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§1 USAMO 2017/1 (17AMO1)
Available online at https://aops.com/community/p8108366.

Problem statement

Prove that there exist infinitely many pairs of relatively prime positive integers
a, b > 1 for which a+ b divides ab + ba.

One construction: let d ≡ 1 (mod 4), d > 1. Let x = dd+2d

d+2 . Then set

a =
x+ d

2
, b =

x− d

2
.

To see this works, first check that b is odd and a is even. Let d = a− b be odd. Then:

a+ b | ab + ba ⇐⇒ (−b)b + ba ≡ 0 (mod a+ b)

⇐⇒ ba−b ≡ 1 (mod a+ b)

⇐⇒ bd ≡ 1 (mod d+ 2b)

⇐⇒ (−2)d ≡ dd (mod d+ 2b)

⇐⇒ d+ 2b | dd + 2d.

So it would be enough that

d+ 2b =
dd + 2d

d+ 2
=⇒ b =

1

2

(
dd + 2d

d+ 2
− d

)
which is what we constructed. Also, since gcd(x, d) = 1 it follows gcd(a, b) = gcd(d, b) =
1.

Remark. Ryan Kim points out that in fact, (a, b) = (2n− 1, 2n+ 1) is always a solution.
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§2 USMCA 2019/1 (19USMCA1)

Problem statement

Kelvin the Frog and Alex the Kat are playing a game on an initially empty blackboard.
Kelvin begins by writing a digit. Then, the players alternate inserting a digit
anywhere into the number currently on the blackboard, including possibly a leading
zero (e.g. 12 can become 123, 142, 512, 012, etc.). Alex wins if the blackboard shows
a perfect square at any time, and Kelvin’s goal is prevent Alex from winning. Does
Alex have a winning strategy?

The answer is no, Kelvin can prevent a perfect square from ever appearing. There are
several strategies; here is one.

Claim — Kelvin wins by initially writing the number 7, and then always adding
either 7 or 8 to the end.

Proof. Alex clearly can’t win on his first turn. Now, suppose that Alex leaves the number
A > 1 on the board on his nth turn; we contend that Kelvin can prevent Alex from
leaving a square on his (n+ 1)st turn as well.

Indeed, if Kelvin writes 7 or 8 as advertised, then he gets either 10A+ 7 or 10A+ 8.
As no square ends in 7 or 8, the only way Alex could win on his (n + 1)st turn is if
100A + 70 + d7 was a square, or 100A + 80 + d8 was a square. But no two squares
exceeding 100 can differ by less than 20, so one of these cases is winning for Kelvin.

Remark. As 8762 = 767376, it is not possible to simply insert 7’s in every other digit.
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§3 Shortlist 2007 N2 (07SLN2)
Available online at https://aops.com/community/p1187198.

Problem statement

Let b, n > 1 be integers. Suppose that for each k > 1 there exists an integer ak such
that b− ank is divisible by k. Prove that b = An for some integer A.

Just let k = b2, so b ≡ Cn (mod b2). Hence Cn = b(bx + 1), but gcd(b, bx + 1) = 1 so
b = An for some A.
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§4 APMO 2009/4 (09APMO4)
Available online at https://aops.com/community/p1434408.

Problem statement

Prove that for any positive integer n, there exists an arithmetic progression

a1
b1

,
a2
b2

, . . . ,
an
bn

of rational numbers, such that the 2n numbers a1, . . . , an and b1, . . . , bn are pairwise
distinct, and moreover gcd(ai, bi) = 1 for every i.

Let d = p1 . . . pn be the product of n primes, each prime larger than n. Then select an x
with x ≡ −i (mod pi), for i = 1, . . . , n, and with x large in terms of d.

Consider the progression

x+ 1

d
,
x+ 2

d
, . . . ,

x+ n

d

We claim it works.
Then, in the first fraction p1 cancels from both the numerator and denominator, and

that is the only cancellation (since p1 > n). In general, the reduced ith fraction has

ai =
x+ i

pi

bi =
d

pi
= p1 . . . pi−1pi+1 . . . pn.

