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Number Theory Constructions

Evan Chen∗

DNY-NTCONSTRUCT

§1 Lecture Notes

§1.1 Discussion

§1.2 Heuristics

This is going to be a lot like the Free class: lots of room for you to make choices (e.g. in
constructions). The same two philosophies from the combinatorial counterpart might be
helpful here:

• Concrete: making conscious design choices, or narrowing the set of things you’re
considering.

• Abstract: adding abstract constraints, including any constraints you can prove
are necessary (which is especially often the case in number theory).

This time, both of these steps often require number theory skill in order to carry out the
correct deductions. (So: globally, it feels like doing a combinatorics problem, but locally,
it feels like doing a number theory problem.) This has the weird property that sometimes
you’d like to rely on statement that is obviously true (“n2 + 1 is prime infinitely often”),
but either hard to prove or open; if you don’t know, then you have to make a judgment
call. (Whereas in combinatorics, simple true statements are rarely impossible to prove.)

Common tropes in this lecture will include:

• Picking really numbers big with lots of prime factors.

• Chinese Remainder Theorem: add modular conditions with reckless abandon, then
let CRT collate them for you.

• Appealing to sledgehammers like Bertrand, Dirichlet, Zsigmondy, Kobayashi, et
cetera after having reduced the problems to something.

§1.3 Examples

Example 1.1 (TSTST 2015/5)

Let ϕ(n) denote the number of positive integers less than n that are relatively prime
to n. Prove that there exists a positive integer m for which the equation ϕ(n) = m
has at least 2015 solutions in n.

∗Internal use: Olympiad Training for Individual Study (OTIS). Last update May 17, 2018.
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Walkthrough. There’s a couple of ways to approach this problem. The analytic way
to go after it is to try and count the number of obtained ϕ values. Here’s a much more
concrete approach. Let’s start with some informative examples:

(a) Show that ϕ(3 · 5000) = ϕ(2 · 5000).

(b) Show that ϕ(11 · 1000) = ϕ(10 · 1000).

(c) Find another value of n for which ϕ(n) = ϕ(10000).

The idea is that we have a cushion of primes 2∗5∗. This can work, but we can be much
more free with the cushion.

(d) Let N = 210100000000. Find some examples of n such that ϕ(n) = ϕ(N), in the
spirit of (c).

(e) Construct a set S of 11 prime numbers p for which p− 1 | N .

(f) Finish the problem.

Example 1.2 (IMO 2003/6)

Let p be a prime number. Prove that there exists a prime number q such that for
every integer n, the number np − p is not divisible by q.

Walkthrough. In this case it’s possible to narrow down the search space right at the
beginning.

(a) Show that if q 6≡ 1 (mod p) then this fails. So we will restrict our attention to
q = pk + 1.

(b) Prove that it’s sufficient to have pk 6≡ 1 (mod q), for the k in (a).

Okay, so that means for our fixed prime p, we want to find a q = pk + 1 such that
q - pk− 1. Dirichlet’s theorem at least assures us there are infinitely many q ≡ 1 (mod p),
but where can we find them?

(c) Suppose X 6≡ 1 (mod p). Prove (if you have not seen it already) that any prime
factor q of

Φ(X) =
Xp − 1

X − 1

is always 1 (mod p), and in fact q (mod p) has order p. (This is called the pth
cyclotomic polynomial.)

(d) Prove that if q 6≡ 1 (mod p2), then k - p.

(e) Putting together (c) and (d), pick a suitable value of X and use it to find a way to
pick the desired q.

Example 1.3 (December TST 2015/2)

Prove that for every positive integer n, there exists a set S of n positive integers
such that for any two distinct a, b ∈ S, a− b divides a and b but none of the other
elements of S.
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Walkthrough. The idea is that is to write S = {a, a+ d1, a+ d1 + d2, . . . , a+ d1 + · · ·+ dn−1}
and focus on the difference set first, and only then work on the value of a using an
application of Chinese remainder theorem.

(a) Find a set S of the form S = {a, a+ 2, a+ 5}. (Here d1 = 2, d2 = 3.)

