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§6 February 26, 2018 (Monday)

I actually missed this lecture since I was just getting back from Romania.

§6.1 Setup

Let P = C ∪ {∞} = CP1 denote the Riemann sphere, viewed as the complex plane plus

an infinity point. Each α =

[
a b
c d

]
∈ GL2(C) gives an automorphism of P by

α · z =
az + b

cz + d

the so-called fractional linear transformation. By elementary geometry, these maps clines
in P to other clines.

Define

H = {z ∈ C | Im z > 0} upper half plane

D = {z ∈ C | |z| < 1} unit disk.

Lemma 6.1

There is a complex analytic isomorphism H→ D given by the automorphism

ρ =

[
1 −i
1 i

]
.

§6.2 Automorphisms of the upper half plane

Suppose α has real entries and detα > 0. For such α we have z ∈ H =⇒ αz ∈ H, since
Imαz = detα Im z

|cz+d|2 . Thus, we can define

GL+
2 (R) = {α ∈ GL2(R) | detα > 0} .

This gives a natural map
ι : GL+

2 (R)→ Aut(H).

Proposition 6.2

The map ι induces an isomorphism

Aut(H) ' GL+
2 (R)/R× ' SL2(R)/{±1} = PSL2(R).

It follows that

Aut(D) = ρAut(H)ρ−1

= ρSL2(R)ρ−1/{±1}

=

{
α =

[
u v
v u

]
| u, v ∈ C, detα = 1

}
/{±1}

= SU(1, 1)/{±1}
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the special unitary group of signature (1, 1) over C.
Let H∗ = H ∪ R ∪ {∞} be the compactification of H, and let D∗ = {z ∈ C | |z| ≤ 1}

be the compactification of D (closed unit disk). The automorphism ρ then extends to
ρ : H∗ → D∗ sending ∞ 7→ 1, and R 7→ S1.

§6.3 Types of actions

Definition 6.3. Let γ ∈ GL+
2 (R), with discriminant d = tr(γ)2 − 4 det γ. We say:

• γ is elliptic if d < 0. Its eigenvalues are complex conjguates and it fixes a unique
point of H.

• γ is parabolic if d = 0; it has a double real eigenvalue and thus fixes a unique
point of x ∈ R ∪ {∞}.

• γ is hyperbolic if d > 0; it has two different real eigenvalues and thus fixes two
point of x, x′ ∈ R ∪ {∞}.

Definition 6.4. Let Γ be a group acting on a space X. We say Γ acts properly
discontinously on X if for any points x and y in X, there exist neighorhoods U 3 x
and V 3 y such that #{γ ∈ Γ | γU ∩ V 6= ∅} <∞.

Theorem 6.5 (Fuchsian group)

For Γ ⊆ SL2(R), Γ acts properly discontinously on H if and only if Γ is a discrete
group. In that case we say, Γ is a Fuchsian group.

§6.4 Some important special cases

So we defined elliptic/parabolic/hyperbolic with respect to fixed points of H and R∪{∞}.
However, in practice, if we want to do coordinate calculations we will basically always
conjugate by an element σ such that the fixed points move to either i, ∞, and 0. This
way the entries of the matrix are super nice.

So, we first work out which automorphisms fix i:

SL2(R)i = {α ∈ SL2(R) | αi = i} = SO2(R)

GL+
2 (R)i =

{
α ∈ GL+

2 (R) | αi = i
}

= R× · SO2(R)

where SO2(R) is the special orthogonal group

SO2(R) =

{[
cos θ sin θ
− sin θ cos θ

]}
.

In addition,

GL+
2 (R)∞ =

{[
a b
0 d

]
| a, d ∈ R×, b ∈ R, ad > 0

}
with the parabolic elements are those with a = d.

As for hyperbolic points, we can conjugate so the fixed points are 0 and ∞; in this case

GL+
2 (R)0,∞ =

{[
a 0
0 d

]
| a, d ∈ R×, ad > 0

}
and so hyperbolic points boil down to conjugates of diagonal matrices.
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§6.5 Group actions

The space H, acted on by SL2(R), is a homogeneous space (i.e. a topological space
with a transitive group action).

We need the following theorem.

Theorem 6.6 (Homeomorphism given by homogeneous spaces)

Let G be a topological group and X a homogeneous space acted on by G. Assume
that G is locally compact with a countable basis, and X is a locally compact
Hausdorff space. Let x ∈ X and let Gx = {g ∈ G | gx = x} denote the stabilizer.
Then the space of right cosets is homeomorphic to X by the map

G/Gx → X by gGx 7→ gx.

Applying this result to G = SL2(R) acting on X = H, where i is the stabilizer, gives

Theorem 6.7

We have an homeomorphism

SL2(R)/ SO2(R)→ H by α · SO2(R) 7→ αi.

An even stronger condition:

Definition 6.8. A principal homogeneous space (known also as “torsor”) is a
homogeneous space in which the stabilizer is trivial. Then G ' X.
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§7 February 28, 2018 (Wednesday)

§7.1 Geodesic spaces

Let (X, d) be a metric space.

Definition 7.1. An isometry of a metric space (X, d) is a distance-preserving bijection
g : X → X.

Remark 7.2. Isometries are automatically homeomorphisms in the category of topologi-
cal spaces, but they need not be holomorphic when X is a Riemann surface (conjugation).

Definition 7.3. Let x and y be two points of a metric space (X, d). A path γ from x
to y (which we abbreviate γ : x→ y) is a continuous map γ : [a, b]→ X, where x = γ(a)
and y = γ(b). The length of the path is

`(γ) = sup
α=t1≤···≤tn=b

n−1∑
i=1

d (γ(ti), γ(ti+1)) .

The path γ is rectifiable if `(γ) <∞.

Note that isometries preserve path length.
On the other hand, we can try to recover a metric from a given length function

` : Hom([a, b], X)→ R≥0 ∪ {∞}, by defining

d(x, y) = inf
γ:x→y

`(γ)

which is a metric as long as rectifiable paths exist between any two points. If these form
a metric, then X is a length space.

Theorem 7.4 (Characterization of metric spaces arising from a length function)

A metric space (X, d) is a length space if and only if X is locally compact, complete,
and satisfies Menger convexity: for any distinct x, y ∈ X there is some point
z ∈ X which satisfies d(x, z) + d(z, y) = d(x, y).

Definition 7.5. Let (X, d) be a length space with length `. A rectifiable path γ : x→ y
is a geodesic segment if it achieves the minimum length d(x, y).

As usual, this is preserved by isometries.

Definition 7.6. A geodesic is a continuous map (−∞,∞)→ X such that restrictions
to compact intervals are geodesic segments. (Think “line” and “line segment” in Rn.)
A length space X in which every x, y ∈ X are connected by a geodesic segment are
geodesic spaces.

Let X be a real manifold and a chart ψ : U → V ⊆ Rn. Then we can compute lengths
of a path γ : [a, b]→ U ⊆ X using any metric or length element on Rn. For example, the
Euclidean metric ds =

√
dx2

1 + · · ·+ dx2
n gives a length function

`(γ)
def
= `(ψ ◦ γ) =

∫ b

a

√∑(
dxi
dt

)2

dt.

for γ : [a, b]→ U a path More generally, if λ : V → R>0 is any continuous function then
λ(~x) ds is also a length function.
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§7.2 Hyperbolic length

We now wish to make H into a geodesic space, which is certainly a real manifold.

Definition 7.7. The hyperbolic length element is

ds =
|dz|
Im z

=

√
dx2 + dy2

y
.

This induces a metric ds2 = dx2+dy2

y2 (which turns out to be Riemannian but we won’t

need that). Then given a path γ : [a, b]→ H, writing γ(t) = x(t) + y(t) we get

`(γ) =

∫ b

a
ds(γ(t)) =

∫ b

a

√
(dx/dt)2 + (dy/dt)2

y(t)
dt.

Proposition 7.8

The hyperbolic length makes H into a geodesic space.

Remark 7.9. This does not change H as a topological space from the Euclidean one,
but it is different as a geodesic space. It should be emphasized that geodesic spaces are
more than just topological spaces, because the exact metric matters: the set of geodesics
will be different.