Obviously bi and ai are pairwise distinct. Moreover if x is large enough, then ai > d for
all i while bi < d for all i. This completes the proof.
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§5 Shortlist 2017 N2 (17SLN2)
Available online at https://aops.com/community/p10632294.

Problem statement

Let p be a fixed prime number. Ankan and Ryan play the following turn-based game,
with Ankan moving first. On their turn, each player selects an index i ∈ {0, . . . , p−1}
not chosen on a previous turn, and a digit ai ∈ {0, . . . , 9}. This continues until all
indices have been chosen (hence for p turns). Then, Ankan wins if the number

N = a0 + a1 · 10 + a2 · 102 + · · ·+ ap−110
p−1

is divisible by p; otherwise Ryan wins. For each prime p, determine which player
has the winning strategy.

The first player Ankan can always win.
Assume first gcd(p, 10) = 1, and let e be the order of 10 (mod p). Ankan begins by

choosing ap−1 = 0.
Now let p− 1 = de. We consider two cases:

• If e is even, then 10e/2 ≡ −1 (mod p). Ankan imagines pairing the indices
{0, 1, . . . , p − 2} into pairs which differ by e/2 in the obvious way (there are d
pairs of 2 each). Now whenever Ryan picks a number ai, Ankan selects the cor-
responding index j and sets aj = ai. As 10jaj + 10iai ≡ 0 (mod p) this strategy
wins.

• If e is odd, then d must be even. Ankan imagines pairing the indices {0, 1, . . . , p−2}
into pairs which differ by e in the obvious way (there are d/2 pairs of 2 each). Now
whenever Ryan picks a number ai Ankan selects the corresponding index j and
sets aj = 9 − ai. Thus 10jaj + 10iai ≡ 9 · 10i (mod p). So the final number is a
multiple of 9 . . . 9 = 10e − 1 which is divisible by p.

If p = 2 or p = 5, Ankan just picks a0 = 0 and wins. Thus Ankan has the winning
strategy.

Remark. One can phrase this solution without the use of orders d and e; it’s merely
casework on the value of 10 1

2 (p−1).
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§6 China 2019/2 (19CHN2)
Available online at https://aops.com/community/p11293588.

Problem statement

A Pythagorean triple is a set of three distinct positive integers {a, b, c} which satisfies
a2 + b2 = c2. Prove that if P and Q are Pythagorean triples then there exists a
finite sequence P0, . . . , Pn of Pythagorean triples satisfying P = P0, Q = Pn, and
Pi ∩ Pi+1 6= ∅ for each i = 0, . . . , n− 1.

Write P ∼ Q if P ∩Q 6= ∅. We say P and Q are connected if there exists a path as in
the problem statement. Both these relations are obviously mutual.

We denote the triple {3n, 4n, 5n} by B(n). Note every Pythagorean triple has an
element divisible by 4 (by looking modulo 8), hence intersects some B(n). Thus it suffices
to show that B(n) is connected to B(1) for every n.

Claim — The triples B(n) and B(2n) are connected for any integer n > 0.

Proof. We have

B(2n) = {6n, 8n, 10n} ∼ {8n, 15n, 17n} ∼ {9n, 12n, 15n}
∼ {5n, 12n, 13n} ∼ {3n, 4n, 5n} = B(n).

Claim — Let p > 0 be an odd integer, and d > 0 any integer. Then B(dp) and
B
(
d · p2−1

2

)
are connected.

Proof. We have

B(dp) = {d · 3p, d · 4p, d · 5p} ∼
{
d · 4p, d · 2(p2 − 1), d · 2(p2 + 1)

}
∼
{
d · 3 · p

2 − 1

2
, d · 4 · p

2 − 1

2
, d · 5 · p

2 − 1

2

}
= B

(
d · p

2 − 1

2

)
.

Indeed, let n be any integer. If n is even then B(n) is connected to B(n/2). Else if
p > 2 is the largest prime factor of n, then B(n) is connected to B(n/p · p2−1

2 ).
We claim that if we repeat this procedure, then eventually each B(n) arrives at B(1).

Indeed, define the complexity of n to be the ordered pair (p, νp(n)); then the complexity
of n decreases lexicographically as we iterate the above procedure.
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§7 Shortlist 2013 N3 (13SLN3)
Available online at https://aops.com/community/p3544101.

