18.950 (Differential Geometry) Lecture Notes

Evan Chen

Fall 2015

> This is MIT's undergraduate 18.950 , instructed by Xin Zhou. The formal name for this class is "Differential Geometry".
> The permanent URL for this document is http://web.evanchen.cc/ coursework.html, along with all my other course notes.

Contents

1 September 10, 2015 3
1.1 Curves 3
1.2 Surfaces 3
1.3 Parametrized Curves 4
2 September 15, 2015 5
2.1 Regular curves 5
2.2 Arc Length Parametrization 6
2.3 Change of Orientation 7
2.4 Vector Product in \mathbb{R}^{3} 7
2.5 OH GOD NO 7
2.6 Concrete examples 8
3 September 17, 2015 9
3.1 Always Cauchy-Schwarz 9
3.2 Curvature 9
3.3 Torsion 9
3.4 Frenet formulas 10
3.5 Convenient Formulas 11
4 September 22, 2015 12
4.1 Signed Curvature 12
4.2 Evolute of a Curve 12
4.3 Isoperimetric Inequality 13
5 September 24, 2015 15
5.1 Regular Surfaces 15
5.2 Special Cases of Manifolds 15
6 September 29, 2015 and October 1, 2015 17
6.1 Local Parametrizations 17
6.2 Differentiability 17
6.3 The Tangent Map 17
7 October 6, 2015 19
7.1 Local Diffeomorphism 19
7.2 Normals to Surfaces 19
7.3 The First Fundamental Form 19
7.4 Relating curves by the first fundamental form 21
7.5 Areas 22
8 October 8, 2015 and October 15, 2015 23
8.1 Differentiable Field of Normal Unit Vectors 23
8.2 Second Fundamental Form 23
9 October 20, 2015 25
9.1 Self-Adjoint Maps 25
9.2 Line of Curvatures 25
9.3 Gauss curvature and Mean Curvature 25
9.4 Gauss Map under Local Coordinates 26
10 October 22, 2015 27
10.1 Completing Equations of Weingarten 27
10.2 An Example Calculation 27
10.3 Elliptic and Hyperbolic Points 28
10.4 Principal Directions 29
11 October 29, 2015 and November 3, 2015 30
11.1 Isometries 30
11.2 The Christoffel Symbols 30
11.3 Gauss Equations and Mainardi-Codazzi 31
11.4 Bonnet Theorem 31
12 November 5, 10, 12, 17, 192015 32
12.1 The Covariant Derivative 32
12.2 Parallel Transports 32
12.3 Geodesics 32
13 November 24 and 26, 2015 34
13.1 Area Differential Form 34
13.2 Global Gauss-Bonnet Theorem 34
14 December 1 and December 3, 2015 35
14.1 The Exponential Map 35
14.2 Local Coordinates 35
15 December 8 and December 10, 2015 36
15.1 Completeness 36
15.2 Variations 36
15.3 The Second Variation 37
15.4 Proof of Bonnet Theorem 38
A Examples 40
A. 1 Sphere 40
A. 2 Torus 40
A. 3 Cylinder 40

§1 September 10, 2015

Here is an intuitive sketch of the results that we will cover.

§1.1 Curves

Consider a curve $\mu:[0, \ell] \rightarrow \mathbb{R}^{3}$ in \mathbb{R}^{3}; by adjusting the time scale appropriately, it is kösher to assume $\left\|\mu^{\prime}(t)\right\|=1$ for every t in the interval. We may also consider the acceleration, which is $\mu^{\prime \prime}(t)$; the curvature is then $\left\|\mu^{\prime \prime}(t)\right\|$ denoted $k(t)$.

Now, since we've assumed $\left\|\mu^{\prime}(t)\right\|=1$ we have $d t$ is a "length parameter" and we can consider

$$
\int_{\mu} k(t) d t
$$

Theorem 1.1 (Fenchel)
For any closed curve we have the inequality

$$
\int_{\mu} k(t) \geq 2 \pi
$$

with equality if and only if μ is a convex plane curve.
Here the assumption that $\left\|\mu^{\prime}(t)\right\|=1$ is necessary. (Ed note: in fact, this appeared as the last problem on the final exam, where it was assumed that μ bounded a region with mean curvature zero everywhere that was also homeomorphic to a disk.)
Remark 1.2. The quantity $\int_{\mu} k(t)$ is invariant under obvious scalings; one can easily check this by computation.

Some curves are more complicated, like a trefoil. In fact, geometry can detect topology, e.g.

Theorem 1.3 (Fory-Milnor)
If μ is knotted then $\int_{\mu} k(t) d t>4 \pi$.

$\S 1.2$ Surfaces

We now discuss the topology of surfaces.
Roughly, the genus of a surface is the number of handles. For example, the sphere S^{2} has genus 0 .

In \mathbb{R}^{3} it turns out that genus is the only topological invariant: two connected surfaces are homeomorphic if and only if they have the same genus. So we want to see if we can find a geometric quantity to detect this genus.

We define the Euler characteristic $\chi(\Sigma)=2(1-g(\Sigma))$ for a surface Σ. It turns out that this becomes equal to $\chi=V-E+F$ given a triangulation of the surface.

Define the Gauss curvature to a point $p \in \Sigma$: for a normal vector v, we consider B_{p} the tangent plane, and we consider

$$
k(P)=\lim _{r \rightarrow 0} \frac{\operatorname{Area}_{S^{2}}\left(\mu\left(\Sigma \cap B_{p}\right)\right.}{\operatorname{Area}_{\Sigma}\left(\Sigma \cap B_{p}\right)} .
$$

where μ is the Gauss map; areas are oriented.

Theorem 1.4 (Gauss-Bonnet Theorem)
$\int_{\Sigma} k(p) d p=2 \pi \chi(\Sigma)$.

This relates a geometric quantity (left) to a topological quantity (right).

Example 1.5
The Gauss map is the identity map for S^{2}, so $k(p)=1$ for every p on S^{2}.

§1.3 Parametrized Curves

Let's do some actual calculus now.
Definition 1.6. A parametrized curve is a differentiable map $\alpha: I \rightarrow \mathbb{R}^{3}$ where $I=[a, b] \subset \mathbb{R}$.

§2 September 15, 2015

Recall last time we considered a differential curve in space, i.e. a differentiable $\alpha:[a, b] \rightarrow$ \mathbb{R}^{3}. Given $t \in I$, if $\alpha^{\prime}(t) \neq 0$ the tangent line is the set

$$
\left\{\alpha(t)+s \alpha^{\prime}(t) \mid s \in \mathbb{R}\right\} .
$$

§2.1 Regular curves

If $t \in[a, b]$ has $\alpha^{\prime}(t)=0$, then we say t is a singular point of α. In this class we will focus on regular curves which do not contain any singularities. In this case,

Given a regular curve $\alpha: I \rightarrow \mathbb{R}^{3}$ we define the arc length from a fixed parameter $t_{0} \in I$ is

$$
s(t) \stackrel{\text { def }}{=} \int_{t_{0}}^{t}\left|\alpha^{\prime}(t)\right| d t
$$

Example 2.1 (Actual Coordinates)

Suppose we equip \mathbb{R}^{3} with its standard inner product and put $\alpha(t)=(x(t), y(t), z(t))$. Then

$$
s(t)=\int_{t_{0}}^{t} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} d t
$$

The integral captures the ideal that we can approximate a curve by "close" straight line segments..

To be more precise, we consider a partition

$$
P: a=t_{0}<t_{1}<\cdots<t_{n}=b
$$

and consider

$$
\ell(\alpha, P)=\sum_{i}\left\|\alpha\left(t_{i}\right)-\alpha\left(t_{i-1}\right)\right\|
$$

and as the mesh of P (defined as $\max _{i}\left(t_{i}-t_{i-1}\right)$ approaches zero).

Proposition 2.2 (Riemann Integral for Arc Length)
As the mesh of the partition approaches zero,

$$
\ell(a, P) \rightarrow \int_{a}^{b}\left\|\alpha^{\prime}(t)\right\| d t
$$

Proof. Because $[a, b]$ is compact, there is a uniform C_{1} such that $\left\|\alpha^{\prime \prime}(t)\right\|<C$. In what follows all big O estimates depend only on α.

Then we can write for any $t>t_{i-1}$ the inequality

$$
\left\|\alpha^{\prime}(t)-\alpha^{\prime}\left(t_{i-1}\right)\right\|=\left\|\int_{t_{i-1}}^{t} \alpha^{\prime \prime}(r) d r\right\| \leq \int_{t_{i-1}}^{t}\left\|\alpha^{\prime \prime}(r)\right\| d r \leq C\left[t-t_{i-1}\right]
$$

Thus, we conclude that

$$
\begin{equation*}
\int_{t_{i-1}}^{t_{i}}\left\|\alpha^{\prime}(t)-\alpha^{\prime}\left(t_{i-1}\right)\right\|=O\left(\left[t_{i}-t_{i-1}\right]^{2}\right) \tag{1}
\end{equation*}
$$

Therefore, we can use (1) to obtain

$$
\begin{aligned}
\alpha\left(t_{i}\right)-\alpha\left(t_{i-1}\right) & =\int_{t_{i-1}}^{t_{i}}\left[\alpha^{\prime}\left(t_{i-1}\right)+\alpha^{\prime}(t)-\alpha^{\prime}\left(t_{i-1}\right)\right] d t \\
& =\left(t_{i}-t_{i-1}\right) \alpha^{\prime}\left(t_{i-1}\right)+\int_{t_{i-1}}^{t_{i}}\left[\alpha^{\prime}(t)-\alpha^{\prime}\left(t_{i-1}\right)\right] d t \\
\Longrightarrow\left(t_{i}-t_{i-1}\right)\left\|\alpha^{\prime}\left(t_{i-1}\right)\right\| & =\left\|\alpha\left(t_{i}\right)-\alpha\left(t_{i-1}\right)\right\|+O\left(\left[t_{i}-t_{i-1}\right]^{2}\right) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\int_{t_{i-1}}^{t_{i}}\left\|\alpha^{\prime}(t)\right\| d t & =\int_{t_{i-1}}^{t_{i}}\left\|\alpha^{\prime}(t)-\alpha^{\prime}\left(t_{i-1}\right)+\alpha^{\prime}\left(t_{i-1}\right)\right\| d t \\
& \leq \int_{t_{i-1}}^{t_{i}}\left\|\alpha^{\prime}(t)-\alpha^{\prime}\left(t_{i-1}\right)\right\| d t+\left(t_{i}-t_{i-1}\right)\left\|\alpha^{\prime}\left(t_{i-1}\right)\right\|
\end{aligned}
$$

And applying the above result with (1) gives

$$
\begin{aligned}
& =O\left(\left[t_{i}-t_{i-1}\right]^{2}\right)+\left[\left\|\alpha\left(t_{i}\right)-\alpha\left(t_{i-1}\right)\right\|+O\left(\left[t_{i}-t_{i-1}\right]^{2}\right)\right] \\
& =\left\|\alpha\left(t_{i}\right)-\alpha\left(t_{i-1}\right)\right\|+O\left(\left[t_{i}-t_{i-1}\right]^{2}\right)
\end{aligned}
$$

Summing up gives the conclusion.