Moreover, once we have the length element ds, we get a corresponding form

dA =
dxdy

y2

which gives us a measure µ(S) =
∫∫
S dA, invariant under Isom(H).

The correspondence measures on D are

ds =
2|dw|

1− |w|2

dA =
4 dx dy

(1− x2 − y2)2
.

Theorem 7.10

The map SL2(R) acts on H via (orientation preserving) isometries. In fact

PSL2(R) ' Isom+(H) ' Aut(H)

where Isom+(H) is the set of orientation preserving isometries.

Proof. Suffices to show d(αs) = ds, which is a computation.

Remark 7.11. Any two points in H are connected by a unique geodesic, which is a
either a semicircle whose diameter lies along R, or (if x and y have the same real part) a
vertical line through them (still perpendicular to R).
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§7.3 Iwasawa decomposition

Definition 7.12. We have a homeomorphism

N ×A×K '−→ SL2(R) (n, a, k) 7→ nak

where

N =

{[
1 b
0 1

]
| b ∈ R

}
A =

{[
a 0
0 1/a

]
| a ∈ R

}
K = SO2(R) ' U(1) ' R/Z.

Proof. The map is continuous and open, so we need to show it is a bijection.

• Injective: note from definition that NA ∩K = {1} = N ∩ A. If n1a1k1 = n2a2k2

now then then a−1
2 n−1

2 n1a1 = k2k
−1
1 ∈ K, so both are 1, then n−1

2 n1 = a2a
−1
1 , so

both are 1.

• Surjective: Here is an outline. For α ∈ SL2(R), let z = αi. Let n =

[
1 −Re z
0 1

]
.

So nα = z − Re z = xi for some x ∈ R. Then a =

[
1/
√
x 0

0
√
x

]
∈ A. Whee.

This is called the Iwasawa decomposition of SL2(R) Thus every element of SL2(R)
is of the form nak. This map is not a homomorphism, but it is a homeomorphism since
it is given by multiplication in topological groups.

The picture is: “first it rotates (through K), then it scales (through A), then it
translates (through N)”.

§7.4 Fuchsian group

We return to a Fuchsian group Γ ⊆ SL2(R). At this point, a minor annoyance is that

we might have −1 =

[
−1 0
0 −1

]
∈ Γ but −1 acts as the identity. Let us introduce some

notation to get rid of ±1 signs.

Definition 7.13. We denote Z(Γ)
def
= Γ ∩ {±1}. Thus Z/Γ(Z) is the image of Γ in

PSL2(R), and we have a map

SL2(R)→ Aut(H) by Γ 7→ Γ/Z(Γ).

Definition 7.14. For z ∈ H∗, if z is a fixed point of α ∈ Γ with α /∈ Z(Γ), then we call
z elliptic/parabolic/hyperbolic according to what α is.

If z is parabolic, we also say it is a cusp.

Definition 7.15. For z ∈ H, x 6= x′ ∈ R ∪ {∞} we write:

Γz
def
= Γ ∩ SL2(R)z

Γx
def
= Γ ∩ SL2(R)x

Γx,x′
def
= Γ ∩ SL2(R)x,x′

to denote the elements of Γ fixing them. (Recall we are using Gx for the G-stabilizer of a
point x.)

8



Evan Chen (Spring 2018) 18.786 (Number Theory II) Lecture Notes

Theorem 7.16 (Stabilizers of points in H∗)
In each of the three cases:

• If z ∈ H is elliptic, then Γz is a finite cyclic group.

• If x ∈ R∪{∞} is parabolic (a cusp), then Γx contains only parabolic elements,
and moreover and Γx/Z(Γ) ' Z.

• If Γx,x′ 6= Z(Γ) then Γx,x′/Z(Γ) ' Z.

Proof. • As Γ is discrete, so is Γz. But we have SL2(R)z is conjugate to SL2(R)i ∼=
U(1) which is a compact abelian group. This implies finite and cyclic.

• WLOG x = ∞ by conjugation via a translation. By hypothesis, since x = ∞ is

parabolic, Γ∞ contains some nontrivial parabolic matrix, say

[
1 e
0 1

]
.

We now prove that Γx contains only parabolic elements. Assume for contradiction

α is not parabolic, then write α =

[
a b
0 a−1

]
where a 6= ±1. If WLOG |a| < 1, then

αn
[
1 e
0 1

]
α−n =

[
1 a2ne
0 1

]
which contradicts the fact that Γ was supposed to be discrete.

Hence Γ∞ contains only parabolic elements, and it is a discrete subgroup of

N =

{[
1 b
0 1

]
| b ∈ R

}
. Since N ∼= R as an additive topological group, any discrete

subgroup must be isomorphic to Z, as desired.

• Again by conjugation, Γx,x′ is conjugate to a discrete subgroup of

SL2(R)0,∞ ⊆ A =

{[
a 0
0 a−1

]}
R×/{±1}.

By taking log’s we get the same conclusion as before.

Definition 7.17. For z ∈ H, let ez
def
= #Γz/Z(Γ) denote the order of z ∈ H.

Remark 7.18. From here it follows that:

• A point z ∈ H is elliptic (as opposed to nothing) if and only if ez > 1. This order
is finite.

• For x ∈ R,

– If x is a cusp or hyperbolic, it has infinite order.

– These possibliites are mutually exclusive (since the second part of the theorem
implies that no parabolic point is hyperbolic).

Corollary 7.19

If Γ′ is a finite index subgroup of the Fuchsian group Γ then then each cusp of Γ′ is
a cusp of Γ.
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Proof. If x is a cusp of Γ, then [Γx : Γ′ ∩ Γx] ≤ [Γ : Γx] <∞. So Γ′x = Γ′ ∩ Γx 6= Z(Γ),
since Γx/Z(Γ) ' Z is infinite.

Suppose −1 /∈ Γ, and x is a cusp of Γ. For σ ∈ SL2(R) with σx =∞, we have

σΓxσ
−1 =

{
±
[
1 h
0 1

]
| m ∈ Z

}
⊆ SL2(R)∞

for some fixed h > 0 Then −1 /∈ Γ means either

•
[
1 h
0 1

]
∈ σΓxσ

−1, in which we case x is a regular cusp, or

•
[
−1 h
0 −1

]
∈ σΓxσ

−1, in which case we say it is an irregular cusp.

This doesn’t depend on the choice of σ.

Remark 7.20. If −1 /∈ Γ then every elliptic point has odd order. Indeed, if α ∈ SL2(Z)
and α2 = 1 then α = ±1. Thus Γz should not have even order.
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§8 March 5, 2018 (Monday)

§8.1 Fundamental domains and Dirichlet domains

Definition 8.1. A fundamental domain for a Fuchsian Γ is a closed connected set
F ⊆ H with two properties:

• The translates of F cover H (succinctly, H = ΓF ).

• Let γ ∈ Γ act nontrivially (meaning γ /∈ Z(Γ)). Let F ◦ denote the interior of F .
Then γF ◦ ∩ F ◦ = ∅.

So these are almost like a choice of representatives, but there is overlap permitted on the
boundary.

Definition 8.2. A Dirichlet domain for Γ is a set of the form

Fz0
def
= {z ∈ H | d(z, z0) ≤ d(γz, z0) ∀γ ∈ Γ} .

(You can think of them as intersections of half-planes.)

It’s not obvious this is a domain (or even that it’s closed and connected) but we will
prove this and more.

Proposition 8.3

A Dirichlet domain is a fundamental domain with the following additional properties:

• If γ ∈ Γ \ Z(Γ), then F ∩ γF is a connected subset of a geodesic (i.e. empty, a
point, or a geodesic segment or ray).

• Let A be a compact subset of H. Then

#{γ ∈ Γ | A ∩ γF} <∞.

In other words, F is locally finite.

Proof. Let F = Fz0 in what follows. For γ not fixing z0, define

Fγ
def
= {z ∈ H : d(z, z0) ≤ d(z, γz0)}

Uγ
def
= {z ∈ H : d(z, z0) < d(z, γz0)}

Cγ
def
= {z ∈ H : d(z, z0) = d(z, γz0)} .

