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1 An Introduction to Wigner Matrices
(Ravi Bajaj)

1.1 Setup

For a positive integer n we consider a random symmetric matrix

Mn = (ξij)1≤i,j≤n

so that ξi,j = ξj,i for each i, j. We assume that we have

• ξii is identically distributed, with bounded variance and mean 0.

• ξij are identically distributed for i 6= j, with mean 0 and variance 1.

Since Mn is Hermitian, it has real eigenvalues λi(Mn) from i = 1, . . . , n, sorted in
ascending order. So this gives a measure

µn
def
= µ 1√

n
Mn

def
=

1

n

∑
i

δλi(Mn)/
√
n

i.e. we consider the measure with point masses at normalized eigenvalues (divided by√
n).
Finally, define the semicircle measure by

µSC
def
=

1

2π

√
4− |x|2 dx.

which looks like a semicircle over [−2, 2].

2−2

We are going to prove that

Theorem 1.1.1

As n→∞, µn tends almost surely to µSC .

Our method of proof is the moment method.

1.2 The Moment Methods

The idea of the moment method is to show that for every integer k we have

Eµn [xk]→ EµSC [xk]

in the sense that for any ε > 0, the probability the two quantities above is less than ε
tends to zero.
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Example 1.2.1

It turns out EµSC [Xk] is the k/2th Catalan number for k even, and 0 when k is odd.
(Hint for proof: use x = 2 sin θ.)

For the k = 2 case, observe that

Tr(M2) =
∑
i

λ2
i =

∑
i,j

|ξij |2

thus
E(Tr(M2)) = n2 − n+ nE[|ξij |2] = O(n2)

according to the law of large numbers.
For a trickier argument, consider

ETr(M4) =
∑

i1,i2,i3,i4

E[ξi1,i2ξi2,i3ξi3,i4ξi4,i1 ] = O(n3)

by some high-school level trick. To be precise, note by independence of variables, the
only way this can not be zero is if it is of the form

E[ξ2
ij ]E[ξ2

ik],

say; the first moments of each guy vanish. To be more precise, if we consider the graph
on n vertices, then i1 → i2 → i3 → i4 → i1 is a walk, and if any edge is traversed exactly
once then the entire product vanishes, since we can pull out a first moment.

More generally, if we extend this combinatorial argument one can compute

E

[
1

n
Tr

(
1√
n
Mn

)k]
=

1

nk/2+1

∑
i1,...,ik

E

∏
j

Xij ,ij+1

 .
It turns out that by some combinatorial arguments, one can show this becomes the
number of walks on k guys with k/2 + 1 distinct vertices is Ck/2. This is the “main term”
and everything else goes away (is o(1)).
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2 Combinatorial Nullestellensatz and Graph
Colorings (Evan Chen)

To be added; this was my own lecture, so I did not have someone to take notes for me!
Until then, here is a loose outline. Relevant references are:

• http://www.tau.ac.il/~nogaa/PDFS/null2.pdf

• http://www.tau.ac.il/~nogaa/PDFS/chrom3.pdf

• http://www.mit.edu/~evanchen/handouts/SPARC_Combo_Null_Slides/SPARC_

Combo_Null_Slides.pdf

2.1 Main Theorem

Let F be a field.

Fact 2.1.1. Suppose a polynomial P (x1, . . . , xn) ∈ F [x1, . . . , xn] has degree at most
ti in each xi, and we are given |S1| > t1, |S2| > t2, . . . , |Sn| > tn. If P vanishes on
S1 × · · · × Sn then it is the zero polynomial.

Proof. By induction on n.

Theorem 2.1.2 (Combinatorial Nullstellensatz)

Let f ∈ F [x1, . . . , xn] be a polynomial of degree t1 + · · ·+ tn. If S1, S2, . . . , Sn ⊆ F
satisfies |Si| > ti for all i,

∃si ∈ Si : f(s1, s2, . . . , sn) 6= 0

whenever the coefficient of xt11 x
t2
2 . . . xtnn is nonzero.

Proof. Let Pi(x) =
∏
s∈Si

(x− s). Then in f , repeatedly replace xti+1 by the remainder
mod Pi(x). For example, if S1 = {2, 3} (hence t1 = 1) repeatedly replace x2 with 5x− 6.

When the polynomial f is completely reduced in this way, the xt11 x
t2
2 . . . xtnn remains

unharmed, but all other terms of degree t1 + · · ·+ tn have been reduced. So we can apply
the previous fact.

2.2 Contest Practice From 2007

Example 2.2.1 (Russia 2007)

Two distinct numbers are written on each vertex of a convex 100-gon. Prove one
can remove a number from each vertex so that the remaining numbers on any two
adjacent vertices differ.

7

http://www.tau.ac.il/~nogaa/PDFS/null2.pdf
http://www.tau.ac.il/~nogaa/PDFS/chrom3.pdf
http://www.mit.edu/~evanchen/handouts/SPARC_Combo_Null_Slides/SPARC_Combo_Null_Slides.pdf
http://www.mit.edu/~evanchen/handouts/SPARC_Combo_Null_Slides/SPARC_Combo_Null_Slides.pdf


Evan Chen (Fall 2015 and Spring 2016) Selected Notes on the SCUM Lectures

Proof. Define P (x1, . . . , x100) by

(x1 − x2) (x2 − x3) (x3 − x4) . . . (x99 − x100) (x100 − x1) .

The coefficient of x1x2 . . . x100 is 2.

