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Evan Chen (Fall 2015) 1 Classical Logic Gates

§1 Classical Logic Gates

Reversible logic gates: Toffoli, Fredkin, CNOT, NOT, wire. Universal set of gates e.g.
AND, OR, NOT, (COPY). Toffoli and Fredkin are universal on their own with suitable
additional inputs.
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§2 Quantum Computation

§2.1 Qubits and The Vector Space C2

Let C2 be a complex vector space, equipped with the usual Hermitian inner form.
In this class, we consider qubits, which we can think of as the following two vectors

in the normed vector space C2:

|0〉 =

(
1
0

)
and |1〉 =

(
0
1

)
.

The notation |•〉 will in generally mean such a vector, with the − being a variable name,
which (unlike in math or Python) can not only consist of letters, but also numbers,
symbols, Unicode characters, . . . .

Given |ψ〉 =

(
a
b

)
∈ C2, we then define the transpose

〈ψ| =
(
a b
)

the column vector in the dual space (C2)∨, identified using the inner form. In other words,

if we use † to denote Hermitian conjugation (conjugate transpose) then 〈ψ| def= (|ψ〉)†.

§2.2 Operators

In general, we are going to use vectors |ψ〉 of norm 1 to denote a state.
Then, an observable will correspond to a Hermitian operator A (meaning A = A†; i.e.

A equals its own conjugate transpose) in the following fashion. The possible outcomes of A
are the two eigenvalues of A (recall that Hermitian operators can always be diagonalized),
possibly the same. In any case, let v1 and v2 be eigenvectors of A, with eigenvalues λ1
and λ2 and which form an orthonormal basis of C2 (this is automatically true if λ1 6= λ2).
So A can output either λ1 or λ2. We should think of this as “measuring the spin along
the directions v1, v2”.

Now any state |ψ〉 can be written in the form

|ψ〉 = α1v1 + α2v2

for |α1|2 + |α2|2 = 1. In that case, the observation of the state |ψ〉 measured along
A is supposed to give λ1 with probability α1 and to λ2 with probability α2.

Note that the expected value of measuring |ψ〉 along A is 〈ψ|A |ψ〉. Also, if λ1 = λ2
then A doesn’t measure anything at all – the eigenvalues returned are always the same!

We’ll write this all again for general dimensions.

§2.3 Difference from Quantum Mechanics

Note that already we notice two differences from classical mechanics:

• States are not discrete; they are linear, and have probabilities.

• The state space is complex ; C is intimately tied to quantum mechanics, unlike
classical mechanics when we mostly only see R.
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Evan Chen (Fall 2015) 2 Quantum Computation

§2.4 Pauli matrices

We will now consider a basis of the Hermitian 2× 2 matrices The Pauli matrices are
defined as

σz =

(
1 0
0 −1

)
σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
.

Their normalized eigenvectors are

|↑〉 =

(
1
0

)
|↓〉 =

(
0
1

)

|→〉 =
1√
2

(
1
1

)
|←〉 =

1√
2

(
1
−1

)

|⊗〉 =
1√
2

(
1
i

)
|�〉 =

1√
2

(
1
−i

)
.

We call them “up” and “down” respectively (i.e. the first two are z-up and z-down). So,
measuring a state |ψ〉 by σz should be thought of as “measuring along the z-axis”.

We care about the Pauli matrices because

Theorem 2.1

id, σx, σy, σz form an orthonormal basis of the 2× 2 Hermitian matrices.

Further properties:

Problem 2.2 (Homework 2.1). Show that

• These are conjugate transposes (σ†x = σx, et cetera).

• They are involutions (squares are id).

• σxσy = iσz and cyclically.

• [σx, σy] = 2iσz.

• |↑〉, |↓〉 are eigenvectors of σz with eigenvalues +1 and −1 respectively.

• |→〉, |←〉 are eigenvectors of σx with eigenvalues ±1.

• |⊗〉, |�〉 are eigenvectors of σy with eigenvalues ±1.
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§3 September 24, 2015

§3.1 Review of Pauli Matrices

Observe that
σx |↑〉 = |↓〉 and σx |↓〉 = |↑〉 .

Problem 3.1 (Homework 2.2). Show that

σz |⊗〉 = |�〉
σz |�〉 = |⊗〉
σy |→〉 = • |←〉
σy |←〉 = • |→〉
σx |⊗〉 = • |�〉
σx |�〉 = • |⊗〉 .

Fill in the values of •.

To review from last time:

|ψ〉 = α |↑〉+ β |↓〉

=

(
α
β

)

〈ψ| = |ψ〉† = (α β)

Then

〈ψ|σz |ψ〉 = (α β)σz

(
α
β

)
= |α|2 − |β|2

= p(↑)(+1) + p(↓)(−1).

Thus this equals the expected value of the spin (viewed as ±1) along the z-axis when the
system is in the state |ψ〉. Colloquially, we write 〈σz〉 the “expectation value of z”; this
is in fact the reason for the bra-ket notation.

§3.2 Higher Dimensions

In quantum mechanics in higher dimensions, say |ψ〉 ∈ Cd:

• the observables correspond to Hermitian matrices A = A†.

• the outcomes of measurements corresponding to A are the eigenvalues of A. We
denote by |i〉 is the ith eigenvector of A with eigenvalue ai. (id est A |i〉 = ai |i〉).

For example, the identity matrix id corresponds to not making an observation at all since
the outcomes are all indistinguishable (all eigenvalues are 1).

Problem 3.2 (Homework 2.3). Show that if A = A† (meaning the matrix is Hermitian)
then all eigenvalues ai are real, and moreover if the eigenvectors corresponding to distinct
eigenvalues are orthonormal, i.e. 〈i | j〉 = δij (Kronecker delta) if ai 6= aj .
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Evan Chen (Fall 2015) 3 September 24, 2015

Thus, suppose that we have a state

|ψ〉 =
d∑

i=1

ψi |i〉

associated to the matrix A. Then the probability of observing ai from A is |ψi|2 = p(i),
and the expectation value of

〈ψ|A |ψ〉 =


∑

j

ψ 〈j|


A

(∑

i

ψi |i〉
)

=
∑

j

ψj 〈j|
∑

i

ψiai |i〉

=
∑

i,j

ψjψiai 〈j|i〉

=
∑

i,j

ψjψiaiδij

=
∑

i

|ψi|2ai

=
∑

i

p(i)ai

= 〈A〉 .

This is just the multivariable version of what we did earlier.

§3.3 Back to qubits

Recall that

〈ψ|ψ〉 = (α β)

(
γ
δ

)
= αγ + βδ.

Definition 3.3. Define the density matrix corresponding to the state |ψ〉 to be |ψ〉 〈ψ|,
which is a d× d matrix.

Remark 3.4. Density matrices are always denoted by the letter ρ.

