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Hard: #22 in Chapter 1. Consider a pile of sand principle. You wish to take away part
of it to make it smaller than some number ε. Suppose you can take away 5% of what
remains on any given day. Eventually you will reduce the pile of sand to less than ε.

Today we will cover section 1 and part of section 2.

1.1 Notation

∀ is read “for each”, do NOT use “for all”.
∃ is read “there exists”.
⇒ is read “implies”. Then A⇒ B. Note that the principle of explosion exists.

Set notation: we use capital letters to denote sets, and small letters to denote the
elements of the set (e.g. x ∈ X). Then x is called an element (or a point of such a set).

Then
{x ∈ X : . . . }

is read “the set of all x in X such that. . . ”.
Common sets:

• ∅ is the empty set.

• N = {1, 2, 3, . . . } is the set of natural numbers.

• Z is the set of integers.

• Q is the set of rational numbers. We can write this as

Q =

{
p

q
: p ∈ N ∪ {0} , q ∈ Z \ {0}

}
.

This is a terrible definition, probably a better one is

Q =

{
p

q
: p ∈ Z, q ∈ N

}
.

Note that N ⊂ Z ⊂ Q. Note that in this course, ⊂ will mean what is usually meant by
⊆.

We will assume all the nice properties of these sets.
The subject of the course, however is R.

1.2 The Real Numbers

In most books, we accept properties of R as axioms. We will instead construct R and
prove that the “axioms” are true.

The most important property of the real numbers is the least upper bound property.

Fact 1.1 (Least Upper Bound). If S is a nonempty set of real numbers and there exists
an upper bound for S, then there exists a least upper bound in R for S.

Note: we say a upper bound for S, not of S; the latter suggests the upper bound is
contained in S.

Definition 1.2. An upper bound for a set S is a real M such that M ≥ s∀s ∈ S.
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Example 1.3. Let S = {r ∈ Q : r < 2}. Then an upper bound for S is 9000, but the
least upper bound is 2.

Note that the least upper bound property is NOT true for the rationals. For example,
consider {

r ∈ Q : r < 0 or 0 ≤ r2 < 2
}
.

This has no least upper bound in the rationals, but it is
√

2 in the reals.

1.3 Constructing the Reals

Theorem 1.4 (Irrationality of the Square Root of 2). For every rational p
q ∈ Q, we

have
(
p
q

)2
6= 2.

Proof. Suppose for contradiction that
(
p
q

)2
= 2 where (p, q) = 1. In particular, p and q

are both not even.
For the first case, assume p is odd. But now p2 = 2q2, which is a contradiction. `
Now suppose p is even. Then q is odd. Now p2 = 2q2, but comparing th 2-adic

evaluations yields a contradiction. `
This is a contradiction in both cases, so we’re done.

Theorem 1.5. If
(
p
q

)n
= k ∈ N where m ∈ N, then q = 1.

Proof. Do some blah with prime factorizations.

TODO: Read Chapter 1, Section 1.

1.4 Sets and Classes

Definition 1.6. A set is a collection of elements.

Definition 1.7. A class is a collection of sets.

For example, N is a set. Meanwhile, we might consider F as a collection of all finite
subsets of N. For example, {1, 6} ∈ F . On the other hand, 13 /∈ F , while {13} ∈ F .

1.5 Constructing the Real Numbers

We will construct R with the method of Dedekin cuts.

Definition 1.8. A cut in Q is a division of Q into two nonempty sets A and B such
that

(i) A tB = Q; i.e. A ∪B = Q and A ∩B = ∅.

(ii) ∀a ∈ A∀b ∈ B, a < b.

(iii) A has no largest element.

The notation is A | B.

Definition 1.9. If B has a smallest element r ∈ Q, we say we have cut the line at r,
and this is a rational cut.

Example 1.10. Take A = {r ∈ Q : r < 2} and B = Q−A. In this case, minB = 2. So
this is a (rational) cut at 2.
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Example 1.11. A =
{
r ∈ Q : r ≤ 0 or 0 ≤ r2 < 2

}
| B = Q−A is not a cut of rational

number.

So now we make a definition.

Definition 1.12. A real number is a cut in Q. R is the collection of all cuts in Q.

Now we can impose ordering, etc. on these. We say that A | B ≤ C | D if and only if
A ⊆ C. Also, A | B < C | D if and only if A ⊆ C but A 6= C.

Now we can rewrite the least upper bound property as

Theorem 1.13 (Least Upper Bound). If S is a collection of cuts in Q for which S is
not empty, and there exists an upper bound of S, then there is a least upper bound for
S.

Proof. Take
E = {r ∈ QQ : ∃A | B ∈ S and r ∈ A}

and let F = Q − E. In other words, E = ∪A|B∈SA. We claim E | F is a least upper
bound.

Now E is not empty because S is not empty. Because A ⊆ E∀A | B ∈ S, E is certainly
an upper bound. But it must also be a least upper bound, because any other cut misses
some element of E, which is contained in some A.

Finally we have to check that E | F is indeed a cut. F 6= ∅ because there exists an
upper bound for S, and E does not have a maximal element because none of the A do.
Finally, check that all elements of F are greater than all elements of E.

Finally we need to embed Q in our R. This is not automatic, since R is actually a
collection of cuts. So, for any c ∈ Q, we associate it with the cut at c, namely

c∗
def
= {r ∈ Q | r < c} | {r ∈ Q : r ≥ c} .

This allows us to say Q ⊂ R, even though formally this is wrong. But these identifications
allow us to write this anyways.

One can also check that c < d⇔ c∗ < d∗, so the ordering of Q agrees with that of R.

1.6 Arithmetic

Now for the hard part. . . we need to endow R with an operation.
Well, addition isn’t too bad

Definition 1.14. For cuts A | B and C | D, we define

(A | B) + (C | D)
def
= (A+B) | (Q− (A+B)) .

One needs to check a LOT of things. First check that it’s actually a cut, and that all
arithmetic properties (commutative, associative, identity . . . ) hold.

It’s even worse to define −x given x = A | B. You need to handle the case where B
has a smallest element. And so on.

Then you need to prove that x+ (−x) = 0∗. Now we need to prove equality of sets.

Remark 1.15. The only reliable way to show that A = B is A ⊆ B and B ⊆ A.
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And then there’s A | B · C | D. This will require casework splitting based on sign.
Given two positive guys x, y > 0, we define the E set by

E
def
= {r ∈ Q : r ≤ 0 or r = ac where a, c ∈ A× C and a, c > 0} .

Next, if x = 0 or y = 0, then xy = 0.

Finally, if x > 0, y < 0, then define x · y def
= − (x · (−y)). And you get the idea for the

other cases. . .
I won’t even write down anything for showing x(y + z) = xy + xz.
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How to terrify students: ask them to read ahead, and then ask them what a Cauchy
sequence is! I should try doing this.

2.1 Notation

a ∈ A reads a is an element of A
S ⊂ T reads S is contained in T .

2.2 Ordering of Cuts

Let x = A | B and y = C | D be cuts. We say x < y if and only if A ⊂ C and A 6= C.
We also had cuts which take place at rational numbers; that isc ∈ Q is associated with

a cut c∗. In particular,
0∗ = Q<0 | Q≥0.

Now we say that x = A | B ∈ R is positive if 0∗ < x, negative if 0∗ > x, and zero if
x = 0∗. The terms nonnegative and nonpositive retain their usual definition.

We also define |x| to be x if x > 0, 0 (or 0∗) if x = 0 and −x if x < 0.
We have some nice properties:

• Trichotomy: exactly one of x = 0, x > 0, x < 0 holds for each x ∈ R.

• Transitivity: x < y and y < z implies x < z.

• Translation: ∀x, y, z ∈ R¡ we have x < y ⇒ x+ z < y + z.

The first two properties are obvious from the cut definition. The third property follows
by the definition of + for cuts.

2.3 Triangle Inequality

Fact 2.1 (Triangle Inequality). For all x, y ∈ R we have |x+ y| ≤ |x|+ |y|.

Proof. Obviously x+y ≤ |x|+|y|. On the other hand, −(x+y) = (−x)+(−y) ≤ |x|+|y|,
so x+ y ≥ − (|x|+ |y|). Hence, we’re done.

2.4 Cauchy Sequences

Definition 2.2. A sequence of real numbers is an ordered list x1, x2, x3, . . . of real
numbers. It is denoted (xn) or (xn)n∈N.

Some books use {xn} for the same thing, but this is bad because it coincides with the
set of elements of the sequence.

Definition 2.3. (xn) converges to b ∈ R as n→∞ if and only if for each ε > 0, ∃N ∈ N
such that ∀n ≥ N , |xn − b| < ε.

This is a good place to point out that we are saying “for each ε > 0” and certainly
not “for every ε > 0”.

Definition 2.4. A sequence (xn) satisfies a Cauchy condition (or is Cauchy) if for each
ε > 0, ∃N such that if n,m ≥ N then |xn − xm| < ε.
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Theorem 2.5 (Cauchy Convergence Criterion). For sequences of real numbers, the two
definitions are equivalent; that is, a sequence of reals converges if and only if it is Cauchy.

This is abbreviated CCC. The fact that convergence implies Cauchy is trivial; tho
converse is more interesting.

Proof. We prove only the hard direction. It is easy to check that {xm : m ∈ N} is
bounded (and nonempty), by picking ε = 1000 in the Cauchy condition.

Now let us consider

S
def
= {x ∈ R : ∃ inf many n ∈ N with xn ≥ x} .

Clearly S is bounded above and nonempty. Let b = supS. We claim that the limit is b.
We need to show that ε > 0, there is an N such that for each n ≥ N we have
|xn − b| < ε.

Now there exists an N2 such that for every m,n ≥ N2 we have |xm − xn| < 1
2ε.

Because b+ 1
2ε is not in S, there exists N3 such that for each n ≥ N3 we have xn ≤ b+ 1

2ε
(because there are only finitely many counterexamples). Meanwhile, because b − 1

2ε is
not an upper bound for S, then b − 1

2ε ∈ S, and there are infinitely many n such that
b − 1

2ε ≤ xn ≤ b. Hence there exists one with a large subscript N4 such that xN4 is in
the interval, and N4 > max {N1, N2, N3}. But because xN4 ∈

(
b− 1

2ε, b+ 1
2ε
)
, all the

xn are within 1
2ε of xN4 , which is sufficient.

2.5 Euclidean Space

We consider Rm. This is a vector space (over R), meaning the elements have an
addition and multiplication by scalars. The elements are m-tuples of real numbers,
x = (x1, x2, . . . , xm).

Rm also has a dot product (or inner product). This is a map 〈·, ·〉 : Rm ×Rm → R by

〈x, y〉 =

n∑
i=1

xiyi.

This product is bilinear, which means that x, y, z ∈ Rm then 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉
(this is clear). Likewise, 〈x, y〉 = 〈y, x〉 and 〈tx, y〉 = t 〈x, y〉. Finally, it is positive
definite; that is, 〈x, x〉 ≥ 0 and equality occurs if and only if x is the zero vector.

Definition 2.6. For x ∈ Rm, we define |x, x| =
√
〈x, x〉.

Theorem 2.7 (Cauchy-Schwarz). For any x and y in Rm,

〈x, y〉2 ≤ |x| |y| .

Proof. Assume x, y 6= 0, otherwise it’s obvious.
Let t ∈ R, and observe

0 ≤ 〈x+ ty, x+ ty〉 = 〈x, x〉+ 2t 〈x, y〉+ t2 〈y, y〉 .

The right-hand side is a quadratic in t which clearly has a nonpositive discriminant,
so taking B2− 4AC ≤ 0 yields the Cauchy-Schwarz inequality. (We note that 〈y, y〉 ≥ 0
so this is a quadratic with a positive leading term.)

This implies good things about Rm; for instance,

|x− y| = (〈x− y, x− y〉)2 =

√
(x1 − y1)2 + · · ·+ (xm − ym)2

which is the distance between two points in Rm.
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Fact 2.8 (Triangle Inequality). For x, y ∈ Rm, |x+ y| ≤ |x|+ |y|.

Proof. Square both sides, use bilinearity and it reduces to twice the Cauchy Schwarz
inequality.

Of course, this implies |x− z| ≤ |x− y|+ |y − z|.

2.6 Closing Remarks

Definition 2.9. The unit ball Bm is defined as {x ∈ Rm : |x| ≤ 1}. The unit sphere
Sm−1 is defined as Sm−1 = {x ∈ Rm : |x| = 1}.

Note the differences in the subscripts! Sm−1 is the boundary of Bm – try to not
confuse them.
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Pop quiz: what’s the area of a circle? Zero. The disk is the one with positive area.
Today’s lecture is about cardinality.

3.1 Function

A function f : X → Y is a map which associates each x ∈ X an element f(x) ∈ Y . The
set X is called the domain and the set Y is called the target. The range of Y is the set
of points which are actually hit by f .

It’s much better to say “consider a function f” rather than “consider a function f(x)”.
Furthermore, we define

fpre(y) = {x ∈ X : f(x) = y}

Note that this is not actually a function from Y to X, but from Y to 2X . (So the common
notation f−1(x) is abusive.) We only use this notation when f is actually one-and-one
and onto.

Definition 3.1. For a function f ,

• f is one-to-one (or injective) if ∀x, x′ ∈ X, if x 6= x′ then f(x) 6= f(x′).

• f is onto (or surjective) if ∀y ∈ Y , ∃x ∈ X (not necessarily unique) such that
y = f(x).

• f is a bijective, or a bijection, if these are both true.

3.2 Cardinality

Definition 3.2. Sets X and Y have the same cardinality if there exists a bijection from
X to Y . We write X ∼ Y for this relation.

This is an equivalence relation.

Definition 3.3. If N and X have the same cardinality, then X is said to be denumerable.

Claim 3.4. Z ∼ N.

Proof. Take

f(n) =

{
1
2(n+ 1) if n is odd

−1
2n if n is even.

Theorem 3.5 (Cantor’s Diagonalisation Argument). R is NOT denumerable.

Proof. Insert Cantor’s proof here.

3.3 Cardinality Continued

If X is denumerable, then it can be exhibited as a list. Conversely, given a sequence of
the elements of X, then X is denumerable.

Proposition 3.6. N× N is denumerable.

Proof. A list is (1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), et cetera is a suitable list.
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It turns out that Q is also denumerable; make the same list, and cross out repetitions.
Because there are infinitely many rational numbers, we are okay. But we will see a
different way to do this.

Note that if X and Y are denumerable, then X × Y is denumerable (since N × N is
denumerable). Then we can also write X × Y ×Z = (X × Y )×Z, so a similar property
holds for 3 sets (or even n sets) by induction. In particular, Nk is denumerable for all k.

But N∞ is not denumerable! It contains all sequences of digits, i.e. {0, 9}∞, so it
contains a subset bijective to R which is already uncountable.

Theorem 3.7. Suppose X is an infinite set.

(a) If ∃f : X → N an injection, then X is denumerable.

(b) If ∃g : N→ X a surjection, then X is denumerable.

Proof. For part (a), notice that f(X) is infinite and nonempty. But N has the least
criminal property, so we can get a bijection! Namely, let τ(n) denote the nth smallest
element of f(X); this is defined because f(X) is infinite. Then τ is a bijection.

Part (b) follows from part (a), because for each x ∈ X we can construction an in-
jection f : X → N by selecting an arbitrary element of gpre(x) (which is nonempty by
assumption) for each f(x).

This provides a “clean” proof that Q is denumerable, since there is an injection from
Q into Z× N ∼ N (just send p

q to (p, q), where q > 0 and the gcd is 1).

Proposition 3.8. Let A = ∪∞i=1Ai, where each Ai is denumerable. Then A is denumer-
able.

Note that this behaves differently from Cartesian product (since, say, R∞ is denumer-
able).

Proof. There is a surjection from N×N to ∪Ai by taking (i, j) to the jth smallest element
of Ai.

Remark 3.9 (Hotel Story). A hotel has denumerably many hotels, each with finitely
many rooms, with all rooms filled. Then you can accommodate one additional guest.

You can use this to show [a, b) ∼ (a, b).
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4.1 Metric Spaces

Definition 4.1. A metric space is a set M and a function d : M ×M → R such that

(i) d is positive definite and symmetric, meaning d(y, x) = d(x, y) ≥ 0∀x, y ∈M , with
equality if and only if x = y, and

(ii) for all x, y, z ∈M , d(x, z) ≤ d(x, y) + d(y, z).

The best example of a metric space is R2, where d is the Euclidean distance; i.e.
d(x, y) =

√
(x1 − y1)2 + (x2 − y2)2. Of course this generalizes to Rm and R.

Given M ⊆ R2, we can consider the inherited metric space with the same distance.
That means d(x, y) = dR2(x, y). In other words, basically everything is a metric space
when we give the inherited metric.

Not all distance functions are inherited. For consider S2. One possible distance is
simply to consider S2 ⊂ R3 as a parent metric space. But we can also consider the
distance between two points as the great-circle distance; this will be a different metric
on the sphere.

Another possibility, on the surface of a torus, would be the shortest arc on the surface
of the torus.

The upshot is that any claim about metric spaces applies to many objects.
Finally, a much cooler metric.

Example 4.2 (Discrete metric). Given any set M , define

d =

{
1 if x = y

0 if x 6= y.

4.2 Sequences

Suppose (xn) = x1, x2, x3, . . . is a sequence of points in a metric space M .

Definition 4.3. We say that (xn) converges to a point p in M if and only if for each
ε > 0, there exists a positive integer N such that if n ≥ N then the distance between
xn and p is less than epsilon.