Example 2.2.2 (IMO 2007/6)

Let n be a positive integer. Consider

S = {(x, y, z) | x, y, z ∈ {0, 1, . . . , n}, (x, y, z) 6= (0, 0, 0)}

as a set of (n+ 1)3− 1 points in the three-dimensional space. Determine the smallest
possible number of planes, the union of which contains S but does not include
(0, 0, 0).

Proof. The answer is 3n. For construction, use x = 1, 2, . . . , n, y = 1, 2, . . . , n and
z = 1, 2, . . . , n. Another possibly construction is x+ y + z = 1, . . . , x+ y + z = 3n.

Now uppose for contradiction we have k < 3n planes. Let them be aix+biy+ciz+di = 0.
Construct

A(x, y, z)
def
=

k∏
i=1

(aix+ biy + ciz + di)

B(x, y, z)
def
=

n∏
i=1

(x− i)
n∏
i=1

(y − i)
n∏
i=1

(z − i)

The coefficient of xnynzn in A is 0. The coefficient of xnynzn in B is 1. Now define

P (x, y, z)
def
= A(x, y, z)− A(0, 0, 0)

B(0, 0, 0)
B(x, y, z).

Now P (x, y, z) = 0 for any x, y, z ∈ {0, 1, . . . , n}3. But the coefficient of xnynzn is

−A(0,0,0)
B(0,0,0) . This is a contradiction of the nullstellensatz.

2.3 List Coloring

Let G be a simple graph with n vertices.

Definition 2.3.1. A simple graph G is k-colorable if it’s possible to properly color its
vertices with k colors. The smallest such k is the chromatic number χ(G).

Definition 2.3.2. A simple graph G is k-choosable if its possible to properly color
its vertices given a list of k colors at each vertex. The smallest such k is the choice
number ch(G).

Obviously, ch(G) ≥ χ(G). We just saw that ch(C100) = χ(C100) = 2.

Remark 2.3.3. This is in general strict: ch(Kqq ,q) ≥ q + 1. (Can you see why?)

Remark 2.3.4. ch(G) ≤ ∆(G) + 1.

8
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Theorem 2.3.5 (Known Results)

• (Eaton, Nancy, 2003) ch(G) ≤ χ(G) log n.

• (Noel, Reed, Wu, 2012) If n ≤ 2χ(G) + 1 then ch(G) = χ(G).

A general approach via the nullstellensatz is to consider as before

fG(x1, . . . , xn) =
∏

(i,j)∈E(G)
i<j

(xi − xj).

The coefficients of this correspond to “even” and “odd” acyclic orientations of G, de-
pending on how many edges go from a smaller index to a larger index. Specifically, the
coefficient of xd11 . . . xdnn is

|DE(d1, . . . , dn)| − |DO(d1, . . . , dn)|

where DE, DO are the set of even and odd orientations with outdegrees d1, . . . , dn.
Now fix a “base” orientation D0 (either even or odd). Then the above is equal to
±(EE(D0) − EO(D0)), where EE and EO are the number of even and odd Eulerian
suborientations of D0. This is by a “difference” trick. (Here an “even” suborientation
is one with an even number of edges, and an “odd” suborientation is one with an odd
number of edges).

In particular, according to the nullstellensatz, we obtain

Theorem 2.3.6 (Alon)

Let G be a graph with an orientation D0 such that the maximum indegree of D0 is
t and moreover the number of even and odd Eulerian suborientations of D0 is not
equal. Then, G is (t+ 1)-choosable.

In fact, finding D0 is done by the following:

Lemma 2.3.7

Let L(G)
def
= max |E(H)|/|V (H)| where H is a subgraph of G. Then G has an

orientation in which every outdegree is at most dL(G)e.

Proof. Standard application of Hall’s Marriage Theorem.

Thus, we derive

Theorem 2.3.8 (Alon, Tarsi)

A bipartite graph G is dL(G)e+ 1 choosable. In particular, planar bipartite graphs
are 3-choosable.

Proof. Pick any D0 specified by the previous lemma. There are no odd Eulerian subori-
entations at all. The last remark follows from (subgraphs of) bipartite planar graphs
having average degree at most 4, hence L(G) ≤ 2.

The last bound is tight; K4,2 is bipartite planar.
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3 Finite Fourier Analysis (Victor Wang)

The nth roots of unity are the complex numbers exp(2πik
n ) for k = 0, . . . , n− 1.

3.1 Roots of Unity Filters

Consider the classic problem of computing
(
n
0

)
+
(
n
2

)
+
(
n
4

)
+ . . . . One way to do this is

to just run an alternating sum

(1 + 1)n =

(
n

0

)
+

(
n

1

)
+ . . .

(−1 + 1)n =

(
n

0

)
−
(
n

1

)
+ . . . .

Thus, we deduce
(
n
0

)
+
(
n
2

)
+ · · · = 1

2 · (2n + 0n) = 2n−1.
We can do this in general: for example, we have∑

k≥0

(
n

3k

)
= (1 + 1)n + (ω + 1)n + (ω2 + 1)n

where ω = exp(2
3πi). So roots of unity are related to problems involving symmetry, in

this way.

3.2 Solving the Cubic

Suppose we want to solve
x3 − ax2 + bx− c = 0.

We know a priori that this can be factored as (x−r0)(x−r1)(x−r2); by Vieta’s formulas,
we know a = r0 + r1 + r2, b = r0r1 + r1r2 + r2r0, c = r0r1r2. These expressions are
invariant under three-cycles.

