Mock IMO Day 1

MOP 2023

Saturday, June 10, 2023

Time limit: 4.5 hours. We hope you're looking forward to your first free day tomorrow!

1. Let $k \geq 2$ be an integer. A nonempty set S of real numbers has the property that every element $s \in S$ can be written as the sum of k distinct elements of S that are not equal to s. Find the smallest possible value of $|S|$, in terms of k.
2. Find all rational numbers q for which there exists a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f(x+f(y))=f(x)+f(y) \quad \text { and } \quad f(z) \neq q z
$$

for all real numbers x, y, z.
3. Let $A A^{\prime} B C C^{\prime} B^{\prime}$ be a convex cyclic hexagon such that line $A C$ is tangent to the incircle of $\triangle A^{\prime} B^{\prime} C^{\prime}$ and line $A^{\prime} C^{\prime}$ is tangent to the incircle of $\triangle A B C$. Let lines $A B$ and $A^{\prime} B^{\prime}$ intersect at X and lines $B C$ and $B^{\prime} C^{\prime}$ intersect at Y. Prove that if $X B Y B^{\prime}$ is a convex quadrilateral, then it has an incircle.
©MOP 2023 Test Development Committee.
All problems confidential until after IMO, July 9, 2023.
The individual problems belong to respective authors and organizations, revealed later.

Mock IMO Day 2

MOP 2023

Sunday, June 18, 2023

Time limit: 4.5 hours. Remember to wish happy birthday to Po!
4. Point P lies in the interior of acute triangle $A B C$ such that lines $A P$ and $B C$ are perpendicular. Points D and E on side $B C$ satisfy $P D \| A C$ and $P E \| A B$, and points $X \neq A$ and $Y \neq A$ lie on the circumcircles of $\triangle A B D$ and $\triangle A C E$, respectively, such that $D A=D X$ and $E A=E Y$. Prove that points B, C, X, and Y are concyclic.
5. For each $1 \leq i \leq 9$ and positive integer T, let $d_{i}(T)$ denote the total number of times the digit i appears when all multiples of 2023 between 1 and T inclusive are written out in base 10. Prove that there are infinitely many positive integers T such that there are exactly two distinct values among $d_{1}(T), d_{2}(T), \ldots, d_{9}(T)$.
6. Let s be a positive integer. Lucy and Lucky play the following game on a blackboard. Lucy initially writes s integer-valued 2023-tuples on the board. Lucky then gives Lucy an integervalued 2023 -tuple. Afterwards, Lucy can repeatedly take any two (not necessarily distinct) tuples $\left(v_{1}, \ldots, v_{2023}\right)$ and $\left(w_{1}, \ldots, w_{2023}\right)$ on the blackboard and write the tuples

$$
\left(v_{1}+w_{1}, \ldots, v_{2023}+w_{2023}\right) \quad \text { and } \quad\left(\max \left(v_{1}, w_{1}\right), \ldots, \max \left(v_{2023}, w_{2023}\right)\right)
$$

on the board. Lucy wins if she can write Lucky's tuple on the board in a finite number of steps.
Determine the smallest value of s for which Lucy has a winning strategy.
©MOP 2023 Test Development Committee.
All problems confidential until after IMO, July 9, 2023.
The individual problems belong to respective authors and organizations, revealed later.

Mock IMO Day 3

MOP 2023

Whenever

Time limit: ∞. Only if you want to see some leftover shortlist problems.
7. Let $A B C$ be a triangle, and let ℓ_{1} and ℓ_{2} be parallel lines. For $i \in\{1,2\}$, let ℓ_{i} meet lines $B C$, $C A$, and $A B$ at X_{i}, Y_{i}, and Z_{i} respectively. Suppose that the line through X_{i} perpendicular to $\overline{B C}$, the line through Y_{i} perpendicular to $\overline{C A}$, and the line through Z_{i} perpendicular to $\overline{A B}$ determine a non-degenerate triangle Δ_{i}. Prove that the circumcircles of Δ_{1} and Δ_{2} are tangent to each other.
8. Let n be a positive integer and X_{1}, \ldots, X_{m} be distinct nonempty subsets of $\{1, \ldots, n\}$. Prove that there are at least n^{n} functions $f:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n+1\}$ such that there exists an index k satisfying

$$
\sum_{x \in X_{k}} f(x)>\sum_{x \in X_{i}} f(x)
$$

for all $i \neq k$.
9. Prove that $2^{n}+65$ does not divide $5^{n}-3^{n}$ for any positive integer n.