Example 4.4. In Q, the sequence 1, 1.4, 1.41, 1.414, . . . converges to
√

2 in R. However,
it does not converge in Q!

The standard notation is xn → p or limn→∞ xn = p, among several other notations.
But all of this is done in a metric space, not R. In particular, it does not make sense
to “subtract” in a general metric space, or to say one point is less than another. For
example, in R2, the sequence

(
1− 1

n , 1 + 1
2 + · · ·+ 1

2n

)
converges (1, 2), but we don’t

have an ordering.

4.3 Maps between Metric Spaces

Let F : M → Y be a function, where M and Y are metric spaces equipped with distance
functions dM and dY . Take p ∈M .

Definition 4.5. f is continuous at p if and only if
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(i) For every sequence inM that converges to p, the f -image of that sequence converges
to f(p) in M .

(ii) For every ε > 0 there exists a δ > 0 such that if d(x, p) < δ then d(fx, fp) < 0.1

Theorem 4.6. These two definitions are equivalent.

Proof. First we will show the first definition implies the second. Assume (2) is false,
then ∃ε > 0 such that ∀δ > 0 there exists a “bad x” in M such that d(x, p) < δ yet
d(fx, fp) ≥ ε.

For each positive integer n, let δ = 1
n , and let xn be a point such that d(xn, p) <

1
n

and d(fx1, fp) ≥ ε. Now consider the sequence x1, x2, . . . . Because d(xn, p) <
1
n for

each n, we find that xn converges to p. On the other hand, d(fxn, fp) ≥ ε for each n, so
the f -image does not converge to f(p). This is a contradiction, so our assumption was
wrong and (2) is true.

Now for the other direction. Assume (2), and suppose that xn converges to p. We
wish to show f(xn) converges to f(p). That means, for any given ε > 0, we need to find
N such that ∀n ≥ N : d(fxn, fp) < ε. However, we know there exists a δ > 0 such that
if d(x, p) < δ then d(fx, fp) < ε by (2). But limxn = p; this means d(xn, p) < δ for
large enough n, completing the proof.

Note that none of this uses the triangle inequality.

4.4 Continuity Continued

No pun intended.

Definition 4.7. If f : M → Y and f is continuous at each p ∈M , then f is continuous.

Proposition 4.8. Let f : M → Y and g : Y → P be continuous maps between metric
spaces. Then g ◦ f : M → P is continuous as well.

Proof. Trivial using sequences.

This is much more obnoxious with the ε-δ definition. This suggests that it is probably
best to think of metric spaces in terms of convergent sequences than anything else.

Definition 4.9. If (xn) is a sequence in M and 1 ≤ m1 < m2 < m3 < . . . is a sequence
of integers, then xm1 , xm2 , . . . is a subsequence of the original sequence.

Proposition 4.10. A subsequence of a convergent sequence converges to the same point.

4.5 Homeomorphism

Definition 4.11. Consider f : M → Y . If f is a bijection and f is continuous, and
f−1 : Y →M is also continuous, then f is called a homeomorphism.

Example 4.12. Ellipses are homeomorphic to S1 if they inherit a distance metric from
R2. Function: assume they are cocentric, and map x ∈ S1 to y ∈ E, where O, x, and y
are collinear, and O lies outside the segment xy.

Example 4.13. Doughnuts are homeomorphic to coffee cops.

Example 4.14. The trefoil know is homeomorphic to S1 because it is trivial to construct
an homeomorphism in terms of paths.

It’s not possible to do a deformation in R3, but we can do so in R4! If you imagine
the fourth dimension in color. . .

1Here we are using the shorthand fx
def
= f(x).
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Today: closed, open, clopen sets, and so on.
Recall that f : M → N is a homeomorphism if it is a bi-continuous bijection if it is a

bijection which is continuous and the inversive bijection is also continuous.
It’s important to note that the f continuous does not imply f−1 is continuous. Con-

sider the map f : [0, 2π)→ S1 by x 7→ eix. Then it is not hard to construct a sequence
of points in S1 which approaches 1 ∈ S1, but whose inverses approach 2π.

5.1 Closed Sets

Definition 5.1. Suppose S ⊂ M , where M is a metric space. Define limS, the limit
set of S, by

limS
def
= {p ∈M : ∃(xn) ∈ S such that xn → p} .

Remark 5.2. S ⊆ limS because ∀p ∈ S, p, p, p, p, . . . is a sequence converging to p.

Definition 5.3. S is closed in M if limS = S.

Proposition 5.4. limS is closed, regardless of whether S itself is closed. That is,
lim limS = limS.

Proof. We wish to show that if ym → p ∈M , where ym ∈ limS, then p ∈ limS as well.
For each k, yk is a limit of some sequence in S, say (xk,n)n≥1, converging to yk. For

each k, we can find xk,n(k) ∈ S for which d(xk,n(k), yk) <
1
k . For each k, we can find

xk,n(k) ∈ S for which d(xk,n(k), yk) <
1
k .

Then for each ε > 0 there exists N such that for all k > N ,

d(yk, p) <
1

2
ε⇒ d(xk,n(k), p) <

1

2
ε+

1

k

so we deduce that p ∈ limS as required.

Corollary 5.5. limS is the smallest closed subset of M that contains S.

So, we say that limS is the closure of S.

5.2 Open Sets

Definition 5.6. For each r, we define

Mr(p)
def
= {x ∈M : d(x, p) < r} .

Mr(p) is called the r-neighborhood of p.

Definition 5.7. A set U ⊂ M is open in M if for each p ∈ U , there exists r > 0 such
that Mr(p) ⊆ U .

Example 5.8. (0, 1) is open in R but not R2.

Theorem 5.9. Open and closed are dual concepts: if S is closed then M \ S is open,
and vice-versa.

Proof. Let Sc = M \ S. First we show S closed implies Sc open. Let p ∈ Sc be given.
Suppose not, and for each r > 0 and Mr(p) fails to be in Sc. Then for each n, by taking
r = 1

n there exists xn /∈ Sc but xn ∈M 1
n
p. But now xn ∈ S is a sequence converging to

p, yet p ∈ Sc, contradiction.
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Example 5.10. Let S ⊂ M , where M is a metric space equipped with the discrete
metric. Then S is closed. Furthermore, Sc is closed so S is open.

Definition 5.11. A set is clopen if it is both open and closed.

Problem 5.12. If every set is clopen, then it is homeomorphic to the discrete space.

5.3 Topology

Definition 5.13. Consider the collection of all open sets in M . This is called the
topology T (M) of M .

Proposition 5.14. For any metric space M , then

(i) ∅,M ∈ T .

(ii) Any union of members of T belongs to T , even infinitely many, countable or un-
countable.

(iii) Any finite intersection of open sets of T is open.

Proof. The first two are trivial. The third fact follows from the fact that the intersection
of two open sets is open – if p ∈ U ∩ V , where U and V are open, then ∃r, s > 0 for
which Mr(p) ∈ U and Ms(p) ∈ V , whence Mmin{r,s}(p) ∈ U ∩ V as required.

It is also not hard to show that if f : M → N is a homeomorphism, then the topologies
are bijected as well (so we obtain a bijection from T (M) → T (N)). In other words,
homeomorphisms preserve topologies.

By the way, taking De Morgan’s laws gives the properties

(i) M and ∅ are closed.

(ii) The finite union of closed sets is closed.

(iii) All intersections of closed sets are closed.

5.4 More on Closed and Open Sets

Example 5.15. Let S = {x ∈ Q : x ≤ 0}. S is open in Q, because if a sequence in S
converges to a limit in the rational numbers converges to something in S. The fact
that there is a sequence converging to irrational numbers is irrelevant because our metric
space is Q.

But of course S is not closed in Q; consider the interval around S.

Example 5.16.
{
x ∈ Q : x <

√
2
}

is clopen in Q.

So, to re-iterate, we care A LOT about what M is!

Theorem 5.17. Every open set S ∈ R is a countable disjoint union of open intervals
(including rays).

Proof. Clearly S = ∅ “works” because it is a “union” of zero intervals.

For each x ∈ S, consider bx
def
= sup {y : (x, y) ⊆ S}. This is okay because the set is

nonempty. Note that it is possible that bx = +∞. Similarly, let ax
def
= lim {y : (y, x) ⊆ S}.

Now define
∀x ∈ S, Ix

def
= (ax, bx).

14
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We claim that ∀x, x′ ∈ S, either Ix = Ix′ or Ix ∩ Ix′ = ∅. This is easy to show via
contradiction.

So S consists of a disjoint union of open intervals. To show there are countably many,
take a rational number in each interval. Hence we see the intervals correspond to some
subset of the rationals. There are only countably many rationals, so there are countably
many intervals.2

2This is a commonly used technique.
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Definition 6.1. The boundary of a set S ⊆M is defined by

∂S = S ∩M \ S.

6.1 Continuity and the Open Set Condition

Recall the ε-δ definition of continuity; f is continuous iff ∀p ∈M, ε > 0, ∃δ > 0, we have
dM (p, q) < δ ⇒ d(fp, fq) < ε.

Recall that we defineMλ(p) = {q ∈M : d(p, q) < λ}. So we can rephrase the definition
as follows: for each ε > 0 and p ∈M , there exists δ > 0 such that f(Mδp) ⊂ Nεp.

Fact 6.2. Mλ(p) is always an open set.

Proof. If q ∈ Mλ(p), then we have d(p, q) < λ. Let s = λ − d(p, q) > 0. It suffices to
show that Ms(q) ⊂Mλ(p). In fact,

d(x, p) ≤ d(x, y) + d(q, p) < s+ d(p, q) = λ.

Now we use a definition of continuity using only open sets.

Theorem 6.3. f : M → N is continuous if and only if for every open set V ⊆ N , the
pre-image of V is open in M .

Proof. The easy part is to prove that the open set condition implies continuity. We
choose V to be Nε(fp); the pre-image is some open set U ⊆ M containing p. Because
U is open, there is some neighborhood of p contained in U ; that gets mapped into V as
desired.

The hard part is to show the ε-δ implies the open set condition. Let U be the pre-
image of an open V ⊆ N . We wish to show U is open as well. Pick any p ∈ U . Because
V is open, there exists λ > 0 for which Nλ(fp) ⊆ V . Now continuity implies for some
δ > 0 we have f(Mδ(p)) ⊆ Nλ(fp). But Nλ(fp) ⊆ V so Mδ(p) ⊆ U , as required. (Uh
because ∅ is clopen, it’s okay if either U or V are empty.)

Remark 6.4. This is very nice. Continuity can be done entirely with open sets, without
any regard to a metric.

Corollary 6.5. The open set condition is equivalent to the closed set condition3.

Proof. Take complements. Use the fact that fpre(N \K) = M \ fpre(K).

6.2 Homeomorphisms Again

Proposition 6.6. Consider a homeomorphism f : M → N . Suppose U ⊆ M is open.
Then f(U) ⊆ N is open.

This is not true if f is not a homeomorphism. For example, take a map x 7→ x2 from
R to R. Then f ((−1, 1)) = [0, 1).

Because f is thus a bijection between open sets, this is also called a topological equiv-
alence.

3Which says that the pre-image of every closed set is itself closed

16
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6.3 Closures and Interiors

Given S ⊆ M , limS = {p ∈M : ∃(xn) ∈ S, xn → p} We know that limS is closed and
S ⊆ limS. Furthermore,

Proposition 6.7. limS is the smallest closed set containing S, in the sense that if
S ⊆ K ⊆M and K is closed, then limS ⊆ K.

Proof. S ⊆ K ⇒ limS ⊆ limK = K.

For this reason, we call limS the closure of S, often denoted S.

Proposition 6.8. For any S,

S =
⋂

S⊆K,K closed

K.

Proof. Obvious.

Now let’s look at the dual situation with open sets.

Definition 6.9. The interior of S is

S̊
def
=

⋃
W⊆S,W open

W.

Definition 6.10. The boundary of S is

∂S
def
= S̄ \ S̊ = S ∩ Sc.

Example 6.11. Here is a nontrivial example. Consider S = Q ⊆ R. Then limS = R.
On the other hand, S̊ = ∅. Hence, the boundary of S is R.

Example 6.12. Consider the discrete space M and any subset S. Because all subsets
of M are closed, S = S; i.e. S is closed. Furthermore, all sets are open so S̊ = S. Once
again ∂S = ∅.

6.4 Clustering

Definition 6.13. We say a set S clusters at p ∈ M if for each ε > 0, S ∩Mε(p) is
infinitely large.

Remark 6.14. Finite sets do not contain cluster points. Consequently, this is subtly
different from limits.

Definition 6.15. The set S′, the cluster set of S, is the set of all cluster points for S.
Note that this need not be a subset of S.

Remark 6.16. The union of S′ and the isolated points of S – that is, the points p which
have some neighborhood disjoint from S − {p} – is equal to the closure of S. That is,
the limit points which are not cluster points are isolated points.

Definition 6.17. A point p ∈ S is a condensation point if there are uncountably many
points of S in each Mε(p). The set of condensation of points is denote S∗.

Example 6.18. Take Q as a subset of R again. Q′ = R, but because Q is countable we
have Q∗ = ∅.

Then, if S = R \Q then S′ = S∗ = R.

17
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Exercise 7.1. Show that the intersection of infinitely many open sets need not be open.

Solution. ⋂
n≥1

(
1

2
− 1

2n
,
1

2
+

1

2n

)
=

{
1

2

}
.

7.1 Subspaces

Let N ⊆ M , where M is a metric space, and suppose we define a metric dN : N2 → R
by dN (x, y) = dM (x, y). This is called the inherited metric. In that case,

Definition 7.2. N with dN is a submetric space of M .

Remark 7.3. Let S = Q ∩ [0, 1] ⊂ Q ⊂ R. Then S is closed in Q but not in R. So this
is not trivial.

Theorem 7.4 (Inheritance Theorem). Let K ⊂ N ⊂M , where M and N are subspaces.
Suppose K is closed in N if and only if there exists a closed L in M such that K = L∩N .

This implies that “closed sets are inherited with intersection”.

Proof. Suppose that L is closed in M , and consider K = L∩N . Consider any sequence
(xn) in K which converges in x ∈ N . Then xn → x in M as well, so x ∈ L by closure of
L; therefore x ∈ L ∩N = K.

Conversely, suppose K is closed in N . We claim that we can take L to be the closure
of K in M ; that is, L = limM K. Then L ∩N = limN K = K; after all, L ∩N are just
those limit points of K which lie in N , which is equal to K by closure.

Corollary 7.5. Open sets in N are inherited from M ; that is, a set V is open in N if
and only if there exists U open in M such that V = U ∩N .

Proof. Take complements. Let K = N \V , and consider closed L such that K = L∩N .
Then U = M \ L; note

M = L t U.
Then N = (L ∩N) t (U ∩N). Because L ∩N is closed, we deduce U ∩N is open.

7.2 Five-Minute Break

Exercise 7.6. Show that a metric space is homeomorphic to the discrete space if and
only if all sets are closed.

Solution. Let M be the space, and let D be the metric space with the discrete metric
on it. Let f be an arbitrary bijection. Because all sets in D are open, all sets in M are
open if and only if f is a homeomorphism.

7.3 Continuation

Proposition 7.7. Let K ⊂ N ⊂M where N and M are metric spaces. Suppose further
than N is closed in M . Then K is closed in N if and only if K is closed in M .

Proof. Direct corollary of previous theorem.

Example 7.8. Consider [0, 1] ∈ R. If K ⊂ [0, 1] is closed, then K is closed in R.
On the other hand suppose V ⊂ [0, 1] ⊂ R is open. Then (1

2 , 1] =
(

1
2 , 3
)
∩ [0, 1] is an

open subset of [0, 1]. So a half-open interval is open!

18
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7.4 Product Metrics

Let M and N be metric spaces and consider the Cartesian product

M ×N.

There are a few ways to view M ×N as a metric space. In what follows, we consider
a = (x, y) and b = (x′, y′), so that a, b ∈M ×N .

• dmax(a, b) = max {dM (x, x′), dN (y, y′)}.

• dE(a, b) =
√
dM (x, x′)2 + dN (y, y′)2. This is the Euclidean metric, hence the sub-

script dE .

• dsum(a, b) = dM (x, x′) + dN (y, y′).

It is easy to check that these are all metrics.

Fact 7.9. For any a, b ∈M ×N , we have

dmax(a, b) < dE(a, b) < dsum(a, b) < 2dmax(a, b)

Proof. Totally and utterly trivial.

Why do we care? We have a much better result.

Theorem 7.10. Consider a sequence in M × N . If it converges to p ∈ M × N with
respect to any metric, it converges with respect to the other two.

Musing: what if I select some silly or even asymmetric metric like 2
3d(x, y)+ 1

3d(x′, y′).
Are they comparable? Do they lead to any interesting results?

Proposition 7.11. (xn, yn)→ (x, y) in M ×N equipped with dmax, dE , dsum if and only
if xn → x and yn → y.

Proof. Use dmax and remark that max {d(xn, x), d(yn, y)} → 0 if and only if d(xn, x)→ 0
and d(yn, y)→ 0.

7.5 Continuity of Arithmetic

Proposition 7.12. The map + : R2 → R by (x, y) 7→ x + y is continuous. So are −,
×, and ÷, although the domain of ÷ is R− {0}.
Proof. Many epsilons and deltas appeared. Remark that we can pick any of the three
d’s; let’s use dmax. + and − are trivial.