Now, we make the substitution

r0 = u0 + u1 + u2

r1 = u0 + u1ω + u2ω
2

r2 = u0 + u1ω
2 + u2ω

4

where again ω is a primitive cube root of unity. (Explicitly, u0 = 1
3(r0 + r1 + r2),

u1 = 1
3(r0 + r1ω

−1 + r2ω
−2), u2 = 1

3(r0 + r1ω
−2 + r2ω

−4)).
Conceptually,

if F (z) = u0 + u1z + u2z
2 then ri = F (ωi).

The first of Vieta’s relations now reads a = F (1) + F (ω) + F (ω2) = 3u0 which is a
roots of unity filter on F . The second reads b = F (1)F (ω) + F (ω)F (ω2) + F (ω2)F (1)
which is a roots of unity filter on F (z)F (ωz) = (u0 + u1z + u2z

2)(u0 + u1zω + u2z
2ω2).

Since in a filter, we only care about the cubic terms (here u2
0 and −u1u2z

3), we find that

10
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b = 3u2
0 − 3u1u2. If we repeat the same thing for c and compile everything together, we

arrive at

a = 3u0

b = 3u2
0 − 3u1u2

c = u3
0 + u3

1 + u3
2 − 3u0u1u2.

The first equation gives us u0 = a/3 for free, and we can then obtain u1u2 in terms of a,
b, c. Finally, the last equation tells us what u3

1 + u3
2 are. So, we can compute the values

of u3
1 + u3

2, u3
1 · u3

2; this reduces us to a quadratic, which we can solve.

3.3 Ramsey Theorem

“I’m going to talk about a completely different problem”.

There once was a sociologist [Szalai] who studied classrooms and found that in any group
of around 20 children, there were either four mutual friends or four mutual strangers.
Before doing any sociology, he consulted some prominent mathematicians; this became
the start of Ramsey theory.

The philosophy of Ramsey theory is to find structure in large “unstructured” object.
Here is an example of such a result.

Theorem 3.3.1 (Roth, 1950)

Let ρ be a fixed positive density. Then for sufficiently large N (depending on ρ),
arithmetic progressions of length 3 can be found in any subset S ⊂ {1, . . . , N} of
density ≥ ρ.

The intuition of why Fourier analysis is helpful is that 3-arithmetic progressions feel
“rotationally symmetric”. Specifically, consider an arithmetic progression a, a+ d, . . . ,
a+ nd. Let ω be a primitive dTh root of unity. Then∣∣∣ωa + ωa+d + · · ·+ ωa+nd

∣∣∣ = n+ 1

since every guy equals ωa. More generally, given any S the intuition is that if
∣∣∑

s∈S ω
s
∣∣

is large, then S is “correlated” with an arithmetic progression of difference d.
Here are some of the main ideas in the proof. We want to count solutions to a+b−2c = 0

for a, b, c ∈ S, so we consider the generating function

F (z) =
∑
a∈S

za.

Then, the number of solutions is the constant coefficient of

F (z)F (z)F (z−2).

We have |S| trivial solutions a+ b+ c, and we seek the other solutions.
To extract coefficients from a series in general, we want to extend the “finite” Fourier

analysis we used before and use the entire circle rather than any finite polygon. For
example,

1

2π

∫
θ∈[0,2π]

exp(iθ) = 0.

11
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Returning to the problem at hand, this gives us an analytic way to extract the constant
term:

1

2π

∫
|z|=1

F (z)2F (z−2) = [z0]F (z)2F (z−2).

This allows us to use some tricks, like https://en.wikipedia.org/wiki/Parseval’s_

identity, stating that
1

2π

∫
|z|=1

|f(z)|2 = F (1) = |S|.

In any case, what we want is to find ω 6= 1 such that |F (ω)| is big as mentioned before.
(F (1) is bad for obvious reasons). The key idea is to consider the weighted sum

G(z) =

(∑
s∈S

zs

)
− |S|
N

N∑
k=1

zk.

This way G(1) = 0 which circumvents the issue earlier of F (1).
Thus for G(ω) to be large, we must have a “correlation” and moreover ω cannot be

too close to 1. In this way, it turns out that we can find a long arithmetic progression
J ⊂ {1, . . . , n} such that

|S ∩ J |
|J | ≥ ρ+

ρ3

10

i.e. when we restrict attention to J , we have a higher density. Then we repeat this
argument.

Note that this is pretty local to 3-arithmetic progressions, since in that case we can
capture the entire condition in one equation a + b = 2c. This is called the density
increment argument.
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4 A Categorical Proof of Orbit-Stabilizer
(Peter Haine)

Overview:

1. Review of group actions.

2. Categorify this picture, and prove the orbit-stabilizer theorem

3. How these ideas relate to other things.

4.1 Group Actions

Definition 4.1.1. A group action of a group G on a set X is a map · : G × X → X
which obeys the usual axioms

(1) 1 · x = x and

(2) (g′ · g · x) = (g′g) · x.

For example,

• GLn(R) acts on Rn by A · x 7→ Ax.

• The cyclic group Z/2 acts on vertices of square ABDC by reflecting across the
diagonal BC.

d b

c
�

-

....
....

....
....

....
....

....
....

..-

a

Definition 4.1.2. The orbit of an x ∈ X, denoted Ox, is the set of images of x ∈ X
under the Gsaction. It partitions X into equivalence classes.