(b) Characterize all the sets S of the form in (a), i.e. those with (d1, d2) = (2, 3).

(c) Show that one can find S of the form S = {a, a+ 600, a+ 1500}.

(d) Show that one can find S of the form S = {a, a+ 600, a+ 1500, a+ 1507}.

(e) Suppose there is a set S of size n with differences (d1, . . . , dn−1) Prove that we can
find an integer M and prime p, such that there is a set S of size n+ 1 one with
(Md1, . . . ,Mdn−1, p)

(f) Conclude.

§2 Practice Problems

Solve at least [35♣]. If you are ambitious, aim for [50♣] or more. Problems whose weights
are marked in red are mandatory. Try to solve at least one of the three [9♣] problems.

[2♣] Problem 1 (USAMO 2017/1). Prove that there exist infinitely many pairs of
relatively prime positive integers a, b > 1 for which a+ b divides ab + ba.

[5♣] Problem 2 (JMO 2016/2). Prove that there exists a positive integer n < 106 such
that 5n has six consecutive zeros in its decimal representation.

[2♣] Problem 3 (Shortlist 2007 N2). Let b, n > 1 be integers. Suppose that for each
k > 1 there exists an integer ak such that b− ank is divisible by k. Prove that b = An for
some integer A.

[2♣] Problem 4 (IMO 2000/5). Does there exist a positive integer n such that n has
exactly 2000 prime divisors and n divides 2n + 1?

[3♣] Problem 5 (BAMO 2011/5). Decide whether there exists a row of Pascal’s triangle
containing four pairwise distinct numbers a, b, c, d such that a = 2b and c = 2d.

[3♣] Problem 6 (TSTST 2012/5). A rational number x is given. Prove that there
exists a sequence x0, x1, x2, . . . of rational numbers with the following properties:

(a) x0 = x;

(b) for every n ≥ 1, either xn = 2xn−1 or xn = 2xn−1 + 1
n ;

(c) xn is an integer for some n.

[3♣] Problem 7 (Shortlist 2014 N4). Let n > 1 be an integer. Prove that there are
infinitely many integers k ≥ 1 such that ⌊

nk

k

⌋
is odd.
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[3♣] Problem 8 (USA TST 2007/4). Determine whether or not there exist positive
integers a and b such that a does not divide bn − n for all positive integers n.

[3♣] Problem 9 (China TST 2018/2/4). Let k, M be positive integers such that k − 1
is not squarefree. Prove that there exists a positive real number α such that bα · knc and
M are relatively prime for any positive integer n.

[3♣] Problem 10 (EGMO 2018/2). Consider the set

A =

{
1 +

1

k
: k = 1, 2, 3, . . .

}
.

For every integer x ≥ 2, let f(x) denote the minimum integer such that x can be written
as the product of f(x) elements of A (not necessarily distinct). Prove that there are
infinitely many pairs of integers x ≥ 2 and y ≥ 2 for which

f(xy) < f(x) + f(y).

[5♣] Problem 11 (USAMO 2006/3). For integral m, let p(m) be the greatest prime
divisor of m. By convention, we set p(±1) = 1 and p(0) = ∞. Find all polynomials f
with integer coefficients such that the sequence

{p(f(n2))− 2n}n≥0
is bounded above. (In particular, this requires f(n2) 6= 0 for n ≥ 0.)

[5♣] Problem 12 (USAMO 2013/5). Let m and n be positive integers. Prove that
there exists an integer c such that cm and cn have the same nonzero decimal digits.

[5♣] Problem 13 (RMM 2012/4). Prove there are infinitely many integers n such that
n does not divide 2n + 1, but divides 22

n+1 + 1.

[9♣] Problem 14 (USAMO 2012/3). Determine which integers n > 1 have the property
that there exists an infinite sequence a1, a2, a3, . . . of nonzero integers such that the
equality

ak + 2a2k + · · ·+ nank = 0

holds for every positive integer k.