§2.2 Arc Length Parametrization

Suppose $\alpha:[a, b] \rightarrow \mathbb{R}^{3}$ is regular. Then we have

$$
s(t)=\int_{a}^{t}\left\|\alpha^{\prime}(t)\right\| d t
$$

Observe that

$$
\frac{d s(t)}{d t}=\left\|\alpha^{\prime}(t)\right\| \neq 0
$$

Thus the Inverse Function Theorem implies we can write $t=t(s)$ as a function of s; thus

$$
\widetilde{\alpha}(s) \stackrel{\text { def }}{=} \alpha(t(s))
$$

is the arc length parametrization of s.
Hence, in what follows we can always assume that our curves have been re-parametrized in this way.

§2.3 Change of Orientation

Given $\alpha:(a, b) \rightarrow \mathbb{R}^{3}$ we can reverse its orientation by setting $\beta:(-b,-a) \rightarrow \mathbb{R}^{3}$ by $\beta(s)=\alpha(-s)$.

$\S 2.4$ Vector Product in \mathbb{R}^{3}

Given two sets of ordered bases $\left\{e_{i}\right\}$ and $\left\{f_{i}\right\}$, we can find a matrix A taking the first to the second. We say that these bases are equivalent if $\operatorname{det}(A)>0$. Each of these two equivalence classes is called an orientation of \mathbb{R}^{n}.

Example 2.3 (Orientations when $n=1$ and $n=3$)
(a) Given \mathbb{R} and a single basis $0 \neq e \in \mathbb{R}$, then the orientation is just whether $e>0$.
(b) Given \mathbb{R}^{3} the orientation can be determined by the right-hand rule.

§2.5 OH GOD NO

We define the cross product in \mathbb{R}^{3} using the identification with the Hodge star:

$$
\vec{u} \times \vec{v}=\operatorname{det}\left(\begin{array}{lll}
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right)
$$

(The course officially uses \wedge, but this is misleading since it is not an exterior power.) This is the vector perpendicular to \vec{u} and \vec{v} satisfying

$$
\|\vec{u} \times \vec{v}\|=\|\vec{u}\|\|\vec{v}\| \sin \theta .
$$

This is anticommutative, bilinear, and obeys

$$
(\vec{u} \times \vec{v}) \cdot(\vec{w})=\operatorname{det}\left(\begin{array}{ccc}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right)
$$

Also,

$$
(\vec{u} \times \vec{v}) \cdot(\vec{x} \times \vec{y})=\operatorname{det}\left(\begin{array}{cc}
\vec{u} \cdot \vec{x} & \vec{v} \cdot \vec{x} \\
\vec{u} \cdot \vec{y} & \vec{v} \cdot \vec{y}
\end{array}\right)
$$

which one can check by using linearity.
More properties:

- $\vec{u} \times \vec{v}=0 \Longleftrightarrow \vec{u} \| \vec{v}$.
- $\frac{d}{d t}(\vec{u} \times \vec{v})(t)=\vec{u}^{\prime}(t) \times \vec{v}(t)+\vec{u}(t) \times \vec{v}^{\prime}(t)$.

§2.6 Concrete examples

Consider the helix

$$
\alpha(t)=(a \cos (t), a \sin (t), b) .
$$

Note that

$$
\left\|\alpha^{\prime}(t)\right\|=\sqrt{a^{2}+b^{2}} \xlongequal{\text { def }} r .
$$

Hence the arc length parametrization is just $\widetilde{\alpha}(s)=\alpha(s / r)$.

§3 September 17, 2015

§3.1 Always Cauchy-Schwarz

Pointing out explicitly from last lecture:

Proposition 3.1 (Triangle Inequality in the Spirit of L_{1})
For any $f: I \rightarrow \mathbb{R}^{n}$ we have

$$
\left\|\int_{0}^{\ell} f(t) d t\right\| \leq \int_{0}^{\ell}\|f(t)\| d t
$$

Proof. By components.

§3.2 Curvature

Assume we have a curve $\alpha: I \rightarrow \mathbb{R}^{3}$ with $\left\|\alpha^{\prime}(s)\right\|=1$ meaning that $\alpha^{\prime}(s)$ actually interprets an angle. Then we can consider $\alpha^{\prime \prime}(s)$, which measures the change in the angle.

Definition 3.2. The curvature $k(s)$ is $\left\|\alpha^{\prime \prime}(s)\right\|$.
Remark 3.3. Note that $k(s) \equiv 0$ if and only if α is a straight line.
Remark 3.4. The curvature remains unchanged by change of orientation.
Recall now that $\left\|\alpha^{\prime}(s)\right\|=1 \Longleftrightarrow \alpha^{\prime \prime}(s) \perp \alpha^{\prime}(s)$. Thus, we can define

$$
n(s)=\frac{\alpha^{\prime \prime}(s)}{\left\|\alpha^{\prime \prime}(s)\right\|}
$$

and call this the normal vector. At this point we define $t(s)$ as the tangent vector $\alpha^{\prime}(s)$. The plane spanned by $\alpha^{\prime}(s)$ and $\alpha^{\prime \prime}(s)$ is called the osculating plane.

Definition 3.5. If $k(s)=0$ at some point we say s is a singular point of order 1 .

§3.3 Torsion

Definition 3.6. The binormal vector $b(s)$ is defined by $t(s) \times n(s)$.

Proposition 3.7

In \mathbb{R}^{3} we have that $b^{\prime}(s)$ is parallel to $n(s)$.

Proof. By expanding with Leibniz rule we can deduce

$$
b^{\prime}(s)=t(s) \times n^{\prime}(s)
$$

Now, $\|b(s)\|=1 \Longrightarrow b^{\prime}(s) \perp b(s)$. Also, $b^{\prime}(s) \perp t(s)$. This is enough to imply the conclusion.

Definition 3.8. In light of this, we can define $b^{\prime}(s)=\tau(s) n(s)$, and we call $\tau(s)$ the torsion.

Proposition 3.9 (Plane Curve \Longleftrightarrow Zero Torsion)
The curve α is a plane curve only if it has zero torsion (meaning $\tau(s) \equiv 0$ everywhere).

Proof. $\tau(s)=0 \Longleftrightarrow b^{\prime}(s)=0 \Longleftrightarrow b(s)=b_{0}$ for a fixed vector b_{0}. For one direction, note that if $b(s)=b_{0}$ we have

$$
\frac{d}{d s}\left[\alpha(s) \cdot b_{0}\right]=\alpha^{\prime}(s) \cdot b_{0}=t(s) \cdot b_{0}=0
$$

the last step following from the fact that $b(s)$ is defined to be normal to the tangent vector. Thus $\alpha(s) \cdot b_{0}$ is constant, so we can take s_{0} such that

$$
b_{0} \cdot\left(\alpha(s)-\alpha\left(s_{0}\right)\right)=0
$$

holds identically in s. The other direction is similar (take the derivative of the lpane equation).

Remark 3.10. The binormal vector remains unchanged by change of orientation.

Example 3.11 (Helix)
Consider again the helix

$$
\alpha(s)=\left(a \cos \frac{s}{r}, a \sin \frac{s}{r}, b \frac{s}{r}\right) .
$$

We leave to the reader to compute

$$
b(s)=\left(\frac{b}{r} \sin (s / r),-\frac{b}{r} \cos (s / r), a / r\right)
$$

Thus

$$
b^{\prime}(s)=\left(\frac{b}{r^{2}} \cos (s / r), \frac{b}{r^{2}} \sin (s / r), 0\right)
$$

One can also compute

$$
n(s)=\frac{\alpha^{\prime \prime}(s)}{k(s)}=(-\cos (s / r),-\sin (s / r), 0)
$$

Thus one can obtain the torsion $\tau(s)=-b / r^{2}$.

§3.4 Frenet formulas

Let $\alpha: I \rightarrow \mathbb{R}^{3}$ be parametrized by arc length. So far, we've associated three orthogonal unit vectors

$$
\begin{aligned}
t(s) & =\alpha^{\prime}(s) \\
n(s) & =\frac{\alpha^{\prime \prime}(s)}{\left\|\alpha^{\prime \prime}(s)\right\|} \\
b(s) & =t(s) \times n(s)
\end{aligned}
$$

which induce a positive orientation of \mathbb{R}^{3}. We now relate them by:

Theorem 3.12 (Frenet Formulas)
We always have

$$
\begin{aligned}
t^{\prime}(s) & =k(s) n(s) \\
n^{\prime}(s) & =-k(s) t(s)-\tau(s) b(s) \\
b^{\prime}(s) & =\tau(s) n(s)
\end{aligned}
$$

Proof. The first and third equation follow by definition. For the third, write $n=b \times t$ and differentiate both sides, applying the product rule.

So it seems like we can recover t, n, b from k, τ by solving differential equations. In fact, this is true:

Theorem 3.13 (Fundamental Theorem of the Local Theory of Curves)
Given differentiable functions $k(s)>0$ and $\tau(s)$ on an interval $I=(a, b)$, there exists a regular parametrized curve $\alpha: I \rightarrow \mathbb{R}^{3}$ with that curvature and torsion.

Moreover, this curve is unique up to a rigid motion, in the sense that if α and $\bar{\alpha}$ both satisfy the condition, then there is an orthogonal linear map $\rho: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with $\operatorname{det} \rho>0$ such that $\bar{\alpha}=p \circ \alpha+c$. Intuitively, this means "uniqueness up to rotation and translation".

The uniqueness part is not difficult; the existence is an ordinary differential equation.

§3.5 Convenient Formulas

The curvature of an α not parametrized by arc length is

$$
\kappa=\frac{\left|\alpha^{\prime} \times \alpha^{\prime \prime}\right|}{\left|\alpha^{\prime}\right|^{3}} .
$$

The torsion is

$$
\tau=-\frac{\left(\alpha^{\prime} \times \alpha^{\prime \prime}\right) \cdot \alpha^{\prime \prime \prime}}{\left|\alpha^{\prime} \times \alpha^{\prime \prime}\right|^{2}} .
$$

§4 September 22, 2015

§4.1 Signed Curvature

We wish to describe signed curvature for a plane curve.
Assume that $\alpha: I \rightarrow \mathbb{R}^{2}$, so we have a tangent vector $t(s)$. Then we can give a unique normal vector $n(s)$ such that (t, n) forms a positive basis.

Thus we can define the signed curvature according to

$$
t^{\prime}(s)=k(s) n(s)
$$

which may now be either positive or negative.