For example, in the action of ABCD, the orbits are {a, d}, {b}, {c}.

Definition 4.1.3. The stabilizer of an x ∈ X is the set of g which fix x ∈ X; this is
denoted Sx. Note that it’s a subgroup of G.

Anyways, we have the usual

Theorem 4.1.4 (Orbit-Stabilizer Theorem)

For any x ∈ X if G and X are finite then

#G = #Ox ·#Sx.

13
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4.2 Categorification

Recall that a monoid is a “group without inverses. One can think of this as a ‘one-object
category”: a monoid talks about the maps from an object to itself. For example, GLn(R)
is an isomorphisms of vector spaces Rn → Rn.

A category is just a generalization of the idea of a monoid to multiple objects.

Definition 4.2.1. A category C consists of

(a) A class of objects Ob(C ) (we’ll use c, c′, . . . ).

(b) A class of morphisms Mor(C ) (we’ll use f , g, . . . ).

such that

(a) Each f ∈ Mor(C ) has a specified source and a specified target, i.e. we have a
directed graph

(b) For all objects c ∈ Obj(C) there exists a specified identity morphism idc : c→ c.

(c) There is an associative composition of morphisms.

c
g ◦ f

- c′′

c′
g

-

f -

This must respect the identity f ◦ idc = f = idc′ ◦ f for any c
f−→ c′.

Examples: category of sets, category of groups/rings/fields/. . . , C∞R (with single
object R with morphisms of smooth functions), and 2, the two-object category.

Definition 4.2.2. An isomorphism is a category C is a morphism f : c→ c′ such that
there is an inverse g : c′ → c, meaning g ◦ f = idc and f ◦ g = idc′ .

The main point is that

Lemma 4.2.3

A group “is” a category with one object whose morphisms are all isomorphisms.

Thus we can generalize a group as follows.

Definition 4.2.4. A groupoid is a category where every morphism is an isomorphism.

For example, one can consider the category GrpIso whose objects are groups and whose
morphisms are group isomorphisms.

Definition 4.2.5. A functor F : C → D given by assigning to each object c ∈ Ob(C )
to an object F (c) ∈ Ob(D), and a map which induces morphisms

c F (c)

7→

c′′

f

?

F (c′)

F (f)

?

such that composition and identity are respected, meaning F (g ◦ f) = F (g) ◦ F (f) and
F (idc) = idF (c).

Then the point is:

14
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Lemma 4.2.6

A G-set X “is” a functor X : {G} → Set, where {G} is the one-object category
corresponding to the group G.

In light of this, a morphism ofG-setsX → Y can be defined as a natural transformations
from X to Y :

Definition 4.2.7. A natural transformation of functions F,G : C → D denoted
η : F ⇒ G is a collection of morphisms ηc : F (c)→ G(c) for each c ∈ C , such that for
any f : c→ c′ the square

F (c)
F (f)
- F (c′)

G(c)

ηc

? G(f)
- G(c′)

ηc′

?

If each ηc is an isomorphism it is called a natural isomorphism.

Definition 4.2.8. An equivalence of categories C , D , consists of functors F : C → D
and G : D → C such that are naturally isomorphic to the identity functors.

Theorem 4.2.9

If F : C → D is part of an equivalence then it induces a bijection of isomorphism
classes. Moreover the function

MorC (c, c′)→ MorD(Fc, Fc′) by f 7→ F (f)

is a bijection.

Definition 4.2.10. A skeletal category is one in which every isomorphism class has
exactly one object.

Every category is equivalent to a skeletal category.

4.2.1 Proof of Orbit-Stabilizer

Suppose we have a finite G-set X, viewed also as a functor X : {G} → Set. Define the
translation groupoid TGX by

• Objects: the set X itself

• Morphisms: there is a morphism g : x→ y for each g ∈ G such that g · x = y.

Thus there are #X ·#G morphisms. Pictorially, TGX looks like objects with arrows
between them, and connected components correspond to orbits.

Now consider x as a representative of its orbit Ox. Take a skeletal category S equivalent
to TGX, which collapses each orbit to an object. By the theorem, there is a bijection

MorS(Ox, Ox) ∼= MorTGX(x, x) = {g ∈ G | gx = x} = SX .

On the other hand, the morphisms in TGX which start at x are in bijection with:
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• The elements of G, and

• The disjoint union∐
y∈Ox

MorTG(x, y) ∼=
∐
y∈Ox

MorS(Ox, Oy) ∼=
∐
y∈Ox

Sx.

This completes the proof.
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5 Graph Magnitude and Homology
(Yuzhou Gu)

The idea of “graph magnitude” is due to Leinster, and the associated homology to
Willerton and Hopworth.

In this lecture, all graphs are finite and simple (hence undirected and unweighted). In
some situations we will also make all the graphs connected.

5.1 Desired Properties of #G

We want to find an algebraic invariant similar to the Euler characteristic; we denote it
by #G and want it to satisfy the following properties:

(1) #(G tH) = #G+ #H.

(2) #(G×H) = #G ·#H (Cartesian product of graphs).

(3) If X = G ∪H then
#X = #G+ #H −#(G ∩H)

holds “sometimes” (to be quantified later). Here, G ∪H is the graph with vertex
set V (G) ∪ V (H) and edge set E(G) ∪ E(H); similarly for G ∩H.

Examples of functions that satisfy this:

• #G = |V (G)|

• #G = |E(G)|

• #G = |V (G)|+ q |E(G)|, viewed as an element of Z[q]/(q)2.

