## OTIS Mock Olympiad Exam Sample 02 USAMO

## Mock USAMO (4 hours)

USAMO 4. Let $A B C D$ be a convex quadrilateral. Assume that the incircle of triangle $A B D$ is tangent to $\overline{A B}, \overline{A D}, \overline{B D}$ at points $W, Z, K$. Also assume that the incircle of triangle $C B D$ is tangent to $\overline{C B}, \overline{C D}, \overline{B D}$ at points $X, Y, K$. Prove that quadrilateral $W X Y Z$ is cyclic.

USAMO 5. Positive integers $x_{1}, x_{2}, \ldots, x_{n}(n \geq 4)$ are arranged in a circle such that each $x_{i}$ divides the sum of the neighbors; that is,

$$
\frac{x_{i-1}+x_{i+1}}{x_{i}}=k_{i}
$$

is an integer for each $i$, where $x_{0}=x_{n}, x_{n+1}=x_{1}$. Prove that

$$
2 \leq \frac{k_{1}+\cdots+k_{n}}{n}<3 .
$$

USAMO 6. Let $m$ and $s$ be positive integers with $2 \leq s \leq 3 m^{2}$. Define a sequence $a_{1}, a_{2}, \ldots$ recursively by $a_{1}=s$ and

$$
a_{n+1}=2 n+a_{n} \quad(\text { for } n=1,2, \ldots) .
$$

Prove that if the numbers $a_{1}, a_{2}, \ldots, a_{m}$ are prime, then $a_{s-1}$ is also prime.