§4.2 Evolute of a Curve

Given a plane curve $\alpha: I \rightarrow \mathbb{R}^{2}$, we define the evolute of α to be the curve

$$
\beta(s)=\alpha(s)+\frac{1}{k(s)} n(s) .
$$

Proposition 4.1 (Properties of the Evolute)
Let $\alpha(s)$ be a curve parametrized by arc length and β its evolute. Then
(a) β is normal to α, and
(b) Let s_{1} and s_{2} be points, and consider the intersection p of their normal vectors to α. As $s_{1}, s_{2} \rightarrow s, p \rightarrow \beta(s)$.

We call $\beta(s)$ the center of curvature of $\alpha(s)$.

Proof. Part (a) is easy, since the Frenet equations imply $n^{\prime}(s)=-k t$ (as the torsion vanishes), and hence

$$
\beta^{\prime}(s)=\alpha^{\prime}(s)-\frac{1}{k(s)^{2}} k^{\prime}(s) n(s)+\frac{1}{k} n^{\prime}(s)=t-\frac{k^{\prime}}{k^{2}} n+\frac{1}{k}(-k t)=-\frac{k^{\prime}}{k^{2}} n(s) .
$$

Part (b) involves more arithmetic. Let $\alpha(s)=(x(s), y(s))$ so $t(s)=\left(x^{\prime}(s), y^{\prime}(s)\right)$. Then $n(s)=\left(-y^{\prime}(s), x^{\prime}(s)\right)$. Now, given s_{1} and s_{2} we seek the point

$$
p=\alpha\left(s_{1}\right)+\lambda_{1} n\left(s_{1}\right)=\alpha\left(s_{2}\right)+\lambda_{2} n\left(s_{2}\right)
$$

for some λ_{1} and λ_{2}. One can check after work that

$$
\lambda_{1}=\frac{x^{\prime}\left(s_{2}\right)\left(x\left(s_{2}\right)-x\left(s_{1}\right)\right)+y^{\prime}\left(s_{2}\right)\left(y\left(s_{2}\right)-y\left(s_{1}\right)\right)}{y^{\prime}\left(s_{2}\right) x^{\prime}\left(s_{1}\right)-x^{\prime}\left(s_{2}\right) y^{\prime}\left(s_{1}\right)} .
$$

In the limit, one can check that this becomes

$$
\lim _{s_{1}, s_{2} \rightarrow s} \lambda_{1}=\frac{x^{\prime}(s)^{2}+y^{\prime}(s)^{2}}{y^{\prime \prime}(s) x^{\prime}(s)-x^{\prime \prime}(s) y^{\prime}(s)}=\frac{1}{y^{\prime \prime}(s) x^{\prime}(s)-x^{\prime \prime}(s) y^{\prime}(s)}=\frac{1}{k(s)} .
$$

Thus, $\alpha(s)+\lambda(s) n(s)=\beta(s)$ by definition.

§4.3 Isoperimetric Inequality

Problem 4.2. Of all simple closed curves in the plane with a given length ℓ, which one bounds the largest area?

In this situation we have $\alpha:[a, b] \rightarrow \mathbb{R}^{3}$ a regular curve. It is closed if $\alpha(a)=\alpha(b)$ and $\alpha^{(k)} a=\alpha^{(k)} b$ for all $k \in \mathbb{N}$. It is simple if it is not self-intersecting. We will quote without proof that

Theorem 4.3 (Jordan Curve Theorem)
A closed simple regular curve bounds a region in \mathbb{R}^{2}.

Thus one can assign the curve a positive orientation, namely the counterclockwise direction (formally, $n(s)$ points into the bounded region D described by the Jordan curve theorem).

We will now give:

Theorem 4.4 (Isoperimetric Inequality)
Let α be a simple closed plane curve of length ℓ and let A be the area of the bounded region. Then

$$
\ell^{2} \geq 4 \pi A
$$

with equality if and only if α gives a circle.
To bring areas into the picture, we also quote:

Theorem 4.5 (Special Case of Green's Theorem)
Given closed simple regular $\alpha(t)=(x(t), y(t))$ the area bounded is

$$
A=-\int_{a}^{b} y x^{\prime}=\int_{a}^{b} x y^{\prime}=\frac{1}{2} \int_{a}^{b}\left(x y^{\prime}-y x^{\prime}\right) d t
$$

which can be found e.g. by using Green's Theorem.

Proof of Isometric Inequality. Parametrize the original curve $\alpha=(x, y)$ by arc length. Thus $\alpha:[a, b] \rightarrow \mathbb{R}^{2}$.

Suppose that x runs from a maximal right side coordinate $x_{\max }$ and a minimal $x_{\text {min }}$; we let $2 r=x_{\max }-x_{\min }$, and now draw a circle S with radius r, centered at the origin. Now we parametrize S by β but not by arc length: rather, we parametrize β so that the x-coordinates of β and α always coincide. So $\beta:[a, b] \rightarrow S$. Let $\beta=(x, \bar{y})$.

Let A be the area of the bounded region. Then by our area form

$$
\begin{aligned}
A+\pi r^{2} & =\int_{a}^{b}\left(x y^{\prime}-\bar{y} x^{\prime}\right) d s \\
& \leq \int_{a}^{b} \sqrt{\left(x^{2}+\bar{y}^{2}\right)\left(x^{\prime 2}+y^{\prime 2}\right)} d s \\
& =\int_{a}^{b} \sqrt{x^{2}+\bar{y}^{2}} d s \\
& =\int_{a}^{b} r d s \\
& =\ell r
\end{aligned}
$$

Now by AM-GM we have

$$
\ell r=A+\pi r^{2} \geq 2 r \sqrt{A \pi}
$$

and this gives the desired bound on A.

§5 September 24, 2015

We now begin the study of surfaces.

§5.1 Regular Surfaces

Definition 5.1. A regular surface is a subset $S \subseteq \mathbb{R}^{3}$ such that for every point p, there is a neighborhood $p \in V \subseteq \mathbb{R}^{3}$ which is diffeomorphic to an open subset of \mathbb{R}^{2}.

By diffeomorophic, we mean that there is a map

$$
\bar{x}: \mathbb{R}^{2} \supset U \rightarrow V \cap S \subset \mathbb{R}^{3}
$$

such that \bar{x} is differentiable and bijective, with continuous inverse, and moreover the differential $d \bar{x}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is injective (i.e. it has full rank). We call the \bar{x} a parametrization at x and the ordered triple ($x, U, V \cap S$) a coordinate chart.
(We don't yet require the inverse to be differentiable because at the moment our set S only has a topological structure, and don't yet have a differential structure on S.)

In practice to check that the differential is injective one simply computes the associated matrix and evaluates the rank (say by finding a 2×2 minor with full rank).

Example 5.2 (Projection of Sphere)

For a sphere $S^{2}=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=1\right\}$, we can take a projection onto the $x y, y z, z x$ planes for a total of six charts. For example on of the charts is

$$
\mathbb{R}^{2} \supset\left\{u^{2}+v^{2}<1\right\} \rightarrow \mathbb{R}^{3} \quad \text { by } \quad(u, v) \mapsto\left(u, v, \sqrt{1-u^{2}-v^{2}}\right) .
$$

Let's verify this actually works. First, it is clear the map is differentiable. To see that the differential has full rank, we simply use the first two coordinates and put

$$
\frac{\partial(u, v)}{\partial(u, v)}=\operatorname{det}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=1 .
$$

Finally, we need to construct a continuous inverse. We just take the projection $(x, y, z) \mapsto(x, y)$. This is clearly continuous.

§5.2 Special Cases of Manifolds

As the above example shows it does take some time to verify the (rather long) definition of a manifold. So we would like some way to characterize regular surfaces more rapidly.

One obvious way to do this is:

Theorem 5.3 (Graphs are Regular Surfaces)
Let $U \subset \mathbb{R}^{2}$ and $f: U \rightarrow \mathbb{R}$ be differentiable. Then the graph of f, i.e. the set

$$
\{(x, y, f(x, y)) \mid(x, y) \in U\}
$$

is a regular surface.
Proof. Repeat the work we did when we checked the sphere formed a regular surface. Note that in this case we actually have a global parametrization, namely $U \rightarrow \mathbb{R}^{3}$ by $(x, y) \mapsto(x, y, f(x, y))$.

Here is a second way to do this. First, recall that
Definition 5.4. Given a differential map $F: U \rightarrow \mathbb{R}^{m}$ (where $U \subset \mathbb{R}^{n}$ is open) a critical point $p \in U$ of F is one such that $(d F)_{p}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is not surjective. The value of $F(p)$ is called critical value.

Values in the image \mathbb{R}^{m} which are not critical are called regular values.
In particular, if $F: U \rightarrow \mathbb{R}$ then p is a critical value if and only if $(D F)_{p}$ vanishes, i.e. the gradient is zero.

Now we claim that

Theorem 5.5 (Level Images are Surfaces)
Let $f: \mathbb{R}^{3} \supset U \rightarrow \mathbb{R}$ is differentiable and c be a regular value. Then the pre-image

$$
\left\{(x, y, z) \in \mathbb{R}^{3} \mid f(x, y, z)=c\right\}
$$

is a regular surface.

The proof of this is essentially the inverse function theorem.

§6 September 29, 2015 and October 1, 2015

I was absent this week, so these notes may not be a faithful representation of the lecture.

§6.1 Local Parametrizations

Regular surfaces are nice because we have local coordinates at every point.

Proposition 6.1 (Local Parametrization as Graph)
Let $S \subset \mathbb{R}^{3}$ and $p \in S$. Then there exists a neighborhood V of $p \in S$ such that V is the graph of a differentiable function in one of the following forms: $x=f(y, z)$, $y=f(z, x), z=f(x, y)$.

Sketch of Proof. By definition of regular surface, we can take a parametrization at p. One of the Jacobian determinants is nonzero, by hypothesis.

Finally, we state a lemma that says that if we know S is regular already, and we have a candidate x for a parametrization $x: U \rightarrow \mathbb{R}^{3}$ for $U \subset \mathbb{R}^{2}$, then we need not check x^{-1} is continuous if x is injective.

Proposition 6.2

Let $p \in S$ for a regular surface S. Let $x: U \rightarrow \mathbb{R}^{3}$ be differentiable with image in p such that the differential $d x$ is injective everywhere. Assuming further that x is injective then x^{-1} is continuous.

$\S 6.2$ Differentiability

We want a notion of differentiability for a function $f: V \rightarrow \mathbb{R}$ where V is an open subset of a surface S. This is the expected:

Definition 6.3. Let $f: V \subset S \rightarrow \mathbb{R}$ be a function defined in an open subset V of a regular surface S. Then f is differentiable at $p \in V$ if for some parametrization $x: U \subset \mathbb{R}^{2} \rightarrow S$, the composition

$$
U \xrightarrow{x} V \xrightarrow{f} \mathbb{R} .
$$

is differentiable at $x^{-1}(p)$ (giving $x^{-1}(p) \mapsto p \mapsto f(p)$).
One can quickly show this is independent of the choice of parametrization, so "for some" can be replaced by "for all".