5.2 Three definitions of #G

For a graph G and vertices x, y let d(x, y) denote the distance between the two vertices
(or ∞ if x, y are not connected to each other).

Recall also that Q(q) is the set of rational functions in Q, while Z[[q]] is the power
series in q with integer coefficients.

Definition 5.2.1 (First Definition). For a graph G we define Z(q) to be a V (G)× V (G)
symmetric square matrix, whose (x, y)th entry is qd(x,y); by convention q∞ = 0. We view
the entries of Z(q) as living in Q(q). Observe that detZ(0) = 1, hence Z(q) is invertible,
so we may define the graph magnitude

#G =
∑

x,y∈V (G)

[
Z−1(q)

]
xy
.

In other words we sum all the |V (G)|2 of the entries of Z−1(q).

17
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Remark 5.2.2. This is actually a special case of a magnitude in an enriched categories.
A graph is an N -enriched category, where N = (N,≥ 0,+).

Definition 5.2.3 (Second Definition). One can show there exists a unique function
w : V (G)→ Q(q) such that

∀x ∈ V (G) :
∑
y

qd(x,y)w(y) = 1.

Then, we define

#G =
∑
x

w(x).

This definition is the one easiest to use in proofs.

Definition 5.2.4. Let `(x0, . . . , xk) =
∑

0≤i<k d(xi, xi+1). Then

#G =
∑
k≥0

(−1)k
∑

(x0,...,xk)

q`(x0,...,xk) ∈ Z[[q]].

So in fact #G always lies in Z[[q]] ∩ Q(q). This definition gives a hint about how
homology will be involved.

From this definition, one can check that the properties (1) and (2) hold, but (3) does
not hold in general. One can ask when (3) holds.

Example 5.2.5

For C3, we have #G is the sum of the entries of1 q q
q 1 q
q q 1

−1

.

5.2.1 When Inclusion-Exclusion Holds

Definition 5.2.6. Let U ⊆ G be a subgraph. We say U is convex if for every x, y ∈
vV (U) we have

dU (x, y) = dG(x, y).

Definition 5.2.7. If U ⊆ G is convex, we say G projects onto U if there exists a map
π : V (G)→ V (U) such that

∀g ∈ V (G), x ∈ U we have d(g, x) = d(g, π(g)) + d(π(g), x).

So π(g) is the “closest vertex to g”.

Theorem 5.2.8

Let X = G ∪H and suppose G ∩H is convex in X, and moreover H projects onto
G ∩H. Then

#X = #G+ #H −#(G ∩H).

Proof. Show wX = wG + wH − wG∩H .

18
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Corollary 5.2.9

In a wedge sum G ∧H, we have

#(G ∧H) = #G+ #H − 1.

Corollary 5.2.10

If X = G ∪H is a tree, then Inclusion-Exclusion holds.

Corollary 5.2.11

If H is bipartite, and G ∩H is the graph consisting of a single edge, then

#X = #G+ #H − 2

1 + q
.

5.2.2 Whitney Twists

Definition 5.2.12. Let G and H be graphs, and define g, g ∈ G and h, h′ ∈ H. Define
the graphs X1 and X2 by

• X1 is G tH modulo the equivalence g ∼ h, g′ ∼ h′.

• X2 is G tH modulo the equivalence g ∼ h′, g′ ∼ h.

In this case we say X1 and X2 are Whitney twists.

Theorem 5.2.13

When (g, g′) ∈ E(G) then #X1 = #X2.

Proof. Show that
∑

x1
wX1(x1) =

∑
x2
wX2(x2).

5.3 Homology

Digression on categorification. The idea is to replace sets with categories and functions
with functors. This is Baez categorification. Examples:

• Singular homology is categorification of X

• Khovanov homology is categorification of Jones polynomial

• Burnside category is categorification of Burnside ring

• Category of representations of Sn is categorification of ring of symmetric functions.

Now we define the homology as a categorification of #. We want to define a doubly
graded homology theory

MH∗∗(G).
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To do this we have to define a chain complex. We do this as follows: define MCk,`(G) to
be the free abelian group (with coefficients in G) of (k+ 1)-tuples (x0, . . . , xk) of vertices,
such that `(x0, . . . , xk) = `. Then, we can define the differential map

d : MCk,` → MCk−1,`

by

d(x0, . . . , xk) =
∑
i

{
(−1)i(x0, . . . xi−1, xi+1, . . . , xk) if the `-value is `

0 else.

One can check that d2 = 0, so MH∗∗ gives a homology of doubly graded abelian groups.
Now we want to make MH∗∗ into a functor. What does this mean? We first consider a

category Graph whose objects are graphs, and whose morphisms f : G→ H are given as
follows: it’s an f : V (G)→ V (H) such that whenever {x, y} ∈ E(G) either f(x) = f(y)
or {f(x), f(y)} ∈ E(H).

Now we want to make MH∗∗ into a functor, we need to make a given f : G→ H into

f∗ : MHk`(G)→ MHk`(H).

We do this by declaring

f∗(x0, . . . , xk) =

{
(f(x0), . . . , f(xk)) if it has `-value `

0 otherwise.

5.4 Properties of the Homology

Then it turns out that

#G =
∑
`≥0

∑
k≥0

(−1)k
(

rank(MHk,`(G))q`
)
.