Thus Fz0 =
⋂
γ Fγ .

We now prove them any properties.

F is connected On problem set 2 it will be proved that Cγ is a geodesic, and that Fγ is
convex in the hyperbolic metric (for any x and y in Fγ the geodesic joining x and
y lies in Fγ). Also,

H = Uγ t Cγ t γUγ−1

since zinγUγ−1 ⇐⇒ γ−1z ∈ Uγ−1 ⇐⇒ d(γ−1z, z0) < d(γ−1z, γ−1z0) ⇐⇒
d(z, γz0) < d(z, z0). Moreover,

F =
⋂
γ

Fγ

is the intersection of convex sets, hence convex, hence connected.
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F is closed We now check F is closed. Suppose not and (zn) is a sequence in F ,
approaching z /∈ F . Then there is a γ ∈ Γ such that d(z, γz0) < d(z, z0). On the
other hand, let r = d(z, z0)− d(z, γz0) > 0. Pick r such that d(z, zn) < r/3, then

d(zn, γ0) ≤ d(zn, z) + d(z, γz0)

= d(zn, z) + d(z, z0)− r

≤ −2

3
r + d(z, z0)

≤ −2

3
r + d(z, zn) + d(zn, z0)

≤ −1

3
r + d(zn, z0) < d(zn, z0)

contradiction to zn ∈ F . This shows F is closed.

Translates of F cover H Next, we show that H = ΓF . Given z1 ∈ H, let A and B be
compact balls about z0, z1 of radius D(z0, z1). Then

0 < #{γ ∈ Γ : γA ∩B 6= ∅} <∞

and there exists γ1 ∈ Γ such that

d(z1, γ1z0) ≤ d(z1, γz0) ∀γ ∈ Γ.

This implies d(γ−1z1, z0) ≤ d(γ−1z1, γz0) for every γ ∈ Γ. Hence γ−1
1 z1 ∈ F , and

so z1 ∈ γF as desired.

Interiors of translates do not overlap Finally, we check γF ◦ ∩ F ◦ = ∅ for γ /∈ Z(Γ).
Let F ◦ =

⋂
γ Uγ . Now, if z1 ∈ F ◦, then d(z1, z0) < d(z1, γz0) = d(γ−1z1, z0).

But if z1 ∈ γF ◦ too then d(γ−1z1, z0) < d(γ−1z1, γ
−1z0) = d(z1, z0), which is a

contradiction.

The set F ∩ γF is a subset of a geodesic This is almost the same as the previous proof,
with ≤ replaced by =. Recall that F ∩ γF is closed and convex, hence connected.

We now repeat the same argument: if z1 ∈ Fγ , then d(z1, z0) ≤ d(z1, γz0) =
d(γ−1z1, z0) and if z1 ∈ γFγ too then d(γ−1z1, z0) ≤ d(γ−1z1, γ

−1z0) = d(z1, z0).
Consequently, d(z1, z0) = d(z1, γz0). Hence F ∩ γF is contained in the geodesic Cγ .

Translates intersect compact sets in finitely many sets Since A is compact, it has at
most finitely many connected components. So WLOG let A be compact and
connected (by looking at any component). Then

# {γ ∈ Γ | A ∩ γF 6= ∅} = #
{
γ ∈ Γ | γ′A ∩ γF 6= ∅

}
for any γ′ ∈ Γ, so WLOG assume A ∩ F 6= ∅.

Assume A∩δF 6= ∅ for some δ ∈ Γ−Z(Γ). Then A intersect F ∩δF . Consequently,
A ∩ Cδ 6= ∅. Pick r so that A ⊆ Br(z0), so Br(z0) ∩ Cδneq∅. Then d(z1, z0) =
d(z1, δz0) ≤ r and

# {γ ∈ Γ : d(z0, γz0) ≤ r} = # {γ ∈ Γ1 : γ{z0} ∩Br(z0) 6= ∅} <∞.

Now for γ ∈ Γ−Z(Γ), we note that Lγ
def
= F ∩ γF is a connected subset of a geodesic.

12
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Definition 8.4. If #Lγ > 1, then Lγ is infinite and called a side of F . Then ∂F = F−F ◦
is a union of sides, and any two sides are disjoint or intersect in a vertex.

Thus the connected components of the boundary look likes a sequence of sides L1,
L2, . . . , where Li ∩ Li+1 meet in a single vertex, called endpoints. We also consider
geodesic rays as having endpoints at infinity.

Example 8.5

Let Γ = SL2(Z), generated by S =

[
0 −1
1 0

]
and T =

[
1 1
0 1

]
. Then the usual

fundamental domain F has three sides with two vertices and an endpoint at infinity
(see picture).

http://arkadiusz-jadczyk.eu/blog/2017/04/dedekind-tessellation-circles/

Remark 8.6. If Γ is finitely generated (which will happen in all the cases we care about),
there is an algorithm that computes these fundamental domains.

§8.2 Quotient spaces

Our goal is to get a compact Riemann surface by quotient-ing H by the action of Γ.
The quotient of a Hausdorff space may not be Hausdorff but the following lemma gives

a criteria for spaces X with action by a group G that we will use. (I think the converse is
not true, but in this course it is the criteria we will always use anyways. The hypothesis
is weaker than properly discontinuous though, as we are about to see.)

Lemma 8.7

Let X be a topological space with an action by a group G. Suppose for all x, y ∈ X,
there are neighbors U 3 x and V 3 y such that gU ∩ V 6= ∅ ⇐⇒ gx = y for g ∈ G.
Then the quotient space G \X is Hausdorff.

13
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Proof. Easy. If π : X → G \X is the projection, it is an open map, and π(U) and π(V )
will be the desired neighborhoods of π(x) and π(y) whenever x and y are not in the same
orbit.

Definition 8.8. Let PΓ = {x ∈ R ∪ {∞} a cusp of Γ}. We extend the upper half-plane
H by “just a little bit” and define

H∗Γ = H ∪ PΓ.

Then for any ` > 0, we define U`
def
= {z ∈ H | Im z > `} and U∗` = U` ∪ {∞}. Then we

define a topology on H∗Γ as follows:

• For z ∈ H, the fundamental system of neighborhoods is the same as in H.

• For x ∈ PΓ, we know SL2(R) acts transitively on R (although Γ might not!) and
we thus pick σ ∈ SL2(R) with σx = ∞. Then, we pick a fundamental system of
neighborhoods {

σ−1U∗` | ` > 0
}
.

Example 8.9

This means that in H∗Γ, the neighborhoods of ∞ are quite large: containing huge
swaths of the upper-half plane above some point. In this sense it might be more
accurate to write i∞ instead of ∞, but we will not do so.

Then Γ acts on H∗Γ: but it does not act properly discontinuously! Indeed, recall that:

Let Γ be a group acting on a space X. We say Γ acts properly disconti-
nously on X if for any points x and y in X, there exist neighorhoods U 3 x
and V 3 y such that #{γ ∈ Γ | γU ∩ V 6= ∅} <∞.

If we let x = y = ∞, then we run into issues. Indeed, the neighborhoods of of ∞ are
exactly the U∗` ’s, and taking γ to be any translation (of which there are infinitely many)
is bad. In fact:

{±1}Γ∞ =

{
±
[
1 h
0 1

]
| h ∈ R

}
.

So there is some work to do:

Lemma 8.10

Suppose ∞ is a cusp of Γ and write

{±1}Γ∞ =

{
±
[
1 h
0 1

]n
| n ∈ Z

}
.

for some h > 0. Then for any γ =

[
a b
c d

]
∈ Γ, if |ch| < 1 then γ ∈ Γ∞.

14
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Lemma 8.11

Let x1, x2 ∈ PΓ and σ1, σ2 with σx1 = σx2 = ∞. Write σiΓxiσ
−1
i {±1} ={

±
[
1 hi
0 1

]n
| n ∈ Z

}
for i = 1, 2. If `1 and `2 satisfy `1`2 > |h1h2| then

γσ−1
1 U`1σ

−1
2 U`2 6= ∅ =⇒ γx1 = x2.

