OTIS Practice Exam Solutions

EVAN CHEN*

EXAM-SAMPLE-02-SOLN

Solve f(m+n) = f(m) + f(n) + mn for $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$.

Let c = f(1). Setting m = 1 we get f(n + 1) = f(n) + n + c. Hence,

$$f(n) = (1 + \dots + (n-1)) + nc = \binom{n}{2} + cn$$

for all n, by induction. This indeed works.

Let ABCD be a convex quadrilateral. Assume that the incircle of triangle ABD is tangent to \overline{AB} , \overline{AD} , \overline{BD} at points W, Z, K. Also assume that the incircle of triangle CBD is tangent to \overline{CB} , \overline{CD} , \overline{BD} at points X, Y, K. Prove that quadrilateral WXYZ is cyclic.

From the concurrence of the Gregonne point, it follows that lines WZ, XY, and BD concur at the harmonic conjugate T of K with respect to \overline{BC} . (One can also see the concurrence directly by applying Ceva and Menelaus.)

Then $TK^2 = TW \cdot TZ = TX \cdot TY$, as desired.

Alternatively, inversion at T sends WXYZ to a rectange, since the two incircles become parallel lines, while W^*X^* is the perpendicular bisector of B^*K , etc.

Positive integers x_1, x_2, \ldots, x_n $(n \ge 4)$ are arranged in a circle such that each x_i divides the sum of the neighbors; that is,

$$\frac{x_{i-1} + x_{i+1}}{x_i} = k_i$$

is an integer for each i, where $x_0 = x_n$, $x_{n+1} = x_1$. Prove that

$$2 \le \frac{k_1 + \dots + k_n}{n} < 3.$$

Lower bound is AM-GM.

For the upper bound, we prove $k_1 + \cdots + k_n \leq 3n - 1$ by induction on $n \geq 3$. The base case n = 3 is left as an exercise. There are two cases:

- If all x_i are equal, then $k_1 + \cdots + k_n = 2n \leq 3n 1$.
- Otherwise, let i be such that x_i is maximal. This requires $x_{i-1} + x_{i+1} = x_i$. Then deleting x_i gives a working configuration of n-1 numbers around a circle, and decreases $\sum k_i$ by 3, completing the induction.

^{*}Internal use: Olympiad Training for Individual Study (OTIS). Last update January 17, 2018.

Remark. Examples of equality cases, which motivate this solution:

- \bullet (1, 2, 3, 4, 5, 6, 7).
- (1, 2, 3, 4, 5, 6, 13, 7) (the one I found during exam).
- (1, 4, 7, 3, 8, 13, 5, 7, 2).

Let m and s be positive integers with $2 \le s \le 3m^2$. Define a sequence a_1, a_2, \ldots recursively by $a_1 = s$ and

$$a_{n+1} = 2n + a_n$$
 (for $n = 1, 2, ...$).

Prove that if the numbers a_1, a_2, \ldots, a_m are prime, then a_{s-1} is also prime.

The key idea is to prove by induction that a_n is in fact prime for all n = 1, 2, ..., s - 1. Consider the minimal positive integer $t \ge 1 + m$ such that a_t is not prime. Then the numbers $a_{2-t}, a_{3-t}, ..., a_{-1}, a_0, a_1, ..., a_{t-1}$ are all prime (where we permit negative indices). Let p denote the smallest prime factor of a_t ; then

$$p < \sqrt{a_t} = \sqrt{t^2 - t + k} \le \sqrt{t^2 - t + 3m^2} < \sqrt{t^2 - t + 3t(t - 1)} < 2t - 1.$$

So $p \le 2t - 2$, meaning we can find an integer $c \in [2 - t, t - 1]$ such that $c \equiv t \pmod{p}$. Then $a_c \equiv a_t \equiv 0 \pmod{p}$. As a_c is prime by assumption, this means $p = a_c \ge s$. Consequently $a_t^2 \ge p^2 \ge s^2$, whence $t \ge s$ as required.