Mock IMO Day 1

MOP 2023

Saturday, June 10, 2023

Time limit: 4.5 hours. We hope you're looking forward to your first free day tomorrow!

- 1. Let $k \ge 2$ be an integer. A nonempty set S of real numbers has the property that every element $s \in S$ can be written as the sum of k distinct elements of S that are not equal to s. Find the smallest possible value of |S|, in terms of k.
- 2. Find all rational numbers q for which there exists a function $f \colon \mathbb{R} \to \mathbb{R}$ satisfying

$$f(x+f(y)) = f(x) + f(y)$$
 and $f(z) \neq qz$

for all real numbers x, y, z.

3. Let AA'BCC'B' be a convex cyclic hexagon such that line AC is tangent to the incircle of $\triangle A'B'C'$ and line A'C' is tangent to the incircle of $\triangle ABC$. Let lines AB and A'B' intersect at X and lines BC and B'C' intersect at Y. Prove that if XBYB' is a convex quadrilateral, then it has an incircle.

©MOP 2023 Test Development Committee. All problems confidential until after IMO, **July 9, 2023**. The individual problems belong to respective authors and organizations, revealed later.

Mock IMO Day 2

MOP 2023

Sunday, June 18, 2023

Time limit: 4.5 hours. Remember to wish happy birthday to Po!

- 4. Point P lies in the interior of acute triangle ABC such that lines AP and BC are perpendicular. Points D and E on side BC satisfy PD || AC and PE || AB, and points $X \neq A$ and $Y \neq A$ lie on the circumcircles of $\triangle ABD$ and $\triangle ACE$, respectively, such that DA = DX and EA = EY. Prove that points B, C, X, and Y are concyclic.
- 5. For each $1 \le i \le 9$ and positive integer T, let $d_i(T)$ denote the total number of times the digit i appears when all multiples of 2023 between 1 and T inclusive are written out in base 10. Prove that there are infinitely many positive integers T such that there are exactly two distinct values among $d_1(T), d_2(T), \ldots, d_9(T)$.
- 6. Let s be a positive integer. Lucy and Lucky play the following game on a blackboard. Lucy initially writes s integer-valued 2023-tuples on the board. Lucky then gives Lucy an integer-valued 2023-tuple. Afterwards, Lucy can repeatedly take any two (not necessarily distinct) tuples (v_1, \ldots, v_{2023}) and (w_1, \ldots, w_{2023}) on the blackboard and write the tuples

 $(v_1 + w_1, \dots, v_{2023} + w_{2023})$ and $(\max(v_1, w_1), \dots, \max(v_{2023}, w_{2023}))$

on the board. Lucy wins if she can write Lucky's tuple on the board in a finite number of steps.

Determine the smallest value of s for which Lucy has a winning strategy.

©MOP 2023 Test Development Committee.

All problems confidential until after IMO, July 9, 2023.

The individual problems belong to respective authors and organizations, revealed later.

Mock IMO Day 3

MOP 2023

Whenever

Time limit: ∞ . Only if you want to see some leftover shortlist problems.

- 7. Let ABC be a triangle, and let ℓ_1 and ℓ_2 be parallel lines. For $i \in \{1, 2\}$, let ℓ_i meet lines BC, CA, and AB at X_i , Y_i , and Z_i respectively. Suppose that the line through X_i perpendicular to \overline{BC} , the line through Y_i perpendicular to \overline{CA} , and the line through Z_i perpendicular to \overline{AB} determine a non-degenerate triangle Δ_i . Prove that the circumcircles of Δ_1 and Δ_2 are tangent to each other.
- 8. Let n be a positive integer and X_1, \ldots, X_m be distinct nonempty subsets of $\{1, \ldots, n\}$. Prove that there are at least n^n functions $f: \{1, 2, \ldots, n\} \to \{1, 2, \ldots, n+1\}$ such that there exists an index k satisfying

$$\sum_{x\in X_k}f(x)>\sum_{x\in X_i}f(x)$$

for all $i \neq k$.

9. Prove that $2^n + 65$ does not divide $5^n - 3^n$ for any positive integer n.

©MOP 2023 Test Development Committee. All problems confidential until after IMO, **July 9, 2023**. The individual problems belong to respective authors and organizations, revealed later.