How about×? Suppose (x0, y0) ∈ R2 and ε > 0 we wish to find δ such that |x− x0| < δ
and |y − y0| < δ, then |xy − x0y0| < ε. But

|xy − x0y0| = |xy − xy0 + xy0 − x0y0|
= |x(y − y0) + y0(x− x0)|
≤ |x| |y − y0|+ |x− x0| |y|
< δ (|x|+ |y0|)
≤ δ (δ + |x0|+ |y0|)

Let δ = min
{

5, ε
5+|x0|+|y0|

}
. So, the quantity becomes

≤ δ (5 + |x0|+ |y0|)
= ε.

Similar calculations give y 7→ 1
y is continuous (where y 6= 0).
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Lemma 7.13. The product of continuous function is continuous.

Proof. Take M → R2 → R. Take x 7→ (f(x), g(x)) 7→ f(x)g(x). Each component is
continuous, and the composition of continuous functions is also continuous.

The manipulation |xy − xy0 + xy0 − x0y0| is very powerful, supposedly.
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Today: compactness!
For this lecture assume that M is a metric space with a distance function d.

8.1 Completeness

Definition 8.1. A sequence (xn) in M is Cauchy if ∀ε > 0, ∃N such that ∀n,m ≥ N
we have

d(xn, xm) < ε.

Definition 8.2. The space M is complete if every Cauchy sequence converges.

We proved that M = R is complete. It is also easy to check that if M is finite, then
M must be complete as well, because we can take ε < minx 6=y d(x, y) to force Cauchy
sequences to become constant, and thus converge. Similarly, if d is the discrete metric,
then M is complete.

On the other hand M = Q is not complete. For example, we can easily converge to√
2 /∈ Q in R.

Remark 8.3. Any convergent sequence is Cauchy, but not vice-versa.

Fact 8.4. R2 is complete, and in general, the product of two complete spaces is product.

Proof. Consider (xn, yn) a Cauchy sequence. We find that (xn) and (yn) are Cauchy, so
xn → x and yn → y for some x, y, whence (xn, yn)→ (x, y).

Corollary 8.5. Rm is complete for each m.

Proof. Induct.

Remark 8.6. Homeomorphism does not preserve completeness because R ∼= (−1, 1)
through the map x 7→ 2

π arctanx. In other words, completeness is not a topological
property.

Proposition 8.7. If S is closed in M and M is complete, then S is complete.

Proof. If (xn) is Cauchy in S, it is Cauchy in M , so xn → x ∈ M . Because x is closed,
x ∈ S.

8.2 Boundedness

Definition 8.8. Let S be a subset of M . S is bounded if there exists R > 0 and p ∈M
such that S ⊂MR(p).

Remark 8.9. You can strengthen the condition to “for each p ∈ M”; these definitions
are equivalent.

Proposition 8.10. If (xn) is Cauchy, then {xn : n ∈ N} is bounded.

Proof. Totally obvious! Take ε = 1000, and then note that there are finitely many points
not within a distance of 2013 of a giving sufficiently large point.

Here it is written out. IF d(xn, xm) < 1000 for all m,n ≥ N – and such an N exists
by the Cauchy condition – then

d(xn, xN ) < 2013 + max
k=1,2,...,N

d(xk, xN ).

the latter which is a constant.
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Remark 8.11. Being bounded is not a topological property by the same example R ∼=
(−1, 1).

Remark 8.12. In fact, for any metric space M , one can find a metric space N such that
M is a dense subset in N and inherits its metric for N . This is called the completion of
M .

8.3 Compactness

Definition 8.13. Let M be a metric space and suppose A is a subset of M . A is
compact iff for every sequence (xn) of A, there exists a subsequence (xnk

)k∈N converging
to a limit in A as k →∞.

Theorem 8.14. Every compact is closed and bounded.

Remark 8.15. This is important, partially because it is true in every metric space ever.

Proof. Let (xn) be a sequence in A that converges ta p ∈M . Now (xn) has a subsequence
such that xnk

→ x ∈ A. But we must have p = x. Thus p ∈ A. Consequently (xn) is
closed.

Now suppose for contradiction that A is not bounded. Then ∃p ∈ M such that
for every R > 0, MR(p) does not contain A. Thus there exists (xn) in A such that
d(p, xn) ≥ n by taking R to be successive integers. By compactness we can find a
subsequence xnk

→ q ∈ A. Now d(xnk
, p) ≥ nk. Now

d(xnk
, q) ≥ d(xnk

, p)− d(p, q)

Because d(p, q) is fixed and d(xnk
, p) grows arbitrarily large, the distance d(xnk

, q) must
grow without bound, contradicting xnk

→ q. Hence our assumption was wrong and A
is bounded.

Very importantly, the converse is false! Here is an example.

Example 8.16. Take N with the discrete metric, and let A = N. Because N is discrete,
A is clearly bounded. In fact N is even complete. But this is far from compact: take the
sequence 1, 2, . . . .

8.4 Trickier Compactness

Here is the “best” example of a compact set. This is a very fundamental theorem; it is
the first nontrivial compact set. It is a consequence of the least upper bound property,
something very special about R.

Theorem 8.17. [a, b] ⊂ R is compact.

Proof. Let (xn)n∈N be a sequence. Consider

S = {c ∈ [a, b] : xn ≥ c for infinitely many n} .

Obviously a ∈ S bounded by b. So let x = supS.
By our selection of x, we find x − δ ∈ S and x + δ 6 inS. So only finitely many n

have xn ≥ x + δ, while infinitely many have xn ≥ x − δ, so it must be the case that
[x− δ, x+ δ] has infinitely many points.

Thus x is a cluster point; this yields our sequence. Here’s how. For every k ≥ 1 we
can find nk ≥ nk−1 (set n0 = 0 for convenience), with xnk

∈
[
x− 1

k , x+ 1
k

]
(after all,

there are infinitely many). So xnk
→ x as required.
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Proposition 8.18. Let A ⊂M and B ⊂ N . If A and B are compact, then so is A×B
as a subset of M ×N .

Proof. Let (xn, yn) be a sequence in A×B. There is a subsequence xnk
→ x ∈ A. Now

(ynk
) is a sequence in B, so there is a subsequence ynk`

→ y ∈ B.

Triple subscripts!

Theorem 8.19. Let S ⊂ A be a closed subset of A ⊂ M . If A is compact then S is
compact.

Proof. Repeat the proof of Cauchy-ness.

As a result we deduce the Heine-Borel Theorem.

Theorem 8.20 (Heine-Borel Theorem). Consider A ⊂ Rm. A is compact if and only if
it is closed and bounded in Rm.
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Exercise 9.1. Give an example of a closed and bounded set which is not compact.

Solution. Take the discrete metric N, and consider the set N. It is not compact because
1, 2, . . . fails to have a convergent subsequence.

The product of two compacts is compact. The triple subscripts apparently confused
people, so the proof is being repeated. Because I understood it the first time I am too
lazy to copy it down again.

9.1 Compactness Continued

Theorem 9.2 (Bolzano-Weierstrass Theorem). Every bounded sequence (pn) in Rm has
a convergent subsequence.

Proof. There exists a box which contains (pn). The box is compact.

Here are some examples of compact sets!

1. Finite sets. This follows by the Pigeonhole principle.

2. S2 =
{

(x, y, z) : x2 + y2 + z2 = 1
}

is compact because it is closed and bounded.

3. The unit ball is closed in R3.

4. The Hawaiian earring. Set Hn ⊂ R2 is the circle with radius n−1 and center
(n−1, 0), wher n ≥ 0. Let H∗n = H−n for each n ≥ 1, then the Hawaiian earring is

H
def
=

⋃
n∈Z+

(Hn ∪H∗n) .

H is clearly bounded, and with some effort we can show H is closed. Hence H is
compact.

Definition 9.3. A sequence (An) of sets is nested decreasing if An+1 ⊂ An for each n.

Theorem 9.4. If (An) is nested decreasing, and each An is compact, then A =
⋂
An is

compact.

Proof. This is a closed subset of the compact A1.

Proposition 9.5. If each An is nonempty, then A =
⋂
An is nonempty.

Proof. Choose an arbitrary an ∈ An for each n. Then (an) is a sequence in A1, so (an)
has a convergent subsequence converging to some point in A1.

Consider a sequence (ank
)k converging to some a. Now observe that for any m,

am, am+1, . . . all belong to Am, because Am is closed. This forces a ∈ Am for each m.
Hence a ∈ A.

Theorem 9.6. If An is a nested decreasing nonempty compact and the diameter4 ap-
proaches zero, then

⋂
An is a singleton.

Proof. By the previous proposition, then A is nonempty. Finally remark that any set
of more than two points has positive diameter. Because the diameters decrease, we find
diam(A) ≤ diam(An) which forces diamAn → 0.

4The diameter of a set S is the supremum of the distances between pairs of points.
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The conclusion becomes false if we drop the condition. For a open and bounded
example, define

An = S2 ∩
{

(x, y) ∈ R2 | y ≥ x2 + 1− 1

n

}
.

9.2 Continuity

Proposition 9.7. Let f : M → N be continuous and A ⊂ M compact. Then f(A) is
compact.

Note that this is not true for any of the analogous phrases “open”, “closed”, “contin-
uous” in place of “compact”! Compactness is very nice.

Proof. Let (yn) be any sequence in B. For each n consider any point xn ∈ A such that
f(xn) ∈ A; because B = f(A) at least one such point exists. Then xnk

→ p ∈ A for
some nk. By continuity, ynk

= f(xnk
)→ f(p) ∈ B as required.

Proposition 9.8. Let f : M → N be a continuous bijection. If M is compact, then f−1

is continuous, and f is a homeomorphism.

Proof. Suppose on the contrary that fore some (yn) ∈ N , yn → y ∈ N but f−1(yn) does
not converge to f−1(y).

Let xn = f−1(yn) for each n and x = f−1(y). Evidently there exists ε > 0 such that
xn /∈Mε(x) for arbitrarily large n. Now let xnk

be the subsequence of xn of points lying
outside this neighborhood. Then there exists a subsequence of that, xnk`

, converging to
some x′; clearly x′ 6= x. Then ynk`

converges to fx′ 6= fx = y, contradicting the fact
that yn converges to y.

Remark 9.9. Compactness is a topological property. In particular, R 6∼= [0, 1].

Definition 9.10. f : M → N is uniformly continuous if for each ε > 0 there is a δ > 0
such that for all x, y ∈M with dM (x, y) < δ, then dN (fx, fy) < ε.

Note that here, the point δ may depend only on ε! For the usual continuity, δ depends
on ε and x.

Theorem 9.11. If f : M → N is continuous and M is compact, then f is uniformly
continuous.

Proof next time.

25



Evan Chen MATH 104, UC Berkeley

10 October 1, 2013

10.1 Loose Ends

Recall the definition of uniform continuity from the end of the previous lecture.

Example 10.1. Let f(x) = x2, f : R → R. Clearly f is continuous, but f is not
uniformly continuous – f ′ grows without bound.

Now we prove our theorem from last time. Again we use sequences.

Proof. Suppose not. Then there exists f : M → N continuous, with M compact, but f
is not uniformly continuous. That means we can find an ε > 0 such that for each δ > 0,
we can find x, y ∈M such that dM (x, y) < δ but dN (fx, fy) ≥ ε.

We pick δ = n−1 for each n ∈ Z+. Thus, we find ∃xn, yn ∈M such that dM (xn, yn) <
n−1 but dN (fxn, fyn) ≥ ε. By compactness, we obtain xnk

→ x. Because d(xnk
, ynk

)→
0, we derive that ynk

→ x as well.
By continuity, dN (fxnk

, fx) → 0 and dN (fynk
, fx) → 0. Yet dN (fxnk

, fynk
) ≥ ε,

which is a contradiction.

Let M be a (nonempty) compact, and consider f : M → R be continuous. Then
f(M) is compact (and nonempty) in R; hence it is closed and bounded. Then sup f(M)
is well-defined and belongs to f itself; that is, f achieves a maximum and minimum.

10.2 Connectedness

Let M be a metric space.

Definition 10.2. A separation of a subset S ⊂M is a division of S as S = AtB such
that A,B 6= ∅, but A ∩ B = A ∩ B = ∅, where the closures are taken with respect to
M .

Definition 10.3. A set S is connected if no separation of S exists. Else it is disconnected.

Remark 10.4. Because A ⊂ S = A t B, we find that A ∩ B = ∅ ⇔ A ∩ S = A; that
is, A is closed in S; hence B is open in S. Similarly, B is closed and A is open (in S
again). So actually, it’s equivalent to say A and B are clopen in S.

Example 10.5. R is connected.

Proof. Suppose on the contrary that R = A t B, where A and B are both clopen.
Consider any maximal (by inclusion) open interval (a, b) ⊆ B. We claim b = +∞.
Assume otherwise. Because B is closed, b ∈ B. This forces b ∈ B. Now, because B is
open, ∃δ > 0 such that (b−δ, b+δ) ∈ B. Then (a, b+δ) is a larger interval, contradiction.
So b = +∞. Similarly a = −∞. Thus B = R, which is absurd.

Proposition 10.6. If f : M → N is continuous, and M is connected, then f(M) is
connected as well.

Proof. We show that if f(M) is disconnected as A t B, then M is disconnected. Note
that A and B are clopen in f(M). Now fpre(A) is clopen, as is fpre(B). Yet they are
disjoint. Hence M is disconnected.

Corollary 10.7. Connectedness is a topological property.
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Remark 10.8. The converse is not true; that is, f : M → N and N connected does
not imply M connected, even if f is surjective. For, what if M consisted of two disjoint
disks, and N was the singleton set?

Example 10.9. Let f : R→ R by x 7→ sinx. Thus [−1, 1] = sinR is connected.

Example 10.10. Let f : R→ R2 by x 7→ (cosx, sinx). Then the image S1 is connected.

Proposition 10.11. Let S ⊆ M be connected. Then for any S ⊆ T ⊆ S, then T is
connected.

The proof of this is in the book. It’s not very surprising.

Remark 10.12. (0, 1) is connected because it is homeomorphic to R. Hence (0, 1] is
connected.

Example 10.13. Consider

S =
{
x, y ∈ R2 | 0 < x ≤ 1, y = sinx−1

}
.

This is a connected set. What is its closure? It turns out that S − S is {0} × [−1, 1],
and so counterintuitively, the set

T = S ∪ {0} × [−1, 1].

is connected!

10.3 Path-Connectedness

Definition 10.14. A path in M is a continuous function f : [a, b]→M .

Definition 10.15. M is path-connected if ∀p, q ∈M , there exists a path f : [a, b]→M
for which f(a) = p, f(b) = q.

Example 10.16. The above set T is connected, but not path-connected!

Proposition 10.17. Let S =
⋃
α Sα, where each Sα ⊆M and ∃p ∈ S such that p ∈ Sα

for each α. Then S is connected.

Proof. If not, suppose S = A t B and assume without loss of generality that p ∈ A.
Observe

(A ∩ Sα) t (B ∩ Sα) = Sα.

It is not hard to check that these are both clopen in Sα because A and B are open. Now
p ∈ A ∩ Sα, so this forces B ∩ Sα for each α. This implies B = ∅, contradiction.

Remark 10.18. This is versatile since the union need not be countable. Hence, S2

is connected, because it can be expressed by unions of S1 (great circles) each passing
through the South Pole.

Proposition 10.19. Let U be open in Rm. If U is connected, then U is path-connected.

This seems intuitively obvious.

Proof. Pick p ∈ U . Consider

V = {q ∈ U : ∃ path in U from p to q} .
We claim V is clopen in U . The fact that V is open follows from the fact that U is open.
For closedness, assume q is a limit of V . Again by openness, we can find a neighborhood
Mr(q) contained in U , and because q is a limit point some point in that neighborhood
is path-connected to p. Hence V is clopen in U ; because p ∈ V this forces V = U , as
desired.

This is called a open-and-closed argument. This is kind of a “control theory” approach.
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Today we discuss open coverings, and how to define compactness from that perspective.

11.1 Open Coverings

Definition 11.1. A collection U of open sets whose union contains a set A is called an
open covering of A. The open sets are called scraps.

Definition 11.2. A is open covering compact if each open covering of A induces to a
finite subcovering; i.e. ∀U , there exists U1, U2, . . . , Un ⊆ U such that A ⊆

⋃n
i=1 Ui.

Example 11.3. Consider B =
{

1
n | n = 1, 2, . . .

}
living in R, and let A = B ∪ {0}.

Show that A is open covering compact, but

Proof. Some open set (u, v) ∈ U covers 0. Only finitely many elements of A now exist
outside (−u, v), and we can cover the elements of A exceeding v easily.

On the other hand, one can construct open intervals around each element of B which
do not contain any other element of B.

11.2 The Main Result

Theorem 11.4. A is open covering compact if and only if it is sequentially compact.

Remark 11.5. Afterwards, we will just use compact to refer to both.

One direction is easy.

Proof that covering compact implies sequentially compact. Assume (an) is a sequence in
A, yet no subsequence converges. That implies that for each p ∈ A, some neighborhood
of p contains only finitely many points of (an); that is,

∀p ∈ A∃r(p) > 0 : Mr(p)(p) ∩ {an} is finite

Now consider the collection of Mr(p); that is

U def
= {Mr(p) | r = r(p), p ∈ A} .

This is an open covering, so it has a finite subcovering, say Mri(pi) for i = 1, 2, . . . ,m.
Now each of these scraps only contains finitely many {an}, so their union only contains
finitely many, which is a contradiction.