Note that since the trace is invariant under cyclic permutations, we have

〈ψ|A |ψ〉 = Tr (|ψ〉 〈ψ|A) = Tr(ρA).

Why introduce the density matrix? Density matrices allow mathematical description of
states that are spin |→〉 with probability p↑ or spin |←〉 with probability p↓. Thus, we
can now write

ρ = p↑ |↑〉 〈↑|+ p↓ |↓〉 〈↓| .

Claim 3.5. If a system has probabilities p↑ and p↓ as above, then Tr(Aρ) gives the
expectation value for outcomes of a measurement corresponding to A.

Indeed, consider probability distributions {pi} and {qi} for a random variable with
outcomes ai. Then

〈A〉 = p0 〈A〉p′s + p1 〈A〉q′s
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Evan Chen (Fall 2015) 3 September 24, 2015

where p0 is the probability of getting the {pi} distribution and p1 is the probability of
getting the {qi} distribution.

For example,

〈A〉 = Tr(ρA) = p↑Tr(ρ↑A) + p↓Tr(ρ↓A) = p↑ 〈↑|A |↑〉+ p↓ 〈↓|A |↓〉 .

Example 3.6 (Fully Mixed State)

Suppose

ρ =
1

2
|↑〉 〈↑|+ 1

2
|↓〉 〈↓| = 1

2

(
1
0

)
(1 0) +

1

2

(
0
1

)
(0 1) =

1

2
id2.

This is the so-called fully mixed state. One obtains the same result with y-up and
y-down instead of x-up and x-down, and so on.

§3.4 More on Pauli matrices

Consider an arbitrary axis ı̂ =



ix
iy
iz


, where i2x + i2y + i2z = 1. We define the Pauli matrix

for an arbitrary ı̂ by
σı̂ = ixσx + iyσy + izσz.

Problem 3.7 (Homework 2.4). Show that σ2ı̂ = id.

Now, recall the matrix exponential

eA =
∑

k

1

k!
Ak.

Consider
e−iθ/2σ

where σ2 = id.

Problem 3.8 (Homework 2.5). Show that

e−iθ/2σ = cos(θ/2)id− i sin(θ/2)σ.

Fact 3.9. e−iθ/2σ̂ corresponds to rotation by θ about the ĵ axis.
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§4 September 29, 2015

We say a state |ψ〉 is a pure state, versus a mixed state ρ represented by a density
matrix.

Observe that pure state density matrices are idempotent, as

|ψ〉 〈ψ| · |ψ〉 〈ψ| = |ψ〉 〈ψ|ψ〉 〈ψ| = |ψ〉 〈ψ| .

Problem 4.1 (Homework 3.1). Let ρ be an operator (hence Hermitian with trace 1).
Prove the converse, that

ρ2 = ρ =⇒ ∃ψ : ρ = |ψ〉 〈ψ| .

Problem 4.2 (Homework 3.2). If

ρ = p↑ |↑〉 〈↑|+ p↓ |↓〉 〈↓|

then show that Tr ρ2 = p2↑ + p2↓.

§4.1 Multiple Qubits, and Tensor Products

Up til now the formalism has simply been bizarre, rather than pathological. However,
multiple qubits are really going to be stranger. (Aside: why is quantum mechanics the
way it is? Because the observations say so; no one really knows.)

Suppose we have two states A and B which are either ↑ and ↓ To do this, we introduce
tensor products. (NB: after class, professor will post a guide to tensor products on
website.)

Specifically, we consider a four-dimensional vector space VA ⊗ VB (where VA and VB
are both C2) meaning we can consider elements such as |↑〉A ⊗ |↓〉B; then flipping A
about x-axis amounts to

(σAx |↑〉A)⊗ |↓〉B = |↓〉A ⊗ |↓〉B .

More generally, we can create linear operators End(VA⊗VB) by simply taking End(VA)⊗
End(VB), i.e. our linear operators are spanned by T1 ⊗ T2 where T1 ∈ End(VA), T2 ∈
End(VB).

So, we can say “a tensor is a multilinear thing with slots that perches on a vector”.

“Hope” is the thing with feathers -
That perches in the soul -
And sings the tune without the words -
And never stops - at all -

And sweetest - in the Gale - is heard -
And sore must be the storm -
That could abash the little Bird
That kept so many warm -

Ive heard it in the chillest land -
And on the strangest Sea -
Yet - never - in Extremity,
It asked a crumb - of me.
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Evan Chen (Fall 2015) 4 September 29, 2015

We can also take inner products; consider ||→〉〉B acting on the B slot. (Recall
|→〉 = 1√

2
(|↑〉+ |↓〉).) Thus, we have

|ψ〉A ⊗ 〈→ | ↑〉B =
1√
2
|↑〉A .

Alternatively, we can write the tensor out explicitly in a basis, given vectors
∑

i

ai |i〉A and
∑

j

bj |j〉B

which are vectors written in the |i〉A and |j〉B basis, their tensor is equal to

∑

i,j

aibj (|i〉A ⊗ |j〉B) .

Similarly, we can view operators as matrices C ⊗D, which I won’t write out.

§4.2 Basis Computation

Suppose we write a basis for C2 ⊗ C2 by

|↑〉A ⊗ |↑〉B =




1
0
0
0


 |↑〉A ⊗ |↓〉B =




0
1
0
0


 |↓〉A ⊗ |↑〉B =




0
0
1
0


 |↓〉A ⊗ |↓〉B =




0
0
0
1


 .

Then it’s trivial to verify that

σAz ⊗ σBz =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1




σAz ⊗ idB =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1




idA ⊗ σBz =




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


 .

Of course, notice that (σAz ⊗ idB)(idA ⊗ σBz ) = (σAz ⊗ σBz ).

Problem 4.3 (Homework 3.3). In the above basis, write out the 4 × 4 matrices cor-
responding to σAx ⊗ idB, idA ⊗ σBx , σAy ⊗ idB, idA ⊗ σBy , σAx ⊗ σBx , σAy ⊗ σBy , σAz ⊗ σBz ,

σAx ⊗ σBy , σAy ⊗ σBx , σAy ⊗ σBz .

§4.3 Entanglement

This is the central weirdness of quantum mechanics.
Consider the following element of the tensor product C2 ⊗ C2:

|Ψ−〉 =
1√
2
|↑〉A ⊗ |↓〉B −

1√
2
|↓〉A ⊗ |↑〉B .
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Evan Chen (Fall 2015) 4 September 29, 2015

This is indeed normalized, because it has norm 1. We rewrite in the basis |→〉 and |←〉 as

|Ψ−〉 =
1√
2

1√
2

(|→〉A + |←〉A)⊗ 1√
2

(|→〉B − |←〉B)

− 1√
2

1√
2

(|→〉A − |←〉A)⊗ 1√
2

(|→〉B + |←〉B)

= − 1√
2

(|→〉A ⊗ |←〉B − |←〉A |→〉B) .

