
By
Ev
an

Ch
en

OT
IS,

Int
ern

al
Us
e

OTIS Practice Exam Solutions

Evan Chen∗

EXAM-SAMPLE-02-SOLN

Solve f(m + n) = f(m) + f(n) + mn for f : Z>0 → Z>0.

Let c = f(1). Setting m = 1 we get f(n + 1) = f(n) + n + c. Hence,

f(n) = (1 + · · ·+ (n− 1)) + nc =

(
n

2

)
+ cn

for all n, by induction. This indeed works.

Let ABCD be a convex quadrilateral. Assume that the incircle of triangle ABD is
tangent to AB, AD, BD at points W , Z, K. Also assume that the incircle of triangle
CBD is tangent to CB, CD, BD at points X, Y , K. Prove that quadrilateral
WXY Z is cyclic.

From the concurrence of the Gregonne point, it follows that lines WZ, XY , and BD
concur at the harmonic conjugate T of K with respect to BC. (One can also see the
concurrence directly by applying Ceva and Menelaus.)

Then TK2 = TW · TZ = TX · TY , as desired.
Alternatively, inversion at T sends WXY Z to a rectange, since the two incircles become

parallel lines, while W ∗X∗ is the perpendicular bisector of B∗K, etc.

Positive integers x1, x2, . . . , xn (n ≥ 4) are arranged in a circle such that each xi
divides the sum of the neighbors; that is,

xi−1 + xi+1

xi
= ki

is an integer for each i, where x0 = xn, xn+1 = x1. Prove that

2 ≤ k1 + · · ·+ kn
n

< 3.

Lower bound is AM-GM.
For the upper bound, we prove k1 + · · · + kn ≤ 3n − 1 by induction on n ≥ 3. The

base case n = 3 is left as an exercise. There are two cases:

• If all xi are equal, then k1 + · · ·+ kn = 2n ≤ 3n− 1.

• Otherwise, let i be such that xi is maximal. This requires xi−1 + xi+1 = xi. Then
deleting xi gives a working configuration of n − 1 numbers around a circle, and
decreases

∑
ki by 3, completing the induction.

∗Internal use: Olympiad Training for Individual Study (OTIS). Last update January 17, 2018.
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Remark. Examples of equality cases, which motivate this solution:

• (1, 2, 3, 4, 5, 6, 7).

• (1, 2, 3, 4, 5, 6, 13, 7) (the one I found during exam).

• (1, 4, 7, 3, 8, 13, 5, 7, 2).

Let m and s be positive integers with 2 ≤ s ≤ 3m2. Define a sequence a1, a2, . . .
recursively by a1 = s and

an+1 = 2n + an (for n = 1, 2, . . . ).

Prove that if the numbers a1, a2, . . . , am are prime, then as−1 is also prime.

The key idea is to prove by induction that an is in fact prime for all n = 1, 2, . . . , s− 1.
Consider the minimal positive integer t ≥ 1 + m such that at is not prime. Then the

numbers a2−t, a3−t, . . . , a−1, a0, a1, . . . , at−1 are all prime (where we permit negative
indices). Let p denote the smallest prime factor of at; then

p <
√
at =

√
t2 − t + k ≤

√
t2 − t + 3m2 <

√
t2 − t + 3t(t− 1) < 2t− 1.

So p ≤ 2t− 2, meaning we can find an integer c ∈ [2− t, t− 1] such that c ≡ t (mod p).
Then ac ≡ at ≡ 0 (mod p). As ac is prime by assumption, this means p = ac ≥ s.
Consequently a2t ≥ p2 ≥ s2, whence t ≥ s as required.
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