As usual I’m ignoring the stupid edge case where some number appears infinitely many
times, because such sequences are compact anyways. But there is a slight difference
between “contains infinitely many an” and “contains an for infinitely many n”.

11.3 Lebesgue Numbers

First, we state something obvious.

Fact 11.6. Let p ∈M and x ∈M 1
2
r(p). Then

p ∈M 1
2
r(x) ⊂Mr(p).

Proof. Totally and utterly trivial. Obviously p ∈ M 1
2
r(x), and apply the triangle in-

equality to any q ∈M 1
2
r(x).
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Definition 11.7. If U is an open covering of A ⊂ M . A real number λ > 0 is called a
Lebesgue number U if for each p ∈ A, there exists a scrap U ∈ U for which Mλ(p) ⊂ U .

This is a measure of the “coarseness” of the open covering U .

Lemma 11.8 (Lebesgue Number Lemma). If A is sequentially compact set, then all
open coverings of A have a Lebesgue number.

Proof. Suppose on the contrary that for every λ > 0, there exists a p ∈ A such that
Mλ(p) is not contained in any scrap. Then by taking λ = 1

n for n = 1, 2, . . . , we can find
a point an ∈ A such that M 1

n
is not in any scrap.

Then there exists a subsequence ank
→ p ∈ A. Then ∃Up ∈ U such that p ∈ Up.

Now there exists r > 0 such that Mr(p) ⊂ Up. Evidently we can find an ank
such that

M 1
nk

(ank
) ⊂ Mr(p) because d(ank

, p) → 0 and 1
nk
→ 0. This becomes a contradiction.

11.4 Finishing the Proof

Using this, we can now establish the main result.

Proof that sequentially compact implies covering compact. Let U be a open covering of
A, and let λ be a Lebesgue number. Choose a1 ∈ A and U1 ∈ U such that Mλ(a1) ⊆ U1.
If {U1} is a finite subcover by some stroke of luck, then we’re done. Otherwise pick
a2 ∈ A \ U1 and pick a U2 such that Mλ(a2) ⊂ U2. Rinse and repeat, selecting points
a1, a2, . . . and U1, U2, . . . such that Mλ(ai) ⊂ Ui and ai ∈ A− ∪i−1

j=1Ui for all i.
Assume on the contrary that this results in an infinite sequence (an). Then compact-

ness of A implies ank
→ p ∈ A. This is immediately bad because a pair of the ank

grow
close to each other, but they must be at least λ apart.

Musing: you can weaken this to “every open covering has a Lebesgue number” and
“every sequence has a Cauchy subsequence”.

Note that this means we can replace completeness completely in terms of open sets,
ignoring sequences. Once again, this is exactly what’s done in general topology.

11.5 Generalizing the Heine-Borel Theorem

Recall the Heine-Borel theorem which states that for subspaces of Rm, “closed and
bounded” is equivalent to compactness. We want to generalize.

Definition 11.9. A is totally bounded if for each r > 0, there exists a finite covering of
A by neighborhoods of radius r.

Theorem 11.10. Suppose that M is complete. Then A is closed and totally bounded if
and only if A is compact.

Proof. First suppose A is compact. Then A is closed, and for any r > 0, the open
covering U = {Mr(p) | p ∈ A} has a finite subcover as desired.

The converse is NOT EASY.
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Today: Cantor sets!

12.1 Perfection

Definition 12.1. A metric space is perfect if every point is a cluster point.

Example 12.2. Both R and Q are perfect.

Theorem 12.3. Let M be a perfect, nonempty complete metric space. Then M is
uncountable.

Proof. Assume not. Evidently M is denumerable, so let M = {x1, x2, x3, . . . }.
Define

M̂r(p) = {x ∈M | d(x, p) ≤ r}

which we colloquially call a closed neighborhood. Choose any point y1 ∈ M − {x1} and
define r1 = min

{
1, 1

2d(x1, y1)
}

. We see that x1 ∈ M̂r1(y1).
Now choose y2 ∈ Mr1(y1) such that y2 6= x2; this happens to be possible because the

space is perfect. Certainly y2 6= x1. Then select

r2 = min

{
1

2
,
1

2
d(x2, y2), r1 − d(y2, y2)

}
.

Evidently
M̂r2(y2) ⊂ M̂r1(y1).

Repeating this construction, we derive a sequence of points y1, y2, . . . and radii r1, r2, . . .
for which

M̂r1(y1) ⊃ M̂r2(y2) ⊃ M̂r3(y3) ⊃ . . .

This is an infinite nested sequence of closed neighborhoods whose radii tend to zero.
Consider the sequence (yn). Evidently d(ym, yn) → 0 as m,n → ∞; that is, (yn) is
Cauchy. Then yn → p, and by closure we deduce that p belongs to

⋂
M̂ri(yi).

Yet p 6= xn for any n, because xn /∈ M̂rn(yn) by construction, breaking the assumption
that xi was a full enumeration of the points of M .

Corollary 12.4. R is uncountable.

12.2 Cantor Dust

Definition 12.5. A metric space is totally disconnected if for each point p ∈ M and
r > 0 there exists a nonempty clopen subset U such that p ∈ U ⊂Mr(p).

Theorem 12.6. There exists a subset C ⊂ R which is nonempty, compact, perfect, and
totally disconnected.

In particular, C is complete, C is also uncountable. The last property implies that C
is totally disconnected.

Remark 12.7. While this is called the Cantor Set, a man named Smith in England
discovered the set and published a paper 20 years before Cantor. Regrettably, no one
paid attention to it.

Remark 12.8. Let C be the Cantor Set, and let χC(x) = 1 if x ∈ C and 0 otherwise.
χC(x) is discontinuous at infinitely many points, and yet is Riemann integrable.
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Here is the construction for the notorious Cantor Set. Begin with C0 = [0, 1]. Delete
the interval

(
1
3 ,

2
3

)
. That is,

C1 =

[
0,

1

3

]
∪
[

2

3
, 1

]
.

We repeat this procedure ad infinitum – delete the middle thirds to obtain a sequence
C2, C3, . . . of intervals. Here, Cn has 2n interval each of length 3−n.

Evidently C1 ⊃ C2 ⊃ . . . . Now we define the Cantor Set

Definition 12.9. The Cantor Set C is defined by C =
⋂∞
n=1C

n.

Claim 12.10. C is the desired set.

Proof. We check this.

(a) 0 ∈ C, so C is nonempty.

(b) C is closed (as it is the intersection of closed sets)

(c) We wish to show that for any p ∈ C, r > 0, we have (p−r, p+r)∩C is infinite. Just
select n such that 3−n < ε. Since p ∈ Cn, p is in an interval I ⊂ Cn contained in
(p−r, p+r). Now just remark that each interval contains infinitely many endpoints.

(d) The proof that C is totally disconnected is similar to the above. Pick n such that
3−n < r, and select an interval I in Cn containing p. Obviously I is closed in Cn,
and yet I is also open in Cn! So I is a clopen subset of Cn. We claim I ∩C is clopen
in C. Reason: inheritance principle. C is a subset of Cn, and so I is clopen in C.

Now here’s something scary: the sot of all endpoints of intervals is finite. But the
Cantor set is uncountable!

Remark 12.11. You can show directly that C contains no interval simply from the fact
that C has length 0, while any intervals have positive length.

12.3 Shadows of the Cantor Set

Here is a ridiculous theorem.

Theorem 12.12. Let M be a metric space which is nonempty, compact, perfect, and
totally disconnected. Then M is hoeomorphic to the Cantor set.

Corollary 12.13. If C is the Cantor set, then C ∼= C × C!

Remark 12.14. The Chinese multiplication table rhymes, according to someone in the
class.

12.4 Addresses

Let’s assign each point in the Cantor Set with an address, according to the rules

0 = left and 2 = right.

A sequence of length n, consisting of 0’s and 2’s, will now designate an interval in Cn.
For example, C00 is the leftmost interval in C2.
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Now let’s take an infinite string ω of 0’s and 2’s. Then we can find a point p(ω) ∈ C.
Let ω|n denote the first n characters of ω. Now the point

p(ω) =
⋂
Cω|n

is indeed contained in each Cn for each n; in fact this is a nested decreasing sequence
with decreasing radii. Hence p(ω) is uniquely defined and indeed belongs to C.

Conversely, every point corresponds to an address. (Check this.) Thusly we obtain a
bijection from C to infinite zip codes.

Remark 12.15. In fact, p(ω) corresponds to the number in [0, 1] whose base-3 expansion
corresponds to ω.
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More about Cantor sets!
Again define C =

⋂
n≥1C

n the middle-thirds Cantor set.

13.1 Zero Sets

Definition 13.1. For a set S ⊂ R, we say S is a zero set if ∀ε > 0 there exists a covering
of S by countably many open intervals whose total length is less than ε.

If we let the intervals be denoted be (ai, bi), then the length is merely
∑

i≥1 bi − ai.

Proposition 13.2. C is a zero set.

Proof. For any fixed ε > 0, we can find an n for which Cn has length less than 1
2ε.

These intervals are closed, so if we dilate the closed intervals by a factor of 2 to an open
interval, this will cover the Cantor set.

Definition 13.3. Let F denote the fat Cantor set as follows: at the nth step, we delete
the middle fraction of each remaining interval in such a way that the total discard at
each step is 1

3

(
1
6

)n
(really?).

Remark 13.4. Being a zero set is not a topological property. C ∼= F but F has positive
measure.

13.2 Cantor Surjection Theorem

The following theorem is terrifying.

Theorem 13.5 (Cantor Surjection Theorem). Let M be a compact metric space. Then
there exists a surjective continuous map σ : C → M , where C is the standard middle-
thirds Cantor set.

Definition 13.6. A function τ : [a, b] → RR is called a Peano curve if τ([a, b]) has
non-empty interior.

The existence of the Peano curves is counterintuitive, and yet it is an easy consequence
of the Cantor Surjection Theorem. Here is how it is done. A gap interval is an interval
(a, b) for which a, b ∈ C but (a, b) ∩ C = ∅. Evidently we can find a function σC → B2

surjective. Then we extend σ to τ : [0, 1]→ B2 by

τ(x) =

{
σ(x) if x ∈ C
(1− t)σ(a) + tσ(b) if x lies in a gap interval (a, b) and x = (1− t)a+ tb, 0 ≤ t ≤ 1.

It is immediate that τ is continuous, and this yields a Peano curve.
Here is the idea of the proof of the surjection theorem. The goal is to obtain M as

the intersection of nested decreasing intervals, and then try to link the constructions.
We need some machinery for this. . .
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13.3 Pieces and Filtrations

Definition 13.7. A piece of M is a compact nonempty subset.

Lemma 13.8. M can be “broken” into small pieces; i.e. ∀ε > 0 there exists finitely many
pieces (not necessarily disjoint) of M whose union is M and each piece has diameter
less than ε.

Proof. Look at the open covering of M via{
M 1

3
ε(x) | x ∈M

}
.

This has a finite subcover M 1
3
ε(xi) as i = 1, 2, . . . , n. The diameter is less than 2

3ε. Now

close them; the diameter is still at most 2
3ε < ε.

Decompose M into pieces, and letM1 be the collection of pieces when ε = 1. Then let
M2 be the division of each of the pieces of M1 by pieces with diameter less than 1

2 , and
repeat this procedure to obtain a sequence (Mk)k∈N. By construction, each member of
Mn is a union of members of Mn+1 and a subset of some piece of Mn−1.

Definition 13.9. The sequence (Mk) is called a filtration of M .

13.4 Words

Definition 13.10. Let W (n) be the sequence of words in 2 letters 0 and 2 of length n.

Example 13.11. W (2) = {00, 02, 20, 22}.

Evidently |W (n)| = 2n for any n. Now we remark that if #S ≤ 2n, then there exists
a surjection W (n)→ S.

So there exists an n1 so that for which we can construct a surjection W (n1) →M1;
we can label each of the pieces of M1 by labels such that each label is is used. Now we
pick an n2 sufficiently large and construct an extended surjection

W (n1 + n2)→M2

such that the first n1 characters of any letter identifies a corresponding parent piece.
Remark that the diameters of the pieces tends to zero, and it’s compact and nested. To

be explicit, consider an address α = α1α2 . . . and denote α|k = α1α2 . . . αn1+n2+···+nk
.

Let Mα|k denote the associated piece. We obtain

Mα|k ⊃Mα|k+1
⊃ . . .

and so each point α is associated to the unique point

p(α) =

∞⋂
k=1

Mα|k .

Because each point can be expressed with an address, this gives us a map. To be even
more explicit, let β(x) denote the address of a point x ∈ C. Then we simply compute

x 7→ β(x) 7→ p(β(x)) ∈M.

This map is clearly surjective, since each point of M has an address, and β is a bijection.
Finally we need to check this is continuous. Just use sequences. Two points which

are “close” have similar addresses, meaning they are in the same piece in M .
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13.5 Other Properties

This proof can also be adapted to show that any set which is (i) compact, (ii) nonempty,
(iii) perfect, and (iv) totally disconnected. As we said before,

C ∼= C × C.

In particular, dimC = 0 since dimC = dim(C × C) = 2 dimC ⇒ dimC = 0.
It is possible to draw a space homeomorphic to the Cantor set in R2 such that each

vertical line hits the Cantor set.
Antoine’s necklace is even worse.
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Review.

14.1 Midterm Review for Chapter 1

Recall that R is defined as the set of cuts in Q (via Dedekind).

• The least upper bound property.

• All Cauchy sequences converge.

• Any bounded monotone sequence converges.

Surprisingly, these are all equivalent.
Other things from Chapter 1.

• Recall the definition of Rm, and the notion of the dot product.

• Cauchy-Schwartz, which holds for any inner product5. The proof is on the dis-
criminant 0 ≤ 〈x+ ty, x+ ty〉.

• Convexity in Rm.

• Cardinality - injection, surjection, bijections.

• R is uncountable while Q is countable. 6

14.2 Midterm Review for Chapter 2

Metric spaces:

• The “best” metric spaces are R and Rm, and its subsets with the inherited metric
(e.g. Hawaiian earing.)

• The “worst” metric space is the discrete space.

Remember information about sequences, subsequences, and the definition of conver-
gence. Know the definition of a continuous function f : M → N . There are four
continuity definitions:

• Sequences. Continuity of f is equivalent to xn → x then f(xn)→ f(x).

• ε-δ definition. For all ε > 0 and p ∈ M , ∃δ > 0 such that dM (p, q) < δ ⇒
dN (fp, fq) < ε.

• Open set condition. The pre-image of any open set is open.

• Closed set condition. The pre-image of any closed set is closed.

We also have the notion of uniform continuity. For every ε > 0, there exists δ > 0
such that for each p, q with dM (p, q) < δ, we must have dN (fp, fq) < ε. An example of
a function failing this criteria is x 7→ x2 with R→ R. An example of a bounded function
failing this criterion is sin 1

x .

5symmetric bilinear
6Schroeder Bernstein Theorem.
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Know the definition of a homeomorphism. Homeomorphisms are surprisingly hard to
prove. For example, it is not easy to prove that Bm 6∼= Bk when m 6= k (here Bn is a
ball). Note that any property defined solely in terms of open/closed sets and cardinality
is automatically a topological property. This is because homeomorphisms biject their
respective topologies!

Key properties of open sets, which permit general topology to take form:

1. ∅ and M are both open.

2. Any union of open sets is open.

3. Finite intersections of open sets are open.

Needless to say, know the definition of an open set.
Closed sets can be defined in two ways – as the complement of an open set, or as

points which contain all their limit points. Recall that for a set S ⊂ M , limS is the
set of limits of all sequences in S that converge in M . Then S is closed if and only if
S = limS. We derive that

1. ∅ and M are both closed.

2. Any intersection of closed sets is closed.

3. Any finite union of closed sets is closed.

For R, the open sets are very special - they are countable unions of disjoint open
intervals.

Exercise 14.1. What can be said about continuous functions f : R→ Q?

Recall that the connected image is connected of a continuous function.
Recall that M is disconnected if and only if M has proper clopen subset. A subset

S ⊂ M is disconnected if S has a separation S = A t B into sets A and B so that
A ∩B = A ∩B = ∅.

14.3 Midterm Review: Compactness

Definition 14.2. A set S ⊆M is compact if each sequence (xn) in S has a convergent
subsequence.

Definition 14.3. A set S ⊆M is compact if every open cover has a finite subcover.

Compact implies closed and bounded. The converse is false. Continuous images of
compacts are compact, so compactness is a topological property.

Fact 14.4. The Cartesian product of two compacts is compact.

Of course, we have Heine-Borel and Bolzano-Weierstrass.
Nested decreasing sequences: suppose (Sn)n∈N is nested decreasing, and each is com-

pact. Then ∩Sn is clearly compact as a closed subset of a compact. Furthermore, if each
Sn 6= ∅, then

⋂
Sn is nonempty.

The continuous image of a compact is compact. A continuous function on a compact
is uniformly continuous.

Cantor Set lore. Perfect sets: M ′ = M . Totally disconnected: every neighborhood
contains a proper clopen subset.
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15 October 17

Midterm.
Average score: 45.
My score: 97.
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16.1 Definition

We will now be returning to real-valued functions.

Definition 16.1. A function f : (a, b)→ R is differentiable at x if and only if

lim
t→x

f(t)− f(x)

t− x
= L ∈ R

exists; in that case, L is the derivative.

Other notations of this include ∆f
∆x = f(x+δx)−f(x)

δx .

16.2 Immediate Consequences

There are a few “basic” facts about a derivative.

Fact 16.2. f differentiable at x implies that f is continuous at x.