Ironically, this is the same result, with an overall phase of −1.

“You could just write the answer? Ah, but not everyone is as swift as you.
Mm? You trust me! It must still be early in the class.”

Something is very pathological about this state |Ψ−〉. If we make a measurement of
the matrix A along the z-axis, then we know the spin of B along the z-axis. The same
is true for measurements along the x-axis. So by solely looking at measurements on A,
we can get information at B; this paradox is called spooky action at a distance, or in
Einstein’s tongue, spukhafte Fernwirkung. This is called entanglement

The state |Ψ−〉 is called the singlet state.

Problem 4.4 (Homework 3.4). Rewrite |Ψ−〉 in the σy eigenbasis |⊗〉, |�〉

Problem 4.5 (Homework 3.5). Do again in the basis |↗〉, |↙〉.
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§5 October 1, 2015

“Spooky action at a distance” is spooky but not at a distance. The idea: consider an
entangled state such as the singlet state

|Ψ−〉 =
1√
2

(|↑〉A ⊗ |↓〉B − |↓〉A ⊗ |↑〉B) .

In fact for any orthogonal basis (as we saw last time with x and y) it turns out that
we have this entangled behavior. After an observation on A is made, then A’s state is
determined; thus, the state of B is known to A (i.e. A knows that B will get up or down).
However, B does not know this information; A has no way of communicating this.

Anyways, more weird things:

§5.1 Triplet States

In addition to the singlet state, we have the three triplet state

|Ψ+〉 =
1√
2

(|↑〉A ⊗ |↓〉B + |↓〉A ⊗ |↑〉B) .

We also define

|Φ+〉 =
1√
2

(|↑〉A ⊗ |↑〉B + |↓〉A ⊗ |↓〉B)

|Φ−〉 =
1√
2

(|↑〉A ⊗ |↑〉B − |↓〉A ⊗ |↓〉B).

As the course goes on, we’ll begin abusing notation more on more, for example simplifying
|Φ−〉 to 1√

2
(|↑↑〉 − |↓↓〉) (thus omitting the A, B subscripts and the ⊗).

Problem 5.1 (Homework 3.6). Rewrite each of the triplets in terms of the bases
{|→〉 , |←〉} and {|⊗〉 , |�〉}. Identify the form of correlation along the x and y axes.

Problem 5.2 (Homework 3.7). Find the result when σz ⊗ σz is applied to each of |Ψ−〉,
|Ψ+〉, |Φ−〉, |Φ+〉.

Problem 5.3 (Homework 3.8). Show that the singlet state is invariant (up to a global
phase) under transformations of the form UA ⊗ UB, where UA = exp(−iθ/2σA̂ ) and

UB = exp(−iθ/2σB̂ ).

Problem 5.4 (Homework 3.9). Show that the subspace of C2 ⊗ C2 spanned by the
triplet states is invariant under the same set of transformations.

§5.2 Group Theory Digression

In fact, the matrices exp(−iθ/2σ̂) belongs to the group of special 2× 2 unitary matrices,
denoted SU(2). Here “special” means determinant 1, and unitary means UU † = id.
(Compare SO(3), the special orthogonal group in 3 real dimensions.)

Note σx /∈ SU(2), since detσx = −1.
In any case, given a group G, one can consider a faithful representation G→ GL(V ),

i.e. representing V by matrix groups. In this language, the triplet states span a three-
dimensional irreducible representation, or irrep of SU(2). (In this language, the
singlet state spans a one-dimensional irrep of SU(2).)
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Remark 5.5. According to Lloyd: I think this is the best explanation of why quantum
works. In QM we have unitary operators acting on complex vectors. Why? No one knows,
but one explanation is that groups have symmetry. Things like the Schrödinger equation
preserve the symmetry of translation, for example. Crudely, “the world has fundamental
symmetries”. The fundamental representations of these symmetry groups are things
like SU(2), etc., so it should not be too surprising that things like SU(2) appear. The
representation theory of groups kind of motivates this.

In short, quantum mechanics can be thought of as a manifestation of groups (reflecting
the symmetry of the world) as unitary operators due to the purely mathematical work of
representation theory.

§5.3 Measurement and reduced density matrices

Consider a state
|ψ〉 =

∑

i,j

ψi,j |i〉A|j〉B ∈ V1 ⊗ V2

for finite dimensional spaces V1, V2 (which may not be qubits, so possibly dimension
more than 2). Suppose we make a measurement on A alone, which we write as MA⊗ idB.
Thus the expected value of the output is

〈ψ|ABMA ⊗ idB |ψ〉AB =


∑

i,j

ψi,j 〈i| ⊗ 〈j|


MA ⊗ idB


∑

i′,j′

ψi′,j′ |i′〉 ⊗ |j′〉




=
∑

i,j,i′,j′

ψi,jψi′,j′ 〈i|MA |i′〉 〈j| idB |j′〉

=
∑

i,j,i′,j′

ψi,jψi′,j′ 〈i|MA |i′〉 δj,j′

=
∑

i,j,i′

ψi,jψi′,j 〈i|MA |i′〉

=
∑

i,j,i′

ψi,jψi′,j Tr(〈i|MA |i′〉)

=
∑

i,j,i′

ψi,jψi′,j Tr(|i′〉 〈i|MA)

= Tr(
∑

i,j,i′

ψi,jψi′,j |i′〉 〈i|MA)

= Tr(ρAMA).

where the subscripts A and B for 〈i|, 〈j|, |i〉, |j〉 have been left implicit, and

ρA
def
=
∑

i,i′,j

ψi,jψi′,j |i′〉 〈i|

is the reduced density matrix for A. This has the nice property that it depends only
on the matrix A.

A key part of this class is learning how to compute ρA. Here is how. The idea is to use
the partial trace 1. For the purposes of this, if we write ψAB in the usual basis then

TrB
∑

i,i′,j,j′

ψi,jψi′,j′(|i′〉 ⊗A 〈i|)⊗ (|j′〉 ⊗B 〈j|) def
=

∑

i,i′,j,j′

ψi,jψi′,j′(|i〉 ⊗A 〈i′|) 〈j|j′〉 .

1See https://en.wikipedia.org/wiki/Partial_trace
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Note this is an operator: the partial trace is a map End(C2 ⊗ C2)→ End(C2).

Problem 5.6 (Homework 3.10). Compute the partial B trace of the four matrices
|Ψ−〉 〈Ψ−|, |Ψ+〉 〈Ψ+|, |Φ−〉 〈Φ−|, |Φ+〉 〈Φ+|.

Problem 5.7 (Homework 3.11). Let

|ψ〉AB =

√
2

3
|↑〉A ⊗ |↓〉B −

i√
3
|↓〉A ⊗ |↑〉B .

Compute the partial traces to A and B, respectively.
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§6 October 6, 2015

Here and henceforth, tensor products are getting dropped at will.
This Thursday, Scott Aaronson is giving the guest lecture.