Problem statement

Prove that there exist infinitely many positive integers n such that the largest prime
divisor of n4 + n2 + 1 is equal to the largest prime divisor of (n+ 1)4 + (n+ 1)2 + 1.

Define f(n) = n2 + n+ 1. Then

n4 + n2 + 1 = (n2 + n+ 1)(n2 − n+ 1) = f(n)f(n− 1).

So it suffices to show that maxp f(n) is at least the larger of maxp f(n−1) and maxp f(n+
1) infinitely often, where maxp • returns the largest prime divisor.

If not, either maxp f(1),maxp f(2), . . . is eventually strictly increasing or strictly
decreasing. Since the latter is impossible for integer sequences, we only need to show this
sequence cannot increase monotonically. But f(n2) = f(n)f(n− 1), so maxp f(n)2 is at
most max (maxp f(n),maxp f(n− 1)), so the sequence cannot be strictly increasing at
any time.
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§8 BAMO 2011/5 (11BAMO5)
Available online at https://aops.com/community/p13035697.

Problem statement

Decide whether there exists a row of Pascal’s triangle containing four pairwise
distinct numbers a, b, c, d such that a = 2b and c = 2d.

An example is
(
203
68

)
= 2
(
203
67

)
and

(
203
85

)
= 2
(
203
83

)
.

To get this, the idea is to look for two adjacent entries and two entries off by one, and
solving the corresponding equations. The first one is simple:(

n

j

)
= 2

(
n

j − 1

)
=⇒ n = 3j − 1.

The second one is more involved: (
n

k

)
= 2

(
n

k − 2

)
=⇒ (n− k + 1)(n− k + 2) = 2k(k − 1)

=⇒ 4(n− k + 1)(n− k + 2) = 8k(k − 1)

=⇒ (2n− 2k + 3)2 − 1 = 2
(
(2k − 1)2 − 1

)
=⇒ (2n− 2k + 3)2 − 2(2k − 1)2 = −1

Using standard methods for the Pell equation:

• (7 + 5
√
2)(3 + 2

√
2) = 41 + 29

√
2. So k = 15, n = 34, doesn’t work.

• (41 + 29
√
2)(3 + 2

√
2) = 239 + 169

√
2. Then k = 85, n = 203.
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§9 TSTST 2012/5 (12TSTST5)
Available online at https://aops.com/community/p2745867.

Problem statement

A rational number x is given. Prove that there exists a sequence x0, x1, x2, . . . of
rational numbers with the following properties:

(a) x0 = x;

(b) for every n ≥ 1, either xn = 2xn−1 or xn = 2xn−1 +
1
n ;

(c) xn is an integer for some n.

Think of the sequence as a process over time. We’ll show that:

Claim — At any given time t, if the denominator of xt has some odd prime power
q = pe, then we can delete a factor of p from the denominator, while only adding
powers of two to the denominator.

(Thus we can just delete off all the odd primes one by one and then double appropriately
many times.)

Proof. The idea is to add only fractions of the form (2kq)−1.
Indeed, let n be large, and suppose t < 2r+1q < 2r+2q < · · · < 2r+mq < n. For some

binary variables εi ∈ {0, 1} we can have

xn = 2n−txt + c1 ·
ε1
q

+ c2 ·
ε2
q
· · ·+ cs ·

εm
q

where ci is some power of 2 (to be exact, ci = 2n−2r+iq

2r+1 , but the exact value doesn’t
matter).

If m is large enough the set {0, c1}+ {0, c2}+ · · ·+ {0, cm} spans everything modulo
p. (Actually, Cauchy-Davenport implies m = p is enough, but one can also just use
Pigeonhole to notice some residue appears more than p times, for m = O(p2).) Thus we
can eliminate one factor of p from the denominator, as desired.
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§10 Shortlist 2014 N4 (14SLN4)
Available online at https://aops.com/community/p5083569.

Problem statement

Let n > 1 be an integer. Prove that there are infinitely many integers k ≥ 1 such
that ⌊

nk

k

⌋
is odd.