$\S 6.3$ The Tangent Map

Given our embedding in to ambient space, we can define the tangent space as follows.
Definition 6.4. A tangent vector to $p \in S$ is the tangent vector $\alpha^{\prime}(0)$ of a smooth curve $\alpha:(-\varepsilon, \varepsilon) \rightarrow S$ with $\alpha(0)=p$.

The "type" of the "tangent vector" is actually vector in this case.

Proposition 6.5

Let $x: U \rightarrow S$ be a parametrization $\left(U \subset \mathbb{R}^{2}\right)$. For $q \in U$, the vector subspace

$$
d x_{q}\left(\mathbb{R}^{2}\right) \subset \mathbb{R}^{3}
$$

coincides with the set of tangent vectors of S at q.

In particular, $d x_{q}\left(\mathbb{R}^{2}\right)$ doesn't depend on the parametrization x, so we denote it now by $T_{p}(S)$, the tangent space at S.

This lets us talk about the notion of a differential of a smooth map between surfaces. Specifically, suppose

$$
S_{1} \supset V \xrightarrow{\phi} S_{2} .
$$

Then given a map $\alpha:(-\varepsilon, \varepsilon) \rightarrow V$ we get a composed path β

Proposition 6.6

Consider the situation above. The value of $\beta^{\prime}(0)$ depends only on $\alpha^{\prime}(0)$, so we obtain a map

$$
(d \phi)_{p}: T_{p}\left(S_{1}\right) \rightarrow T_{\phi p}\left(S_{2}\right)
$$

Moreover, this map is linear; actually,

$$
\beta^{\prime}(0)=d \phi_{p}(w)=\left(\begin{array}{ll}
\frac{\partial \phi_{1}}{\partial u} & \frac{\partial \phi_{1}}{\partial v} \\
\frac{\partial \phi_{2}}{\partial u} & \frac{\partial \phi_{2}}{\partial v}
\end{array}\right)\binom{u^{\prime}(0)}{v^{\prime}(0)}
$$

where $\phi=\left(\phi_{1}, \phi_{2}\right)$ in local coordinates.

§7 October 6, 2015

§7.1 Local Diffeomorphism

Definition 7.1. A map $\phi: U \subset S_{1} \rightarrow S_{2}$ is a local diffeomorphism at $p \in U$ if there exists a neighborhood $p \in V \subset U$ such that ϕ is a diffeomorphism of V onto its image in S_{2}.

Example 7.2 (Local \neq Global)
The map $S^{1} \rightarrow S^{2}$ by $z \mapsto z^{2}$ is a local diffeomorphism but not globally (since it is not injective).

We can check whether functions are local diffeomorphisms by just their differentials.

Proposition 7.3 (Inverse Function Theorem)
Let S_{1} and S_{2} be regular surfaces, $\phi: U \subset S_{1} \rightarrow S_{2}$ differentiable. If the differential

$$
(d \phi)_{p}: T_{p} S_{1} \rightarrow T_{\phi(p)} S_{2}
$$

is a linear isomorphism (full rank), then ϕ is a local diffeomorphism at p.

Proof. The point is that at $p, \phi(p), S_{1}$ and S_{2} look locally like Euclidean space. Using the parametrizations x and \bar{x} respectively, we induce a map $U \rightarrow \bar{U}$ whose differential is an isomorphism:

The classical inverse function theorem gives us an inverse map, which we then lift to a map of the surfaces.

§7.2 Normals to Surfaces

Let $p \in S$ be a point, and let $x: U \rightarrow S$ be a local parametrization of S at p. Then we define the normal vector to the surface as follows: observe that the tangent space $T_{p}(S)$ has a basis x_{1}, x_{2} corresponding to the canonical orientation of \mathbb{R}^{2} (as inherited by U). Then we define

$$
N(p)= \pm \frac{x_{1} \times x_{2}}{\left|x_{1} \times x_{2}\right|}
$$

Then, if two surfaces intersect at p, the angle between the surfaces is the angle between the normal vectors.

§7.3 The First Fundamental Form

Let $S \hookrightarrow \mathbb{R}^{3}$ be a regular surface. Then for any $p \in S$, the tangent plane $T_{p} S$ inherits an inner product from \mathbb{R}^{3}, because it is a subsace of \mathbb{R}^{3}.

Thus, we have a map

$$
I_{p}: T_{p} S \rightarrow \mathbb{R} \quad \text { by } \quad w \mapsto\langle w, w\rangle=\|w\|^{2} .
$$

Note that by abuse, we use $\langle-,-\rangle$ despite the fact that this form depends on p
Definition 7.4. The map I_{p} is called the first fundamental form of S at $p \in S$.
The power of I_{p} is that it lets us forget about the ambient space; we can talk about the geometry of the surface by looking just at I_{p}. In fact, it was shown very recently by John Nash that the intrinsic and extrinsic notion of geometry coincide: roughly, any such surface with a fundamental form of this sort can be embedded in \mathbb{R}^{n}.

To repeat: we will see that the first fundamental form allows us to make measurements on the surface without referring back to the ambient space \mathbb{R}^{3}.

One can compute this explicitly given local coordinates. Suppose we parametrize $\bar{x}: U \subset \mathbb{R}^{2} \rightarrow S$ and take $p \in U$. Then if we denote $\mathbb{R}^{2}=u \mathbb{R} \oplus v \mathbb{R}$, then $T_{p} S$ has a basis $\left\{x_{u}, x_{v}\right\}$, where $x_{u}=\frac{\partial x}{\partial u}(p)$ and $x_{u}=\frac{\partial x}{\partial v}(p)$.

Now, let $w \in T_{p}(S)$. Let $\alpha:(-\varepsilon, \varepsilon) \rightarrow S$ such that $\alpha(t)=x(u(t), v(t))$ and

$$
w=\alpha^{\prime}(0)=u^{\prime}(0) x_{u}+v^{\prime}(0) x_{v} .
$$

Then by expanding, we obtain

$$
\begin{aligned}
I_{p}(w) & =\langle w, w\rangle_{p} \\
& =\left\langle u^{\prime}(0) x_{u}+v^{\prime}(0) x_{v}, u^{\prime}(0) x_{u}+v^{\prime}(0) x_{v}\right\rangle \\
& =\left\|x_{u}\right\|^{2} u^{\prime}(0)^{2}+2\left\langle x_{u}, x_{v}\right\rangle u^{\prime}(0) v^{\prime}(0)+\left\|x_{v}\right\|^{2} v^{\prime}(0)^{2} .
\end{aligned}
$$

We write this as

$$
=E \cdot u^{\prime}(0)^{2}+2 F \cdot u^{\prime}(0) v^{\prime}(0)+G \cdot v^{\prime}(0)^{2} .
$$

where

$$
\begin{aligned}
E & =\left\langle x_{u}, x_{u}\right\rangle \\
F & =\left\langle x_{u}, x_{v}\right\rangle \\
G & =\left\langle x_{u}, x_{v}\right\rangle .
\end{aligned}
$$

Example 7.5 (Plane)
Let $P \subset \mathbb{R}^{3}$ be the plane parametrized globally by a single chart

$$
x(u, v)=p_{0}+u w_{1}+v w_{2}
$$

for some orthonormal vectors $w_{!}$and w_{2}. Then, $(E, F, G)=(1,0,1)$.
Then given any tangent vector $w=a w_{1}+b w_{2}$ at an arbitrary point p we get $I_{p}(w)=a^{2}+b^{2}$; we just get the length of the vector.

Example 7.6 (Cylinder)
Consider the cylinder

$$
C=\left\{(x, y, z) \mid x^{2}+y^{2}=1\right\}
$$

We now take the chart

$$
x(u, v)=(\cos u, \sin u, v)
$$

where the domain is $U=(0,2 \pi) \times \mathbb{R}$; this covers most of the cylinder C (other than a straight line). We notice that the tangent plane is exhibited by the basis $x_{u}=(-\sin u, \cos u, 0)$ and $x_{v}=(0,0,1)$. Thus $E=\sin ^{2} u+\cos ^{2} u=1, F=0$, $G=1$.

So the cylinder and the plane have the same first fundamental form. This is the geometric manifestation of the fact that if we cut a cylinder along an edge, then we get a plane.

Example 7.7 (Stuff Depends on Parametrization)

Suppose now we use the parametrization on the cylinder

$$
x(u, v)=(\cos u, \sin u, 5 v)
$$

Then the tangent plane is exhibited by the basis $x_{u}=(-\sin u, \cos u, 0)$ and $x_{v}=$ $(0,0,5)$. Thus $E=\sin ^{2} u+\cos ^{2} u=1, F=0, G=5$.

§7.4 Relating curves by the first fundamental form

Let $\alpha: I \rightarrow S$ be a regular curve. We already knew that the arc length is given by

$$
s(t)=\int_{0}^{t}\left\|\alpha^{\prime}(t)\right\| d t
$$

If the curve is contained entirely within a chart $\alpha(t)=x(u(t), v(t))$ then we may rewrite this as

$$
\int_{0}^{t} \sqrt{I_{\alpha(t)} \alpha^{\prime}(t)} d t=\int_{0}^{t} \sqrt{E\left(u^{\prime}\right)^{2}+2 F u^{\prime} v^{\prime}+G\left(v^{\prime}\right)^{2}} d t
$$

Colloquially, we can write this as $d s^{2}=E(d u)^{2}+2 F d u d v+G(d v)^{2}$.
Given $\alpha, \beta: I \rightarrow S$ now with $\alpha\left(t_{0}\right)=\beta\left(t_{0}\right)$, the angle θ between the two tangent curves is

$$
\cos \theta=\frac{\left\langle\alpha^{\prime}\left(t_{0}\right), \beta^{\prime}\left(t_{0}\right)\right\rangle}{\left\|\alpha^{\prime}\left(t_{0}\right)\right\|\left\|\beta^{\prime}\left(t_{0}\right)\right\|}=
$$

As a special case, suppose α and β are coordinate curves, meaning $\alpha^{\prime}(t)=x_{u}$ and $\beta^{\prime}(t)=x_{v}$ for all α, β. (Think rulings on a surface.) The angle between them x_{u} and x_{v} is thus given by

$$
\cos \phi=\frac{\left\langle x_{u}, x_{v}\right\rangle}{\left\|x_{u}\right\|\left\|x_{v}\right\|}=\frac{F}{\sqrt{E G}}
$$

Example application: loxodromes.