§6.1 CNOT Gate

Recall we had a CNOT gate from last time: in the basis we mentioned earlier |0〉A |0〉B |0〉 |0〉,
|0〉 |1〉, |1〉 |0〉, |1〉 |1〉 then the corresponding unitary matrix U is

UCNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 =

(
id 0
0 σx

)
.

We saw we can use CNOT to copy a state if we know the state is either |0〉 or |1〉, for
example

UCNOT |x〉A |0〉B = |x〉A |x〉B .

§6.2 No-Cloning Theorem

It seems like copying is working just fine. However, suppose that now we have a
probabilistic state

|ψ〉 = α |0〉+ β |1〉 .
By linearity the image of |ψ〉 |0〉 under UCNOT is

α |0〉 |0〉+ β |1〉 |1〉 .

This is an entangled state, and in fact not what we want: we really want |ψ〉A |ψ〉B , so
we failed to clone the state |ψ〉.

In fact:

Theorem 6.1 (Baby No-Cloning Theorem)

Unitary operators cannot replicate qubits in the following sense: no unitary operator
U can satisfy

U(|ψ〉 |0〉) = |ψ〉 |ψ〉 .

Proof. First, note that unitary operators preserve the inner product, meaning

(〈φ|U †)(U |ψ〉) = 〈φ|ψ〉

for any |φ〉, |ψ〉.
Problem 6.2 (Homework 4.1). Show that the converse is actually true too. That is,
prove that if

(〈φ|U †)(U |ψ〉) = 〈φ|ψ〉
for any |φ〉, |ψ〉, then U †U = id, meaning U is unitary.

Now, assume for contradiction that

U(|ψ〉 |0〉) = |ψ〉 |ψ〉
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for every ψ. Then in particular, we ought to have

(〈φ|A 〈0|B)(|ψ〉A |0〉B) = (〈φ|A 〈φ|B)(|ψ〉A |ψ〉B).

The left-hand side is 〈φ|ψ〉 〈0|0〉 = 〈φ|ψ〉 and the right-hand side is 〈φ|ψ〉 〈φ|ψ〉. These
are clearly not equal in general.

Problem 6.3 (Homework 4.2). Show that no unitary can map

|ψ〉A ⊗ |0〉B ⊗ |0〉C 7→ |ψ〉A ⊗ |ψ〉B ⊗ |junk〉C .

Here the “junk” is allowed to depend on ψ.

My dad was a professor and claimed the following happened to him. He was
giving a lecture and realized his pants were not zipped. Too embarrassed
to re-zip them in the middle of lecture in front of everyone, he devises the
following plan: in the middle of the lecture, he shouts “what’s that out the
window?” and while everyone is distracted he zips up his pants. All is well
until he realizes that the students are still looking out the window; he looks
outside and sees that there are two dogs screwing on the lawn outside.

§6.3 Entropy

The second law of thermodynamics concerns the entropy

S = −
∑

i

pi log(pi).

The quantum version of this, due to von Neumann:

ρ =
∑

i

pi |i〉 〈i| =⇒ S = −Tr ρ log ρ.

Ah, calculus is just linear algebra anyways when you do it on Matlab!

Exercise 6.4. For unitary U we have −Tr(UρU †) log(UρU †) = Tr ρ log ρ.

So, entropy is “conversed”! Not too surprising in the quantum case, since U is reversible.

. . . Luckily, I managed to make them reference my PhD thesis, because I was
the referee. . . . there are probably several lessons there, but I don’t know
what they are.

§6.4 CNOT Again

One can check that CNOT does the following:

• |→〉A |→〉B 7→ |→〉A |→〉B.

• |→〉A |←〉B 7→ |←〉A |←〉B.

• |←〉A |→〉B 7→ |←〉A |→〉B.

• |←〉A |←〉B 7→ |→〉A |←〉B.

Problem 6.5 (Homework 4.3). Repeat the above problem in the y-basis.
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§7 October 8, 2015

You can just put a Q in front of anything and ask what happens. . . this has
been an effective strategy for generating papers for 20 years.

This is a guest lecture from Scott Aaronson. Thus all quotes from today are due to him,
though they are possibly mangled by me.

Here is a hierarchy of complexity classes.

EXP

PSPACE

BQP

NP

BPP

P

Here P has its usual meaning. BPP means “bounded-error probabilistic polynomial”
which means polynomial runtime, but with a random source and such that the probability
of outputting the correct answer is ≥ 2

3 (and hence by repeatedly running, arbitrarily
close to 1).

By the way, I apologize for the names. . . if we had been physicists we would
have named them things like “quarks” or “black holes”

For example, it turns out that prime testing is BPP. But factoring is not known to be
in P. For example, RSA depends on this.

In fact,

Conjecture 7.1. BPP is not P.

In fact, in the 1970’s we showed that assuming Extended Riemann Hypothesis, testing
primality is P. Unconditionally, we have a deterministic nlog log logn time for testing primes
until about 2002, when the AKS algorithm was finally exhibited.

The NP means “nondeterministic polynomial time”, which means that certificates can
be checked in polynomial time. For example, factoring N is NP, because given the answer
p1, . . . , pn we can easily check whether N = p1 . . . pn and whether each pi is prime. On
the other hand, actually finding a factorization is hard.
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I like to say that if we were physicists, we would have declared this [P 6= NP]
to be a law of nature . . . but we’re mathematicians, so we have to call it a
conjecture.

We also can consider NP-hard, NP-complete. Computational complexity theory took
off in the 1970’s when it turned out that tons and tons of NP problems are actually
NP-complete.

I think the Legend of Zelda is actually above NP complete, it’s PSPACE-
complete. . . . Pretty much any NP problem will be NP-complete unless it
has a reason to be. That’s sort of the rule of thumb.

Surprisingly, factoring is NP but not NP-hard. Factoring has “loads and loads of
special properties” that make it different from the other NP problems. In fact, given P
6= NP we know there must be NP problems which are not NP-complete; it seems like
factoring might be such an example.

Actually, we know how to base cryptography on the factoring problem, and not on any
other NP problem.

Other properties of factoring that make it special: Unlike e.g. Travelling Salesman,
every number does have a unique prime factorization. So factoring has certificates even
for “no” answers: in the question “does n have a prime factor ending in 7?” even the
“no” answer can be verified in polynomial time.

Then we have BQP, which means “bounded-error quantum polynomial”. We actually
have a theorem

Theorem 7.2 (Simon)

There exists an oracle A such that BPP with oracle A is weaker than BQP with
oracle A.

This was actually rejected from a major theoretical CS conference, but Peter Shor looked
at this and exhibited the oracle A: modular exponentiation. Except we actually know
what the oracle does! So in other words, Shor showed that the factoring problem is in
BQP.

In particular, assuming factoring is not in BPP, then BQP is larger than BPP; quantum
computers are stronger than classical ones.