[9♣] Problem 15 (TSTST 2016/3). Decide whether or not there exists a nonconstant
polynomial Q(x) with integer coefficients with the following property: for every positive
integer n > 2, the numbers

Q(0), Q(1), Q(2), . . . , Q(n− 1)

produce at most 0.499n distinct residues when taken modulo n.

[5♣] Problem 16 (Shortlist 2013 N4). Determine whether there exists an infinite
sequence of nonzero digits a1, a2, a3, . . . such that the number akak−1 . . . a1 is a perfect
square for all sufficiently large k.

[5♣] Problem 17 (EGMO 2014/3). We denote the number of positive divisors of a
positive integer m by d(m) and the number of distinct prime divisors of m by ω(m). Let
k be a positive integer. Prove that there exist infinitely many positive integers n such
that ω(n) = k and d(n) does not divide d(a2 + b2) for any positive integers a, b satisfying
a+ b = n.

[9♣] Problem 18 (IMO 2017/6). An irreducible lattice point is an ordered pair of
integers (x, y) satisfying gcd(x, y) = 1. Prove that if S is a finite set of irreducible lattice
points then there exists a homogeneous polynomial f(x, y) of degree at least 1 such that
f(x, y) = 1 for each (x, y) ∈ S.
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§3 Solutions to the walkthroughs

§3.1 Solution 1.1, TSTST 2015/5

I consider the following ELEVEN PRIME NUMBERS:

S = {11, 13, 17, 19, 29, 31, 37, 41, 43, 61, 71} .

It has the property that for any p ∈ S, all prime factors of p− 1 are one digit.
Let N = (210)billion, and consider M = φ (N). For any subset T ⊂ S, we have

M = φ

 N∏
p∈T (p− 1)

∏
p∈T

p

 .

Since 2|T | > 2015 we’re done.
This solution was motivated by the deep fact that ϕ(11 · 1000) = ϕ(10 · 1000), for

example.

§3.2 Solution 1.2, IMO 2003/6

By orders, we must have q = pk + 1 for this to be possible. So we just need np 6≡ p ⇐⇒
pk 6≡ 1 (mod q).

So we need a prime q ≡ 1 (mod p) such that pk 6≡ 1 (mod q). Wishfully we hope the
order of p is p and k - p. One way to do this is extract a prime factor from the cyclotomic
polynomial

Φp(p) =
pp − 1

p− 1
≡ 1 + p (mod p)

which does not happen to be 1 (mod p2).

§3.3 Solution 1.3, December TST 2015/2

The idea is to look for a sequence d1, . . . , dn−1 of “differences” such that the following
two conditions hold. Let si = d1 + · · ·+ di−1, and ti,j = di + · · ·+ dj−1 for i ≤ j.

(i) No two of the ti,j divide each other.

(ii) There exists an integer a satisfying the CRT equivalences

a ≡ −si (mod ti,j) ∀i ≤ j

Then the sequence a+ s1, a+ s2, . . . , a+ sn will work. For example, when n = 3 we can
take (d1, d2) = (2, 3) giving

10

5︷ ︸︸ ︷︸︷︷︸
2

12 ︸︷︷︸
3

15

because the only conditions we need satisfy are

a ≡ 0 (mod 2)

a ≡ 0 (mod 5)

a ≡ −2 (mod 3).

But with this setup we can just construct the di inductively. To go from n to n+1, take
a d1, . . . , dn−1 and let p be a prime not dividing any of the di. Moreover, let M =

∏n−1
i=1 di.
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Then we claim that d1M,d2M, . . . , dn−1M,p is such a difference sequence. For example,
the previous example extends as follows.

a

1507︷ ︸︸ ︷
︸︷︷︸
600

b

907︷ ︸︸ ︷︸︷︷︸
900

c ︸︷︷︸
7

d

The new numbers p, p+Mdn−1, p+Mdn−2, . . . are all relatively prime to everything else.
Hence (i) still holds. To see that (ii) still holds, just note that we can still get a family of
solutions for the first n terms, and then the last (n+ 1)st term can be made to work by
Chinese Remainder Theorem since all the new p+Mdk are coprime to everything.
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