These two lemmas give:

Corollary 8.12

Let x ∈ Pγ , σx =∞. Write σΓxσ
−1{±1} =

{
±
[
1 h
0 1

]n
| n ∈ Z

}
for h > 0. Then:

• For ` > h we have γσ−1U` ∩ σ−1U` 6= ∅ =⇒ γ ∈ Γx.

• For any compact A ⊆ H, there exists ` such that A ∩ γσ−1U` = ∅ for γ ∈ Γ.

Consequently,

Corollary 8.13

The action of Γ on H∗Γ satisfies Lemma 8.7 and thus gives a Hausdorff quotient space
Γ \H∗Γ.

Theorem 8.14

If the space Γ \H∗Γ is compact, then the number of ellipic points and cusps is finite.

Proof. Let a = π(z) ∈ Γ/H∗Γ, and π : H∗Γ → Γ \H∗Γ Choose a neighborhood U 3 z so that
∀γ ∈ Γ, we have γU ∩ U 6= ∅ =⇒ γz = z. Then π(U)− {a} has no elliptic points or
cusps.

As π(U) is open, compactness implies finitely many π(U) cover Γ \H∗Γ.

This now gives us the following definition.

Definition 8.15. A Fuchsian group of the first kind is a Fuchsian group Γ such
that Γ \H∗Γ is compact.

15
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§9 March 7, 2018 (Wednesday)

§9.1 More on Dirichlet domains

Recall the definition of a Fuchsian group of first kind.

Definition 9.1. Let F be a Dirichlet domain for Γ. If x ∈ R ∪ {∞} is the endpoint of
two disjoint sides, we call x a proper vertex of F on R ∪ {∞}.

Lemma 9.2

Proper vertices are not hyperbolic points.

Proof. Let x ∈ R ∪ {∞} be a proper vertex. Assume for contradiction x is hyperbolic,

i.e. fixed by γ ∈ Γ. WLOG x =∞, and γ =

[
a 0
0 d

]
where a 6= d and a/d < 1. Then the

two sides ending in x lie on the geodesics

Re z = b1, Re z = b2, b1 < b− 2.

Let
M` = {z ∈ H | Im z ≥ `, b1 ≤ Re z ≤ b2}

and note that for large enough ` we have M` ⊂ F due to local compactness around
the point ∞.. Let U be an open neighborhood of i with A = U compact. Then for all
sufficiently large N ∈ Z, we have A ∩ γnF ⊇ A ∩ γnM 6= ∅ which contradicts locally
finite.

§9.2 Complex structure on H∗Γ
Let

π : H∗Γ → Γ \H∗Γ
be the quotient map. Let z0 ∈ H∗Γ and let p ∈ π(z0) ∈ Γ \H∗Γ. We want to define a chart
tp on π(U) for some open neighborhood U of z0.

• If z is ordinary (not elliptic or a cusp1), equivalently Γp = Z(Γ), then we pick
any open neighborhood of U 3 z0 such that γU ∩ U 6= ∅ ⇐⇒ γ ∈ Γz0 = Z(Γ)
(possible since locally finite). Let Vp = π(U), then V is an open neighborhood of p
homeomorphic to U via π. Hence we define the chart in this case as

tp : Vp
π−1

−−→ U ⊆ C.

• If p is elliptic, then we proved that Γz0/Z(Γ) is a finite cyclic group. Pick ρ ∈ SL2(C),
viewed as ρ : H→ D, such that ρ(z0) = 0. Let Br = {z ∈ C : |z| < r} be a ball of
radius r around the origin, and let U = ρ−1(Br) with r > 0 small enough such that
γU ∩ U 6= ∅ ⇐⇒ γ ∈ Γz0 .

Now by Schwartz’s lemma, ρΓz0ρ
−1 is a rotation of D about U by 2πn

e where
e = #Γ0/Z(Γ). Thus Γz0U = U , so we have homeomorphisms

π(U) ' Γz0 \ U ' ρΓz0ρ
−1 \Br.

1Note that H∗Γ has no hyperbolic points by definition

16
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Let φ : Br → Br defined by φ(w) = we. Then |phi is invariant under rotation by

2π/e and induces a homoeomorphism φ1 : ρΓ0ρ
−1 \Br

'−→ Br.

Diagram:

U Br

Vp = π(U) Γz0 \ U ρΓz0ρ
−1 \Br. Bre

ρ

π π
φ

π

∼ ∼ ∼
φ1

We then let tp be the map Vp → Bre in the bottom row, meaning it is the unique
map satisfying

tp ◦ π(z) = (ρz)e.

• Finally, assume p = π(z0) as a cusp. Pick σ ∈ SL2(R) so σ(z0) = ∞, and
U∗ = σ−1U∗` , and finally

U∗` = {z ∈ H | Im z > `} ∪ {∞}

where ` is large enough so that

γU∗` ∩ U∗` 6= ∅ ⇐⇒ γ ∈ Γz0 .

Then Vp = π(U∗) is homeomorphic to Γz0 \ U∗` ' σΓz0σ
−1 \ U∗` . Let

σΓz0σ
−1{±1} =

{
±
[
1 h
0 1

]n
| n ∈ Z

}
for some h > 0. Then define

Ψ(z)
def
=

{
exp

(
2πiz
h

)
z ∈ U`

0 z =∞

and Ψ1 : σΓz0σ
−1 \ U∗` → Br, where r = exp(−2π`

h ).

Finally, we define tp according to the diagram

U∗ U∗`

Vp = π(U) Γz0 \ U∗ ρΓz0ρ
−1 \ U∗` . Bre

σ

π
π

ψ
π

∼ ∼ ∼
ψ1

in other words, satisfying

tp ◦ π(z) =

{
exp

(
2πiσz
h

)
z ∈ U

0 z = z0.

One can verify that the transition maps are holomorphic, and so XΓ = Γ \ H∗Γ is a
Riemann surface (which is connected, since F is connected).

Definition 9.3. For p ∈ π(z0) ∈ XΓ, define ep = #Γz0/Z(Γ) to be the ramification
index of p.

This has the propertythat

17
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• ep = 1 iff p is ordinary

• 1 < ep <∞ iff p is elliptic

• ep =∞ iff p is a cusp.

Theorem 9.4

If Γ \H is compact, then Γ has no cusps.

Proof. Suppose x ∈ R∪{∞} is a cusp. Let p = π(x) ∈ Γ\H∗Γ and choose a neighborhood
of Vp of p such that Vp ∩ (Γ \H) = Vp −{p} = {z ∈ C | 09 < |z| < r} for some r > 0; but
this punctured disk is not compact. Yet, Vp ∩ Γ \H is closed and since Γ \H is compact
we are supposed to have Vp ∩ Γ \H be compact, contradiction.

§9.3 Comments on Riemann surfaces

Recall that meromorphic functions on the Riemann surface XΓ should form a field K(XΓ)
or C(XΓ). When XΓ is compact, holomorphic functions are constant and C(XΓ) has
transcendence degree 1, hence is an algebraic extension of C(t).

For nonconstant φ ∈ C(XΓ) we define

n0(σ) =
∑

vp(φ)>0

vp(φ)

to be the number of 0’s with multiplicity, while

n∞(σ) =
∑

vp(φ)<0

−vp(φ)

is the number of poles with multiplicity. Then

[C(XΓ) : C(φ)] = n0(φ) = n∞(φ).

Also, recall that for compact Riemann surfaces X and Y , any nonconstant morphism
f : X → Y is surjective, and hence we say it is a cover of Riemann surfaces. This induces
a map of function fields

f× : K(Y )→ K(X) φ 7→ φ ◦ f

and hence we can define deg f
def
= [K(X) : K(Y )]f . Hence, for any q ∈ X we can define a

ramification index eq,f = vq(tα ◦ f), where tα is some chart at f(p). Then for any p ∈ Y
we have

deg f =
∑

q∈f−1(p)

eq,f .