PSPACE is the set of all decision problems that can be solved by a Turing machine
using a polynomial amount of space; given P (n) states, we have at most 2P (n) time (by
the way a Turing machine works) and so PSPACE is contained in EXP.

It has been shown that BQP is contained in PSPACE. (One can show “by hand”
that BQP is in EXP by considering exponential vectors.) Thus, we can simulate a
quantum computer in a classical one that, even if it requires exponential time, still uses
a polynomial amount of memory.

In fact, it is open whether P is PSPACE.
By PSPACE, none of the probabilistic things make a difference: BPSPACE, BPPSPACE,

BQPSPACE, NPSPACE are all the same.
It is also open whether NP is contained in BQP. However, it’s been shown there exists

an oracle A such that NPA 6⊂ BQPA.
On the other hand, we can ask whether BQP is contained in NP: i.e. are there problems

that quantum computers can solve but classical computers cannot even verify certificates
to? This is open, but we actually suspect that such a problem might exist.
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For me, the biggest reason to do this [to build a quantum computer] is to
disprove all the people who said it was impossible.

So far, as a couple of months ago, we have a simulation with six photons.
That being said, there exist conjectures which everyone believed to be true, with

oracle-based evidence, and ended up being completely wrong. An example is interactive
proofs, which people originally thought to be NP, but turns out to actually be PSPACE.
For concreteness, suppose a super-intelligent being has solved the game chess. Not only
does the alien want to just beat you at chess, it wants to prove to you that it knows
how to play chess perfectly. To do this, it suffices to transform chess into an equivalent
game (e.g. polynomials over a finite field) in which we “might as well” play randomly (i.e.
for Black, playing randomly is an optimal strategy; no move gives Black an advantage).
Then if the alien can always win on the equivalent game, this convinces us that the alien
can play chess properly.
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§8 October 15, 2015

(Paraphrased) I asked the Chair “how do I get tenure?”, and he responded,
“well, just be the best person in the world in your field”, which was very easy
for me, because at the time I was the only person in the world in my field.

To cover:

• Deutsch-Jozsa Algorithm (first nontrivial quantum algorithm which gives a speed-up
over physical computers)

• Quantum weirdness — Greenberger-Horne-Zeilinger state

• Quantum teleportation and super-dense coding

§8.1 Deustch-Jozsa

First, consider functions f : {0, 1} → {0, 1}. There are 22 = 4 such functions:

• Two constant functions, and

• Two balanced functions x 7→ x and x 7→ ¬x. By balanced we mean that |f−1(0)| =
|f−1(1)|.

More generally, 22
m

functions from m bits to {0, 1}.
Now, consider a box

(x, y)
f
7→ (x, f(x) + y mod 2).

Problem 8.1 (Homework 5.1). Show that f is reversible even if f(x) is not, and exhibit
its inverse.

Classically: given such a circuit f : {0, 1}2 → {0, 1} as above, we need to use this box

twice in order to decide for sure whether f is constant or balanced (just input 0 or 1).
More generally, if we have m-bit inputs, then we clearly require

2m−1 + 1

queries in order to prove that f is constant/balanced, since in the worst case we could
get the same output 2m−1 times.

However, we’re going to show that with a quantum computer we can do this with just
a single function call. Let’s just do the case f : {0, 1} → {0, 1}. Consider the Hadamard
matrix

H =

(
1√
2

1√
2

1√
2
− 1√

2

)

which sends |0〉 to |→〉 and |1〉 to |←〉. Observe that H2 = id.
Let’s interpret this as an H gate: so consider the circuit

Input Output

f

H

-
H

-

Input

H

-

Output

H
-
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One might write this as the function

(H ⊗H) ◦ f ◦ (H ⊗H).

We fix the inputs |0〉 and |1〉, as follows:

|0〉 Output

f

H

-
H

-

|1〉
H

-

Output

H
-

We claim that from the outputs of this, we can tell whether f is constant or balanced.
There are about four cases to consider.

• If f ≡ 0, then f is identity, we check that the result is |0〉 and |1〉.

• If f ≡ 1, we have

|0〉 H - |→〉 f - |→〉 H - |0〉

|1〉
H

- |←〉 f- − |←〉
H

- − |1〉

In summary, if f is constant then

(|0〉 , |1〉)
(H⊗H)◦ f ◦(H⊗H)

7−−−−−−−−−−−−−→ (|0〉 , |1〉)

• If f is id, one can check that we get

(|0〉 , |1〉)
(H⊗H)◦ f ◦(H⊗H)

7−−−−−−−−−−−−−→ (|1〉 , |0〉)

In fact, more generally, one check that for x ∈ {0, 1} we have

|x〉 ⊗ 1√
2

(|0〉 − |1〉)
f
7−−→ |x〉 ⊗ 1√

2
(|0 + f(x)〉)− |x〉 ⊗ 1√

2
(|1 + f(x)〉).

Problem 8.2 (Homework 5.2). Consider f : {0, 1}m → {0, 1} now, and define f :

{0, 1}m+1 → {0, 1}m+1 defined by

(x1, . . . , xm, y)
f
7−−→ (x1, . . . , xm, y + f(x1, . . . , xm)).

Show that inputting |0〉 ⊗ · · · ⊗ |0〉 ⊗ |1〉 into the circuit

H⊗m+1 ◦ f ◦H⊗m+1

is enough to determine whether f is constant or balanced. Possible hint: show that f

sends |x1〉 ⊗ · · · ⊗ |xm〉 ⊗ |←〉) to (−1)f(x1,...,xm) |x1〉 ⊗ · · · ⊗ |xm〉 ⊗ |←〉).
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§8.2 Greenberger-Horne-Zeilinger Paradox

Take the state

|Ψ〉GHZ =
1√
2

(|0〉A |0〉B |0〉C − |1〉A |1〉B |1〉C) .

Consider the following set of measurements:

σAy ⊗ σBy ⊗ σCx , σAy ⊗ σBx ⊗ σCy , σAx ⊗ σBy ⊗ σCy , σAx ⊗ σBx ⊗ σCx .

Problem 8.3 (Homework 5.3). (a) Show that

〈Ψ|GHZ σ
A
x ⊗ σBx ⊗ σCx |Ψ〉GHZ = −1.

(Possible hint: σAx ⊗ σBx ⊗ σCx |Ψ〉GHZ = − |Ψ〉GHZ.)
(b) Show that

〈Ψ|GHZ σ
A
y ⊗ σBy ⊗ σCx |Ψ〉GHZ = 1.

(Possible hint: same trick as before.)

Something is weird about this. Let SAX = {±1} be the result of measuring by σAx on
the state, and define other variables similarly. Thus the possible results are SAy S

B
y S

C
x ,

SAy S
B
x S

C
y , SAx S

B
y S

C
x , SAx S

B
x S

C
x , with each variable being ±1, and with product (−1)3 ·1 =

−1. However, the product of them all is 1, because of the squares!
What this means is that the values of the observations do not exist beforehand; in

some sense they are “created” at the time of measurement.
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§9 October 20, 2015

Today: superdense coding, and teleportation (plus time travel).

