Mock IMO Day 1

MOP 2024

Saturday, June 8, 2024

Time limit: 4.5 hours. Insert funny caption here.

1. Let n be a positive integer. Suppose that $a_1, \ldots, a_n, b_1, \ldots, b_n$ are positive integers such that the n + 1 products

$$a_1a_2a_3\cdots a_n, b_1a_2a_3\cdots a_n, b_1b_2a_3\cdots a_n, \ldots, b_1b_2b_3\cdots b_n$$

form a strictly increasing arithmetic progression in that order. Determine the smallest possible value of its common difference.

- 2. Let n be a fixed positive integer. Determine the largest possible length L of a sequence a_1 , ..., a_L of positive integers such that
 - every term of the sequence is at most n, and
 - for any integers i and j with $1 \le i \le j \le L$ and integers $\varepsilon_i, \ldots, \varepsilon_j \in \{\pm 1\}$, we have

$$\varepsilon_i a_i + \dots + \varepsilon_j a_j \neq 0.$$

3. Let N be a positive integer. Prove that there exist three permutations $a_1, \ldots, a_N, b_1, \ldots, b_N$, and c_1, \ldots, c_N of $1, \ldots, N$ such that

$$\left|\sqrt{a_k} + \sqrt{b_k} + \sqrt{c_k} - 2\sqrt{N}\right| < 2023$$

for all k.

©MOP 2024 Test Development Committee.

All problems confidential until after IMO, July 17, 2024.

The individual problems belong to respective authors and organizations, revealed later.

Mock IMO Day 2

MOP 2024

Saturday, June 15, 2024

Time limit: 4.5 hours. You all think Resnik will have a more diverse playlist than Schatz?

- 4. Let ABCDE be a convex pentagon such that $\angle ABC = \angle AED = 90^{\circ}$. Suppose that the midpoint of \overline{CD} is the circumcenter of $\triangle ABE$. Let O be the circumcenter of $\triangle ACD$. Prove that line AO bisects \overline{BE} .
- 5. Let $a_1 < a_2 < \cdots$ be positive integers such that a_{k+1} divides $2(a_1 + \cdots + a_k)$ for all k. Suppose that there are infinitely many prime numbers which divide some term of the sequence. Prove that every positive integer divides some term of the sequence.
- 6. Elisa has 2023 treasure chests, all of which are unlocked and empty at first. Each day, Elisa adds a gem to one unlocked chest of her choice. Afterwards, a fairy does exactly one of the following actions:
 - If at least two chests are unlocked, it locks one of the unlocked chests.
 - If only one chest is unlocked, it unlocks all of the locked chests.

This process goes on forever. Find the smallest constant C such that Elisa can ensure the difference between the numbers of gems in any two chests never exceeds C, regardless of how the fairy acts.

©MOP 2024 Test Development Committee.

All problems confidential until after IMO, July 17, 2024.

The individual problems belong to respective authors and organizations, revealed later.

Mock IMO Day 3

MOP 2024

Whenever

Time limit: ∞ . Only if you want to see some leftover shortlist problems.

7. Let ABC be an acute scalene triangle with circumcircle ω . Circle Ω is internally tangent to ω at A and is also tangent to \overline{BC} at D. Lines AB and AC meet Ω again at P and Q. Let M and N be points on line BC such that B is the midpoint of \overline{DM} and C is the midpoint of \overline{DN} . Lines MP and NQ meet at K, and intersect Ω again at I and J. Ray KA meets the circumcircle of $\triangle IJK$ at $X \neq K$. Prove that $\angle BXP = \angle CXQ$.

©MOP 2024 Test Development Committee. All problems confidential until after IMO, **July 17, 2024**. The individual problems belong to respective authors and organizations, revealed later.