§7.5 Areas

Let $R \subset S$ be a closed and bounded region of a regular surface contained in the neighborhood of a parametrization $x: U \subset \mathbb{R}^{2} \rightarrow S$. Let $Q=x^{-1}(R)$. The positive number

$$
\int_{Q}\left\|x_{u} \times x_{v}\right\| d u d v
$$

does not depend on the choice of x and is defined as the area of R.
In local coordinates, $\left\|x_{u} \times x_{v}\right\|=\sqrt{E G-F^{2}}$.

§8 October 8, 2015 and October 15, 2015

I am now attending roughly only every third class or so. Here are my notes from my own reading from the content I missed.

§8.1 Differentiable Field of Normal Unit Vectors

Let $N: S \rightarrow S^{2} \subseteq \mathbb{R}^{3}$ be a map which gives a normal unit vector at each point.
For example, if $x: U \rightarrow S$ (where $U \subset \mathbb{R}^{2}$) is a parametrization, then we define for each $q \in x(U)$ by

$$
N(q)=\frac{x_{u} \times x_{v}}{\left|x_{u} \times x_{v}\right|} \text { at } q
$$

By abuse, we denote this N_{q}.
More generally, if $V \subset S$ is open, $N: V \rightarrow S^{2} \subset \mathbb{R}^{3}$ is a differentiable map, then we say that N is a differentiable field of normal unit vectors

Remark 8.1. Not all surfaces admit such a field of unit vectors (Möbius strip, for example). Of course, most things (like spheres) do.

This N is called the Gauss map.

Example 8.2 (Cylinder)

Let S be the cylinder $\left\{(x, y, z) \mid x^{2}+y^{2}=1\right\}$. We claim that $N=(-x,-y, 0)$ are unit normal vectors. A tangent vector is given by $\alpha^{\prime}(0)=\left(x^{\prime}(0), y^{\prime}(0), z^{\prime}(0)\right)$ where $\alpha=(x, y, z)$ has $\alpha(0)=p$. Since $x(t)^{2}+y(t)^{2}$, we see that along this curve, we see that $N \cdot \alpha^{\prime}=0$, as desired.

§8.2 Second Fundamental Form

In this way, N provides an orientation on S. We see in this case, for any point p we have a map

$$
d N_{p}: T_{p} S \rightarrow T_{N(p)} S^{2} \xrightarrow{\simeq} T_{p} S
$$

Example 8.3

Let S be the cylinder $\left\{(x, y, z) \mid x^{2}+y^{2}=1\right\}$. Let us see what $d N_{p}$ does to tangent vectors. Using the setup with α as before (so $\alpha(0)=p$), the tangent $N(t)$ to $\alpha(t)$ is $(-x(t),-y(t), z(t))$ and thus

$$
d N_{p}\left(x^{\prime}(0), y^{\prime}(0), z^{\prime}(0)\right)=\left(-x^{\prime}(0),-y^{\prime}(0), 0\right)
$$

In other words, $d N_{p}$ is projection onto the $x y$-plane. In particular, the tangents to the cylinder parallel to the $x y$-plane are -1 eigenvectors while the tangents to the cylinder parallel to the z-axis are all mapped to zero (in the kernel).

Lemma 8.4 ($d N_{p}$ is self-adjoint)
As defined, $d N_{p}: T_{p} S \rightarrow T_{p} S$ is self-adjoint, in the sense that

$$
\left\langle d N_{p}(v), w\right\rangle=\left\langle v, d N_{p}(w)\right\rangle
$$

Proof. Let $\alpha(0)=p, \alpha(t)=x(u(t), v(t)), \alpha^{\prime}(0)=u^{\prime}(0) x_{u}+v^{\prime}(0) x_{v}$. Write

$$
d N_{p}\left(\alpha^{\prime}(0)\right)=\left[\frac{d}{d t}(N(u(t), v(t)))\right]_{t=0}=N_{u} u^{\prime}(0)+N_{v}^{\prime} v^{\prime}(0) .
$$

So, it suffices to show that

$$
\left\langle N_{u}, x_{v}\right\rangle=\left\langle x_{v}, N_{u}\right\rangle .
$$

Take the derivatives of $\left\langle N, x_{u}\right\rangle=0$ and $\left\langle N, x_{v}\right\rangle=0$ relative to u and v to see that both are equal to $-\left\langle N, x_{u v}\right\rangle=-\left\langle N, x_{v u}\right\rangle$.

Definition 8.5. Let \mathbb{I}_{p} be the quadratic form defined in $T_{p}(S)$ by

$$
\mathbb{I}_{p}(v)=-\left\langle d N_{p}(v), v\right\rangle=-\left\langle v, d N_{p}(v)\right\rangle .
$$

This is called the second fundamental form of S at p.
Now, let us think about curves for a moment.
Definition 8.6. Let C be a regular curve in S, and $p \in S$ a point on it. Let k be the curvature of C at p, and set $\cos \theta=\langle n, N\rangle$, where n is the normal to C and N is the normal vector to S at p. The number $k_{n}=k \cos \theta$ is then called the normal curvature of $C \subset S$ at p.

In other words, k_{n} is the length of the projection of the vector $k n=\alpha^{\prime}$ over the normal to the surface at p, with sign given by orientation.

Theorem 8.7 (Meusnier)

The normal curvature of a curve C at p depends only on the tangent line at the curve.

Proof.
Thus, it make sense to talk about the curvature at a direction to the surface.

§9 October 20, 2015

§9.1 Self-Adjoint Maps

Since $d N_{p}$ is self-adjoint, there exists an orthonormal basis $\left\{e_{1}, e_{2}\right\}$ of $T_{p} S$ such that

$$
d N_{p}\left(e_{1}\right)=-k_{1} e_{1} \quad \text { and } \quad d N_{p}\left(e_{2}\right)=-k_{2} e_{2}
$$

Definition 9.1. The constant k_{1} and k_{2} are called the principal curvature and the basis e_{1} and e_{2} are called the principal directions.

Given $w \in T_{p} S$, say $w=\cos \theta e_{1}+\sin \theta e_{2}$, then the value of the normal curvature to k_{n} along w is

$$
\begin{aligned}
-\left\langle d N_{p}\left(\cos \theta e_{1}+\sin \theta e_{2}\right), \cos \theta e_{1}+\sin \theta e_{2}\right\rangle & =\left\langle k_{1} \cos \theta e_{1}+k_{2} \sin \theta e_{2}, \cos \theta e_{1}+\sin \theta e_{2}\right\rangle \\
& =k_{1} \cos ^{2} \theta+k_{2} \sin ^{2} \theta
\end{aligned}
$$

So we can express any normal curvature in terms of the principal ones.

$\S 9.2$ Line of Curvatures

Definition 9.2. If a regular curve C on S has the property that for all $p \in C$, the tangent line of C at p is a principal direction at p, then C is called a line of curvature of S.

Example 9.3 (Examples of Lines of Curvatures)

(a) In a plane, all curves are lines of curvature (trivially). $\left(d N_{p}=0\right.$, so everything is an eigenvalue.)
(b) All curves on a sphere are also lines of curvature. ($d N_{p}=\mathrm{id}$, so everything is an eigenvalue.)
(c) On a cylinder, the vertical lines and the meridians are lines of curvatures of S.

Proposition 9.4 (Testing for Line of Curvature)
Let C be a regular curve. Then C is a line of curvature if and only if

$$
d N_{p}\left(\alpha^{\prime}(t)\right)=\lambda(t) \alpha^{\prime}(t)
$$

where $\alpha(t)$ is the arc length parametrization, and $\lambda(t) \in \mathbb{R}$.

Proof. "Harmless exercise". (A better word might be "trivial".)

§9.3 Gauss curvature and Mean Curvature

In the orthonormal basis of p, we have $d N_{p}=-\left(\begin{array}{cc}k_{1} & 0 \\ 0 & k_{2}\end{array}\right)$. Of course, we define
Definition 9.5. The quantity $\operatorname{det} d N_{p}=k_{1} k_{2}$ is called the Gauss curvature. The quantity $\operatorname{Tr}\left(d N_{p}\right)=-\left(k_{1}+k_{2}\right)$ is more finicky. We instead define $H=\frac{1}{2}\left(k_{1}+k_{2}\right)=$ $-\frac{1}{2} \operatorname{Tr}\left(d N_{p}\right)$ the mean curvature.

Remark 9.6. One can view H as the "average" of all curvatures of curves passing through H.

Definition 9.7. A point $p \in S$ is called

- elliptic if $\operatorname{det}\left(d N_{p}\right)>0$, meaning k_{1} and k_{2} have the same sign.
- hyperbolic if $\operatorname{det}\left(d N_{p}\right)<0$,
- parabolic if $\operatorname{det}\left(d N_{p}\right)=0$, but $d N_{p} \neq 0$, and
- planar if $d N_{p}$ is the zero matrix.

It's worth noting that planes are not the only example where planar points. For example, if $z=x^{4}$, and we wrote this around the z-axis to get a surface (i.e. $z=\left(x^{2}+y^{2}\right)^{2}$) then the origin is also a planar point.

Definition 9.8. An umbilical point of S is a point $p \in S$ at which $k_{1}=k_{2}$, meaning $d N_{p}$ is a constant times the identity.

Theorem 9.9

All connected surfaces S which consist entirely of umbilical points are subsets of the sphere or a plane.

Proof. Prove it locally first. Then for any fixed p, for other $q \in S$ take a path from p to q, and use compactness.

§9.4 Gauss Map under Local Coordinates

Let $p \in S$ where S is an regular surface with an orientation $N: S \rightarrow S^{2} \subset \mathbb{R}^{3}$. For $p \in S$ and $x: U \rightarrow S$ a parametrization near p, we can set

$$
\alpha(t)=x(u(t), v(t)) \in S
$$

such that $\alpha(0)=p$. So,

$$
\alpha^{\prime}=u^{\prime} x_{u}+v^{\prime} x_{v}
$$

where x_{u} and x_{v} are the usual basis of $T_{p} S$ (i.e. the partial derivatives of x with respect to u and v). Thus, it follows that

$$
d N_{p}\left(\alpha^{\prime}\right)=\frac{d}{d t} N(u(t), v(t))=u^{\prime} N_{u}+v^{\prime} N_{v}
$$

So, we simply need to compute N_{u} and N_{v}. If we sidestep this for now and say $N_{u}=a_{11} x_{u}+a_{21} x_{v}$, and $N_{v}=a_{12} x_{u}+a_{22} x_{v}$, then this reads

$$
d N_{p}\binom{u^{\prime}}{v^{\prime}}=\binom{a_{11} u^{\prime}+a_{12} v^{\prime}}{a_{21} u^{\prime}+a_{22} v^{\prime}}=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\binom{u^{\prime}}{v^{\prime}} .
$$

Note that the matrix $\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ need not be symmetric unless x_{u} and x_{v} are orthogonal. (Self-adjoint implies symmetric only in this case.)