§9.1 Superdense Coding

This is quantum communication.
Assume Alice is trying to communicate with Bob by sending qubits. For every qubit

Alice sends across a channel, it’s been shown Bob can receive at most one bit of classical
information.

But now suppose that Alice and Bob additionally both possess access to an entangled
state

|Ψ−〉AB =
1√
2

(|0〉A |1〉B − |1〉A |0〉B) .

We say they have one e-bit of shared entanglement.
We now claim that if Alice and Bob possess one e-bit, then Alice can send a qubit to

transmit two classical bits. Note that Alice can transform |Ψ−〉AB into any of the triplet
states by acting on exactly one qubit, since

• Do nothing to get |Ψ−〉AB,

• Do σAx to get |Φ−〉AB,

• Do σAz to get |Ψ+〉AB,

• Do σAy to get |Ψ−〉AB.

Thus, the algorithm is:

• Perform an operation on the entangled state, and then

• Send her half of the entangled pair to Bob.

From here Bob recovers the qubits in his basis.

§9.2 Quiz Warmup

Problem 9.1 (Quiz Warmup 1). Show how to do superdense coding when the initial
entangled state is one of the other triplet states.

Problem 9.2 (Quiz Warmup 2). Construct a quantum logic circuit (using single qubit
rotations, one Hadamard, and one CNOT) that maps inputs |0〉 |0〉, |0〉 |1〉, |1〉 |0〉, |1〉 |1〉
to outputs |Ψ−〉AB, |Ψ+〉AB, |Φ−〉AB, |Φ+〉AB. (Hint: use Hadamard once, then feed
into CNOT.)

Problem 9.3 (Quiz Warmup 3). Show that the reverse circuit to the one in the previous
problem allows one to distinguish between the two states.

“The NSA would prefer for it not be possible to build a quantum com-
puter. . . On the other hand, if it is possible to build a quantum computer, we
would like the first one.”
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§9.3 Teleportation

Alice and Bob again share an entangled state |Ψ−〉AB. Moreover, Alice has a state
|φ〉 = α |0〉+ β |1〉. The Bell basis of C2 ⊗ C2 consists of the singlet and triplet state.

Now, Alice measures |φ〉A and the first half of her entangled state, in the Bell basis, to
get two classical bits k. Then, Bob will be able to recover the state |ψ〉 up to global base
by applying a certain transformation Uk (depending on k).

Let |φ〉 = (α |0〉B + β |1〉B. The key is the identity

2
√

2 · (α |0〉+ β |1〉)⊗ |Ψ−〉AB =(|0〉 |1〉A − |1〉 |0〉A)⊗ (α |0〉B + β |1〉B)

+ (|0〉 |0〉A − |1〉 |1〉A)⊗ (α |0〉B + β |1〉B)

+ (|0〉 |0〉A + |1〉 |1〉A)⊗ (α |0〉B + β |1〉B)

+ (|0〉 |1〉A + |1〉 |1〉A)⊗ (α |0〉B + β |1〉B)

= |Ψ−〉 ∗A⊗ φB
+ |Φ+〉 ∗A⊗−iσBy φB
+ |Φ−〉 ∗A⊗ σBx φB
+ |Φ+〉 ∗A⊗ σBz φB

Problem 9.4 (Quiz Warmup 4). Verify this.

Thus, we can now use “spooky action at a distance”. Specifically, Alice makes a
measurement, and

• If she observes |Ψ−〉, tells Bob to do nothing.

• If she observes |Φ−〉, tells Bob to apply σx.

• If she observes |Φ+〉, tells Bob to apply σy.

• If she observes |Ψ+〉, tells Bob to apply σz.
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§10 November 3, 2015

§10.1 Fast Fourier Transformation

Let f(x) be a function from n bits to n bits. Then we can consider a discrete FFT which
transforms f(x) to

g(y) =

2n−1∑

x=0

exp (2πixy/2n)

The Fast Fourier Transform takes time O(n2n). Equivalently if N = 2n is the number of
states then this is O(N logN) time.

Problem 10.1 (Homework 6.1). Suppose f(x) = e−iωx. What is the (discrete) fast
Fourier transform of f?

§10.2 Quantum Fourier Transformation

The quantum Fourier transform (QFT) takes wave functions over n qubits to wave
functions over n qubits as follows. Consider a function f : {0, . . . , 2n − 1} → C such that∑

x |f(x)|2 = 1 (normalization). The wave function is represent by

|ψ〉 =

2n−1∑

x=0

f(x) |x〉

and its quantum Fourier transform is defined as

|ψ〉 7→ 1

2n/2

2n−1∑

x=0

2n−1∑

y=0

exp (2πixy/2n) f(x) |y〉

which can be rewritten as

1

2n/2

2n−1∑

y=0

g(y) |y〉 .

The factor 2−n/2 = 1/
√
N is another normalization factor. We will see this takes

O(n2) = O(logN) time to produce. But it would still take O(2n) time to actually extract
the coefficient in front of each basis |y〉.

This speed up is the key to good quantum algorithms: almost every quantum algorithm
uses this in some way.

Problem 10.2 (Homework 6.2). Show that the quantum Fourier tranform is unitary.

Problem 10.3 (Homework 6.3). Show that the inverse QFT is given by

∑

y

g(y) |y〉 7→ 1

2n/2

∑

x,y

exp(−2πixy/2n)g(y) |x〉 .

We now take the time to write x = xnxn−1 . . . x2x1 in binary.

Problem 10.4 (Homework 6.4). Expressing x binary notation, show that this is equiva-
lent to

|xnxn−1 . . . x1〉 7→
1

2n/2
(|0〉+ exp(2πi · 0.x1) |1〉)

⊗ (|0〉+ exp(2πi · 0.x2x1) |1〉)
⊗ . . .
⊗ (|0〉+ exp(2πi · 0.xn . . . x1) |1〉)
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§10.3 The Circuit

We now draw the actual quantum circuit for the quantum Fourier Transform. Here it is
for three qubits, just for concreteness.

Abbreviating the controlled rotation

Rk =

(
1 0
0 exp(2πi/2k)

)

we can write the circuit (like Wikipedia does) as

|xn〉

QFTn−1

Rn · · · · · · |y1〉

|xn−1〉 Rn−1 · · · · · · |y2〉
...

...

|xi〉 · · · Ri · · · |yn−i+1〉
...