If n is odd, then we can pick any prime p dividing n, and select k = pm for sufficiently
large integers m.

Now suppose n is even. Choose any integer e ≥ 1 and let p be an odd prime dividing
n2e − 2e (since n2e 6= 2e+1). Then

n2ep ≡ 2e (mod 2ep)

since 2e | n2ep holds, and also (n2e)p ≡ n2e ≡ 2e (mod p). So that is the remainder.
Then we can take k = 2ep and then⌊

nk

k

⌋
=

nk − 2e

k

is odd.

12
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§11 USA TST 2007/4 (07USATST4)
Available online at https://aops.com/community/p982018.

Problem statement

Determine whether or not there exist positive integers a and b such that a does not
divide bn − n for all positive integers n.

The answer is no.
In fact, for any fixed integer b, the sequence

b, bb, bb
b
, . . .

is eventually constant modulo any integer. (This follows by induction on the exponent:
for it to be eventually constant modulo a, it is enough to be eventually constant modulo
ϕ(a), hence modulo ϕ(ϕ(a)), etc.)

Therefore if n is a suitably tall power-tower of b’s, then we will have bn ≡ n (mod a).
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§12 China TST 2018/2/4 (18CHNTST24)
Available online at https://aops.com/community/p9659765.

Problem statement

Let k, M be positive integers such that k − 1 is not squarefree. Prove that there
exists a positive real number α such that bα · knc and M are relatively prime for
any positive integer n.

Let p2 | k − 1 be prime and let d = k−1
p . Consider the number

α = N +
1

p
= N + 0.ddd . . .k

in base k. We claim it works for a suitable integer N .
Indeed, we have

bαknc = knN + d · k
n − 1

k − 1
=

(
N +

1

p

)
kn − 1

p
.

If we pick N such that p - N , then the middle expression is not divisible by p (since d is
divisible by p). Moreover, we can select N such that q | N + p−1 for every prime q | M
other than p. Thus the Chinese remainder theorem completes the problem.

Remark (Example). If k = 10, and M = 2 · 3 · 5 · 7, then one could take α = 23.33333 . . . .

Remark (Repeating base k mistake). It is tempting to choose α = N +0.ddd . . .k in general,
but one has to be careful in this case that d 6= k − 1 because this would actually cause
α = N + 1.
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§13 EGMO 2018/2 (18EGMO2)
Available online at https://aops.com/community/p10185417.

Problem statement

Consider the set
A =

{
1 +

1

k
: k = 1, 2, 3, . . .

}
.

For every integer x ≥ 2, let f(x) denote the minimum integer such that x can be
written as the product of f(x) elements of A (not necessarily distinct). Prove that
there are infinitely many pairs of integers x ≥ 2 and y ≥ 2 for which

f(xy) < f(x) + f(y).

One of many constructions: let n = 2e + 1 for e ≡ 5 (mod 10) and let x = 11, y = n/11
be our two integers.

We prove two lemmas:

Claim — For any m ≥ 2 we have f(m) ≥ dlog2me.

Proof. This is obvious.

It follows that f(n) = e+ 1, since n = n
n−1 · 2e.

Claim — f(11) = 5.

Proof. We have 11 = 33
32 · 4

3 · 23. So it suffices to prove f(11) > 4.
Note that a decomposition of 11 must contain a fraction at most 11

10 = 1.1. But
23 · 1.1 = 8.8 < 11, contradiction.

To finish, note that

f(11) + f(n/11) ≥ 5 + log2(n/11) = 1 + log2(16n/11) > 1 + e = 1 + f(n).

Remark. Most solutions seem to involve picking n such that f(n) is easy to compute.
Indeed, it’s hard to get nontrivial lower bounds other than the log, and even harder to
actually come up with complicated constructions. It might be said the key to this problem
is doing as little number theory as possible.

15

https://aops.com/community/p10185417


By Evan Chen《
陳誼
廷》

OTIS, Intern
al Use

Evan Chen《陳誼廷》 (OTIS, updated 2023-03-26) Solution Notes for DNY-NTCONSTRUCT

§14 USAMO 2006/5 (06AMO5)
Available online at https://aops.com/community/p490682.