Proof. For the limit to exist, f(t)− f(x)→ 0 must hold as t→ x.

Fact 16.3 (Sum Rule). If f and g are differentiable at x, then

(i) f + g is differentiable at x and (f + g)′(x) = f ′(x) + g′(x).

(ii) f · g is differentiable at x, and (f · g)′(x) = f ′(x)g(x) + f(x)g′(x).

(iii) f/g is differentiable at x assuming g(x) 6= 0. Some expression.

Fact 16.4 (Chain Rule). Consider f : (a, b)→ R differentiable at x and g : (c, d)→ R.
Suppose g is differentiable at y and y = f(x). Then (g ◦ f) is differentiable at x and

(g ◦ f)′(x) = g′(y) · f ′(x).

Proof. We would hope that
∆g

∆x
=

∆g

∆f

∆f

∆x

so that ∆g
∆f → g′(y) and ∆f

∆x → f ′(x). The danger here is if ∆f is zero.
Let us write

∆g = g(y + ∆y)− g(y)

where we ignore the connection between y and f . Then whenever ∆y 6= 0, we have

∆g

∆y
= g′(y) + σ(∆y)

where σ is some “remainder” function. As ∆y → 0, σ(∆y)→ 0 as well.
Now we define σ(0) = 0! Then

∆g = (g′(y) + σ(∆y))∆y

holds true for all ∆y, even ∆y = 0.
Okay, let us now write

∆g

∆x
=

∆y(g′(y) + σ(∆y))

∆x
=
(
g′(y) + σ(∆y)

) ∆f

∆x
.
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Here ∆f = ∆y. Note that we have made no limits so far. This is all very innocent. Now
the point is that as ∆x→ 0, then ∆y → 0 by continuity of f at x. Now,

g′(y) + σ(∆y)→ g′(y)

and
∆f

∆x
→ f ′(x).

As an aside, this proof works in higher dimensions.

16.3 Geometry of Derivatives

Definition 16.5. We say that f : (a, b) → R is differentiable if it is differentiable at
each point.

Theorem 16.6 (Mean Value Theorem). Suppose f : [a, b] → R is continuous and the
restriction of f to (a, b) is differentiable. Then there exists a θ ∈ (a, b) such that

f(b)− f(a) = f ′(θ)(b− a).

We say a function has the mean value property if this turns out to be true.

Proof. The intuition is secants. We refer the reader to the diagram in the book.
Define

φ(x) = f(x)− S(x− a).

Evidently φ(a) = f(a) and φ(b) = f(a). Furthermore, φ is differentiable, since f and
S(x− a) are both differentiable. Moreover, φ is continuous on [a, b].

By previous work with general metric spaces, φ attains a maximum value. If φ is
constant, then nothing is interesting. Otherwise, there is either a local maximum or a
local minimum in (a, b) (we need φ(b) = φ(a) for this; if a minimum is at a then it’s also
at b, and hence neither is the maximum).

Let θ ∈ (a, b) be a point with M = φ(θ) an absolute maximum, say. Then one can
check that this forces φ′(θ) = 0. After all,

φ(t)− φ(θ)

t− θ
→ φ′(θ) t→ θ.

The numerator is always nonpositive. The limit must now be zero, because if t → θ+

the fraction is nonpositive; if t→ θ− the fraction is nonnegative.
Thus, 0 = φ′(θ) = f(θ)− S so f(θ) = S as desired.

16.4 L’Hospital’s Rule

The MVT can be modified as follows.

Theorem 16.7 (Ratio MVT). Let f, g : [a, b] → R be continuous and differentiable on
(a, b). Then there exists θ ∈ (a, b) such that

∆fg′(θ) = f ′(θ)∆g

where ∆f = f(b)− f(a) and ∆g = g(b)− g(a).
In particular, if ∆g 6= 0 and g′(x) 6= 0 ∀x then

∆f

∆g
=
f ′(θ)

g′(θ)
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Proof. Consider
Φ(x) = ∆f(g(x)− g(a))− (f(x)− f(a))∆g.

Clearly Φ is “well-behaved”; it is differentiable. Evidently Φ(a) = Φ(b) = 0.
Then IVT implies that there exists θ ∈ (a, b) such that

0 = Φ′(θ) · (b− a).

Therefore,
0 = Φ′(θ) = ∆fg′(θ)−∆gf ′(θ)

and we are done.

Now we present L’Hospital’s Rule. Try to not miss conditions!

Theorem 16.8 (L’Hospital’s Rule). Let f and g be functions differentiable on (a, b).
Suppose that f(x) → 0 and g(x) → 0 as x → b. Furthermore, suppose g(x) 6= 0 and
g′(x) 6= 0 for any x ∈ (a, b).

Suppose finally that f ′(x)
g′(x) → L as x→ b, then

f(x)

g(x)
→ L

as x→ b.

The condition g(x) 6= 0 is IMPORTANT here!
Here is an intuitive description of the proof. Consider a fixed x. Then we can find a

t much closer to b than x. Because g → 0, then g(t) is very close to zero, and negligible
in comparison to the g(x) 6= 0. (Note that g(x) 6= 0 is important here!) Likewise,
f(x)− f(t) is close. So, for any x, we can find a t = t(x) such that

f(x)

g(x)
=
f(x)− 0

g(x)− 0
≈ f(x)− f(t)

g(x)− g(t)
=
f ′(θ)

g′(θ)

for some θ ∈ (x, t). As x→ b and θ → b much faster, we have θ → b and so f ′(x)
g′(x) → L⇒

f(x)
g(x) → L.

This proof is extensible to x → a and x → ±∞. You can also modify the proof to
work with f(x) → ∞ and g(x) → ∞. The key idea in all of these is the advance guard
metaphor.

Be very careful to ensure f(x)→ 0 and g(x)→ 0 before applying this rule.

16.5 Continuity of the Derivative

The derivative f ′(x), even if it exists, need not be continuous. However, it turns out
that the intermediate value property still holds.

Definition 16.9. A function with the Intermediate Value Property is called Darboux
continuous.

That is,

Theorem 16.10. If f : (a, b)→ R is differentiable, then f ′ is Darboux continuous. That
is, if f ′(x1) < α < f ′(x2), then f ′(θ) = α for some α between x1 and x2.

Proof. Fix a positive h > 0. Then let S(x) be the slope of the secant joining (x, f(x))
and (x+ h, f(x+ h)).

For some sufficiently small h > 0, we have S(x1) < α < S(x2). Then, by IVT, we have
that some S(θ) = α. Now we apply MVT to the interval (θ, θ+h) and we are done!
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We discuss some more properties of the derivative.
Recall that f : (a, b)→ R is differentiable if ∀x ∈ (a, b), f ′(x) exists.

17.1 Unpleasant Examples

f ′(x) is always Darboux continuous; that is, the IVT is true for it too. However, f
differentiable does not imply f ′(x) continuous. In particular, Darboux continuity does
not imply continuity.

The function f : (0, 1] → R by x 7→ sin 1
x is not continuous at x = 0. The function

x 7→ x sin 1
x is, but not differentiable. On the other hand,

f(x) =

{
x2 sin

(
1
x

)
if 0 < x ≤ 1

0 if x = 0.

Is f differentiable at x = 0? Yes. Notice that

f(t)− f(0)

t− 0
=
f(t)

t
= t sin

1

t
→ 0

since sin is bounded. So, f ′(0) exists and is equal to zero. Furthermore,

f ′(x) = 2x sin
1

x
+ x2

(
− 1

x2
cos

1

x

)
= 2x sin

1

x
− cos

1

x
.

Accordingly we discover f ′(x) is not continuous at x = 0, as limx→0 f
′(x) does not even

exist.
In fact, we can create even worse examples. The function defined by f(x) = x

3
2 sin 1

x ∀x >
0 and f(0) = 0 is even more pathological.

We can create two unpleasant points instead of one. Just consider g : (0, 1)→ R by

x 7→ x1.5 sin
1

x
· (1− x)1.5 sin

1

1− x
.

Now we take the Cantor set and paste copies of the above function into the gaps in
the middle thirds Cantor set. By shrinking the amplitudes of g according to the size of
the interval we’re sticking it in, we obtain a function G such that

• G′(x) exists everywhere.

• G′(x) is discontinuous at uncountably many points.

This gets worse – we can place G inside the gaps rather than just g. We can eventually
get a dense uncountable set of discontinuity in this manner.

Remarkably, you cannot get every point discontinuous. Darn.

Remark 17.1. In complex analysis, there is almost no pathology, unlike in the reals.

17.2 Higher Derivatives

Let f : (a, b)→ R be differentiable. It’s quite possible that f ′(x) is differentiable.

Definition 17.2. Then f ′′(x) is defined to be the (f ′)′(x).If f ′′(x) exists, we say f is
second order differentiable.
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Definition 17.3. Analogously, we can say a function is third order differentiable, and
so on. When f is rth order differentiable, and we write f (r)(x) to denote this derivative.

With the notation above, f (0) = f , f (1) = f ′, f (2) = f ′′ and so on.

Definition 17.4. If f is rth-order differentiable for all r, we say f is smooth.

Let us see if we can get a multi-derivative chain rule. We already know

(g ◦ f)′ = (g′ ◦ f) · f ′.

Then the derivative of that is(
(g′ ◦ f) · f ′

)′
=
(
(g′ ◦ f)′ · f ′

)
+
(
(g′ ◦ f) · f ′′

)
=
((
g′′ ◦ f

)
· f ′
)
· f ′ +

(
g′ ◦ f

)
· f ′′

= (g′′ ◦ f) · f ′2 + (g′ ◦ f) · f ′′

It is not easy to get a general formula. Sorry.

17.3 Nicer Functions

Definition 17.5. f is continuously differentiable if f ′(x) exists and is continuous as a
function of x.

Definition 17.6. The collection of all such functions is denoted C1, read “see-won”
functions. We can also put C1((a, b),R) to be clear about the domain and range.

Definition 17.7. In general, Cr is the set of functions that f (r) exists and is continuous.

In particular, C0 is the set of continuous functions, while C∞ is the set of smooth
functions. Note that continuity of f (r) implies continuity of f (r−1). Hence,

C0 ⊃ C1 ⊃ C2 ⊃ . . .

and C∞ =
⋂
r≥0C

r.
We can do even better.

Definition 17.8. Let Cω denote the set of analytic functions.

An analytic function, loosely, is a function which can be expressed as a power series.
More formally,

Definition 17.9. A function f : (a, b)→ R is analytic if for each x ∈ (a, b) there exists
a power series

∞∑
r=0

arh
r (ar) ∈ R

and a δ > 0 such that if |h| < δ, then f(x+ h) =
∑∞

r=0 arh
r.

You can show the following theorem, to be proved later.

Theorem 17.10. In a power series as above, ar = 1
r!f

(r)(x). In particular, (ar) depends
only on f .
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17.4 The Bump Function

It turns out Cω is a strict subset of C∞! This should come as surprising – smoothness
seems like it should be good enough.

Here is the standard example. Define

e(x) =

{
e−1/x if x > 0

0 if x ≤ 0.
.

Let us first check that this is not Cω. Take for granted it is C∞. Moreover, if it did,
then at x = 0 we can find a series such that

f(h) =
∞∑
r=0

arh
r

for all sufficiently small h. Moreover, ar = 1
r!f

(r)(0).
Now it’s obvious that the derivatives have to be zero! Just look at the left of the

function – it has a straight tail. Now ar = 0 for all r, so f(h) ≡ 0; this is clearly absurd.
Let us now check that e(x) is C∞. Verify that when x > 0,

e′(x) = e−1/x 1

x2

and

e′′(x) = e−1/x 1

x4
− e−1/x 2

x3
.

In general, e(r)(x) when x > 0 is a finite sum of terms of the form e−1/x 1
xn , where n is a

positive integer.
We just want to show that this approaches 0 as x→ 0. We could try to let L’Hopital’s

rule.as

lim
x→0

e−1/x

xn
= lim

x→0

e−1/x · 1
x2

nxn−1
= lim

x→0

e−1/x

nxn+1
.

Oh, that’s quite unfortunate. This is getting worse: the numerator is increasing. This
won’t go anywhere.

But let’s instead set y = 1
x . Then we wish to compute

lim
y→∞

e−y(
1
y

)n = lim
y→∞

yn

ey
.

The conclusion is now obvious: exponentials grow much faster. Anyways, you can verify
this with L’Hopital’s rule.

We are now basically done. You can easily extend this to show that e is indeed in C∞.
By extending this construction, you can eventually get a function that is analytic

nowhere but smooth everywhere.

Remark 17.11. Note that we have not actually shown that analytic functions are
smooth. We will prove this.
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17.5 Taylor’s Theorem

Let f : (a, b) → R be a function differentiable at x ∈ (a, b). We wish to approximate f
near x by a polynomial. That is, we would want

f(x+ h) = P (h) +R(h)

where P (h) is a polynomial and R(h) is a “small” remainder.
How do you do this! Natural.

P (h) = f(x) + h · f ′(x) +
1

2
h2f ′′(x) + · · ·+ hr

r!
f (r)(x).

Here h > 0. So what properties will R(h) have if we put in this value of P (h)?

Definition 17.12. We say that P (h) is the Taylor polynomial for f at x.

You should view x as fixed.

Theorem 17.13. Fix x and f : (a, b) → R, where f is rth order differentiable at x.

Define R(h) = f(x + h) − P (h). Then R(h)
hr → 0 as h → 0 if and only if P (h) is the

Taylor polynomial.

Note that this suggest R(h) is really small. hr → 0 is very fast for large r. We say
that R(h) is rth order flat.

Let us prove that R(h) is flat when P is the Taylor polynomial.

Proof. Clearly R(0) = 0. Furthermore, by MVT, we know R(h)− R(0) = R′(θ1) · h for
some θ1 ∈ (0, h).

Now we can easily check R′(0) = 0 by construction. Then by the same logic,

R′(θ1)−R′(0) = R′′(θ2) · θ1

for some θ2 with 0 < θ2 < θ1.
By continuing the chain R(h) = R′(θ1)h = R′′(θ2)θ1h = . . . we derive that

R(h) =
(
R(r−1)(θr−1)−Rr−1(0)

)
hθ1θ2 . . . θr−2.

But hθ1θ2 . . . θr−2 ≤ hr−1. Follow through.
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Integration.

18.1 Riemann Sums

Suppose we wish to integrate a function f : [a, b] → R. Define a partition P of real
numbers

a = x0 < x1 < · · · < xn = b.

Then, define T = {t1, . . . , tn}, where ti ∈ [xi−1, xi] for each i.

Definition 18.1. The Riemann sum is defined by

R(f, P, T ) =

m∑
i=1

f(ti)∆xi

where ∆xi = xi − xi−1.

Definition 18.2. The mesh, or norm of a partition, is max 1 ≤ i ≤ n∆xi. When used
with the second name, we sometimes denote this by ‖P‖.

Definition 18.3. We say f is Riemann integrable if and only if there exists an I ∈ R
with the following property: for each ε > 0 there exists a δ > 0 such that for all partitions
P and sample T with the mesh of P less than ∆, we have the inequality

|R(f, P, T )− I| < ε.

We then write I =
∫ b
a f(x) dx.

We will let R denote the set of Riemann integrable functions (on some interval [a, b].)

Proposition 18.4. If f ∈ R, then f is bounded.

Proof. Suppose not. Then ∃I ∈ R, δ.0 such that ‖P‖ < δ ⇒ |R(f, P, T )− I| < 2013.
Fix P . Now there exists a k such that f(t) is unbounded as xk−1 ≤ t ≤ xk; after all f

is unbounded. We will now construct a bad T . Choose ti arbitrarily for all i 6= k. Then
pick tk to be really really big. Now R(f, P, T ) is large, and in particular, greater than
I + 2013.

Note that improper integrals are something different entirely! For example, define

f(x) =

{
x−

1
2013 x > 0

0 x = 0.

Although
∫ 1

0 f(x) dx can be evaluated as an improper integral, we still consider f :
[0, 1]→ R to be not Riemann integrable.

Proposition 18.5. The map R → R by f 7→
∫ b
a f(x) dx is bilinear. Furthermore,

if f, g ∈ R and f(x) ≤ g(x) for all x, then
∫
f ≤

∫
g. Finally, if f(x) ≡ c then∫ b

a f = c(b− a).

Proof. This is obvious.
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18.2 Darboux Integrability

Consider f : [a, b]→ [−M,M ], and fix a partition P . Define

L(f, P ) =
n∑
i=1

miδxi

and

U(f, P ) =

n∑
i=1

Miδxi

where mi and Mi are the infimum and supremum of {f(t) : xi−1 ≤ t ≤ xi}.

Definition 18.6. We say P ′ refines P if P ′ ⊃ P .

It is obvious that

L(f, P ) ≤ L(f, P ′) ≤ U(f, P ′) ≤ U(f, P )

in this case. (Check it.) This is the refinement principle.

Proposition 18.7. For any partitions P1 and P2, we have L(f, P1) ≤ U(f, P2).

Proof. L(f, P1) ≤ L(f, P1 ∪ P2) ≤ U(f, P1 ∪ P2) ≤ U(f, P2) and we’re done. We refer to
P1 ∪ P2 as the common refinement.

Definition 18.8. Over all partitions P ,

I
def
= sup

P
L(f, P )

is the lower Darboux interval, and

I
def
= inf

P
U(f, P )

is the upper Darboux interval. If I = I then f is Darboux integrable.

Cool. Here is the nice theorem.

Theorem 18.9. The following are equivalent for f : [a, b]→ [−M,M ].