...

|x2〉 · · · · · · R2 |yn−1〉

|x1〉 • • · · · • · · · • H |yn〉

If we write out the circuit explicitly for n = 3, we can rearrange the wires to give the
more intuitive diagram

|x3〉 H R2 R3 |y1〉

|x2〉 • H R3 |y2〉

|x1〉 • • H |y3〉

This was the diagram which was drawn in class; note that it’s upside-down in comparison
to the one given by Wikipedia. Use this one for the following homework problem:

Problem 10.5 (Homework 6.5). Verify this works using the content of Homework 6.4.
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§11 November 5, 2015

Problem 11.1 (Homework 6.6). Show that

QFT(|00 . . . 0〉) =
1

2n/2

1...1∑

x=0...0

|x〉 .

Some digressions:

“I do not recommend taking the exam on psilocybin, even if you are from
Senior House”

“There are a bunch of theorems of this form, due to me. . . why was that
funny?”

§11.1 Digression on Flipping Bits

How much energy is required to flip a qubit?
For the classical case, most of the “loss of energy” takes place when we flip bits. There

is a minimum amount of energy we need to dissipate to erase a bit, but currently our
classical computers take much more energy than this. Specifically,

• A bit 0 has energy E0 = 0, and

• A bit 1 has energy E = 1
2cv

2.

So to erase a bit, E1 = 1
2cv

2 energy gets thermalized. This is� kBT log 2, the theoretical
minimal threshold.

In qubits, a |0〉 has energy E0 = 0 and a |1〉 has energy E1 = ~ω.
Now, consider a state

|+〉 =
1√
2

(|0〉+ exp(−iωt) |1〉).

We define the Hamiltonian

H =
~ω
2

(id + σz).

This is contrived so that H |0〉 = 0 and H |1〉 = ~ω. Then the expectation of E is

〈E〉 = 〈ψ|H|ψ〉
and the standard deviation is

∆E2 = 〈ψ|H2|ψ〉 − (〈ψ|H|ψ〉)2

which is the “uncertainty in energy”. The time to flip is

t = π/ω =
π~
E1

=
π~

2 〈E〉 =
π~

2∆E
.

Theorem 11.2

The minimum time δt required to flip a qubit (take a quantum system from a state
|ψ(0)〉 to an orthogonal state |ψ(∆t)〉) obeys

〈E〉∆t ≥ π~
2

∆E∆t ≥ π~
2
.
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§11.2 Atomic Clocks

Given an atom (say cesium) evolving according to the state

1√
2

(|0〉+ exp(−iωt) |1〉)

according to t. This has only one bit of information, so it’s not a terribly useful clock yet.
We add in an oscillator with frequency ω ≈ ω0 and we can count the number of

oscillations at 10 GhZ, say. So the oscillator is the clock, but the atoms are providing
the feedback: it will detect how much ω is drifting, and correct for this.

So starting with the state |↑〉,

• Apply the oscillator field to rotate the spin to |+〉 in the co-rotating frame

• Wait for some time t

• Rotate back to |↑〉

• Check to see if the state we get is actually |↑〉, and if not how much it deviates.
More precisely ω 6= ω0 then spin is off by an angle ∆θ = ∆ω · t.
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§12 November 10, 2015

§12.1 Synopsis

Consider a unitary operator

U =
∑

j

exp(iϕj) |j〉 〈j|

where |j〉 are eigenvectors of U and exp(iϕj) are the eigenvalues.

Problem 12.1 (Homework 7.1). Show U−1 = U †.

The quantum phase algorithm allows one to decompose an arbitrary vector |ψ〉 =∑
j ψj |j〉 into eigenvectors of U and find the corresponding eigenvalues.
In particular, the quantum phase algorithm will take

∑

j

ψJ |j〉 |0 . . . 0〉 = |ψ〉 |0 . . . 0〉 7→
∑

j

ψj |j〉 |ϕ̃j〉

where there are n ancilla bits |0 . . . 0〉. The ϕ̃j are estimates to ϕj , up to n bits of
precision.

Fact 12.2. Any unitary operator can be written as U = exp(iA) where A = A† is
Hermitian and thus

U † = e−iA
†

= e−iA.

§12.2 The Quantum Phase Algorithm

Suppose we have U as described above (operating on m qubits). So of course

Uk |j〉 = exp(ikϕj) |j〉 .

First, assume |ψ〉 = |j〉. The input is initially

|j〉 ⊗ |0 . . . 0〉 .

After the Hadamard, we have

1√
2n
|j〉 ⊗

2n−1∑

k=0

|k〉 .

The controlled operators (applying depending on whether the bit fed into them is 0 or 1)
then gives

1√
2n

2n−1∑

k=0

exp(ikϕj) |j〉 ⊗ |k〉 .

Discard the |j〉 now, to get

1√
2n

2n−1∑

k=0

exp(ikϕj) |k〉 .

This is a wave function, so we can extract the phase using the inverse quantum Fourier
transform, and obtain

1

2n

∑

k,`

[exp(2πik · (ϕj/2π − `/2n)] |`〉 .
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Intuitively, we get ≈ |2n ϕj

2π 〉. If `/2n = ϕj/2π, then this isolates the specific phase: roots
of unity filter.

In summary, the circuit is

|ψ〉 /m U U2 · · · U2n−1

|0〉 H • · · ·

F−1n

|0〉 H • · · ·
...

...
...

|0〉 H · · · •

Problem 12.3 (Homework 7.2, for Graduate Students). Construct the output of the
quantum phase estimation when

ϕj

2π /∈ 1
2nZ and provide a formula for the expected error

in estimating
ϕj

2π .

Note that classically, to find the eigenvectors/eigenvalues of a 2n × 2n matrix takes
O(23n) time. But in quantum it only takes O(n2) time.
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§13.1 Shor’s Algorithm

Let N = pq where p and q are prime numbers.

“. . . aftertaste of burnt copper and arsenic . . . ”

“You just bought 2 tons of nitrogen fertilizer . . . people who bought this
product also purchased these detonators.”

Problem 13.1 (Homework 7.3). Read up (e.g. Wikipedia) on RSA and be prepared to
discuss how it works.

“of course I’m going to look at people and see who’s sweating. . . ”

Shor used QFT to find p, q given N ; there is a hidden periodicity in factoring that can
be revealed using the quantum Fourier transform.

The first step is to transform factoring into the discrete logarithm problem: given
N and x, find the smallest r such that xr ≡ 1 (mod N) (i.e. compute the order of x
(mod N)).

We claim discrete logarithms let us do factoring. Pick x, say x = 17. After ensuring
that gcd(x,N) = 1 (otherwise, done), we use a quantum circuit.

So we have the following periodicity: if xr ≡ 1 (mod N) then xar ≡ 1 (mod N). So
we pick n such that N2 < 2n < 2N2, and construct the state

1√
2n

1...1∑

k=0...0

|k〉 |0〉

and then compute

1√
2n

1...1∑

k=0...0

|k〉 |xk mod N〉

Anyways, xk (mod N) is periodic in k with period r. The quantum Fourier transform
then lets us find r.