Problem statement

A mathematical frog jumps along the number line. The frog starts at 1, and jumps
according to the following rule: if the frog is at integer n, then it can jump either to
n+1 or to n+2mn+1 where 2mn is the largest power of 2 that is a factor of n. Show
that if k ≥ 2 is a positive integer and i is a nonnegative integer, then the minimum
number of jumps needed to reach 2ik is greater than the minimum number of jumps
needed to reach 2i.

We will think about the problem in terms of finite sequences of jumps (s1, s2, . . . , s`),
which we draw as

1 = x0
s1−→ x1

s2−→ x2
s3−→ . . .

s`−→ x`

where sk = xk − xk−1 is the length of some hop. We say the sequence is valid if it has
the property required by the problem: for each k, either sk = 1 or sk = 2mxk−1

+1.
An example is shown below.

Lemma
Let (s1, . . . , s`) be a sequence of jumps. Suppose we delete pick an index k and
exponent e > 0, and delete any jumps after the kth one which are divisible by 2e.
The resulting sequence is still valid.

Proof. We only have to look after the kth jump. The launching points of the remaining
jumps after the kth one are now shifted by multiples of 2e due to the deletions; so given
a jump x

s−→ x+ s we end up with a jump x′
s−→ x′ + s where x− x′ is a multiple of 2e.

But since s < 2e, we have ν2(x
′) < e and hence ν2(x) = ν2(x

′) so the jump is valid.

1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 248

2

1

8

1

1

4

1

2

2

1

1 2 3 4 5 6 7 8

2

1 1

1 1

1

Now let’s consider a valid path to 2ik with ` steps, say

1 = x0
s1−→ x1

s2−→ x2
s3−→ . . .

s`−→ x` = 2i · k

where si = xi − xi−1 is the distance jumped.
We delete jumps in the following way: starting from the largest e and going downwards

until e = 0, we delete all the jumps of length 2e which end at a point exceeding the target
2i.

By the lemma, at each stage, the path remains valid. We claim more:

16
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Claim — Let e ≥ 0. After the jumps of length greater than 2e are deleted, the
resulting end-point is at least 2i, and divisible by 2min(i,e).

Proof. By downwards induction. Consider any step where some jump is deleted. Then,
the end-point must be strictly greater than x = 2i − 2e (i.e. we must be within 2e of the
target 2i).

It is also divisible by 2min(i,e) by induction hypothesis, since we are changing the
end-point by multiples of 2e. And the smallest multiple of 2min(i,e) exceeding x is 2i.

On the other hand by construction when the process ends the reduced path ends at a
point at most 2i, so it is 2i as desired.

Therefore we have taken a path to 2ik and reduced it to one to 2i by deleting some
jumps. This proves the result.
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§15 Brazil 2015/3 (15BRA3)
Available online at https://aops.com/community/p5469253.

Problem statement

Given an integer n > 1 and its prime factorization n = pα11 pα2
2 · · · pαk

k , its false
derivative is defined by

f(n) = α1p
α1−1
1 α2p

α2−1
2 . . . αkp

αk−1
k .

Prove that there exist infinitely many integers n > 2 such that f(n) = f(n− 1) + 1.

The idea behind the construction is as follows:

Claim — Let m be an integer and let

x = 169 · 78m− 25

y = 27 · 78m− 4.

If x and y are squarefree, then 27x = 169y + 1 and

f(27x) = f(169y) + 1.

Proof. Note that 3 - x and 13 - y. Then f(27x) = 3 · 32 = 27 and f(169y) = 2 · 13 = 26,
as needed.

Therefore, it is sufficient to show that there are infinitely many integers m for which x
and y as defined above are squarefree.

Fix a large integer M and consider choices of m ∈ {1, . . . ,M}. For each prime p, the
number of m for which p2 | x or p2 | y is at most 2

⌈
M
p2

⌉
, and is zero if p2 > max(x, y).