This satisfies the properties

1. MH∗∗(G tH) = MH∗∗(G)⊕MH∗∗(H).

2. Künneth formula: we have a natural exact sequence

0→ MH∗∗(G)⊗MH∗∗(H)→ MH∗∗(G×H)→ Tor(MH∗−1,∗(G),MH∗∗(H)→ 0.

Here, the left-hand term is ⊕
k1+k2=k,`1+`2=`

(MHk1,`1(G)⊗MHk2,`2(H)) .

We also have a Mayer-Vietoris sequence, which this time takes a short exact sequence

0→ MH∗∗(G ∩H)→ MH∗∗(G)⊕MH∗∗(H)→ MH∗∗(G ∪H)→ 0

given that G ∩H is convex in G ∪H, and moreover H projects onto G ∩H.

Example 5.4.1

Let G be a single edge. Then MC1,1 is generated by (0, 1) and (1, 0), and the other
cycle groups vanish (except for MC0,0 = Z2). So MH1,1 = Z2 and MH0,0 = Z2 but
all other homology groups vanish.
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5.5 Open Problems

1. Is it possible that MH∗∗ contain torsion?

2. Is MH∗∗ isomorphic under connected Whitney twist?

3. How do we calculate the homology groups? For example, even MH∗∗(Cn) is
unknown, though we have conjectures.

4. Can we put extra structure on the cohomology?

5.6 References

1. T. Leinster, The magnitude of a graph. arXiv: 1401.4623.

2. R. Hepworth and S. Willerton. Categorifying the magnitude of a graph. arXiv:
1505.04125.
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6 Topology of Categories (Colin Aitken)

Reference for this lecture: “Higher Algebraic K-Theory I” (Quillen). There is no sequel,
because he never got around to writing it.

6.1 Categorical Definitions

For this lecture, we will ignore set-theoretic issues.

Definition 6.1.1. A (small) category C consists of a set of objects ob(C) and a set
of morphisms Hom(x, y) for any x, y ∈ ob(C), plus the usual composition rules and
distinguished idx ∈ Hom(x, x).

Examples are Set, Grp, Vec, . . . .

Definition 6.1.2. A functor F : C → D is as usual.

Here are some of the standard non-concrete examples.

Example 6.1.3 (Posetal Category)

The posetal category C(P ) associated to a poset (P,≤) has ob(P ) the elements
of P with a unique map x → y iff x ≤ y. Then, the functors from C(P ) to C(P ′)
correspond exactly with the order-preserving functions P → P ′.

Example 6.1.4 (Group Category)

Given a group G, construct a category C(G) with exactly one object x such that
Hom(x, x) ∼= G. Then, functors from C(G) to C(G′) are the same as group homo-
morphisms from G to G′.

“If something works in at least two cases, it’s probably important.”

6.2 Simplices

Let
∆n = {(x0, . . . , xn+1) | 0 = x0 ≤ x1 ≤ · · · ≤ xn+1 = 1} ⊆ Rn+2.

This is equivalent to the “usual” n-simplices, just a little weirder.
For each 0 ≤ i ≤ n, we define a face map

δi : ∆n−1 ↪→ ∆n by (x0, . . . , xn) 7→ (x0, . . . , xi, xi, . . . , xn).

which essentially allows us to embed ∆n−1 as a face of ∆n. Also, for 0 ≤ i ≤ n we define

δi : ∆n−1 ↪→ ∆n by (x0, . . . , xn) 7→ (x0, . . . , xi, xi+2, . . . , xn)

which is the inverse operation.
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6.3 Nerves

Definition 6.3.1. Given a category C we define the nerve N(C) to be the graded set
whose ith component is

N(C)i = {diagrams x0 → x1 · · · → xi} .

These look quite similar to the previous thing, so we’ll define “dual” operators as
follows. Let

di : N(C)n → N(C)n−1 by (x0 → · · · → xn) 7→ (x0 → · · · → xi−1 → xi+1 → . . . .→ xn)

where xi−1 → xi+1 is the composition xi−1 → xi → xi+1, and

σi : N(C)n → N(C)n+1 by (x0 → · · · → xn) 7→ (x0 → · · · → xi
id−→ xi → . . . .→ xn)

Finally, we define a complex

BC =
∐
i

N(C)i ×∆i/∼

where (dikn, `n−1) ∼ (kn, δi, `n−1) and (σikn, `n+1 ∼ (kn, si`n+1).
The letter B is what we usually use for classifying spaces. For example, B(C(G)) = BG.

6.4 Examples

Definition 6.4.1. The psedoucircle S1 has four points a, b, c, d and the topology is

τ(S1) = {∅, a, b, ab, abc, abd, abcd}.

We now claim there is a bijection

FinTop ⇐⇒ Transitive, reflexive relations ⇐⇒ Categories C with |Hom(x, y)| ≤ 1.

In one direction, given a finite topological space T we put a partial ordering on T by
x ≤ y if y is the smallest open set containing x.

Theorem 6.4.2 (McCord)

Let T be a finite topological space. There is a weak homotopy equivalence π : BT →
T .

Proof. Depends on the following lemma.

Lemma

Given an open basis U of Y , and f : X → Y such that f is a weak homotopy
equivalence when restricted to f−1(U) (for every U ∈ U ), then f is a weak homotopy
equivalence.