(a) I = I. (I ≤ I is always true.)

(b) ∀ε > 0∃P such that U(f, P )− L(f, P ) < ε.

(c) f is Riemann integrable.

In particular, Darboux integrability and Riemann integrability are equivalent.

Proof. First, let us prove (a) implies (b). By (a) we can find P1 and P2 such that
I − L(f, P1) < 1

2ε and U(f, P2)− I < 1
2ε. Now let P = P1 ∪ P2. We find

L(f, P1) ≤ L(f, P ) ≤ U(f, P ) ≤ U(f, P2)

but U(f, P2)− L(f, P1) < ε so we’re done. Also (b) implies (a) is obvious.
The most involved part is showing that (a) or (b) and (c) are equivalent. First, we

show that (c) implies (b); let I be the Riemann integrable. Evidently ∀ε > 0, there is
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δ > 0 such that if P is a partition with ‖P‖ < δ, then |R(f, P, T )− I| < ε. Take any
such partition P ; we can find T such that

|R(f, P, T )− L(f, P )| < ε

because L(f, P ) =
∑m

i=1miδxi, so we can choose the points T to be arbitrarily close to
the mi. Similarly, we can choose T ′ with|R(f, P, T ′)− U(f, P )| < ε. But because of (c),
R(f, P, T ) and R(f, P, T ′) differ by at most 2ε and so U(f, P ) and L(f, P ) differ by at
most 4ε. Adjust accordingly.

Finally we will prove (a) implies (c). Set I = I = I. Given ε > 0, we wish to find
δ > 0 such that ‖P‖ < δ implies that |R(f, P, T )− I| < ε.

We already know we can find partition P such that L(f, P1)−I < 0.01ε and U(f, P1)−
I < 0.01ε. (Take two partitions and their common refinement.) So

U(f, P1)− L(f, P1) < 0.02ε.

Take δ ≤ ε
16n1M

. Consider a partition P such that ‖P‖ < δ. Define another common
refinement

P ∗ = P1 ∪ P.

By refinement, U(f, P ∗)− L(f, P ∗) < 0.02ε.
Anyways, we wish to compare U(f, P ) and U(f, P ∗). We look at “bad” intervals;

that is, of P ∗ which have a endpoint of P1 dropped inside it. Because P has a LOT of
points, very few intervals (in fact, at most 2n1), have differences, two for each endpoint
of the irritating P1. The difference is bounded by 2M because that is the bound of the
function.

. . . okay I am not copying the rest of this down, this is just ε-bashing.
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Last time we showed that Darboux integrability and Riemann integrability are equiv-
alent. However, this begs the question of whether there is a nice way to determine
whether a function is integrable. For example, it is totally nonobvious that the product
of two integrable functions is integrable.

It turns out a good criteria does exist!

Theorem 19.1 (Riemann-Lebesgue). A function f : [a, b] → R is Riemann integrable
if and only if f is bounded and its set of discontinuities is a zero set.

19.1 Discussion of Zero Sets

Recall that Z ⊂ R is a zero set if for each ε > 0 there exists a countable covering of Z
by open intervals with total length less than ε.

1. Finite sets

2. Subsets of zero sets

3. Countable sets

4. Countable unions of zero sets

5. The middle-thirds Cantor set

These are mostly trivial. Actually, maybe it’s not so obvious how to cover countable
sets, so here is how. If S = {x1, x2, . . . } is countable, then cover each xn by an interval
of length ε

2n+2013 . This is a standard “trick”.
The proof for countable unions of zero sets is basically the same – just consider zero

sets X1, X2, . . . instead of points.
We’ve already seen that the Cantor set is a zero set. Interestingly, the fat Cantor set

is not a zero set, despite being homeomorphic to C.

Definition 19.2. We say that almost every x ∈ R has some property if the set of
counterexamples is a zero set.

19.2 Examples of Riemann Integrable Functions (and non-integrable ones)

Monotone functions may be continuous at only countably many points. Project the
“jumps” onto the y-axis in the graph; we get a bunch of disjoint open intervals, and in
particular, only countably many such interval can exist. Hence, all monotone functions
are integrable.

Definition 19.3. For a set S, define the characteristic function χS by

χS(x) =

{
1 if x ∈ S
0 if x /∈ S.

Some books also use the notation 1S .
One can easily show that χQ is discontinuous everywhere. On the other hand, χC has

discontinuous at precisely the Cantor set.
On the other hand, the rational ruler function defined by

f(x) =

{
1/q x = p/q in lowest terms

0 otherwise.

It turns out that f is integrable because its discontinuity set is Q!
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19.3 Proof of the Riemann-Lebesgue Theorem

Proof. First, we show that if f is Riemann integrable, then it is bounded and its discon-
tinuity set D is a zero set.

Let ε > 0 be given. Define

oscxf = lim sup
t→x

f(t)− lim inf
t→x

f(t)

to be the oscillation, and for each κ > 0 let

Dκ
def
= {x | oscx(f) > κ} .

Then, D =
⋃∞
k=1D1/k. Therefore, it suffices to prove that each Dκ is a zero set.

We know there exists a partition P given by a = x0 < x1 < · · · < xn = b such
that U(f, P ) − L(f, P ) < κ

2ε, where M is the supremum. We define a disjoint union
of [a, b] = G t B t E, the “good”, the “bad”, and the “endpoints”. Here E is the set
of endpoints of the intervals of P . We will let G consist of those intervals (xi, xi+1)
containing no points of Dκ, and B those that do. Evidently

κ

2
ε > U(f, P )− L(f, P )

=
m∑
i=1

(Mi −mi)∆xi

=
∑
i good

•+
∑
i bad

•

≥
∑
i bad

•

>
∑
i bad

κ∆xi

because each of the bad intervals has a point with oscillation greater than κ. Then

1

2
ε >

∑
bad

∆xi

So Dκ, which mostly consists of these bad intervals, can be covered with length less than
1
2ε. The only points in Dκ that might be missed our endpoints, so we just cover all the
endpoints too.

Now for the converse. Assume f : [a, b] → R is bounded by M and has D a zero set.
For each κ > 0, we find Dκ is also a zero set. Fix ε > 0. We want to find a partition
such that U(f, P )− L(f, P ) < ε.

Remark that for all x /∈ Dκ, there is an open interval Ix containing x such that
sup {f(t) : t ∈ Ix} − inf {f(t) : t ∈} < κ. Also, we can cover Dκ by open intervals Jj
with total length less than 1

4M ε. Let U be the combined covering.
Let λ be a Lebesgue number for the covering U on the compact [a, b]. Hence every set

of diameter less than λ is contained in either an Ix or Jj . Now just choose any P with
mesh less than λ. We claim that we win. Intervals contained in Jj have total length
less than ε

4M and maximum “width” 2M , so the sum here is less than 1
2ε. The sum

of everything else is at most κ(b − a). So we just need to take κ < ε
2(b−a) and life is

good.

The idea of good versus bad intervals repeats itself.
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19.4 Consequences of the Riemann-Lebesgue Theorem

Corollary 19.4. Continuous implies Riemann integrable.

Proof. Bounded because the domain is closed, and the discontinuity set is empty.
You can prove this directly. Compactness implies that a continuous f : [a, b] → R

is uniformly continuous: for each ε > 0 there exists a δ > 0 such that |x− x′| < δ ⇒
|f(x)− f(x′)| < ε. So we just pick ε = ε′

b−a for any ε′ > 0, and take P with mesh less
than δ.

Corollary 19.5. Monotone implies Riemann integrable.

Corollary 19.6. f, g ∈ R ⇒ f · g ∈ R.

Proof. D(f) ∪D(g) contains D(fg).

Corollary 19.7. Let f : [a, b]→ [−M,M ] is Riemann integrable, and h : [−M,M ]→ R
is continuous, then h ◦ f is Riemann integrable.

Proof. D(h ◦ f) ⊆ D(f).because h is continuous. Furthermore, h is bounded because it
is continuous.
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Recall the Riemann-Lebesgue Theorem. It is really useful.

20.1 Corollaries of the Riemann-Lebesgue Theorem

1. f continuous implies f is Riemann integrable.

2. Let S ⊂ [a, b]. Then χS , the characteristic function of S, has discontinuity equal to
the boundary of S, ∂S. Hence χS is Riemann integrable only when ∂S is countable.

3. If each discontinuity of f is a jump discontinuity, and f is bounded, then f is
Riemann integrable.7 In particular, monotone functions are Riemann integrable.

4. The product of Riemann integrable functions is Riemann integrable. So is their
ratio if the second function is bounded away from zero.

5. If f ∈ R is bounded by M and h : [−M,M ] → R is continuous. Then h ◦ f is
Riemann integrable.

6. |f | is Riemann integrable for any f ∈ R. (Just take h : x 7→ |x| in the above.)

7. Let a < c < b and f ∈ R. Then f |[a,c] (that is, f restricted to [a, c]) is Riemann

integrable on [a, c], as is f |[c,b], and
∫ b
a f(t) dt =

∫ c
a f(t) dt+

∫ b
c f(t) dt. One “clean”

proof is f = χ[a,c]f + χ(c,b]f and χ[a,c] + χ(c,b] ≡ 1.

8. Suppose f(x) ≥ 0 for each x ∈ [a, b] and f ∈ R. If
∫ b
a f(t)dt = 0, then f is zero

almost everywhere. Indeed, just claim that f(x) = 0 whenever f is continuous at
x. (This is not completely trivial, consider χC .)

9. Suppose h : [c, d]→ [a, b] and f : [a, b]→ R, where f ∈ R. Suppose further that h
is a homeomorphism and h−1 satisfies the Lipschitz condition8; i.e. there exists L
such that

∣∣h−1(x)− h−1(y)
∣∣ < L(|x− y|). It’s basically equivalent to verify that

D(f ◦ h) = h−1(D(f)).

20.2 Diffeomorphisms

Definition 20.1. A diffeomorphism h : [a, b] → [c, d] is a homeomorphism if it is a
homeomorphism and of class C1 and moreover h−1 : [c, d]→ [a, b] is also of class C1.

The fact that h−1 is C1 is actually necessary. Consider the homeomorphism x 7→ x3.
Its inverse y 7→ y

1
3 is NOT differentiable at zero.

Proposition 20.2. If [c, d]
h−→ [a, b]

f−→ R has h a diffeomorphism and f ∈ R, then
f ◦ h is Riemann integrable.

Proof. It suffices to show h−1 satisfies the Lipschitz condition. We know (h−1)′ is
bounded by some constant L for all x. Now consider x, y. By the Mean Value the-
orem there exists θ between x and y with∣∣h−1(x)− h−1(y)

∣∣ =
∣∣h−1(θ)(x− y)

∣∣ ≤ L |x− y| .
7Here’s a proof. Consider the set of jumps of size ≥ 1. We claim there are only finitely many such

jumps. Otherwise, by compactness of [a, b], then there exists x0 ∈ [a, b] at which the jump points
accumulate. This is clearly bad.

8Meaning points are not stretched out greatly
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This becomes false when h is a homeomorphism instead of a diffeomorphism. Let
h : [0, 1]→ [0, 1] taking the Cantor set C to the fat Cantor set F . Then χF ≡ χC ◦ h−1.
But ∂C = C is a zero set while ∂F = F is not. Good game!

Remark 20.3. Homeomorphsims are sometimes called “changes of variable”. The coun-
terexample above shows that some changes of variables are unacceptable for preserving
Riemann integrability.

20.3 Antiderivatives

Definition 20.4. A function G : [a, b] → R is called an antiderivative of g : [a, b] → R
if for each x ∈ [a, b], G′(x) exists and equals g(x).

Proposition 20.5. If g has a jump discontinuity, then g does NOT have an antideriva-
tive.

Proof. This follows from the fact that the derivatives have the intermediate value prop-
erty.

Example 20.6. The fairly nice function f : [0, 2] → R by f = χ[0,1] + χ(1,2] has no
antiderivative. Meanwhile, the much more unfortunate function

g(x) =

{
sin 1

x x > 0

0 x ≤ 0.

does.

How do we find this antiderivative? We basically want G(x) =
∫ x

0 g(t) dt but it’s not
obvious how to do this. The key is that for any α > 0 we have

t2 cos(1/t)|xα =

∫ x

α
sin

1

t
dt+

∫ x

α
2t cos

(
1

t

)
dt.

This actually holds for α = 0 as well! Just remark that t2 cos(1
t ) → 0 and t cos(1

t ) → 0
as t→ 0. Hence, we derive that∫ x

0
sin

(
1

t

)
dt = x2 cos

1

x
−
∫ x

0
2t cos

(
1

t2

)
dt

and the RHS is nice.
It remains to check that G′(0) = 0 (and exists). Compute

G(h)

h
=

1

h

∫ h

0
sin(

1

t
) dt =

1

h

[
h2 cos

1

h
−
∫ h

0
2t cos

1

t2
dt

]
.

The first term tends to zero, so we just need 1
h

∫ h
0 2t cos( 1

t2
) dt tends to zero. Now just

bound the cosine by one; we conclude∣∣∣∣1h
∫ h

0
2t cos

(
1

t2

)∣∣∣∣ ≤ 1

h

∫ h

0
2t dt = h→ 0.

Game, set and match.
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We’re going to ignore the proofs of the classic calculus theorems. There’s other stuff to
do. We’ll just mention the devil’s staircase.

21.1 The Devil’s Staircase and Ski Slope

We will construct f : [0, 1]→ [0, 1] such that f ′(x) exists and is zero almost everywhere,
yet f is nonconstant.

The construction is based on the Cantor set. For each discarded interval I in [0, 1]\C,
define f(I) to be the midpoint of 1

2 . So, for example, f(t) = 1
2 for all t ∈

[
1
3 ,

2
3

]
, and

f(t) = 1
6 for all t ∈

[
1
9 ,

2
9

]
.

Hence for all x /∈ C, f ′(x) = 0. One can also verify that f is continuous. This is the
devil’s staircase.

This can be made worse. The devil’s ski slope is strictly increasing but has the same
properties as the devil’s staircase.

21.2 The Improper Integral

We do little more than define this.

Definition 21.1. If f : [a,∞)→ R is Riemann integrable when restricted to each [a, b]
and the quantity

lim
b→∞

∫ b

a
f(t) dt

exists, then we say that the improper integral
∫∞
a f(t) dt exists and equals said limit.

Example 21.2. Consider f(t) = 1
t2

. We have∫ b

1

1

t2
dt = 1− 1

b

so the improper integral
∫∞

1 = 1.

Exercise 21.3. Construct an unbounded function which has an unbounded integral.

Definition 21.4.
∫∞
−∞ f(t) dt exists if

∫ 0
−∞ f(t) dt and

∫∞
0 f(t) dt both exists, indepen-

dently.

Remark 21.5. It’s not enough for limr→∞
∫ r
−r f(t) dt to exist. This is strictly weaker.

21.3 Series

Given a sequence of real numbers (an), we wish to determine when
∑∞

k=1 ak.

Definition 21.6. Define An =
∑n

k=1 ak as the nth partial sum. Then
∑∞

k=1 converges
if and only if A = limn→∞An exists. We then say it converges to A. Otherwise, it
diverges.

Because we are dealing with real numbers, we have that
∑
ak converges if and only if

it is Cauchy: that is, for all ε > 0, there exists N such that for all n > m ≥ N such that

ε > |An −Am| =

∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ .
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Remark 21.7. A convergent series must have terms tending to zero. The converse is
EXTREMELY false.

Definition 21.8. We say
∑
ak converges absolutely if

∑
|ak| converges. Otherwise it

converges conditionally.

Example 21.9.
∑∞

k=1
1
k diverges, but

∑∞
k=1

(−1)k

k does. Hence the latter is conditionally
convergent.

21.4 Examples of Series

One example is the harmonic series.
The geometric series: for any −1 < λ < 1 the series

∞∑
k=0

λk

converges to (1− λ)−1. This is obvious: the mth partial sum is precisely 1−λm+1

1−λ tends

to 1
1−λ .

On the other hand, if |λ| > 1 then the geometric series do not tend to zero, and hence
the sequence diverges.

A very general series is the alternating series. If an ↓ 0 (i.e. an decreases monotonically
to zero) as n → ∞, then the alternating series

∑∞
n=1(−1)nan converges. The series

appears as −a1 + (a2 − a3) + (a4 − a5) + . . . . The numbers a2 − a3, a4 − a5, and so on
are all nonnegative.

21.5 Tests

Most tests are consequences of the comparison test.

Proposition 21.10 (Comparison Test). If
∑
bk converges and if

∑
ak obeys |ak| ≤ bk

then the ak-series converges absolutely.

Definition 21.11. We say that (bn) dominates (an).

Remark 21.12. Conditionally convergent series are strange. Here is an example. We
can rearrange the indices with a bijection β : N→ N. If

∑
an converges absolutely, then

(aβ(n)) converges absolutely to the same thing. But if
∑
an is conditionally convergent,

then (aβ(n)) can converge to anything! And we mean anything: for any
∑
an and α ∈ R

there exists a bijection βα forcing
∑
aβ(n) to converge to α.

You can even get conditionally convergent series with the following property: if
A1, A2, . . . is the sequence of partial sums, some suitable bijection β will cause sub-
sequences of the (An) to converge to every point of any closed interval.

21.6 That Homework Exercise that was Nontrivial

Proposition 21.13. If
∑
an converges and bn ↑ b, then

∑
anbn converges.

One way to see this is

ambm + am+1bm + · · ·+ an−1bm + anbm

am+1(bm+1 − bm) + · · ·+ an−1(bm+1 − bm) + an(bm+1 − bm)

. . . +
...