So, the total number of invalid choices of m ∈ {1, . . . ,M} is upper bounded by

O(
√
M)∑

p=5

2

⌈
M

p2

⌉
< 2M ·

∑
p≥5

1

p2
+O

( √
M

logM

)
< 0.99M

for large enough M . This implies the result.
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§16 RMM 2012/4 (12RMM4)
Available online at https://aops.com/community/p2617973.

Problem statement

Prove there are infinitely many integers n such that n does not divide 2n + 1, but
divides 22

n+1 + 1.

Zsig hammer! Define the sequence n0, n1, . . . as follows. Set n0 = 3, and then for k ≥ 1
we let nk = pnk−1 where p is a primitive prime divisor of 22

nk−1+1 + 1 (by Zsigmondy).
For example, n1 = 57.

This sequence of nk’s works for k ≥ 1, by construction.
It’s very similar to IMO 2000 Problem 5.
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§17 IMO 2004/6 (04IMO6)
Available online at https://aops.com/community/p99760.

Problem statement

We call a positive integer alternating if every two consecutive digits in its decimal
representation are of different parity. Find all positive integers n which have an
alternating multiple.

If 20 | n, then clearly n has no alternating multiple since the last two digits are both
even. We will show the other values of n all work.

The construction is just rush-down do-it. The meat of the solution is the two following
steps.

Claim (Tail construction) — For every even integer w ≥ 2,

• there exists an even alternating multiple g(w) of 2w+1 with exactly w digits,
and

• there exists an even alternating multiple h(w) of 5w with exactly w digits.

(One might note this claim is implied by the problem, too.)

Proof. We prove the first point by induction on w. If w = 2, take g(2) = 32. In general,
we can construct g(w + 2) from g(w) by adding some element in

10w · {10, 12, 14, 16, 18, 30, . . . , 98}

to g(w), corresponding to the digits we want to append to the start. This multiple is
automatically divisible by 2w+1, and also can take any of the four possible values modulo
2w+3.

The second point is a similar induction, with base case h(2) = 50. The same set above
consists of numbers divisible by 5w, and covers all residues modulo 5w+2. Careful readers
might recognize the second part as essentially USAMO 2003/1.

Claim (Head construction) — If gcd(n, 10) = 1, then for any b, there exists an even
alternating number f(b mod n) which is b (mod n).

Proof. A standard argument shows that

10 · 100
m − 1

99
= 1010 . . . 10︸ ︷︷ ︸

m 10’s

≡ 0 (mod n)

for any m divisible by ϕ(99n). Take a very large such m, and then add on b distinct
numbers of the form 10ϕ(n)r for various even values of r; these all are 1 (mod n) and
change some of the 1’s to 3’s.

Now, we can solve the problem. Consider three cases:
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• If n = 2km where gcd(m, 10) = 1 and k ≥ 2 is even, then the concatenated number

10kf

(
−g(k)

10k
mod m

)
+ g(k)

works fine.

• If n = 5km where gcd(m, 10) = 1 and k ≥ 2 is even, then the concatenated number

10kf

(
−h(k)

10k
mod m

)
+ h(k)

works fine.

• If n = 50m where gcd(m, 10) = 1, then the concatenated number

100f

(
−1

2
mod m

)
+ 50

works fine.

Since every non-multiple of 20 divides such a number, we are done.
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§18 RMM 2021/2 (21RMM2)
Available online at https://aops.com/community/p23374854.

Problem statement

Xenia and Sergey play the following game. Xenia thinks of a positive integer N
not exceeding 5000. Then she fixes 20 distinct positive integers a1, a2, . . . , a20 such
that, for each k = 1, 2, · · · , 20, the numbers N and ak are congruent modulo k. By
a move, Sergey tells Xenia a set S of positive integers not exceeding 20, and she tells
him back the set {ak : k ∈ S} without spelling out which number corresponds to
which index. How many moves does Sergey need to determine for sure the number
Xenia thought of?

Two moves is sufficient. An example of a two-move strategy is to ask

S1 = {17, 20}, S2 = {19, 20}

which determines N modulo 17 · 19 · 20 = 6460 > 5000.
We proceed to show no single move S is sufficient. Let us say that the numbers 11, 13,

16, 17, 19 are big, and the other fifteen numbers are small. The lcm of the small numbers
is exactly 2520 = 23 · 32 · 5 · 7.