Let U = {Ux : x ∈ T} now.
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6.5 Fun Facts

Let F,G : C → C ′ functors of categories and let θ be a natural transformation. Then θ
can be thought of as a morphism

C × 2
(F,G)−−−→ C ′

where 2 is the 2-object category.
Then, applying B, we can get

BC × [0, 1]
H−→ BC ′

where H(−, 0) = BF and H(−, 1) = BG. So in fact, we have a homotopy from BF to
BG. This is a little weird since we think of natural transformations as morphisms F to
G, but the induced map H is an isomorphism-like thing (it’s a homotopy).

We actually also have

Theorem 6.5.1

If F is an adjoint, then BF is a homotopy equivalence.

Corollary 6.5.2

If C has initial object, then BC is contractible.

Sadly, this means that every category we care about in real life (like Set, Grp, Top, Vect)
carries no topological information.

Here is the second fun fact. Let C be a category; for simplicity we assume its connected,
so BC is connected. We will compute π1(BC). Actually, we claim that

Theorem 6.5.3

Coverings p : E → BC are in bijection which functors F : C → Setiso.

Here Setiso is the category of sets, but whose only arrows are isomorphisms.

Proof. Given a covering, define F (c) = p−1(c). Then interpret F (c
f−→ d) by treating f

as a path.
For the other direction, given F and C, let FC be the category whose objects are

(X,x) ∈ C × F (X) and whose arrows v : (X,x) → (Y, x) are maps v : X → Y with
F (v)x = y.

Now let G be the category C with formal inverses, and for x ∈ C and let Gx be the
subcategory of C with ob(Gx) = x. Then Gx is a group G, and functors from C to Setiso

correspond to functors G→ Set or to Gx sets. Hence

π1(BC) = Gx.
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Example 6.5.4

(a) π(Setiso, x) = S|x|.

(b) π1(M) where M is a monoid (interpreted as a category) is the group completion
of M .

(c) π1(P ) for a poset P turns out to be walking along the edges of P which make
a cycle. (??)
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7 Chip Firing (Ziv Scully)

Reference: http://arxiv.org/abs/1211.6786

7.1 The Game

In the parallel chip-firing game, we take a connected undirected graph G. Then

• Put a nonnegative integer number of chips on each vertex.

• Every turn, if a vertex can give a chip to each of its neighbor, it “fires” and does
so. Otherwise, it “waits”.

Example 7.1.1 (An Example Game)

Start with

2 2 0

0 4 0

Then, the next states are

2 1 2

1 1 1

0 2 2

0 3 1

1 0 3

0 3 1

1 1 0

0 4 3

After the fifth game above, we start going in a loop, back to the second configuration.

7.2 Basic Properties

Proposition 7.2.1 (Periodicity)

Chip-firing is eventually periodic.

Proof. We observe that this game has a finite state space. Since it’s deterministic, we
now see that it is eventually periodic.

Proposition 7.2.2

Every vertex fires the same number of times per period.

This is surprisingly most of the low-hanging fruit.
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7.3 Known Results

One question is what the possible periods are for a graph G. Here is what we know.

Theorem 7.3.1 (Possible Cycles)

For the following classes of graphs, the possible periods are:

• Trees: period 1 or 2.

• n-cycles: period 2 or divisor of n.

• Kn: 1, . . . , n

• Ka,b: 1, . . . , min(a, b), 2, . . . , 2 min(a, b).

Despite these small numbers, we will soon see that given a graph G the period can be
exponentially large (but is bounded for any given graph G). In fact, we know very little
about this game, but we did manage to prove:

Theorem 7.3.2 (Chip-firing is hard)

Chip-firing is Turing complete.

So this problem really is hard.
Here are some examples:

Example 7.3.3 (Cyclic Graph: “Gliders”; Period n)

This construction gives for general n a period n. We can obtain divisors of this by
then putting “gliders” periodically.

201

1

1 1 1

1

Example 7.3.4 (Period 2)

Let G be a biparite graph, colored red and blue. Then

• Place 0 chips on every blue vertex.

• On each red vertex r, place deg r chips.

This gets period 2. (It turns out one can do this for a general graph G with more
than two vertices by taking a spanning tree.)
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7.4 Proof of Results for Trees and n-cycles

We will now prove these are the only possible cycle lengths, i.e. we will complete the
proof of our earlier theorem for trees and n-cycles.

Definition 7.4.1. We define the following notation:

• N(v) is the set of neighbors of v.

• d(v) is the degree of v.

• σt(v) is the number of chips of v at time t.

• Ft(v) is 1 if v fires at time t, and 0 otherwise.

• Φt(v) =
∑

w∈N(v) Ft(w), the number of chips v gets at time t.

Thus the transition rule for this game is

σt+1(v) = σt(v) + Φt(v)︸ ︷︷ ︸
Chips gained

− d(v)Ft(v)︸ ︷︷ ︸
If fired

.

Lemma 7.4.2 (Duality)

One can consider a dual game by

σt(v) 7→ 2d(v)− 1− σt(v)

provided the outputs are all nonnegative. This dual game swaps firing and waiting.

Lemma 7.4.3

The number of vertices v such that σt(v) ≥ 2d(v) is nonincreasing with t.

Proof. If we have a vertex v with σt(v) ≥ d(v), then

σt+1(v) = σt(v) + Φt(v)− d(v) ≤ σt(v)

i.e. as long as we’re firing we can’t gain chips. But if we don’t fire (meaning σt(v) ≤ d(v)−1)
then σt+1(v) ≤ σt(v) + d(v) ≤ 2d(v)− 1.

From now on assume σt(v) ≤ 2d(v)− 1 always holds.