+ an−1(bn−1 − bn−2) + an(bn−1 − bn−2)

+ an(bn − bn−1)
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21.7 Exponential Growth Rate

Definition 21.14. For a sequence (an), the geometric growth rate is defined as ρ =

lim supk→∞ |ak|
1/k.

Proposition 21.15 (Root Test). If ρ < 1 then
∑
ak converges absolutely; if ρ > 1 then∑

ak diverges. The test is inconclusive if ρ = 1.

Proof. If lim supk→∞|ak|1/k = ρ, then for k large we have |ak| < ρk and comparison to
the geometric series works. If ρ > 1, then there are infinitely many terms with magnitude
greater than one, so it cannot possibly converge.

The p-series is an example when the root test is useless; ρ = 1 for every p-series.

Musing: what if you knew lim supk→∞|ak|1/k approached at a certain rate? Would
that help?
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We now begin the study of function spaces. Instead of adding numbers, we will be
adding functions.

22.1 Sequences of Functions and Uniform Convergence

First, let us consider a sequence of functions (fn), and another function f , each defined
from [a, b]→ R.

Definition 22.1. We say fn converges pointwise to f if ∀x ∈ [a, b], fn(x) → f(x) as
n→∞. We write fn → f or limn→∞ fn = f .

Definition 22.2. We say fn converges uniformly if ∀ε > 0, ∃N ∈ N such that ∀n ≥ N
and ∀x ∈ [a, b] we have |fn(x)− f(x)| < ε. We write fn →→ f .

The “correct” way to view this is to construct a “tube” of width ε around each function
f .

Example 22.3. Let fn(x) = xn for each n, where fn : [0, 1]→ R. Let f(x) = 0 for each
0 ≤ x < 1 and f(1) = 1. It’s easy to see that fn converges to f pointwise.

However, this is far from uniform convergence.

Uniform convergence is “good”. For example.

Theorem 22.4. Suppose fn →→ f and x0 ∈ [a, b]. If fn is continuous at x0 for infinitely
many n, then so is f .

Remark 22.5. This is false if fn →→ f is replaced by fn → f ; just consider the example
from before.

Proof. Let ε > 0 be given. We wish to show that there is a δ > 0 such that |x− x0| <
δ ⇒ |f(x)− f(x0)| < ε.

By uniform convergence, there is some large N such that |fN (x)− f(x)| < 1
3ε (actually

for all n ≥ N). We may also assume that fN is continuous at x0. Now by continuity of
fN there exists a δ > 0 such that |x− x0| < δ ⇒ |fN (x)− fN (x0)| < 1

3ε.
In that case, for all x within δ of this x0,

|f(x)− f(x0)| ≤ |f(x)− fN (x)|+ |fN (x)− fN (x0)|+ |fN (x0)− f(x0)|

<
1

3
ε+

1

3
ε+

1

3
ε

= ε

Corollary 22.6. If fn is continuous at all x ∈ [a, b] and fn →→ f , then f is continuous
at all x ∈ [a, b].

Example 22.7. Construct the growing steeple as follows: define

fn =


n2x 0 ≤ x ≤ 1

n

n− n2
(
x− 1

n

)
1
n ≤ x ≤

2
n

0 otherwise

.
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22.2 Function Spaces

Definition 22.8. Let Cb denote the set of bounded functions from [a, b]→ R. Equip it
with a metric d : C2

b → R by

d(f, g) = sup {|f(x)− g(x)| : x ∈ [a, b]} .

One can check that this distance is in fact a metric! We also have the following result.

Proposition 22.9. fn → f in Cb if and only if fn →→ f .

Proof. Trivial.

We may also define the norm of f by ‖f‖ = d(f, 0), where 0 denotes the zero function.
In fact, we have the following theorem.

Theorem 22.10. Cb is a complete metric space.

The intuition is that this follows from completeness of R.

Proof. Let (fn) be a Cauchy sequence. Evidently the sequence (fn(x))n∈N is Cauchy for
each x, because |fn(x)− fm(x)| ≤ d(fn, fm). Since this occurs in the reals, we deduce
limn→∞ fn(x) exists for all x. Define f(x) to be this limit.

We now have a target.
Remark that fn → f with respect to d if and only if fn converges uniformly to f . We

wish to show that for each ε > 0 we can find an N with n ≥ N ⇒ |fn(x)− f(x)| < ε.
Evidently there exists N such that for all n,m ≥ N and for all x, we have

|fn(x)− fm(x)| < 1

2
ε.

Now for all x0 ∈ [a, b] there exists an m(x0) ≥ N such that
∣∣fm(x0)(x0)− f(x0)

∣∣ < 1
2ε.

Then for each n ≥ N we have the inequality

|fn(x)− f(x)| ≤
∣∣fn(x)− fm(x)(x)

∣∣+
∣∣fm(x)(x)− f(x)

∣∣ < ε.

Finally we just have to show f is bounded. But this follows rather readily from uniform
convergence now that we have fn →→ f .

Notice how when applying the triangle inequality, we had to pick the m dependent on
x. This is apparently a standard trick for pointwise convergence.

22.3 More properties of uniform continuity

Corollary 22.11. C0 is complete. So is R.

Proof. We claim they are closed subsets of the complete space Cb; in fact C0 ⊂ R ⊂ Cb.
That C0 is closed follows from our earlier theorem.

Hence, we only consider the second statement, showing that R is closed. Suppose
fn ∈ R and fn →→ f . We already know f is bounded. Now by our continuity theorem
the discontinuity set of f is within

∞⋃
n=1

D(fn)

which is a zero set. Hence Riemann-Lebesgue implies the conclusion.
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Proposition 22.12. If fn →→ f and each fn is Riemann integrable, then∫ b

a
fn(t) dt→

∫ b

a
f(t) dt.

Proof. Just write the inequalities∣∣∣∣∫ b

a
(fn(t)− f(t)) dt

∣∣∣∣ ≤ ∫ b

a
|fn(t)− f(t)| dt ≤

∫ b

a
d(fn, f) dt = (b− a)d(fn, f)→ 0.

So the integrals work out nicely. Derivatives are less pleasant, as the following exam-
ples show.

Example 22.13. Suppose (fn) is a sequence of functions in C1 and fn →→ f . We would
like f to approach f , but this is false. Define

fn(x) =

√
x2 +

1

n
.

We observe fn(x) →→ f , where f(x) = |x|. But the derivatives at x = 0 do not agree,
because f does not even have a derivative at that point!

The following extra condition is necessary.

Theorem 22.14. Suppose fn : [a, b] → R is continuously differentiable and fn →→ f .
Suppose further f ′n →→ g for some function g. Then f is differentiable and f ′ = g.

Proof. Uses the Fundamental Theorem of Calculus. We know that

fn(x) = fn(a) +

∫ x

a
+

∫ x

a
f ′n(t) dt.

Considering the behavior as n→∞, we obtain

f(x) = f(a) +

∫ x

a
g(t) dt.

We know g(n) is continuous since f ′n are all continuous and converge uniformly to g.
Then by the Fundamental Theorem of Calculus, we obtain f ′(x) = g(x) as desired.

One can actually strengthen this to “differentiable” instead of “continuously differen-
tiable”.

22.4 Series of Functions

Again we have fn : [a, b]→ R. We wish to consider partial sums

n∑
k=0

fk(x) = Fn(x).

Definition 22.15. The series of functions converges uniformly if and only if the sequence
of partial sums (Fn) converges uniformly.

As for the reals, we may consider the Cauchy condition instead: for each ε > 0 there
is a large N such that for all n > m ≥ N we have

ε > |Fn(x)− Fm(x)| =

∣∣∣∣∣
n∑

k=m+1

fk(x)

∣∣∣∣∣
for all x.

Here is a nice fact.
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Theorem 22.16 (Weierstrass M-Test). Let
∑∞

k=0Mk be a convergent sequence of non-
negative reals. If (fn) is a sequence of functions with ‖fk‖ ≤ Mk for all k, then

∑
fk

converges uniformly.

Proof. Just apply the Cauchy condition.

22.5 Power Series

These are series of functions
∑∞

k=0 fk(x) where fk(x) = ckx
k.

Definition 22.17. Define

R =
1

lim supk→∞ |ck|
1
k

.

This is called the radius of convergence.

Example 22.18. If ck = 1 then R = 1. If ck = 2k then R = 1
2 . If ck = kk (very fast!)

then R = 0. If ck is very small, then R = ∞. And so on. In short, we can achieve all
spectrums of R.

Theorem 22.19. If |x| < R then the series converges to a function f : (−R,R) → R.
Furthermore, f is C1, and converges uniformly on closed intervals. Moreover, f ′ is also
given by a canonical power series

∞∑
k=1

kckx
k−1.

Needless to say, f ′′ is also given by a power series of the same radius, and so on. In
particular, if f is given by a power series, then f is smooth.
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Today’s topic is equicontinuity.

23.1 Equicontinuity

Intuitively, y = x is “more continuous” than sin(1000x). Here is the definition.

Definition 23.1. A sequence of functions (fn) from [a, b] to R is equicontinuous if
∀ε > 0, there is a δ > 0 such that for all n and x, y ∈ [a, b] we have

|x− y| < δ ⇒ |fn(x)− fn(y)| < ε.

The important thing here is that δ depends only on ε.

Definition 23.2. (fn) is pointwise equicontinuous if for every x0 ∈ [a, b] and ∀ε > 0
there exists δ > 0 such that if x ∈ [a, b] and |x− x0| < δ, then

|fn(x)− fn(x0)| < ε.

We will be dealing with the first definition.

Theorem 23.3. Suppose fn : [a, b] → R has the property that each fn is differentiable
and there exists L such that |f ′n(x)| ≤ L. Then (fn) is equicontinuous.

Proof. Let ε > 0 be given. Choose δ < ε
L . Now cite the Mean Value Theorem and win:

|fn(x)− fn(y)| = f ′(θ) |x− y| ≤ Lδ ≤ ε.

The converse is not true. The function given by

f(x) =

{
x3/2 sinx−1 x > 0

0 otherwise.

has unbounded derivative but is nonetheless continuous. On a compact, it is uniformly
continuous. Now take fn ≡ f for all f .

23.2 The Azela-Ascoli Theorem

Theorem 23.4 (Arzela-Ascoli Theorem). If (fn) is equicontinuous and uniformly bounded9

then there is a uniformly convergent subsequence, or equivalently, a convergent in C0.

So this is essentially a compactness result.

Proof. By compactness, [a, b] has a sequence d1, d2, . . . , such that the set of values of di
is dense on [a, b]. That means for any δ > 0 we can find J ∈ N such that every x ∈ [a, b]
is within δ of some dj where j ≤ J .

In that case, for each δ, the set

{(dj − δ, dj + δ) | j ∈ N}

is an open covering of [a, b] and hence has a finite subcovering.
Consider d1 ∈ [a, b]. Because (fn(d1))n∈N is a sequence in [−M,M ] there exists a

subsequence (f1,n)n∈N of (fn)n∈N such that f1,n(d1) converges to some y1.

9i.e. for some M , |fn(x)| ≤M for all n, x.
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Then (f1,n(d2))n∈N is again in [−M,M ] so it has some subsequence (f2,n) such that
f2,n(d2) → y2 ∈ [−M,M ]. On the other hand f(2,n)(d1) still approaches y1 as it is a
subsequence of a continuous sequence.

Hence as k = 1, 2, . . . we construct fk,n such that fk,n(di)→ yi for each i < k.
Remark that f1,1, f2,2, f3,3, . . . is indeed a subsequence of the fi, because if m < n

then fn,n may not precede fm,m in any sequences. As such, we define gn = fn,n and
observe that gn(dj)→ yj as n→∞; just discard all the n with n < j.

Now we claim that the gn converges uniformly. We already now gn converges pointwise
at each point of a dense subset. Now we apply equicontinuity, and we wish to show that
(gn) is uniformly Cauchy; that is for all ε > 0 there is an N such that |gn(x)− gM (x)| < ε
for all x ∈ [a, b] and n,m ≥ N .

By equicontinuity, there exists a δ > 0 such that for all x, y within δ of each other,
|gn(x)− gm(y)| < 1

3ε for each n. For this specific δ, we can consider J as in the very first
paragraph so that d1, d2, . . . , dJ are δ-dense. Thus there exists Nj such that if m,n ≥ Nj

wit h|gn(dj)− gm(dj)| < 1
3ε.

Now we take N = max {N1, . . . , NJ}. Then m,n ≥ N implies

|gn(x)− gm(x)| < |gn(x)− gn(dj)|+ |gn(dj)− gm(dj)|+ |gm(dj)− gm(x)|

for some dj within δ of x. The end!

Summary: get the sequence to converge to a sequence of dense points. Then use
equicontinuity to get all of [a, b].

Remark 23.5. This holds for any compact metric space.

23.3 Sets of Equicontinuous Functions

We can instead look at sets of functions F rather than sequences. We can thus modify
our theorem to read the following.

Theorem 23.6. A set F ⊆ C0 is compact if and only if F is closed, bounded, and
equicontinuous.

Proof. One direction is trivial. The other direction is 2/3 trivial; we only need to prove
F is continuous given compactness. Consider an open subcover

Mε/3(f) : f ∈ F

whereMε/3 is the ε/3 neighborhood. Hnece we obtain a finite subcoverMε/3(f1), . . . ,Mε/3(fN ).
Hence there exists δi with uniform continuity of fi for i = 1, 2, . . . , N . Let δ =
min {δ1, . . . , δN}.

Just note now that for all f ∈ F , we have |x− y| < δ implying that

|f(x)− f(y)| < |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)|

for some fn within ε
3 of f . This is thus less than ε.
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Sports injuries from math contests? I guess.
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25.1 The Stone-Weierstrass Theorem

Definition 25.1. A function algebra is an algebra which is closed under addition, scalar
multiplication, and function multiplication.

Let A ∈ C0(M,R) be a function algebra, where M is a compact metric space which
separates every pair of points; that is, ∀p, q ∈M∃f ∈ A such that f(p) 6= f(q). Suppose
that ∀p ∈M,∃f ∈ A such that f(p) 6= 0.

We will show the closure A is the entire C0.

25.2 First Lemmas

Lemma 25.2. Assume the two properties above. For all p1, p2 ∈ M and c1, c2 ∈ R, we
can find a function f ∈ A with p1 7→ c1 and p2 7→ c2.

Proof. This is a matter of cooking up functions.
Let gi ∈ A not vanish at pi for i = 1, 2 and let h ∈ A separate p1 and p2. For

convenience, define g = g2
1+g2

2 and note that g(p1), g(p2) > 0. We wish to find coefficients
ξ, η ∈ R such that

ψg(pi) + ηg(pi)h(pi) = 0

for i = 1, 2. Verify that the determinant is nonzero.

We also state the following two facts.

Fact 25.3. If f, g : M → R are continuous, and f(p) < g(p) then there exists U a
neighborhood of p such that f(u) < g(u) for each u ∈ U .

Proof. Clear enough.

Fact 25.4. The closure of a function algebra is also a function algebra.

Proof. Just use properties of convergence.

25.3 Getting absolute values and maximums

Lemma 25.5. If A is a function algebra and f is in A, then so is |f |.

Proof. There exists a large B ∈ R such that f takes values in [−B,B] (because M is
compact). The Weierstrass Approximation Theorem produces a polynomial

P (y) = a0 + a1y + a2y
2 + · · ·+ any

n

for which |P (y)− |y|| < ε for each y ∈ [−B,B]. We may also assume a0 = 0 since
|0| = 0. (Specifically, tighten P (y) to be within 1

2ε and then consider Q = P (y)− y.)
Substitute y = f(x) to produce

P (y) = a1f(x) + a2f(x)2 + a3f(x)3 + · · ·+ anfn(x)n ∈ A.

Evidently for all x in M , we get that

|Q(f(x))− |f(x)|| < ε.

This implies we approach |f | with functions in A, namely Q ◦ f . Hence |f | lies in the
closure.
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Note that because we have used the Weierstrass Approximation Theorem, the general
Stone-Weierstrass Theorem cannot be used to deduce the Weierstrass Approximation
Theorem. This is a case of the specific theorem being used to derive the general theorem.

We now write

max {a, b} =
a+ b

2
+
|a− b|

2

and similarly for the minimum. To this end we can take

max(f, g) =
f + g

2
+
|f − g|

2
∈ Å.

Then max(f, g, h) = max(max(f, g), h), and accordingly we can show that

max (f1, . . . , fn) ∈ A.

25.4 Proof of the Stone-Weierstrass Theorem

We wish to show that given F ∈ C0 and ε > 0, we can find G ∈ A such that ‖G− F‖ < ε;
that is,

F (x)− ε < G(x) < F (x) + ε ∀x ∈M.

First, we fix p ∈M . Then for all q ∈M , we can find Hp,q ∈ A sending p 7→ F (p) and
q 7→ F (q) (by the first lemma).

We may think of q and x as varying. Remark that we may find Uq a neighborhood of
q such that ∀x ∈ Uq, F (x)− ε < Hpq(x) (again this is with our given ε). But now⋃

q∈M
Uq

is a open covering! So we can find a finite subcover

{Uq1 , . . . , Uqm} .

Now we define
Gp = max {Hpq1 , . . . ,Hpqm} ∈ A.