Let χ(X) denote the Euler characteristic of a compact Riemann surface X (defined
via a triangulation, for example; this works because we are in the very concrete context
of Euler characteristic). Since our manifolds have no boundary χ(X) is even.

Definition 9.5. We define the genus of a Riemann surface X by

g(X) =
2− χ(X)

2
∈ Z≥0.

18
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Then we have the Riemann-Hurwitz formula: for any cover f : X → Y ,

2g(X)− 2 = (deg f) (2g(Y )− 2) +
∑
q∈X

(eq,f − 1) .

Example 9.6

If Γ = SL2(Z) and we take F to be the usual fundamental domain, then upon adding
the point at ∞ we get a “triangle”; then χ(XΓ) = 2 and hence g(XΓ) = 0.

§9.4 Another criteria for Fuchsian groups

We will show in this section that Fucschian groups being of the first kind is equivalent to
it having “finite volume”. Of course to do this we need to first define a measure.

Let X be locally compact, and let Ccont(X) denote the space of continuous functions
X → C which are compactly supported. If M : Ccont(X)→ C is a linear functional such
that M(φ) ≥ 0 for all φ ≥ 0 (meaning φ is real-valued and nonnegative), then there is a
measure µM such that

M(f) =

∫
X
fµM ∀f ∈ Ccont(X).

Remark 9.7. Drew says: “I think the right way to do measure theory is to just define
the integral as a linear functional”. (Serre does this, for example).

In any case, we can define the functional/measure explicitly since integrating on C is
not that hard. aaaaaaaaaaaa

Theorem 9.8 (Siegel)

Let Γ be a Fuchsian group. The corresponding Riemann surface XΓ if and only if
the volume v(XΓ) = v(Γ\H∗Γ) (equivalently, the volume of any fundamental domain)
is finite.
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§10 March 12, 2018 (Monday)

§10.1 j-function

For α =

[
a b
c d

]
∈ GL+

2 (R), we let j(α, z) = cz + d and by currying j(α) : z 7→ cz + d. In

that case, we have the following invariants:

• j(αβ, z) = j(α, βz)j(β, z).

• j(α−1, z) = j(α, α−1z)−1.

• d
dz (αz) = detα

j(α,z)2 .

• Im(αz) = detα Im z
|j(α,z)|2 .

We also have the following equivalences:

∃λ ∈ C∗ j(α, z) = λj(β, z)

⇐⇒ ∃λ λ = j(αβ−1, βz)

⇐⇒ ∃λ λ = cβ−1z + d

⇐⇒ c = 0

⇐⇒ (αβ−1)∞ =∞, or equivalently αβ−1 ∈ GL+
2 (R).

§10.2 k-slash operator

Let k ∈ Z. For any f : H→ C and γ ∈ GL+
2 (R) we define the k-slash operator by

(f |kγ) (z)
def
= det(γ)k/2j(γ, z)−kf(γz).

(Note that det γ = 1 for γ in a Fuchsian group.) Note that •|k is a linear operator on the
space of functions H→ C. Also, a quick calculation gives

f |k(αβ) = (f |kα)|kβ.

Moreover, f |kid = f , and so we get a right linear group action on the complex vector
space of functions H→ C.

Note also that if α = a =

[
a 0
0 a

]
is a scalar, then

f |kα = (a2)k/2a−kf(z) = (sign a)kf(z).

Definition 10.1. Let Γ be a Fuchsian group of the first kind. For k ∈ Z, a function
f : H→ C is an automorphic form of weight k for Γ if

• f is meromorphic on H, and

• f |kγ = f for every γ ∈ Γ.

We let Ωk(Γ) denote the set of automorphic forms of weight k for Γ, which is a C-vector
space.

Remark 10.2. If k is odd and −1 ∈ Γ, then Ωk(Γ) = {0}. Indeed, fk|k(−1) = (−1)kf ,
so when k is odd this means f = 0.
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Some properties that follows:

• If Γ′ ⊆ Γ then Ωk(Γ) ⊆ Ωk(Γ
′).

• If f ∈ Ωk(Γ) and α ∈ GL+
2 (R) then f |kα ∈ Ωk(α

−1Γα).

• Now let f ∈ Ωk(Γ) and g ∈ Ω`(Γ). Then fg ∈ Ωk+`(Γ).

Definition 10.3. We let Ω(Γ) =
∑

Ωk(Γ) denote the vector space generated by the set
of automorphic forms for Γ (of any weight).

Lemma 10.4

Ω is a graded ring (actually a commutative graded C-algebra).

Proof. We wish to show the map
⊕

k Ωk → Ω by (fk)k 7→
∑
fk is injective since it is

obviously surjective.
Since the volume v(XΓ) is finite and Γ∞ \H is infinite, we have Γ/Γ∞ infinite. Thus

we pick {γn}n≥0 in Γ, such that j(γm, z) 6= j(γn, z) for all m 6= n. Now for all n ∈ Z we
have ∑

k∈S
j(γn, z)

kfk(z) =
∑
k∈S

j(γn, z)
k(f |kγn)(z)

=
∑
k∈S

j(γ, z)k det(γ)j(γn, z)
−kf(γn, z)

= 0.

Note that S is finite, so WLOG set S = {0, 1, . . . , N}. Then for each n we now have

N∑
k=M

j(γn, z)
kfk(z) = 0.

Let M ≤ n ≤ N , then this becomes a linear system of equations whose coefficient matrix
is

[
j(γn, z)

k
]

0≤k≤N
0≤n≤N

=


j(γ0, z)

0 j(γ0, z)
1 . . . j(γ0, z)

N

j(γ1, z)
0 j(γ1, z)

1 . . . j(γ1, z)
N

...
...

. . .
...

j(γN , z)
0 j(γN , z)

1 . . . j(γN , z)
N


which has full rank, since it is a Vandermonde determinant.

§10.3 Behavior on cusps

Our automorphic forms are meromorphic functions on H, but we want to also think of
their behavior on H∗Γ, i.e. adding in the cusps. Since these functions aren’t defined on
the cusps yet, we will have to do some work.

Let x be a cusp of Γ, and σ ∈ SL2(R) such that σx = 0 (again conjugating to zero).
Then

σΓxσ
−1{±1} =

{
±
[
1 h
0 1

]n
| n ∈ Z

}
h > 0.

Assuming k is even, we then have

f |kσ−1 ∈ Ωk(σΓσ−1) ∀f ∈ Ωk
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In other words, (
f |kσ−1

)
(z + h) =

(
f |kσ−1

)
(z) ∀z ∈ H.

Thus we can bring in Fourier analysis: there exists a function g : D− {0} → C such that(
f |kσ−1

)
(z) = g (exp (2πiz/h)) .

Since f is meromorphic on H we have g is meromorphic on D \ {0}.

Definition 10.5. Let g be as above.

• If k is even we say f ∈ Ωk(Γ) is meromorphic/holomorphic/zero at a cusp x if g is
meromorphic/holomorphic/zero at 0.

• If k is odd, we replace f with f2 above.

(One can check this is independent of the choice of σ and g.)

Now let g(w) =
∑∞

n=n0
anw

n be the Laurent series for g at w = 0 (with an0 6= 0) on
some U` = {z ∈ H | Im z > `}. If k is odd, we use f2 instead and then

(
f |kσ−1

)
(z + h) =

{
(f |σ−1)(z) x regular cusp

−(f |σ−1)(z) x irregular cusp

Thus, for odd k we have either

(
f |kσ−1

)
(z + h) =

{∑
n≥n0 even an exp(πinz/h) regular cusp∑
n≥n0 odd an exp(πinz/h) irregular cusp.

The Fourier expansion of f at cusps converges absolutely uniformly on any compact
subset of U` (or all of H if f is holomorphic on H), and we have f is holomorphic (resp
zero) at the cusp x if and only if n0 ≥ 0 and (resp n0 > 0).

Definition 10.6. Let Γ be a Fuchsian group of the first kind, and k ∈ Z. We let:

Ak(Γ) = {f ∈ Ωk(Γ) | f meromorphic at all cusps of Γ}
Mk(Γ) = {f ∈ Ωk(Γ) | f holomorphic on H and cusps of Γ}
Sk(Γ) = {f ∈ Ωk(Γ) | f holomorphic on H, zero cusps of Γ} .