Lemma 7.4.4 (Clumping)

If v waits (resp. fires) for all times in some interval [a, b] then it has a neighbor
u ∈ N(v) that also waits (resp. fires) for all times in the interval [a− 1, b− 1].

Proof. We only do the waiting case. We have

0 ≤ σa(v) ≤ σa+1(v) ≤ · · · ≤ σb(v) ≤ d(v)− 1.

In other words we gained at most d(v)− 1 chips over time. Since we have d(v) neighbors,
this implies by Pigeonhole that some u never gave us any chips in [a− 1, b− 1]. (This
proof is a little sloppy; there are some edge cases at the very beginning.)
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Definition 7.4.5. An f-clump for a vertex v is an interval of length at least two
during which v always either waits (for f = 0) or fires (for f = 1).

Let T be a tree with a distinguished vertex e, called a motor, which we can think
of as an “external vertex”: it is connected to several “virtual” vertices and fires in a
fixed pattern, without regard to the usual rules of the game. In particular, it can have a
negative number of chips

Theorem 7.4.6

Let T be a tree with motor e, v a vertex of T If [a, b] is a f -clump of v in a tree,
then [a−D, b−D] is an f -clump of e, where D is the distance from e to v.

The proof is essentially to use the clumping lemma repeatedly, looking at maximal clumps
to avoid “backtracking”. In particular

Corollary 7.4.7

In a tree there are no clumps.

Corollary 7.4.8

If nobody fires twice in a row, the tree exactly copies e (with time shift).
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8 Li+e/near Algebra (Janson Ng)

8.1 Definitions

Let k be algebraically closed of characteristic zero.

Definition 8.1.1. A Lie algebra g is a k-vector space g equipped with a skew-symemtric
bracket [, ] which satisfies the Jacobi identity.

Example 8.1.2

(a) Any one-dimensional space is a Lie algebra with zero bracket.

(b) gl(n), with the commutator bracket [A,B] = AB −BA.

(c) sl(n), the traceless n× n matrices.

Today’s main interest is representations of

sl(2) =

{(
a b
c −a

)
| a, b, c ∈ k

}

Definition 8.1.3. A representation of sl(2) is a linear transformation ρ : g→ gl(V )
which preserves the Lie bracket.

Example 8.1.4

Let g = gl(2), then V = k⊕2 is a representation with action ρ(A)(v) = Av.

Definition 8.1.5. A subrepresentation of V is a g-invariant vector space W ⊆ V .
We say V is an irrep if the only subrepresentation of V is V itself.

8.1.1 sl(2)

Note that sl(2) has a basis

e =

(
0 1
0 0

)
f =

(
0 0
1 0

)
h =

(
1 0
0 −1

)
.

These satisfy [h, e] = 2e, [h, f ] = −2f , and [e, f ] = h.
Let V be an irrep of sl(2), and λ ∈ k. We consider

Vλ = {v ∈ V | h · v = λv} .

Claim 8.1.6. If v ∈ Vλ, then f · v ∈ Vλ−2 and e · v ∈ Vλ+2.

Proof. Use h · (f · v)− f · (h · v) = [h, f ] · v.
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9 Quantum Groups (Charles Fu)

This is actually a generalization of Lie algebras, not groups.

9.1 Review of Lie algebras

Recall sl(2):

• e, f , h as usual

• Triangular decomposition sl2 = n+ ⊕ h⊕ n−.

• U(sl(2)) is the universal enveloping algebra.

• U(sl(2)) = U(n+)⊕ U(h)⊕ U(n−).

We can make
U(sl(2)) = T (sl(2))/(a⊗ b− b⊗ a− [a, b])

into a Hopf algebra, as follows:

• The multiplication ∇ is the multiplication.

• The unit η is the obvious one.

• ∆(x) = 1⊗ x+ x⊗ 1.

• ε is the zero map.

• S(x) = −x.

Let P (a⊗ b) = b⊗ a. We say a Hopf algebra B is

• commutative if ∇ ◦ P = ∇.

• cocommutative if P ◦∆ = ∆.

Note that our example U(sl2) is not commutative (nor is U(g) for any reasonable g) but
U(sl2) is cocommutative (or Ug for any reasonable g). In quantum groups, we are going
to break the cocommutative things.

9.2 Quantum group

Let q ∈ C, q 6= 0 and q2 6= ±1. Then we define

Uq(sl(2))

by generators E, F , K, K−1 satisfying relations

• KK−1 = K−1K = 1.

• KEK−1 = q2E
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• KFK−1 = q−2F .

• EF = FE = K−K−1

q−q−1 .

We make it into a Hopf algebra by putting

∆(E) = E ⊗ 1 +K ⊗ E
∆(F ) = F ⊗K−1 + 1⊗ F
∆(K) = K ⊗K

0 = ε(E) = ε(F )

1 = ε(K)

S(E) = −K−1E

S(F ) = −FK
S(K) = K−1

Remark 9.2.1. This is not a unique structure. In fact, every author has their own taste
about which structure to use.

Define

[a] =
qa − q−a
q − q−1

.

Theorem 9.2.2

Assume q is not a root of unity. Then representations of Uq(sl(2)) are completely
reducible. Moreover, the irreducible representations are of the following form:

• V +
n+1 = {m0, . . . ,mn} where Kmi = qn−2imi, Fmi = mi+1 and Emi =

[i][n+ 1− i]mi−1.

• V −n+1 = {m0, . . . ,mn}, with a similar action (omitted).
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