We consider two cases:

• If S has a single big number, then the task is clearly impossible.

• Then suppose S = {s1, . . . , sn} where n > 1. Then, Xenia constructs t1, . . . , tn
such that

t1 ≡ t2 ≡ · · · ≡ tn ≡ 1 (mod 2520)

and such that, whenever si is big (indices modulo n),

ti ≡ 1 (mod si), ti+1 ≡ 2521 (mod si).

Then the set {t1, . . . , tn} is a possible response corresponding to both N = 1 and
N = 2521. Hence Xenia wins.
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§19 USAMO 2012/3 (12AMO3)
Available online at https://aops.com/community/p2669119.

Problem statement

Determine which integers n > 1 have the property that there exists an infinite
sequence a1, a2, a3, . . .of nonzero integers such that the equality

ak + 2a2k + · · ·+ nank = 0

holds for every positive integer k.

Answer: all n > 2.
For n = 2, we have ak + 2a2k = 0, which is clearly not possible, since it implies

a2k = a1
2k−1 for all k ≥ 1.

For n ≥ 3 we will construct a completely multiplicative sequence (meaning aij = aiaj
for all i and j). Thus (ai) is determined by its value on primes, and satisfies the condition
as long as a1+2a2+ · · ·+nan = 0. The idea is to take two large primes and use Bezout’s
theorem, but the details require significant care.

We start by solving the case where n ≥ 9. In that case, by Bertrand postulate there
exists primes p and q such that

dn/2e < q < 2 dn/2e and 1

2
(q − 1) < p < q − 1.

Clearly p 6= q, and q ≥ 7, so p > 3. Also, p < q < n but 2q > n, and 4p ≥ 4
(
1
2(q + 1)

)
>

n. We now stipulate that ar = 1 for any prime r 6= p, q (in particular including r = 2
and r = 3). There are now three cases, identical in substance.

• If p, 2p, 3p ∈ [1, n] then we would like to choose nonzero ap and aq such that

6p · ap + q · aq = 6p+ q − 1

2
n(n+ 1)

which is possible by Bézout lemma, since gcd(6p, q) = 1.

• Else if p, 2p ∈ [1, n] then we would like to choose nonzero ap and aq such that

3p · ap + q · aq = 3p+ q − 1

2
n(n+ 1)

which is possible by Bézout lemma, since gcd(3p, q) = 1.

• Else if p ∈ [1, n] then we would like to choose nonzero ap and aq such that

p · ap + q · aq = p+ q − 1

2
n(n+ 1)

which is possible by Bézout lemma, since gcd(p, q) = 1. (This case is actually
possible in a few edge cases, for example when n = 9, q = 7, p = 5.)

It remains to resolve the cases where 3 ≤ n ≤ 8. We enumerate these cases manually:

• For n = 3, let an = (−1)ν3(n).
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• For n = 4, let an = (−1)ν2(n)+ν3(n).

• For n = 5, let an = (−2)ν5(n).

• For n = 6, let an = 5ν2(n) · 3ν3(n) · (−42)ν5(n).

• For n = 7, let an = (−3)ν7(n).

• For n = 8, we can choose (p, q) = (5, 7) in the prior construction.

This completes the constructions for all n > 2.
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§20 TSTST 2016/3 (16TSTST3)
Available online at https://aops.com/community/p6575217.

Problem statement

Decide whether or not there exists a nonconstant polynomial Q(x) with integer
coefficients with the following property: for every positive integer n > 2, the numbers

Q(0), Q(1), Q(2), . . . , Q(n− 1)

produce at most 0.499n distinct residues when taken modulo n.

We claim that
Q(x) = 420(x2 − 1)2

works. Clearly, it suffices to prove the result when n = 4 and when n is an odd prime p.
The case n = 4 is trivial, so assume now n = p is an odd prime.

First, we prove the following easy claim.

Claim — For any odd prime p, there are at least 1
2(p − 3) values of a for which(

1−a2

p

)
= +1.

Proof. Note that if k 6= 0, k 6= ±1, k2 6= −1, then a = 2(k + k−1)−1 works. Also a = 0
works.