These are called “meromorphic automorphic forms”, “holomorphic automorphic forms”2

and “cusp forms” respectively.
Each of these sets is a C-vector space, and can be made into a graded C-algebra by

A(Γ) =
∑
Ak(Γ), since Ak(Γ)A`(Γ) ⊆ Ak+`(Γ) and so on.

Remark 10.7. We obviously have

Sk(Γ) ⊆Mk(Γ) ⊆ Ak(Γ) ⊆ Ωk(Γ).

Also:

• If Γ has no cusps then Ωk(Γ) = Ak(Γ) and Mk(Γ) = Sk(Γ).

• For all α ∈ GL+
2 (R), the map f 7→ f |kα gives isomorphisms Ak(Γ) ' Ak(α

−1Γα)
and similarly for Mk and Sk.

2Miyaki calls these “integral forms”, but has nothing do with integer coefficients.
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• If 0 6= f ∈ Ak(Γ), then 1
f ∈ A−k(Γ).

Definition 10.8. The last bullet of the previous remark implies A0(Γ) is a field, which
we say is the field of automorphic functions.

For f ∈ A0(Γ) we have (f |0γ) = f(γz) = f(z), hence f(z) = ϕ ◦ πΓ(z) for some
meromorphic function ϕ : XΓ → C and the projection πΓ : H∗Γ → XΓ. Thus we have

A0(Γ) ' C(XΓ).

Lemma 10.9

Suppose Γ′ ⊆ Γ has finite index. Then Ak(Γ) = Ω(Γ) ∩Ak(Γ′) and similarly for Mk,
Sk. In particular, Ak(Γ) ⊆ Ak(Γ′) as desired.

Proof. We proved earlier that the cusps of Γ′ and Γ coincide.

Theorem 10.10

Let Γ be a Fuchsian group of the first kind, and f ∈ Ωk(Γ) holomorphic on H. If
there exists v > 0 such that f(z) = O ((Im z)−v) as Im z → 0 uniformly with respect
to Re z, then f ∈Mk(Γ).

If v < k then f ∈ Sk(Γ) as well.

Proof. WLOG k is even (for odd k use f2 instead).
If Γ \H is compact (no cusps) we are done.
Suppose x is a cusp of Γ on R (meaning x 6=∞), and as usual write

σΓxσ
−1{±1} =

{
±
[
1 h
0 1

]n
| n ∈ Z

}
for h > 0 and σx =∞. Now write(

f |kσ−1
)

(z) =
∑
n∈Z

an exp

(
2πinz

h

)
.

Here, we have

an =
1

h

∫ z0+h

z0

(
f |kσ−1

)
(z) exp

(
2πinz

h

)
.

Let σ−1 =

[
a b
c d

]
where c 6= 0 and hence

Im
(
σ−1z

)
=

Im z

|cz + d|2
= O

(
1

Im z

)
as Im z →∞. If we let z0 = iy − h/2, we have

|an| = O

(
yv−k exp

(
2πny

h

))
as y → ∞. If n < 0 then an = 0, hence holomorphic at x. If v < k, then also a0 = 0,
hence zero at x.

If x =∞, since Γ 6= Γ∞ (since Γ is Fuschian of the first kind) for γ ∈ Γ \ Γ∞, we have
γ∞ ∈ R, so we can apply the previous argument.
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Theorem 10.11

For f ∈ Ωk(Γ), we have f ∈ Sk(Γ) if and only if f(z)(Im z)k/2 bounded on H.

Proof. See Miyaki.

Corollary 10.12

If f ∈ Sk(Γ), if x0 is a cusp of Γ, σx0 =∞, then the Fourier expansion of f at x0,
then write

(f |kσ−1)(z) =
∑
n≥1

an exp (πinz/h) .

This Fourier expansion satisfies an = O(nk/2).
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§11 March 14, 2018 (Wednesday)

As always Γ is a Fuchsian group of the first kind.

§11.1 Automorphic forms with characters

We will generalize our definition of automorphic form slightly to allow characters. Let

χ : Γ→ U(1)

be a character with finite image (hence its values are roots of unity). (Here U(1) is the
unit circle.) Then Γχ = kerχ is a finite index subgroup of χ.

Definition 11.1. We let

Ωk(Γ, χ) = {f ∈ Ω(Γχ) | f |kχ = χ(γ)f ∀γ ∈ Γ}

and call them the automorphic forms with character. We then define Ak(Γ, χ) =
Ωk(Γ, χ) ∩Ak(Γχ) and so on similarly, and Mk, Sk in the same way.

Remark 11.2. Note that when −1 ∈ Γ, we have χ(−1) 6= (−1)k thus Ωk(Γ, χ) = {0}.

Observe that for Γ′ ⊆ Γχ has finite index then

• Ak(Γ, χ) = Ωk(Γ, χ) ∩Ak(Γ′) and similarly.

• χ restricts to a character of Γ′, and Ak(Γ, χ) ⊆ Ak(Γ′, χ). Similarly for Mk, Sk.

• Let f ∈ Ak(Γ, χ) and g ∈ A`(Γ, ψ). Then fg ∈ Ak+`(Γ, χψ).

§11.2 Petersson inner product

Let f, g ∈Mk(Γ, χ) and assume at least one is a cusp form. Then fg ∈ S2k(Γ, χ
2), and

so the theorem gives
∣∣∣f(z)g(z)

∣∣∣ (Im z)k is bounded on H.

Then since f ∈Mk(Γ, χ), from f |kγ = f we have f(γz) = f(z)
j(γ,z)−k and similarly for g,

and since Im(γz) = Im z
j(γ,z)

2
, we deduce

f(γz)g(γ, z)(Im γz)k = f(z)g(z)(Im z)k ∀γ ∈ Γ.

and hence the left-hand side gives a continuous function on Γ \H.

Definition 11.3. The Petersson inner product is defined for f , g as above by

〈f, g〉 def
=

1

µ(Γ \H)

∫
Γ\H

f(z)g(z)(Im z)k dµ︸︷︷︸
= dxdy

y2

.

It is a bilinear form with 〈f, g〉 =
〈
f, g
〉
. (Note the integral won’t converge if f and g are

both not cusp forms.)
Now suppose Γ1, χ1 and Γ2, χ2 are such that χ1 and χ2 are “commensurable”, meaning

there is a finite index Γ′ with Γ′ ⊆ ker(χ1) ∩ ker(χ2).

Definition 11.4. We define Nk(Γ, χ) as

Nk(Γ, χ) = {g ∈Mk(Γ, χ) | 〈f, g〉 = 0 ∀f ∈ Sk(Γ, χ)} .

(Again, we rely on f ∈ Sk(Γ, χ) in order for the inner product to make sense).
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Proposition 11.5 • Mk(Γ, χ) = Sk(Γ, χ)⊕Nk(Γ, χ).

• If Γ′ ⊂ Γ has finite index, and χ’ is the restriction of χ to Γ′ then

Nk(Γ, χ) = Nk(Γ
′, χ′) ∩Mk(Γ, χ).

Anyways, we won’t use this for a while, but makes sense to define it now.

§11.3 Meromorphic (and Kähler) differentials

Let f ∈ Ωk(Γ). Alas the function f(γz) = j(γ, z)f(z) is not Γ-invariant, but it is almost

Γ-invariant: for γ =

[
a b
c d

]
we have

dγ(z) =
d

dz

az + b

cz + d
=

ad− bc
(cz + d)2

dz = j(γ, z)2 dz.

Consequently, the idea is that “f(z)(dz)k/2” is Γ-invariant. We’ll now make this precise.

Definition 11.6 (Kähler differentials). Let A be a commutative algebra A over a field
F . The A-module Ω1

F (A) is the set of symbols {df | f ∈ A} subject to relations

dc = 0 ∀c ∈ F
d(fg) = fdg + gdf

d(f + g) = df + dg

(df)g = g df.

