OTIS Practice Exam Solutions

Evan Chen*
EXAM-SAMPLE-02-SOLN

Solve $f(m+n)=f(m)+f(n)+m n$ for $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$.

Let $c=f(1)$. Setting $m=1$ we get $f(n+1)=f(n)+n+c$. Hence,

$$
f(n)=(1+\cdots+(n-1))+n c=\binom{n}{2}+c n
$$

for all n, by induction. This indeed works.
Let $A B C D$ be a convex quadrilateral. Assume that the incircle of triangle $A B D$ is tangent to $\overline{A B}, \overline{A D}, \overline{B D}$ at points W, Z, K. Also assume that the incircle of triangle $C B D$ is tangent to $\overline{C B}, \overline{C D}, \overline{B D}$ at points X, Y, K. Prove that quadrilateral $W X Y Z$ is cyclic.

From the concurrence of the Gregonne point, it follows that lines $W Z, X Y$, and $B D$ concur at the harmonic conjugate T of K with respect to $\overline{B C}$. (One can also see the concurrence directly by applying Ceva and Menelaus.)

Then $T K^{2}=T W \cdot T Z=T X \cdot T Y$, as desired.
Alternatively, inversion at T sends $W X Y Z$ to a rectange, since the two incircles become parallel lines, while $W^{*} X^{*}$ is the perpendicular bisector of $B^{*} K$, etc.

Positive integers $x_{1}, x_{2}, \ldots, x_{n}(n \geq 4)$ are arranged in a circle such that each x_{i} divides the sum of the neighbors; that is,

$$
\frac{x_{i-1}+x_{i+1}}{x_{i}}=k_{i}
$$

is an integer for each i, where $x_{0}=x_{n}, x_{n+1}=x_{1}$. Prove that

$$
2 \leq \frac{k_{1}+\cdots+k_{n}}{n}<3
$$

Lower bound is AM-GM.
For the upper bound, we prove $k_{1}+\cdots+k_{n} \leq 3 n-1$ by induction on $n \geq 3$. The base case $n=3$ is left as an exercise. There are two cases:

- If all x_{i} are equal, then $k_{1}+\cdots+k_{n}=2 n \leq 3 n-1$.
- Otherwise, let i be such that x_{i} is maximal. This requires $x_{i-1}+x_{i+1}=x_{i}$. Then deleting x_{i} gives a working configuration of $n-1$ numbers around a circle, and decreases $\sum k_{i}$ by 3 , completing the induction.

[^0]Remark. Examples of equality cases, which motivate this solution:

- ($1,2,3,4,5,6,7)$.
- ($1,2,3,4,5,6,13,7)$ (the one I found during exam).
- ($1,4,7,3,8,13,5,7,2)$.

Let m and s be positive integers with $2 \leq s \leq 3 m^{2}$. Define a sequence a_{1}, a_{2}, \ldots recursively by $a_{1}=s$ and

$$
a_{n+1}=2 n+a_{n} \quad(\text { for } n=1,2, \ldots) .
$$

Prove that if the numbers $a_{1}, a_{2}, \ldots, a_{m}$ are prime, then a_{s-1} is also prime.
The key idea is to prove by induction that a_{n} is in fact prime for all $n=1,2, \ldots, s-1$.
Consider the minimal positive integer $t \geq 1+m$ such that a_{t} is not prime. Then the numbers $a_{2-t}, a_{3-t}, \ldots, a_{-1}, a_{0}, a_{1}, \ldots, a_{t-1}$ are all prime (where we permit negative indices). Let p denote the smallest prime factor of a_{t}; then

$$
p<\sqrt{a_{t}}=\sqrt{t^{2}-t+k} \leq \sqrt{t^{2}-t+3 m^{2}}<\sqrt{t^{2}-t+3 t(t-1)}<2 t-1 .
$$

So $p \leq 2 t-2$, meaning we can find an integer $c \in[2-t, t-1]$ such that $c \equiv t(\bmod p)$. Then $a_{c} \equiv a_{t} \equiv 0(\bmod p)$. As a_{c} is prime by assumption, this means $p=a_{c} \geq s$. Consequently $a_{t}^{2} \geq p^{2} \geq s^{2}$, whence $t \geq s$ as required.

[^0]: *Internal use: Olympiad Training for Individual Study (OTIS). Last update January 17, 2018.