One can compute the $a_{i j}$, but since I really don't want to. The result is called the equations of Weingarten.

§10 October 22, 2015

§10.1 Completing Equations of Weingarten

Let me finish the computation from last time. Take $\alpha(t)=x(u(t), v(t)), \alpha(0)=p$, Recall the we have written

$$
\begin{aligned}
N_{u} & =a_{11} x_{u}+a_{21} x_{v} \\
N_{v} & =a_{11} x_{u}+a_{21} x_{v}
\end{aligned}
$$

(again these subscripts are partial derivatives at the point p). The point is that

$$
d N_{p}: T_{p} S \rightarrow T_{p} S \quad \text { by } \quad u^{\prime} x_{u}+v^{\prime} x_{v} \mapsto u^{\prime} N_{u}+v^{\prime} N_{v}
$$

where $N_{u}, N_{v} \in T_{p} S$ as well. Thus, We have that

$$
\mathbb{I}_{p}\left(\alpha^{\prime}\right)=\left\langle N_{u} u^{\prime}+N_{v} v^{\prime}, x_{u} u^{\prime}+x_{v} v^{\prime}\right\rangle \stackrel{\text { def }}{=} e\left(u^{\prime}\right)^{2}+2 f u^{\prime} v^{\prime}+g\left(v^{\prime}\right)^{2}
$$

for $e=-\left\langle N_{u}, x_{u}\right\rangle=\left\langle N, x_{u u}\right\rangle$ and similarly for others. If we use the first equation, then putting in the $a_{i j}$ we derive

$$
-\left(\begin{array}{ll}
e & f \\
f & g
\end{array}\right)=\underbrace{\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)}_{d N_{p}}\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right)
$$

In particular, we have

$$
k_{1} k_{2}=\operatorname{det} d N_{p}=\frac{e g-f^{2}}{E G-F^{2}}
$$

Through pain and suffering, we also can compute

$$
H=\frac{1}{2}\left(k_{1}+k_{2}\right)=\frac{1}{2} \frac{e G-2 f F+g E}{E G-F^{2}} .
$$

§10.2 An Example Calculation

We consider a torus, parametrized by

$$
x(u, v)=((a+r \cos u) \cos v,(a+r \cos u) \sin v, r \sin u) .
$$

The partial derivatives are

$$
\begin{aligned}
& x_{u}=(-r \sin u \cos v,-r \sin u \sin v, r \cos u) \\
& x_{v}=(-(a+r \cos u) \sin v,(a+r \cos u) \cos v, 0) .
\end{aligned}
$$

Thus, we can extract

$$
\begin{aligned}
& E=\left\langle x, x_{u}\right\rangle=r^{2} \\
& F=\left\langle x_{u}, x_{v}\right\rangle=0 \\
& G=\left\langle x_{v}, x_{v}\right\rangle=(a+r \cos u)^{2}
\end{aligned}
$$

Let $N=\frac{x_{u} \times x_{v}}{\left|x_{u} \times x_{v}\right|}$, noting that the denominator is $\sqrt{E G-F^{2}}$. We define the constants

$$
\begin{aligned}
e & =\left\langle N_{u}, x_{u}\right\rangle \\
= & \left\langle N, x_{u u}\right\rangle \\
& \operatorname{det}\left(\begin{array}{ccc}
-r \sin u \cos v & -r \sin u \sin v & r \cos u \\
-(a+r \cos u) \sin v & (a+r \cos u) \cos v & 0 \\
-r \cos u \cos v & -r \cos u \sin v & -r \sin u
\end{array}\right) \\
= & \sqrt{E G-F^{2}} \\
= & \frac{r^{2}(a+r \cos u)}{r(a+r \cos u)}=r .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
f & =\left\langle N, x_{u v}\right\rangle \\
g & =\cdots=0 \\
g=\left\langle N, x_{v v}\right\rangle & =\cdots=\cos u(a+r \cos u) .
\end{aligned}
$$

Thus, we have

$$
K=\frac{\cos u}{r(a+r \cos u)} .
$$

$\S 10.3$ Elliptic and Hyperbolic Points

Proposition 10.1

Let $p \in S$ with S a regular surface.

- If $p \in S$ is elliptic, then all points in some neighborhood of S are on one side of the tangent plane $T_{p} S$
- If $p \in S$ is hyperbolic, for any neighborhood of p there is a point on both sides of $T_{p} S$.

Proof. Let $x(u, v)$ be a parametrization near p, with $x(0,0)=p$. We're interested in the signs of the function

$$
f(u, v)=\langle x(u, v)-x(0,0), N\rangle
$$

with N_{p} the normal at p. Locally, we have

$$
x(u, v)=x(0,0)+x_{u}(0,0) u+x_{v}(0,0) v+\frac{1}{2}\left[x_{u u} u^{2}+2 x_{u v} u v+x_{v v} v^{2}\right]+R
$$

with R an error term with $\frac{R}{u^{2}+v^{2}} \rightarrow 0$ as $(u, v) \rightarrow 0$. Now, $\left\langle x_{u}(0,0), N\right\rangle=\left\langle x_{v}(0,0), N\right\rangle=$ 0 . If we expand and go through the computation, denoting $\bar{R}=\langle R, N\rangle$ one can compute

$$
f(u, v)=\frac{1}{2} \mathbb{I}_{p}\left(u x_{u}+v x_{v}\right)+\bar{R}=\frac{u^{2}+v^{2}}{2}\left(\mathbb{I}_{p}\left(\frac{(u, v)}{\sqrt{u^{2}+v^{2}}}\right)+\frac{\bar{R}}{u^{2}+v^{2}}\right) .
$$

Suppose first that $k_{1} \geq k_{2}>0$. Then $\mathbb{I}_{p}\left(\frac{(u, v)}{\sqrt{u^{2}+v^{2}}}\right)=\frac{1}{2}\left(k_{1} \cos ^{2} \theta+k_{2} \sin ^{2} \theta\right) \geq$ $\frac{1}{2} \min \left\{k_{1}, k_{2}\right\}$ is bounded away from zero. So for $u^{2}+v^{2}$ small enough, $f(u, v) \geq 0$. An analogous argument works if $k_{1}>0>k_{2}$.

§10.4 Principal Directions

Theorem 10.2 (Criteria for Principal Directions)
Fix a point $p \in S$. Then $u^{\prime} x_{u}+v^{\prime} x_{v}$ is an eigenvector of $(d N)_{p}$ if and only if

$$
0=\operatorname{det}\left(\begin{array}{ccc}
\left(v^{\prime}\right)^{2} & -u^{\prime} v^{\prime} & \left(u^{\prime}\right)^{2} \\
E & F & G \\
e & f & g
\end{array}\right) .
$$

§11 October 29, 2015 and November 3, 2015

§11.1 Isometries

Let S_{1} and S_{2} be surfaces.
Definition 11.1. A diffeomorphism $\phi: S \rightarrow S^{\prime}$ is an isometry if for all w_{1} and w_{2} in $T_{p}(S)$, we have

$$
\left\langle w_{1}, w_{2}\right\rangle_{p}=\left\langle(d \phi)_{p}\left(w_{1}\right),(d \phi)_{p}\left(w_{2}\right)\right\rangle_{\phi(p)}
$$

In that case, we say S_{1} and S_{2} are isometric.
Naturally, this means that the first fundamental form I_{p} is preserved. In fact, by considering $\langle v+w, v+w\rangle-\langle v, v\rangle-\langle w, w\rangle$ we see that isometries are equivalent to preserving just the first fundamental form.

Definition 11.2. Let $p \in V \subset S^{\prime}$, where S^{\prime} is a surface. A map $\phi: V \rightarrow S$, where V is a neighborhood of some surface, is a local isometry at p if it is an isometry onto a neighborhood of $\phi(p)$

We say S locally isometric to S^{\prime} if one can find a local isometry into S^{\prime} at every point $p \in S$. If the other direction holds too, we say the surfaces are locally isometric.

Properties that are preserved under local isometry are said to be intrinsic. for example, the first fundamental form is intrinsic.

Example 11.3 (Cylinder and Plane are Locally Isometric)

The cylinder is locally isometric to a plane $(0,2 \pi) \times \mathbb{R}$, but not globally (since the spaces are not homeomorphic, their fundamental groups differ).

Example 11.4 (Half-Cylinder and Plane are Globally Isometric)

Half a cylinder is globally isometric to the plane $(0, \pi) \times \mathbb{R}$. Note that the second fundamental form of a cylinder is nonzero (unlike the plane),

Thus, second fundamental form is not intrinsic. In fact, we will later see that the mean curvature is not intrinsic, but the global curvature is.

For aid with local coordinates:

Proposition 11.5

Suppose $x: U \rightarrow S$ and $x^{\prime}: U \rightarrow S^{\prime}$ are parametrizations such that we have an equality $E=E^{\prime}, F=F^{\prime}$ and $G=G^{\prime}$ of the coefficients of the first fundamental form. Then $x^{\prime} \circ x^{-1}$ is a local isometry.

§11.2 The Christoffel Symbols

This is some very long calculations. The idea is that x_{u}, x_{v}, N form a triple of orthogonal vectors at every point p of the surface. Then, we can let

$$
\begin{aligned}
x_{u u} & =\Gamma_{11}^{1} x_{u}+\Gamma_{11}^{2} x_{v}+e N \\
x_{u v} & =\Gamma_{12}^{1} x_{u}+\Gamma_{12}^{2} x_{v}+f N \\
x_{v u} & =\Gamma_{21}^{1} x_{u}+\Gamma_{21}^{2} x_{v}+f N \\
x_{v v} & =\Gamma_{22}^{1} x_{u}+\Gamma_{22}^{2} x_{v}+g N .
\end{aligned}
$$

Here the e, f, g coefficients were realized by taking the inner form of each equation with N. Also, note that $x_{u v}=x_{v u}$, so $\Gamma_{12}^{i}=\Gamma_{21}^{i}$ for $i=1,2$. We say the $\Gamma_{j k}^{i}$ are the Christoffel symbols.

§11.3 Gauss Equations and Mainardi-Codazzi

If we take dot products of all relations with x_{u} and x_{v}, we obtain a system of equations that lets us solve for everything in terms of E, F, G and their derivatives with respect to u, v. (Note e, f, g are not present!)

There are some more relations we can derive. For example, note that

$$
\left(x_{u u}\right)_{v}=\left(x_{u v}\right)_{u} .
$$

It turns out that by expanding this and equating the x_{u} coefficients, we obtain that

$$
-K E=\left(\Gamma_{12}^{2}\right)_{u}-\left(\Gamma_{11}^{2}\right)_{v}+\Gamma_{12}^{1} \Gamma_{11}^{2}+\Gamma_{12}^{2} \Gamma_{12}^{2}-\Gamma_{11}^{2} \Gamma_{22}^{2}-\Gamma_{11}^{1} \Gamma_{12}^{2}
$$

where K is the Gauss curvature; this is the Gauss equation (Equating the x_{v} coefficients turns out to give the same equation.) The philosophical point is that it implies:

Theorem 11.6 (Theorema Egregium, due to Gauss)
The Gaussian curvature K is intrinsic, i.e. it is invariant under local isometries.

