen

Problem (PUMaC Finals)

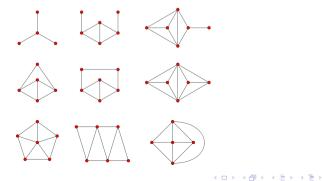
Let G be a graph and let k be a positive integer. A k-star is a set of k edges with a common endpoint and a k-matching is a set of k edges such that no two have a common endpoint. Prove that if G has more than $2(k-1)^2$ edges then it either has a k-star or a k-matching.

Line graph: suffices to show either K_k or empty graph on k vertices as a induced subgraph. Line graph has $\geq 2(k-1)^2$ vertices, but we need some bound on number of edges. It would suffice if

$$R(k,k) \leq 2(k-1)^2$$

but this is not true at all.

Need some condition on line graph: line graphs are claw-free, for example. Complete list of forbidden induced subgraphs:



PUMaC Finals

Greedy Algorithms

Evan Chen

Problem (PUMaC Finals)

Let G be a graph and let k be a positive integer. A k-star is a set of k edges with a common endpoint and a k-matching is a set of k edges such that no two have a common endpoint. Prove that if G has more than $2(k-1)^2$ edges then it either has a k-star or a k-matching.

Assume G has more than $2(k-1)^2$ edges but has all degrees $\leq k-1$. Take a maximal matching (\iff greedy grab edges). In each edge (v, w) in the matching, you have at most

$$1+2(2k-2)=2k-3$$

edges touching one of v, w.

Therefore, total number of edges is at most $(k-1)(2k-3) < 2(k-1)^2$. (In general: if looking for big matching, maximal matching is a very good thing to consider.)