(These will be functions eventually.)
An equivalent definition: define the map

A⊗F A→ A
∑

fi ⊗ gi 7→
∑

figi

and let I be the kernel (augmentation ideal). Then we can also view Ω1
F (A) = I/I2, and

df = 1⊗ f − f ⊗ 1.

Definition 11.7. A derivation d is an F -linear map of A-modules for which F is in
the kernel, and the Leibniz rule d(fg) = f dg + g df .

Theorem 11.8 (Universal property of Kähler differentials)

The map A → Ω1
F (A) by f 7→ df is a derivation satisfying the following universal

property: if dB : AtoB is another derivation then there exists a unique A-module
homomorphism completing the diagram

A B

Ω1
F (A)

dB

d ∃!
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Definition 11.9. We now define

Ω⊗nF
def
=
(
ΩF

1 (A)
)⊗n

= {g (dz)n | g ∈ A} .

Then ΩF (A) =
⊕

n≥1 Ω⊗nF is a graded ring.

Now we consider A = C(U), the set of meromorphic functions U → C. Then Ω1
C (C(U))

is the set of differential forms “on U”.

Remark 11.10. In any context where we can write f =
∑

n anz
n for some symbol z,

we then have

df =

(∑
n

nanz
n−1

)
dz

as an identity in the ring of Kähler differentials; of course the sum we think of as ∂f/∂z.

Remark 11.11. Note that if ω1 = f (dz)n and ω2 = g (dz)n are in Ω⊗nC (C(U)) and

ω1

ω2
=
f

g
∈ Ω0

C(C(U)) = C(U)

and so it is actually possible to evaluate the “ratio” of two n-fold Kähler differentials, as
points.

Now if φ : U → V is a holomorphic map between open sets; then we get a map

φ∗ : Ω⊗nC (C(V ))→ Ω⊗nC (C(U)) f(z)(dz)n 7→ f(φ(z))φ(z)n(dz)n.

Finally, given a Riemann surface X and a function field C(X), given charts tp : Up → Vp
(where Up ⊆ X and Vp ⊆ C are open), then a meromorphic differential on X is a collection
of {ωp}p∈X with ωp ∈ Ω1

C(C(Vi)) satisfying transition maps (not written).

Theorem 11.12

Let Γ be a Fuchsian group of the first kind. Let k be an even integer. There is an
isomorphism of C-vector spaces

ω : Ak(Γ)→ Ω
⊗k/2
C (C(XΓ))

which we denote f 7→ ωf .

Proof. Let k = 2m, f ∈ Ak(Γ) and let π : H∗Γ → XΓ. For a point P ∈ XΓ, we let z0 ∈ H∗Γ
such that π(z0) = P . Let U∗z0 be a neighborhood of z0 ∈ H∗Γ such that

1. γU∗z0 ∩ U
∗
z0 6= 0 ⇐⇒ γ ∈ Γz0 ,

2. γ ∈ Γz0 =⇒ γU∗z0 = Uz0 .

Then take a chart tp : π(Up)→ Vp → C.
. . .
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§11.4 ???

Let f ∈ C(XΓ). For p ∈ XΓ, we can associate ordp(f) by looking at the Laurent series
for f on the neighborhood of p, which gives the order of the pole p (or the negative of
multiplicity of zero). This has ∑

p∈XΓ

ordp(f) = 0.

Now for ω ∈ Ω⊗nC (C(XΓ)) not zero we have ω = f(z)(dz)n at p ∈ XΓ for some chart, and
we then define ordp(ω) = ordp f .

Definition 11.13. Define Div(XΓ) to be the free Z-module on XΓ and let the principal

divisor of f as
∑

p∈XΓ
ordp(f) · p. The degree of a divisor is deg(

∑
npp)

def
=
∑
np ∈ Z.

Remark 11.14. Since XΓ is compact, the degree of any principal divisor is zero.

Definition 11.15. Similarly, define div(ω)
∑

p ordp(ω) · p. Then div(ω1ω0) = div(ω1) +
div(ω0)
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§15 April 4, 2018 (Wednesday)

Several lectures missing due to mild illness. Sorry.

§15.1 Setup

Let G = GL+
2 (R). We say two subgroups G1 of G2 are commensurable if G1 ∩G2 has

finite index in G1 and G2. This gives an equivalence relation ∼.
Now give a Fuchsian group Γ we define the commensurator by

CommG(Γ) =
{
g ∈ G | gΓg−1 ∼ Γ

}
.

Let χ : Γ → C× be a character of finite order, and let S = {Γ′ ⊆ Γ: [Γ : Γ′] <∞}.
Then given a monoid ∆ with Γ ⊆ ∆ ⊆ CommG(Γ), we can put

χ : ∆→ C×

αγα−1 7→ χ(γ)

for γ ∈ Γ, α ∈ ∆.
Now, let R be a commutative ring. We define TR(Γ,∆) to be the Hecke algebra of Γ

over R (for ∆). This is a free R-module on double cosets ΓαΓ, α ∈ ∆, with multiplication
given by

ΓαΓ · ΓβΓ =
∑

double coset ΓγΓ

cγΓγΓ

where cγ = #{(i, j) : Γαiβj = Γγ} for any decomposition ΓαΓ =
⊔

Γαi, ΓβΓ =
⊔

Γβj
(this cγ is independent of the choice of decomposition).

Let M be an R-module with a right ∆-action. Then MΓ is a T(Γ,∆)-module via

m | ΓαΓ
def
=
∑

mαi

with the sum across cosets ΓαΓ =
⊔

Γαi. The map m 7→ m|φ is an R-endomorphism of
MΓ for all φ ∈ T(Γ,∆).

§15.2 Automorphic forms

Let
Ak

def
=
⋃

Γ′∈S
Ak(Γ

′, χ).

Let f ∈ Ak, and consider the ∆-action

fα
def
= det(α)k/2−1χ(α)f |kα.

Given f ∈ AK(Γ1, χ) we can then put

f |Γ1αΓ2
def
= det(α)k/2−1

∑
χ(αi)f |kαi.

The Γ-invariant subspace of Ak is Ak(Γ, χ).
Note the scalars R× ⊆ CommG(Γ) acts trivially on f , so we can assume ΓαΓ =

⊔
Γαi

always has det(αi) = det(α).
A Hecke operator is a linear map Ak(Γ1, χ)→ Ak(Γ2, χ) induced by α ∈ ∆.
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Theorem 15.1

For α ∈ CommG(Γ), let α′ = det(α)α−1, (hence det(α′) = det(α)). Then the
Petersson inner products

〈f |ΓαΓ, g〉 =
〈
f, g|Γα′Γ

〉
are equal for all f ∈ Sk(Γ), g ∈Mk(Γ).

Corollary 15.2 • If χ 6= ψ are characters of Γ then 〈f, g〉 = 0 whenever f ∈
Sk(Γ, χ) and g ∈Mk(Γ, ψ).

• If f ∈ Nk(Γ), then f |ΓαΓ ∈ N(Γ), for α ∈ CommG(Γ).

§15.3 Modular groups

Let Γ = SL2(Z) denote the full modular group. A modular group is a finite index
subgroups of SL2(Z).

Proposition 15.3 (Basic facts about the modular group)

Let Γ = SL2(Z). We have:

• Γ is generated by ω
def
=

[
0 −1
1 0

]
and τ

def
=

[
1 1
0 1

]
.

• If k ≥ 2 then

dimSk(Γ) =


0 k = 2

bk/12c − 1 k ≡ 2 (mod 1)2

bk/12c else.

• If k ≥ 2 then

dimMk(Γ) =

{
bk/12c k ≡ 2 (mod 1)2

bk/12c+ 1 else.

• The volume is v(XΓ) = π/3, and genus is g(Γ) = 0.

• The elliptic points are all Γ-equivalent to i =
√
−1 and ξ3 = e

2
3
πi, which have

orders two and three In particular, Γi = 〈w〉, Γξ3 =
〈[

1 −1
1 0

]〉
.