By construction Gp(x) > F (x)− ε.
So, what now? Now we unfix p ∈ M ! Then we can obtain a neighborhood Vp with

Gp(v) < F (v) + ε for each v ∈ Vp. Again we can obtain a finite subcover! We obtain

Gp1 , Gp2 , . . . , Gpn

and now consider
G = min {Gp1 , . . . , Gpn} ∈ A.

By construction, G(x) < F (x) + ε for all x. And yet G(x) > F (x)− ε for all x because
the Gpk each have that property.

Hence ‖F −G‖ < ε and we are done.
Problem-solving tactic: the Gp supersolve the F we are trying to approximate. So

rather than trying to hit F immediately, we get something bigger than F , and then push
it downwards.
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26.1 Contractions

Definition 26.1. A contraction is a map f : M →M such that for some k < 1 we have

d(fx, fy) ≤ kd(x, y)

for all x, y ∈M .

Theorem 26.2 (Banach Contraction Theorem). If M is a complete metric space, there
exists a unique point p ∈M such that fp = p; that is, there exists a unique fixed point.

Proof. Choose any x0 ∈ M arbitrarily and let xn = fn(x0) for every positive integer n.
We claim (xn) is Cauchy. After all, d(xn, xn+1) ≤ kn(x0, x1) by a simple induction, and
hence d(xn, xm) can be bounded by (for n < m)

(kn + kn+1 + . . . km−1)d(x0, x1) <
kn

1− k
d(x0, x1)

as desired.
Hence xn → p for some p and it is easy to show that d(p, fp) < ε for any ε > 0,

implying d(p, fp) = 0. Uniqueness is immediate.

Second Proof. Pick some large R and x0 ∈M . Let A = {x : d(x, x0) ≤ R}. We wish to
show f(A) ⊆ A. Note that

d(x0, fx) ≤ d(x0, fx0) + d(fx0, fx) ≤ r + kd(x0, x) = r + kR.

where r = d(x0, fx0). This is less than R for sufficiently large R. Because A ⊃ f(A), we
obtain f(A) ⊃ f(f(A)) (this is set theory, just take f of both sides). We conclude that

A ⊃ f(A) ⊃ f2(A) ⊃ . . .

and the diameters tend to zero. But A is closed. Unfortunately, f(A) is not necessarily
closed. So, we take the closure, and notice the diameter doesn’t change. That is

A ⊃ f(A) ⊃ f2(A) ⊃ . . .

and the diameters still tend to zero. Hence the intersection
⋂
fn(A) is a single point,

the fixed point.

26.2 Ordinary Differential Equations

The following result is the standard application of the Bananch Contraction Theorem.
Recall that an ordinary differential equation has the form

x′ = f(x) x(0) = x0.

Here x is a function of one variable t.
Given f a real-valued function of the real variable x (ugh), we wish to find a function

x(t) such that
dx(t)

dt
≡ f(x(t)), x(0) = x0.

Example 26.3. If f(x) = ax, the solution to x′ = ax with x(0) = 1 is x(t) = eat.
If f(x) = x2, the solution is x(t) = −1

t−c−1 . Now x(0) = c.
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These are quite specific single-variable ODE’s. Other ODE’s are more general:

x′ = f1(x, y)

y′ = f2(x, y)

and with some initial condition x(0) = x0 and y(0) = y0.
To solve this means to find a curve

(x(t), y(t))

such that dx
dt ≡ f1(x(t), y(t)) and dy

dt ≡ f2(x(t), y(t)).
Of course, we can generalize this further to multiple variables. But the picture is this;

for any open U ∈ R2, consider the field of vectors at each point in U by

(x, y) 7→ (f1(x, y), f2(x, y)) .

Then a solution is a curve tangent to the vectors at every point.

Theorem 26.4 (Picard). Let U ⊂ Rm be open. Suppose that f : U → Rm satisfies a
Lipschitz condition: there exists L ∈ R with |f(x)− f(y)| ≤ L |x− y| for every x, y ∈ U .
Then the ODE x′ = f(x), x(0) = x0 has a unique solution γ(t); we have

dγ(t)

dt
≡ f(γ(t)), γ(0) = x0.

By unique we mean that any two solutions agree on their common time interval. That
is, uniqueness up to extending or restricting time intervals.

Proof. We can instead search for a continuous curve γ(t) (not necessarily differentiable)
with

γ(t) = x0 +

∫ t

0
f(γ(s)) ds.

for all t. This is sufficient, since γ(0) = 0 and γ′(t) = f(γ(t)) by the Fundamental
Theorem of Calculus.

The upshot is that we don’t care about differentiability now, because if γ is continuous
as above then it is automatically differentiable.

Here’s what we do. Consider a compact ball around x0 ∈ U , say

N = {x ∈ U : |x− x0| ≤ r} ⊂ U.

By Heine-Borel, N is compact. Hence there exists M such that for all x ∈ N , we have

|f(x)| ≤M.

We can select a time τ > 0 with τL < 1 (where L is from the Lipschitz condition) and
τM < r.

Consider the function space

C = {γ : [−τ, τ ]→ N | γ(0) = x0, γ continuous} .

equipped with the sup norm. We know that C is complete relative to this sup metric.
Now consider a map T from C to itself by

T : γ 7→ x0 +

∫ t

0
f(γ(s)) ds.
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By virtue of and τM < r, one can show that the right-hand side is contained in N for
any t. Hence T (γ) indeed lies in C.

Now consider σ, γ ∈ C. We wish to show d(Tσ, Tγ) ≤ kd(σ, γ). Compute

d(Tσ, Tγ) = sup

∣∣∣∣∫ t

0
(f(σ(s))− f(γ(s))) ds

∣∣∣∣ .
By Lipschitz this is less than∫ t

0
L |γ(s)− σ(s)| ds < τLd(σ, τ)

Hence take τL < 1 and we win! We get a fixed point of T which is the desired path.

We may regard the present state of the universe as the effect of its past and
the cause of its future. An intellect which at any given moment knew all of
the forces that animate nature and the mutual positions of the beings that
compose it, if this intellect were vast enough to submit the data to analysis,
could condense into a single formula the movement of the greatest bodies
of the universe and that of the lightest atom; for such an intellect nothing
could be uncertain and the future just like the past would be present before
its eyes.
– Laplace
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We will construct a uniformly continuous function which is differentiable nowhere.

Theorem 27.1. There exists f : R → R continuous and for all x ∈ R, f is not
differentiable at x.

It gets worse.

Theorem 27.2. The “generic” continuous function f : [a, b] → R is nowhere differen-
tiable.

Here, generic applies in the sense that e.g. the generic 2 × 2 matrix is nonzero, the
generic real number is irrational.

27.1 Constructing the Beast

We begin with the sawtooth function σ0(x) as follows. For each n ∈ Z, set σ0(x) = x−2n
for 2n ≤ x ≤ 2n+ 1, and σ0(x) = 2n+ 2− x for 2n+ 1 ≤ x ≤ 2n+ 2. In effect, this is a
2-periodic mountain.

Now for each k = 1, 2, . . . we define σk by

σk(x) =

(
3

4

)σ0(4kx)

.

Note that the slopes in σk are quite steep, albeit uniformly continuous. The period of
σk is 2 · 4−k.

Now we define

f(x) =
∞∑
k=0

σk(x).

This is continuous by the Weierstrass M-test. Now we claim f is non-differentiable. Here
is why. Let δn = 4−n. We claim that for all x, for some suitable choice of ±, we have∣∣∣∣f(x± δn)− f(x)

δn

∣∣∣∣→∞.
Remark that the quantity in the absolute values may be written in the form

1

δn

(
n−1∑
k=0

(σk(x± δn)− σk(x)) + (σn(x± δn)− σn(x)) +
∑

k=n+1

∞ (σk(x± δn)− σk(x))

)
.

But now, by construction, σk(x±δn)−σk(x) = 0 for each k ≤ n+1. After all, δn divides
the period of the function.

How about δn(x± δn)− δn(x)? One of the sides is monotone by our construction, and
has slope 3n in magnitude. Pick the sign that corresponds to that. That means∣∣∣∣δn(x± δn)− δn(x)

δn

∣∣∣∣ = 3n

for some choice of ±.
How about the rest of the terms? When k < n, we have that 1

δn
(σk(x± δn)− σk(x)) <

3k, but
∣∣1 + 3 + · · ·+ 3n−1

∣∣ < 1
2 · 3

n. Hence,∣∣∣∣f(x± δn)− f(x)

δn

∣∣∣∣ > 1

2
· 3n.
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27.2 Generic?

Definition 27.3. Let M be a metric space. A set S ⊂ M is thick if it is a countable
intersection of open and dense subsets of M .

Example 27.4. R \Q is thick in R. For each rational number α define

G(α) = R \ {α} .

Each G(α) is open and dense in R, and the intersection of these countably many G’s is
precisely R \Q.

Definition 27.5. A set S ⊂M is thin if its complement is thick.

Theorem 27.6 (Baire’s Theorem). If M is a complete metric space and S ⊂ M is
thick, then S is dense in M .

Completeness is necessary. Otherwise, by replacing R with Q in our prior example,
we find that ∅ is thick in Q.

Proof. Given p0 ∈ M and ε0 > 0, we wish to show that S ∩Mε0(p0) 6= ∅. Set S =
∩∞n=1Gn, where each n is open and dense.

By density of G1, we can furnish an ε1 > 0 and p1 ∈ G1 such that the closure of
Mε1(p1) is contained in the open set Mε0(p0)∩G1 6= ∅. Now we just repeat, constructing
a p1, p2, . . . . We can also dictate that εn <

1
n when we select our εn.

As a result, we have constructed

Mε0(p0) ⊃Mε1(p1) ⊃Mε2(p2) ⊃ . . .

By completeness, these converge to a unique point q in the intersection of all these
sets. Then q ∈ Gn for each n, since we dictated that Mεn(pn)supsetMεn−1(pn−1) ∩Gn.
Therefore, q ∈ S.

27.3 Usually Nowhere Differentiable

Here is the precise statement.

Theorem 27.7. There exists a sequence Rn of open dense sets in C0([a, b],R) such that
∀F ∈

⋂∞
n=1Rn, F is nowhere differentiable.

Proof. This proof will use the Weierstrass Approximation Theorem.
Define

R(n) ∈
{
f ∈ C0 : ∀x ∈ [a, b− 1

n
]∃h > 0 with

∣∣∣∣f(x+ h)− f(x)

h

∣∣∣∣ > n

}
.

The point is that as n gets big, we have functions with terrible right slopes. We have to
use [a, b− 1

n ], though, because x+ h needs to be defined.
We claim that Rn is open and dense. First we show density. The Weierstrass Approx-

imation Theorem implies that the set of all polynomials P is dense in C0. It suffices to
show that P ⊂ Rn. Given a polynomial P we wish to find f ∈ Rn such that ‖f−P‖ < ε.
There exists B a bound for P ′(x). Now we just consider P + σm for large m. It’s a ter-
rible function with terrible slopes, and in particular belongs to Rn if m is large enough,
but nonetheless ‖(P + σm)− P‖ = ‖σm‖ → 0.
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Proving Rn is open is trickier. Given f ∈ Rn we need to find some ε > 0 such that
‖g − f‖ < ε⇒ g ∈ Rn. We need to loosen the condition slightly. Declare that∣∣∣∣f(x+ h)− f(x)

h

∣∣∣∣ > n+ ν(x)

for some ν(x) > 0. Now we use propagation. For every x there exists Tx an open
subinterval of [a, b] such that

t ∈ Tx ⇒
∣∣∣∣f(t+ h(x))− f(t)

h(x)

∣∣∣∣ > n+ ν(x).

By compactness of [a, b − 1
n ] so we can find finitely many Tx which actually cover the

entire interval. We can find a suitable εi for each of the Txi , and then we can simply
take ε = min {εi}.

Great. That means
⋂
Rn is indeed thick. We just need to show that its members are

wicked, wicked functions.
For all f ∈

⋂
Rn and x ∈ [a, b), we know that there is some sequence of positive (hn)

such that ∣∣∣∣f(x+ hn)− f(x)

hn

∣∣∣∣→∞.
Because f(x+hn)−f(x) is bounded, this means hn → 0 and hence f is not differentiable
at any x ∈ [a, b).

27.4 Extended Doom

The generic function is also monotone on no interval – it happens to often be a fractal.
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28 December 5, 2013

Final exam: 234 Hearst Gym, from 7PM - 10PM on Friday, December 20. (Ergh. . . )
Office hours on the 17th and 19th of December from 4PM-5:30PM in 807 Evans.
The test will emphasize the second part of the course in the ratio 5:3 or 2:1. There

will be about six questions.

28.1 Review of Chapter 3

In this chapter we discuss functions f : [a, b]→ R.
Differential calculus. What is f ′? We have some properties.

• Sums, differences of differentiable functions are differentiable.

• Chain Rule

• Mean Value Theorem

• Ratio Mean Value Theorem. Looking at f(x)
g(x) −

f(y)
g(y) , and finding a θ with f ′(θ)

g′(θ) .

• RMVT implies L’Hospital’s Rule. The cases are 0
0 and ∞∞ .

• Intermediate Value Property for f ′(x). As long as f ′(x) exists, even if it is not
continuous, it has no jump discontinuities. More formally, if f ′(x) exists at all
x ∈ (a, b) and f ′(α) < k < f ′(β) then there is some θ between α and β for which
f ′(θ) = k.

Note that there are differentiable functions f , but f ′(x) is not even bounded.

• Higher derivatives. Recall C0 is the set of continuous functions [a, b]→ R, and C1

is the set of all functions which are continuously differentiable10. Define C2, C3, . . .
analogously. Define C∞ =

⋂
Cr, called smooth.

• A function is analytic if at every point it is given by a power series. The set is
denoted Cω. All such functions are smooth. Remember the bump function

x 7→

{
e−1/x x > 0

0 x ≤ 0.

It is smooth, but cannot be expressed as a power series at zero.

Fortunately, (Riemann) integral calculus is much nicer. Consider once more an arbi-
trary function f : [a, b]→ R.

• We consider meshes. Select

P : x0 = a < x1 < x2 < · · · < xn = b

and
T : t1 ≤ t2 ≤ · · · ≤ tn with ti ∈ [xi−1, xi] for all i.

Then we define
R(f, P, T ) =

∑
f(ti)∆xi

where ∆xi − xi−1. Finally, the mesh of P , sometimes denoted ‖P‖, is given by
max1≤i≤n ∆xi.

10So, their derivatives exist and are continuous
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• We say f is Riemann integrable if limR(f, P, T ) exists as the mesh of P approaches
zero.

• It is easy to check that any Riemann integrable function must be bounded. This
is far from sufficient; consider χQ.

• Darboux integrability is used in the proof of the Riemann-Lebesgue Theorem.
Consider a bounded function f and a partition P : a = x0 < x1 < · · · < xn = b.
We define

L(f, P ) =
n∑
k=1

mk∆xk where mk = inf
x∈[xk−1,xk]

f(x)

U(f, P ) =
n∑
k=1

Mk∆xk where Mk = sup
x∈[xk−1,xk]

f(x)

One can show L(f, P1) ≤ U(f, P2). The proof uses common refinement. Now we
define

I = inf {U(f, P ) : P a partition}

and
I = sup {L(f, P ) : P a partition} .

We say f is Darboux integrable when I = I.

• Darboux integrability is equivalent to Riemann integrability, and naturally, the
integrals match.

• Riemann-Lebesgue Theorem: A very happy theorem. A function f is Riemann
integrable if and only if f is bounded and its set of discontinuity points, D(f), is
a zero set.

– The function given by x 7→ sinx−1 for x ≥ 0 and x 7→ 0 otherwise is Riemann
integrable.

– χC is Riemann integrable. In general, D(χA) = A ∩Ac.
– Monotone increasing functions are bounded and have all jump discontinuities,

so they have countably many discontinuities.

• Series and the tests (ratio, root, etc.)

• Conditional convergence of
∑
an. Rearrangements to anything.

28.2 Review of Chapter 4

• The metric d(f, g) = ‖f − g‖ = supx∈[a,b] |f(x)− g(x)| is a metric on Cb, the set of
bounded functions.

• ‖fn − g‖ → 0 if and only if fn →→ g.

• Cb is complete metric space under this metric.

• C0 ⊂ R ⊂ Cb, the inclusions are strict, and C0 and R are both closed in Cb.

• If fn ∈ R and fn →→ f , then f ∈ R and
∫ b
a fn(x) dx→

∫ b
a f(x) dx.

• If each fn is differentiable and fn →→ f , it is still conceivable that f is not differ-
entiable. For example, take fn : [−1, 1] → R by x 7→ 2n+1

√
x2n+2. If we add the

hypothesis that f ′n converges uniformly to something, then that is okay.
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• Equicontinuity: quite strong. Consider a set E . Suppose that for every ε > 0 there
is a single δ > 0 such that if s and t differ by less than δ, then for any f ∈ E we
have |f(s)− f(t)| < ε.

• Arzela-Ascoli Theorem. Suppose (fn) is equicontinuous and a universal bound M .
Then there is a uniformly convergent subsequence. The converse is also true.

• Weierstrass Approximation Theorem: Polynomials are dense in C0.

• Stone-Weierstrass Theorem: Any function algebra A ∈ C0 which separates points
and does not vanish anywhere.

• Banach Contraction Mapping Theorem, ODE’s, and Picard’s Theorem.

• The generic continuous function is nowhere differentiable. The Weierstrass func-
tion is continuous everywhere and differentiable nowhere.

• Lipschitz condition: suppose there is a global L with |f(x)− f(y)| < L |x− y|,
valid for all f and x, y. Then the functions are equicontinuous.
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