On the other hand, equating the N coefficients gives

$$
e_{v}-f_{u}=e \Gamma_{12}^{1}+f\left(\Gamma_{12}^{2}-\Gamma_{11}^{1}\right)-g \Gamma_{11}^{2} .
$$

Doing a similar thing gives

$$
f_{v}-g_{u}=e \Gamma_{22}^{1}+f\left(\Gamma_{22}^{2}-\Gamma_{12}^{1}\right)-g \Gamma_{12}^{2} .
$$

These two relations are called the Mainardi-Codazzi equations.

§11.4 Bonnet Theorem

We may wonder if we can get more relations. The answer is no.
Theorem 11.7 (Bonnet)
Let E, F, G, e, f, g be differentiable functions $V \rightarrow \mathbb{R}$, with $V \subset \mathbb{R}^{2}$. Assume $E, G>0$, that Gauss and Codazzi holds, and moreover $E G-F^{2}>0$. Then:
(a) for every $q \in V$ there is a neighborhood U of V such that a diffeomorphism $x: U \rightarrow \mathbb{R}^{3}$ such that $x(U)$ is a surface having the above coefficients.
(b) this x is unique up to translation and orthogonal rotation.

§12 November 5, 10, 12, 17, 192015

In what follows, a vector field w on a surface S will mean a differentiable vector field of tangents; i.e. $w(p) \in T_{p} S$ for every $p \in S$.

§12.1 The Covariant Derivative

Definition 12.1. Let w be a vector field, and let $y \in T_{p} S$ be a tangent vector, realized by $y=\alpha^{\prime}(0)$ for $\alpha:(-\varepsilon, \varepsilon) \rightarrow S$ parametrized. The covariant derivative is the projection of $(w \circ \alpha)^{\prime}(0)$ onto the tangent plane, and denoted $\left(D_{y} w\right)(p)$. We also denoted it by $(D w / d t)(0)$ if α is given.

This of course does not depend on α. We can apply an analogous definition if w is only defined along points of a given path α.

In particular, this is zero if and only if $(w \circ \alpha)^{\prime}$ is parallel to the normal vector of $T_{p}(S)$. One standard example is the case $w=\alpha^{\prime}$.

§12.2 Parallel Transports

Definition 12.2. Let α be a parametrized curve and w a vector field defined on it. We say α is parallel if $D w / d t$ is zero everywhere on α.

In other words, this occurs if for every $\alpha(t)=p$ and $y=\alpha^{\prime}(t)$ we have $\left(D_{y} w\right)(p)$ is parallel to the normal vector of $T_{p}(S)$. In particular if S is the plane this is equivalent to w being constant.

Proposition 12.3

Let w and v be parallel vector fields along α. Then $\langle w(t), v(t)\rangle$ is fixed.

Thus parallel vector fields preserve angles and have constant lengths.
By theory of differential equations, we have

Theorem 12.4 (Unique Parallel Vector Field)
Let α be a parametrized curve in S and pick a fixed initial vector $w_{0} \in T_{\alpha(0)} S$. Then there exists a unique parallel vector field w along α such that $w(0)=w_{0}$.

So in this way we can define the parallel transport along a parametrized curve: given α joining p to q, for any vector $w \in T_{p}(S)$ we can follow along the parallel vector field q to get a unique tangent vector in $T_{q}(S)$.

$\S 12.3$ Geodesics

Most important special case of parallelism:
Definition 12.5. If $\alpha(s)$ is a regular parametrized curve and α^{\prime} is parallel, then α is said to be a geodesic.

In this case, it means that the normal vectors \vec{n} for α coincide with normal vectors to the surface itself.

Theorem 12.6 (Unique Geodesic in Any Direction)
Let p be a point of a regular surface S and $0 \neq w \in T_{p}(S)$. There is a geodesic $\alpha:(-\varepsilon, \varepsilon) \rightarrow S$ with $\alpha(0)=p$, and $\alpha^{\prime}(0)=w$, with the usual uniqueness up to domain.

Example 12.7 (Examples of Geodesics)

(a) Straight lines are always geodesics, because their normal vector vanishes altogether.
(b) In particular, on a plane, the straight lines are the only geodesics.
(c) On a sphere, the great circles are the unique geodesics.
(d) On a right cylinder, geodesics are helixes.

More generally, let α be a regular parametrized curve on an oriented surface S. At a point p, consider the tangent vector $\alpha^{\prime}=\vec{t}$ and then the vector $\alpha^{\prime \prime}$. We can project it onto the $T_{p}(S)$ as before, arriving at $D \alpha^{\prime} / d s$; its signed length (with respect to $N \times \vec{t}$) is the geodesic curvature k_{g}. Thus geodesics are those curves with $k_{g}=0$.

Remark 12.8. Since k_{n} is the other projection, $k^{2}=k_{n}^{2}+k_{g}^{2}$.

§13 November 24 and 26, 2015

The main point of this section is to present the Gauss-Bonnet Theorem.

§13.1 Area Differential Form

This is technically review, but anyways. Let $x: U \rightarrow \mathbb{R}^{3}$ be a parametrization. We can perform integrals of the form

$$
\int_{R} f(u, v)\left|x_{u} \wedge x_{v}\right|=\int_{x^{-1}(R)} f(u, v) \sqrt{E G-F^{2}} d u \wedge d v
$$

which is the integral of f over the region U. This is the pullback of the differential form $x_{u} \wedge x_{v}$ on the surface. For convenience, we will abbreviate this to

$$
\int_{R} f d \sigma .
$$

§13.2 Global Gauss-Bonnet Theorem

We then have the following.

Theorem 13.1 (Gauss-Bonnet)

Let $R \subset S$ be a regular region of an oriented surface S and let C_{1}, \ldots, C_{n} be positively oriented curves forming the boundary of R. Let $\theta_{1}, \ldots, \theta_{p}$ be the $p=\binom{n}{2}$ external angles formed by the C_{i}. Then

$$
\sum_{i=1}^{n} \int_{C_{i}} k_{g}(s) d s+\int_{R} K d \sigma+\sum_{i=1}^{p} \theta_{i}=2 \pi \chi(R)
$$

where χ is the Euler characteristic.

Corollaries:
Corollary 13.2 (Gauss-Bonnet for Simple Regions)
If R is a simple region, then $\chi(R)=1$ and thus

$$
\sum_{i=1}^{n} \int_{C_{i}} k_{g}(s) d s+\int_{R} K d \sigma+\sum_{i=1}^{p} \theta_{i}=2 \pi .
$$

Corollary 13.3 (Gauss-Bonnet for Orientable Compact Surfaces)
If S is a orientable compact surface then

$$
\int_{S} K d \sigma=2 \pi \chi(S) .
$$

Proof. Take $R=S$, and use an empty boundary.

§14 December 1 and December 3, 2015

§14.1 The Exponential Map

Let S be a regular surface and $p \in S$ a point. We consider the tangent plane $T_{p}(S)$. For a vector $v \in T_{p}(S)$, we can consider the geodesic γ_{v} with $\gamma_{v}^{\prime}(0)=v$. In the event that $\gamma(1)$ is defined, we define the exponential map by

$$
\exp _{p}(v)=\gamma_{v}(1)
$$

and set $\exp _{p}(0)=p$.

Example 14.1 (Examples of the Exponential Map)

Let $S=S^{2}$ be a sphere, and $p \in S$.
(a) $\exp _{p}(v)$ is defined for each $v \in T_{p}(S)$. If $|v|=(2 k+1) \pi$, then $\exp _{p}(v)=-p$, while if $|v|=2 k \pi$ then $\exp _{p}(v)=p$.
(b) If we delete $-p$ from S then $\exp _{p}$ is only defined in an open disk of radius π.

Proposition 14.2 ($\exp _{p}$ Defined Locally)

There exists a neigborhood U of $0 \in T_{p}(S)$ such that $\exp _{p}$ is defined, meaning we have a map

$$
\exp _{p}: U \rightarrow S
$$

and moreover $\exp _{p}$ is a diffeomorphism.

We say that $V \subset S$ is a normal neighborhood of p if V is the diffeomorphic image under $\exp _{p}$ of some neighborhood U of $T_{p}(S)$.

§14.2 Local Coordinates

We can impose coordinates on normal neighborhoods of a point via the exponential map, since it's a diffeomorphism.

If we put rectangular coordinates (u, v), then the geodesics of S correspond to straight lines through the origin.

Now consider a polar coordinate system with $0<\theta<2 \pi$ and radius ρ, so pairs (ρ, θ). Note this omits the half-line ℓ corresponding to $\theta=0$. The images of circles at U (centered at zero) in S are then called the geodesic circles of V while the images of lines through 0 are called the radial geodesics; these correspond to setting ρ and θ constant.

Theorem 14.3 (First Fundamental Form in Geodesic Polar Coordinates)
Let $x: U \backslash \ell \rightarrow V \backslash L$ be a system of geodesic polar coordinates (ρ, θ). Then the first fundamental form obeys

$$
E=1, \quad F=0, \quad G(\rho, \theta)=\rho-\frac{K(p)}{6} \rho^{3}+o\left(\rho^{3}\right)
$$

The fact that $F=0$ reflects the so-called Gauss lemma: radial geodesics are orthogonal to the geodesic circles.

§15 December 8 and December 10, 2015

Our goal is to prove the Bonnet Theorem:

Theorem 15.1 (Bonnet's Theorme)

Let S be a complete surface. Suppose there exists a $\delta>0$ such that the Gaussian curvature K is bounded below by δ. Then S is compact and any two points are joined by a geodesic with length at most $\frac{\pi}{\sqrt{\delta}}$.

This is "optimal" by taking a sphere. (Definition of "complete" in next section.)

§15.1 Completeness

Definition 15.2. A regular connected surface S is complete if for any point $p \in S$ the exponential map $\exp _{p}: T_{p}(S) \rightarrow S$ is defined for every $v \in T_{p}(S)$.

Theorem 15.3 (Complete Surfaces are Nonextendible)

A complete surface S is nonextendible, i.e. it is not a proper subset of any regular connected surface.

Theorem 15.4 (Closed Surfaces Are Complete)

Any closed surface $S \subseteq \mathbb{R}^{3}$ is complete. In particular, any compact surface is complete.

Complete surfaces have a nice notion of "distance".

Theorem 15.5 (Hopf-Rinow)
If S is a complete surface then for any $p, q \in S$ there is a minimal geodesic joining p to q.

