# MOP 2024 Homework Problems 

Thug Raiders

May 2024


Congratulations on your excellent performance on the USA(J)MO, which has earned you an invitation to attend the Math Olympiad Program! This program will be an intense and challenging opportunity for you to learn a tremendous amount of mathematics.

To celebrate your achievement, and give you something to talk about on the way to Pittsburgh, we invite you to work on the following homework problems. (These are optional and just for your interest; you are not expected to formally submit any solutions.)

You're welcome to share these problems with friends as there is nothing confidential in here. Happy solving!

## Algebra

A1. Let $f$ be the cubic polynomial

$$
f(x)=x^{3}+b x^{2}+c x+d,
$$

where $b, c$, and $d$ are real numbers. Let $x_{1}, x_{2}, \ldots, x_{n}$ be nonnegative numbers, and let $m$ be their average. Suppose that $m \geq-\frac{b}{2}$. Prove that

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \geq n f(m)
$$

A2. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x+1)=f(x)+1$ and $f\left(x^{2}\right)=f(x)^{2}$ for all real $x$.

A3. Let $P(x)$ be a polynomial with real coefficients, such that $P(x) \geq 0$ for all $x \in \mathbb{R}$. Show that there exist polynomials $Q_{1}(x), Q_{2}(x), \ldots, Q_{k}(x)$, also with real coefficients, such that $P=Q_{1}^{2}+Q_{2}^{2}+\cdots+Q_{k}^{2}$. Can we always have $k=2$ ?

## Combinatorics

C1. Suppose there are many people at a party, but each person knows at most 7 other people at the party. Show that it's possible to separate the people into two rooms such that in each room, every person knows at most 3 of the people in their room.

C2. Let $n$ be a positive integer and let $\sigma$ be a random $2 n$-cycle on $\{1,2, \ldots, 2 n\}$ and $\tau$ be a random fixed-point-free involution on $\{1,2, \ldots, 2 n\}$. What is the maximum number of cycles $\sigma \circ \tau$ can have and what is the probability that this value is achieved?

C3. There is a hidden infinite binary string $a_{1} a_{2} a_{3} \cdots \in\{0,1\}^{\infty}$ for which

$$
\lim _{n \rightarrow \infty} \frac{a_{1}+\cdots+a_{n}}{n}=0
$$

(that is, the set of indices $i$ with $a_{i}=1$ has density zero). The digits $a_{t}$ are revealed in order. For each $t \geq 1$, before $a_{t}$ is revealed, a frog decides to wait or cross the road. Then $a_{t}$ is revealed. If the frog crossed the road and $a_{t}=1$, then the frog is squashed. If the frog crossed the road and $a_{t}=0$ then the frog has safely crossed the road. Otherwise the process repeats with $a_{t+1}$.
Find a randomized strategy for the frog such that, regardless of which string $a_{1} a_{2} a_{3} \ldots$ is chosen, the frog successfully crosses the road with probability at least $99 \%$.

## Geometry

G1. Let $A B C$ be an acute triangle for which $A B>A C$, and let $D$ and $E$ denote the midpoints of $A B, A C$ respectively. The circumcircle of $A D E$ intersects the circumcircle of $B C E$ again at $P$. The circumcircle of $A D E$ intersects the circumcircle $B C D$ again at $Q$. Prove that $A P=A Q$.

G2. In the exterior of $\triangle A B C$ we construct the regular pentagons $A B D E F, B C G H I$, $C A L K J$. Show that the perpendicular bisectors of $F L, D I, G J$ are concurrent or parallel.
G3. Let $A B C$ be an acute triangle, and let $M$ denote the midpoint of arc $\widehat{B A C}$ of its circumcircle. Let $X$ be a point lying in the interior of the acute triangle $A B C$ such that

$$
\angle B A X=2 \angle X B A \quad \text { and } \quad \angle X A C=2 \angle A C X .
$$

Prove that $X M=X A$.

## Number Theory

N1. Let $F_{n}$ be the Fibonacci sequence, i.e., $F_{0}=0, F_{1}=1, F_{n}=F_{n-1}+F_{n-2}$ for $n>1$. Prove that there exist infinitely many prime numbers $p$ such that $p$ divides $F_{p-1}$.

N2. Decide whether there are infinitely many triples of positive integers $(a, b, c)$ such that all prime factors of $a!+b!+c!$ are less than 2024 .
$\mathbf{N} 3$. For any positive integer $n$, let $\Omega(n)$ be the unique positive integer such that $n$ is a product of $\Omega(n)$ prime numbers. Prove that there exist infinitely many positive integers $n$ such that

$$
\Omega(n+1)<\Omega(n+2)<\cdots<\Omega(n+2024) .
$$

## If you finish early...

Some of these questions may not have reasonable solutions.
X1. Find all functions $f: \mathbb{Z} \rightarrow \mathbb{R}$ such that for all $x, y, z \in \mathbb{Z}$ with $x+y+z=0$, we have

$$
f(x)^{2}+f(y)^{2}+f(z)^{2}=1+2 f(x) f(y) f(z)
$$

X2. In the setup of problem $\mathbf{C 2}$, find the distribution of the cycle count of $\sigma \circ \tau$.
X3. Let $A B C D$ be a quadrilateral and $I_{A}, I_{B}, I_{C}, I_{D}$ be the incenters of $B C D, C D A$, $D A B, A B C$ respectively. Show that if three of the lines $A I_{A}, B I_{B}, C I_{C}, D I_{D}$ are concurrent, then all four are concurrent.

X4. Solve problem N3 but with $\Omega(n)$ replaced with $\omega(n)$, the number of distinct prime factors of $n$.