• The cusps are Q ∪ {∞}, which are all Γ-equivalent to ∞. The stabilizer is
Γ∞ = 〈τ〉.
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We then define a special set of subgroups, called the congruence modular groups:

Γ0(N) =

{[
a b
c d

]
∈ SL2(Z) | c ≡ 0 (mod N)

}
Γ1(N) =

{[
a b
c d

]
∈ SL2(Z) | c ≡ 0 (mod N), a ≡ d ≡ 1 (mod N)

}
Γ(N) =

{[
a b
c d

]
∈ SL2(Z) | b ≡ c ≡ 0 (mod N), a ≡ d ≡ 1 (mod N)

}

We say that N is the level. Note that SL2(Z) = Γ0(1) = Γ1(1) = Γ(1) and we’ll use this
notation.

We say Γ is a congruence modular subgroup if Γ(N) ⊆ Γ ⊆ Γ(1) for some N .

§15.4 Hecke algebras for modular groups

Lemma 15.4

Let Γ be a modular group. Then

CommG(Γ) = R×GL+
2 (Q).

So now that we have computed the commensurator, we want to pick the choice of
monoid. There are two choices:

Definition 15.5. Let

∆0(N) =

{[
a b
c d

]
∈ Mat2(Z) | c ≡ 0 mod N, gcd(a,N) = 1, ad− bc > 0

}
and

∆∗0(N) =

{[
a b
c d

]
∈ Mat2(Z) | c ≡ 0 mod N, gcd(d,N) = 1, ad− bc > 0

}
.

Thus

∆∗0(N) =

{[
a b
c d

]
∈ Mat2(Z) | c ≡ 0 mod N, gcd(ad− bc) = N, ad− bc > 0

}
.

Then we let T(N)
def
= T(Γ0(N),∆0(N)), T∗(N)

def
= T(Γ0(n),∆∗0(N)).

It will be nice to write a set of representatives for the double coset now.

Lemma 15.6

Let α ∈ ∆0(N), then there exists unique `,m ∈ Z>0 with ` | m and gcd(`,N) such
that

Γ0(N)αΓ0(N) = Γ0(N)

[
` 0
0 m

]
Γ0(N).

Similarly, if α ∈ ∆∗0(N), then we have the same result with

[
m 0
0 `

]
instead.
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Remark. If gcd(`m,N) = 1 then in fact

Γ0(N)

[
` 0
0 m

]
Γ0(N) = Γ0(N)

[
m 0
0 `

]
Γ0(N).

This follows by applying the previous theorem.

Theorem 15.7 (1) T(N) and T∗(N) are commutative.

(2) For every Γ0(N)αΓ0(N) ∈ T(N) ∪ T∗(N), we have common coset decomposi-
tions

Γ0(N)αΓ0(N) =
⊔

Γ0(N)αi =
⊔
αiΓ0(N).

Actually, we can prove this in a more general context.

Lemma 15.8

Let Γ be a Fuchsian group and Γ ⊆ ∆ ⊆ CommG(Γ). Suppose •′ : ∆→ ∆ (denoted
α 7→ α′) is an anti-isomorphism, meaning (αβ)′ = β′α′, Γ′ = Γ, and Γα′Γ = ΓαΓ.
Then

ΓαΓ =
⊔

Γαi =
⊔
αiΓ

and moreover T(Γ,∆) is commutative.

Proof. Consider a decomposition

ΓαΓ =
⊔

Γαi.

Apply our anti-isomorphism:

Γα′Γ =
⊔
α′iΓ.

However, these two decompositions have the same number of left and right cosets. We
proved last time that this alone lets us find a common decomposition.

Now to show abelian, suppose ΓαΓ =
⊔

Γαi ΓβΓ =
⊔

Γβi, and take the two products

(ΓαΓ)(ΓβΓ) =
∑

cγΓγΓ

(ΓβΓ)(ΓαΓ) =
∑

c′γΓγΓ.

Write

cγ = # {(i, j) : Γαiβj = Γγ}
= # {(i, j) : ΓαiβjΓ = ΓγΓ} /# {Γ \ ΓγΓ}
= #

{
(i, j) : Γβ′jα

′
iΓ = ΓγΓ

}
/# {Γ \ ΓγΓ}

= #
{

(i, j) : Γβ′jα
′
i = Γγ

}
= c′γ .
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Finally, to prove the theorem from the lemma, it suffices to exhibit an anti-isomorphism.
Here it is:

φ : ∆0(N)→ ∆0(N)[
a b
cN d

]
7→
[
a c
bN d

]
.

Finally, let χ : (Z/N)× → C be a Dirichlet character modulo N . Then we induce a
character χ : Γ→ C× by

χ : Γ→ C×[
a b
c d

]
7→ χ(a)

χ∗ : Γ→ C×[
a b
c d

]
7→ χ(d).

Now,

• given α ∈ ∆0(N), let χ(α) = χ(a).

• given α ∈ ∆∗0(N), let χ∗(α) = χ∗(d).

Then T(N) acts on Mk(N,χ)
def
= Mk(Γ0(N), χ) and T∗(N) acts on Mk(N,χ

∗)
def
=

Mk(Γ0(N), χ∗).

Lemma 15.9

We have
Mk(Γ1(N)) =

⊕
χ

Mk(Γ0(N)).

where the sum is over Dirichlet characters modulo N . Similar statements holds for
Sk, Nk.

Proof. Note Γ1(N) is normal in Γ0(N). Thus Γ0(N) acts on Mk(Γ1(N)) via f 7→ f |kγ.
This action induces a representation of the finite abelian group Γ0(N)/Γ1(N) ∼= (Z/N)×

of the complex vector space Mk(Γ1(N)).
The irreducible representations of (Z/N)× all arise from Dirichlet characters. So we

can decompose Mk(Γ1(N)) into irreducible representations corresponding to χ’s, which
is the sum we wrote above.

Γ0(N)αΓ0(N) =
⊔

Γ0(N)αi

α ∈ ∆0(N) f |Γ0(N)αΓ0(N) = det(α)k/2−1
∑

χ(αi)f |kαi

α ∈ ∆∗0(N) f |Γ0(N)αΓ0(N) = det(α)k/2−1
∑

χ∗(αi)f |kαi

ωN : ω(N) =

[
0 −1
N 0

]
ω−1
n Γ0(N)ωN = Γ0(N)
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Now

∆0(N)
∼−→ ∆∗0(N)

α 7→ ω−1
n αωN

χ∗(ω−1
N αωN ) = χ(α).

Definition 15.10. Let ` | m, gcd(`,N) = 1. We let

T(`,m)
def
= Γ0(N)

[
` 0
0 m

]
Γ0(N) ∈ T(N).

T (n)
def
=

∑
detα=n

Γ0(N)αΓ0(N) ∈ T(N).

Here, the sum det(α) = n is over cosets, so this is a finite sum.
Similarly,

T∗(m, `) def
= Γ0(N)

[
m 0
0 `

]
Γ0(N) ∈ T∗(N).

T ∗(n)
def
=

∑
detα=n

Γ0(N)αΓ0(N) ∈ T∗(N).

Remark 15.11. T (n) =
∑

`m=n T (`,m), T ∗(n) =
∑

`m=n T (`,m). T (p) = T (1, p) and
T ∗(p) = T (p, 1). If gcd(n,N) = 1 then T (n, n) = Γ0(N)[ n 0

0 n ]Γ0(N) = Γ0(N)[ n 0
0 n ].

We have T (n, n)T (`,m) = T (n`, nm), T ∗(n, n)T ∗(m, `) = T ∗(nm, n`).

Theorem 15.12

Let f ∈Mk(N,χ) by a modular form of level N and weight k.

(1) f |T ∗(m, `) = χ(`m)f |T (`,m), where gcd(`m,N) = 1. Moreover, f |T ∗(n) =
χ(n)f |T (n)

(2) T (`,m) and T ∗(m, `) give adjoint linear operations with respect to the Petersson
inner product on Sk(N, ci). So do T (n) and T ∗(n).

(3) Sk(N,χ) has a basis of simultaneous eignefunctions of all T (n) and T (`,m),
for gcd(n,N) = 1 and gcd(`m,N) = 1.
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