Thus we may define the distance between two points on a complete surface by considering the minimal geodesic.

§15.2 Variations

In what follows, S is regular and connected but not necessarily complete.
To do this, consider a curve $\gamma:[0, \ell] \rightarrow S$ parametrized by arc length. A variation of γ is a differentiable map

$$
h:[0, \ell] \times(-\varepsilon, \varepsilon) \rightarrow S
$$

such that $h(s, 0)=\gamma(s)$ for each s. We assume also that our variation h is proper, meaning $h(0, t)=\gamma(0)$ and $h(\ell, t)=\gamma(1)$. (In other words, h is a path homotopy.)

This then gives rise to a vector field

$$
V(s)=\left[\frac{\partial}{\partial t} h(s, t)\right]_{t=0}
$$

which we call the variational vector field of h. Since h is proper it follows that $V(0)=V(\ell)=0$.

Define $L:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}$ by letting $L(t)$ be the arc length of $h(-, t)$. Formally,

$$
L(t)=\int_{9}^{\ell}\left\|\frac{\partial h}{\partial s}(s, t)\right\| d s
$$

Thus $L(t)$ measures the arc length of the "nearby" curves specified by the variation h.

Theorem 15.6 (The First Variation)
We have

$$
L^{\prime}(0)=-\int_{0}^{\ell}\langle A(s), V(s)\rangle d s
$$

where

$$
A(s)=\frac{D}{\partial s}\left[\frac{\partial h}{\partial s}(s, 0)\right] .
$$

Proof. Some direct computation. You need the fact that $V(\ell)=V(0)=0$.
Remark 15.7. The vector $A(s)$ is the acceleration vector of α and $\|A(S)\|$ is the geodesic curvature of α.

Now we can formally write down that geodesics are "locally minimal".

Theorem 15.8 (Geodesics Are Minimal For Any Variation)

Given $\alpha:[0, \ell] \rightarrow S$ parametrized by arc length we have α is a geodesic if and only if for any proper variation h of α, we have $L^{\prime}(0)=0$.

Proof. If α is a geodesic, then $A(s) \equiv 0$ and the result is immediate.
Otherwise, support $V(s)=f(s) A(s)$ for some nonnegative "weight" function f supported on $(0, \ell)$ where $f(0)=f(\ell)=0$. By differential equations, we can construct h with this variation. Now according to the previous result,

$$
L^{\prime}(0)=-\int_{0}^{\ell}\langle A(s), A(s) f(s)\rangle d s=-\int_{0}^{\ell} f(s)\|A(s)\|^{2} d s \leq 0
$$

which can only be zero if $A(s) \equiv 0$.

§15.3 The Second Variation

From now on, assume $\gamma:[0, \ell] \rightarrow S$ is arc length, $V(s)$ is proper, and $V(0)=V(\ell)=0$, and moreover that we have an orthogonality relation

$$
\left\langle V(s), \gamma^{\prime}(s)\right\rangle=0 .
$$

In other words we assume V is an orthogonal variation.
We aim to compute $L^{\prime \prime}(0)$.

Lemma 15.9 (Partials Don't Commute)
Let $x: U \rightarrow S$ be a parametrization at $p \in S$. Let K be the Gaussian curvature at p. Then

$$
\frac{D}{\partial v} \frac{D}{\partial u} x_{u}-\frac{D}{\partial u} \frac{D}{\partial v} x_{u}=K\left(x_{u} \times x_{v}\right) \times x_{u}
$$

Proof. More direct computation with Christoffel symbols.
Remark 15.10. Philosophically, "curvature is something you can see by changing the orders of derivatives".

Lemma 15.11

Let $h:[0, \ell] \times(-\varepsilon, \varepsilon) \rightarrow S$, and let $W(s, t)=\frac{\partial h}{\partial t}(s, t)$ be a differential vector field along h. Then we have

$$
\frac{D}{\partial t} \frac{D}{\partial s} W-\frac{D}{\partial s} \frac{D}{\partial t} W=K(s, t)\left(\frac{\partial h}{\partial s} \times \frac{\partial h}{\partial t}\right) \times W
$$

Theorem 15.12 (The Second Variation)

Suppose γ is a geodesic parametrized by arc length, and $h:[0, \ell] \times(-\varepsilon, \varepsilon) \rightarrow S$ be a proper orthogonal variation of of γ. Letting V be its variational vector field,

$$
L^{\prime \prime}(0)=\int_{0}^{\ell}\left(\left\|\frac{D}{\partial s} V(s)\right\|^{2}-K(s)\|V(s)\|^{2}\right) d s
$$

where $K(s)$ is the Gaussian curvature at $h(s, 0)=\gamma(s)$.

Proof. We take the derivative of the formula

$$
L^{\prime}(t)=\int_{0}^{\ell} \frac{\left\langle\frac{D}{\partial s} \frac{\partial h}{\partial t}(s, t), \frac{\partial h}{\partial s}(s, t)\right\rangle}{\left\langle\frac{\partial h}{\partial s}(s, t), \frac{\partial h}{\partial s}(s, t),\right\rangle^{\frac{1}{2}}}
$$

that we previously obtained. Move the differential operator through the integral sign. This gives us, by repeatedly applying Product Rule,

$$
L^{\prime \prime}(0)=\int_{0}^{\ell}\left[\left\langle\frac{D}{\partial t} \frac{D}{\partial s} \frac{\partial h}{\partial t}(s, 0), \frac{\partial h}{\partial s}(s, 0)\right\rangle+\left\|\frac{D}{\partial s} V(s)\right\|^{2}-\left\langle\frac{D}{\partial s} V(s), \frac{\partial h}{\partial s}(s, 0)\right\rangle\right] d s
$$

Do some further computation now.

§15.4 Proof of Bonnet Theorem

Now that we have $L^{\prime}(0)$ and $L^{\prime \prime}(0)$ we can prove Bonnet's Theorem.
Assume S is complete, and $K \geq \delta$ at all points of S. Consider two points p and q such that the distance p, q is maximized, and let $\gamma:[0, \ell] \rightarrow S$ be the minimal geodesic which joins them (permissible by the Hopf-Rinow Theorem). Now assume for contradiction $\ell>\frac{\pi}{\sqrt{\delta}}$ Thus we have $L^{\prime}(0)=0$. But if we can show $L^{\prime \prime}(0)<0$, then we will have shown
γ is in fact a local maximum and this will be a contradiction. (To see this: imagine the long geodesic joining two points on a sphere. While locally the shortest path, globally it is longer than any perturbation.)

Consider proper variations V; we have

$$
L^{\prime \prime}(0)=\int_{0}^{\ell}\left[\left\|\frac{D}{\partial s} V(s)\right\|^{2}-K(s)\|V(s)\|^{2}\right] d s
$$

Pick a tangent vector $w_{0} \in T_{p}(S)$ such that $w_{0} \perp \gamma^{\prime}(0)$ and $\left\|w_{0}\right\|=1$, and let $w(t)$ be a parallel transport of w_{0} along γ. Then we define $V(s)$ again by

$$
V(s)=\sin \left(\frac{\pi}{\ell} s\right) w(s)
$$

As $V(0)=V(\ell)=0$, we again can construct an h corresponding to it. Then direct calculation gives

$$
\begin{aligned}
\frac{D}{\partial s} V(s) & =-\frac{\pi}{\ell} \cos \left(\frac{\pi}{\ell} s\right) w(s)+\underbrace{\sin \left(\frac{\pi}{\ell} s\right) \frac{D}{\partial s} w(s)}_{=0} \\
\left\|\frac{D}{\partial s} V(s)\right\|^{2} & =\frac{\pi^{2}}{\ell^{2}} \cos ^{2}\left(\frac{\pi}{\ell} s\right) \\
\|V(s)\|^{2} & =\sin ^{2}\left(\frac{\pi}{\ell} s\right) .
\end{aligned}
$$

If $K \geq \delta>\frac{\pi^{2}}{\ell^{2}}$, then we have

$$
L^{\prime \prime}(0)<-\frac{\pi^{2}}{\ell^{2}} \int_{0}^{\ell}\left(\cos ^{2}\left(\frac{\pi}{\ell} s\right)-\sin ^{2}\left(\frac{\pi}{\ell} s\right)\right) d s<-\frac{\pi^{2}}{\ell^{2}} \int_{0}^{\ell}\left(\cos \left(2 \frac{\pi}{\ell} s\right)\right) d s=0
$$

which is the desired contradiction.
The choice of \sin is designed for the ending. If we had used an arbitrary function f as before, we would have $\left\langle f^{\prime \prime}(s)+k(s) f(s), f(s)\right\rangle$. So we choose a function f for which this becomes a zero integral.

§A Examples

Here is a collection of facts about some common examples. Recall for convenience that

$$
K=E G-F^{2} \quad \text { and } \quad H=\frac{1}{2} \frac{e G-2 F f+g E}{E G-F^{2}} .
$$

$\S A .1$ Sphere

Parametrize the unit sphere S^{2} in \mathbb{R}^{3} by $x(u, v)=(R \cos u \cos v, R \cos u \cos v, R \sin v)$.

$$
\begin{aligned}
& E=R^{2}, F=0, \\
& e=R, f=0, \\
& e=(R \cos u)^{2} \\
& \cos ^{2} u .
\end{aligned}
$$

The Gauss curvature at all points is the constant $K=\frac{1}{R^{2}}$. The mean curvature for this parametrization is $H=\frac{1}{R}$. The geodesics are the great circles.

The genus of S^{2} is zero, so its Euler characteristic is 2. This surface is a compact oriented manifold without boundary.

§A. 2 Torus

Parametrize a torus by $x(u, v)=((a+r \cos u \cos v),(a+r \cos u \sin v), r \sin u)$.

$$
\begin{gathered}
E=r^{2}, \quad F=0, \quad G=(a+r \cos u)^{2} \\
e=r, \quad f=0, \quad g=\cos u(a+r \cos u) .
\end{gathered}
$$

The Gauss curvature is

$$
K=\frac{\cos u}{r(a+r \cos u)} .
$$

The mean curvature is

$$
H=\frac{a+2 r \cos u}{2 r(a+r \cos u)} .
$$

The genus of $S^{1} \times S^{1}$ is 1 , so its Euler characteristic is 0 . This surface is a compact oriented manifold without boundary.

§A. 3 Cylinder

Parametrize the cylinder by $x(u, v)=(R \cos u, R \sin u, v)$. Then

$$
\begin{array}{ll}
E=R^{2}, & F=0, \\
e=-R, & f=0, \\
e=0 .
\end{array}
$$

The Gauss curvature is $K=0$ everywhere. The mean curvature at all points is $-\frac{1}{R}$. The geodesics are helixes, including meridians and vertical lines.

This surface is not compact, but it is orientable, with empty boundary. It has genus 1 and Euler characteristic zero.