Let F (x) = (x2 − 1)2. The range of F modulo p is contained within the 1
2(p + 1)

quadratic residues modulo p. On the other hand, if for some t neither of 1 ± t is a
quadratic residue, then t2 is omitted from the range of F as well. Call such a value of t
useful, and let N be the number of useful residues. We aim to show N ≥ 1

4p− 2.
We compute a lower bound on the number N of useful t by writing

N =
1

4

(∑
t

[(
1−

(
1− t

p

))(
1−

(
1 + t

p

))]
−
(
1−

(
2

p

))
−
(
1−

(
−2

p

)))

≥ 1

4

∑
t

[(
1−

(
1− t

p

))(
1−

(
1 + t

p

))]
− 1

=
1

4

(
p+

∑
t

(
1− t2

p

))
− 1

≥ 1

4

(
p+ (+1) · 1

2(p− 3) + 0 · 2 + (−1) · ((p− 2)− 1
2(p− 3))

)
− 1

≥ 1

4
(p− 5) .

Thus, the range of F has size at most

1

2
(p+ 1)− 1

2
N ≤ 3

8
(p+ 3).

This is less than 0.499p for any p ≥ 11.
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Remark. In fact, the computation above is essentially an equality. There are only two
points where terms are dropped: one, when p ≡ 3 (mod 4) there are no k2 = −1 in the
lemma, and secondly, the terms 1− (2/p) and 1− (−2/p) are dropped in the initial estimate
for N . With suitable modifications, one can show that in fact, the range of F is exactly
equal to

1

2
(p+ 1)− 1

2
N =


1
8 (3p+ 5) p ≡ 1 (mod 8)
1
8 (3p+ 7) p ≡ 3 (mod 8)
1
8 (3p+ 9) p ≡ 5 (mod 8)
1
8 (3p+ 3) p ≡ 7 (mod 8).
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§21 Shortlist 2013 N4 (13SLN4)
Available online at https://aops.com/community/p3544103.

Problem statement

Determine whether there exists an infinite sequence of nonzero digits a0, a1, a2, a3,
. . .such that the number akak−1 . . . a1a0 is a perfect square for all sufficiently large
k.

The answer is no.
Assume for contradiction such a sequence exists, and let xk =

√
akak−1 . . . a1a0 for k

large enough. Difference of squares gives

Ak ·Bk := (xk+1 − xk)(xk+1 + xk) = ak+1 · 10k

with gcd(Ak, Bk) = 2 gcd(xk, xk−1) since xk and xk−1 have the same parity.
We now split the proof in two cases:

• First assume ν5(x
2
k) = 2e < k for some index k. Then we actually need to have

2e = ν5(x
2
k) = ν5(x

2
k+1) = · · · .

Thus in this situation, we need to have min(ν5(Ak), ν5(Bk)) = e, and thus

max(ν5(Ak), ν5(Bk)) = k − e.

So
min (Ak, Bk) ≥ 5k−e.

• Otherwise, assume ν5(x
2
k) ≥ k for all k. Note in particular that a0 = 5, thus all xk

are always odd. So one of Ak and Bk is divisible by 2k−1. Hence for each k,

min(Ak, Bk) ≥ 2k−1 · 5k/2.

However, since AkBk = ak+1 · 10k we also obviously have min(Ak, Bk) <
√
9 · 10k which

is incompatible with both cases above, for sufficiently large k.
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§22 Australia 2020/8 (20AUS8)

Problem statement

Prove that for each integer k satisfying 2 ≤ k ≤ 100, there are positive integers b2,
b3, . . . , b101 such that

b22 + b33 + · · ·+ bkk = bk+1
k+1 + bk+2

k+2 + · · ·+ b101101.

For an integer M to be chosen later, we will choose

b22 = 69696M100!

b33 = · · · = b100100 = M100!.

(Note that 69696 = 2642.) Then the desired equation becomes

b101101 = (69696 + (k − 2)− (100− k)) ·M100!

and so we can let M = 69696 + (k − 2) − (100 − k) and we’re OK, since M100!+1 is
obviously a 100th power by Wilson’s theorem.
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