31



Evan Chen (Fall 2015) 14 November 17, 2015

§14 November 17, 2015

Shor’s algorithm uses a quantum computer on the hidden subgroup problem of
determining the order of a given x (mod N).

§14.1 Graph Isomorphism Problem

Let G and H be graphs of the same order n. Encode |G〉, |H〉. We can try to construct

1√
n!

∑

π

|π(G)〉

and compare it to 1√
n!

∑
π |π(H)〉. Unfortunately, it turns out we can only construct

|ψG〉AB =
1√
n!

∑

π∈Sn

|π〉A |π(G)〉B

and the corresponding |ψH〉AB.

Problem 14.1 (Homework 8.1). What are the reduced density matrices for A and B
above? In particular, does ρGB = ρHB ? If so, why doesn’t this provide a solution to graph
isomorphism?

Problems worthy of attack prove their worth by hitting back.

§14.2 Shor’s Algorithm

Suppose we wish to factor N . Pick n so that N2 < 2n < 2N2, and by modular
exponentiation obtain the state

1√
2n

∑

k

|x〉 |xk mod N〉 .

This takes O(n3) time, starting from 1√
2n

∑
k |x〉 |0〉.

Suppose we make a measurement on the second register and get some value z for the
second register. The entanglement goes away, and we obtain

∑

k
xk≡z

|k〉 |z〉 .

Thus, we get k0, k0 + r, . . . , or something. (The measurement of z is actually irrelevant.)
Now we discard the second register. Then the quantum Fourier transform gets us r.

Thus using QFT on the first register, we arrive at

1

2n

∑

j,`

exp

(
2πi · j(k0 + `r)

2n

)
|j〉

For any fixed j the coefficient of |j〉 is positive if and only if jr
2n is close to an integer.

So, by measurement, we obtain a value of j such that jr/2n ≈ s, (here s ∈ Z is
unknown, and r ∈ Z is what we want). Thus

j

2n
≈ s

r
.

But r < N . So you can use continued fractions to compute both s and r, since j/2n is
known.

Problem 14.2 (Homework 8.2). Find continued fractions for e, π,
√

2. Construct the
first five truncated rational approximations.
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§15.1 Sparse matrix completion

Problem: consider Netflix with N movies and M viewers. We want to “complete” the
matrix A from incomplete information (ratings); this is sparse matrix completion.

Classical algorithms take poly(MN) time while the quantum algorithm takes (log(MN))2

time.
Assume data is stored in quantum random access memory, in form

(
0 A
A† 0

)
.

We use phase estimation to find eigenvectors and eigenvalues, and claim there are only
a few large eigenvalues. Intuitively each eigenvector with large eigenvalue is a “genre”.
Principal components of matrix.

Suppose your stated preferences are ~b+ = (. . . ). Apply quantum phase algorithm to
decompose ~b in terms of principal components of Ã. Project ~b onto a superposition of
movies in the same genre; then a measurement yields a movie, where movies liked by
people have higher associated probability.

§15.2 Homework Problems

Problem 15.1 (Homework 9.1). (Poor man’s phase algorithm) Let U be unitary with
eigenvector |u〉; thus U |u〉 = exp(iϕ) |u〉. Consider the circuit

|0〉 H • H

|u〉 U |u〉

(1) We measure the top in the |0〉, |1〉 basis. Find the probability of obtaining |1〉.

(2) How many times do you have to repeat to estimate U to accuracy ε? (To be clear:
we want the standard deviation of the Gaussian distribution to be ε.)

Both answers depend on ϕ.

Problem 15.2 (Homework 9.2). Show that the controlled U operation

V = |0〉 〈0| ⊗ id + |1〉 〈1| ⊗ U

is unitary. (Show that V †V = id.)

§15.3 Grover’s Algorithm

Unstructured database search. There are n items labeled {0, 1, . . . , n− 1} one of which
is marked, say w. How many items do you have to sample to get it? Classically, in the
worst case we need n− 1 samples to deduce it and n/2 times to get a 1

2 success rate.
For quantum algorithm,

√
n.

Indeed, classically we can test in the form

i 7→ f(i) ≡
{

1 i = w

0 else.
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In the quantum situation consider |i〉 7→ (−1)f(i) |i〉. This comes from the circuit

|i〉 •
|1〉 H f H

Problem 15.3 (Homework 9.3). Show that the above operation is given by UG =
(id− 2 |w〉 〈w|).

Now, let |1〉 = 1√
n

∑n−1
i=0 |i〉 be an “all-1” vector and define

U1 = id− 2 |1〉 〈1| .

Problem 15.4 (Homework 9.4). Take n = 4 and w = 2. Compute U1UG1. Can we find
w from this?
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§16 December 1, 2015

§16.1 Grover’s search algorithm, continued

Let

|1〉 =
1√
n

n−1∑

i=0

.

Remark 16.1. Observe that if n = 2m, then |1〉 is the output of taking |0 . . . 0〉 (m
times) and passing it through m Hadamard operators, i.e.

H⊗m |0 . . . 0〉 = |1〉 .

Again, we define
UG = U|1〉Uw |1〉 .

Note that UG never takes a state out of the subspace spanned by |w〉, |1〉.
Also, note that

〈1|w〉 =
1√
n
.

Consider the subspace Hω By Gram-Schmidt orthogonalization, we can consider

|w̃1〉 = |1〉 − 〈w|1〉 |w〉

which is orthogonal to w, and normalize it to get

|w1〉 =
1√

1− 1/n
|w̃1〉 .

Now note that

1 =
√

1− 1/n |w1〉+
1√
n
|w〉

|1〉 〈1| = 〈w1| |w1〉+
1√
n

√
1− 1

n
σx +

1

n
σz

=
1

2
(id− σz) +

1√
n

√
1− 1

n
σx +

1

n
σz.

So one can compute

UG = U1Uw = exp

(
−iθ

2
σy

)

where cos(12θ) = 1− 2/n and sin(12θ) = 2√
n

√
1− 1

n .

So all we’re doing is rotating. After ` iterations, we have `θ ≈ π.
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§17 December 3, 2015

§17.1 Error Correction

Classically, a error correcting code for one bit is 000 or 111 for 0 and 1, respectively.
Quantum version for at most one σx flip:

|ψ〉 • •
Ebit

• • |ψ〉
|0〉 •
|0〉 •

This will restore the state |ψ〉 completely. Similarly,

|ψ〉 • • H

Ephase

H • • |ψ〉

|0〉 H H •

|0〉 H H •

is a code to deal with up to one σz rotation. (What about σy?)
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§A.1 Review topics

• Classical logic and reversible computation.

• Quantum mechanics of single qubit, SU(2).

• Multiple qubits, tensor products, entanglements, reduced density matrices.

• Quantum circuits: for example, given a circuit and its input, compute the output
of the circuit.

• No-cloning Theorem, teleportation, superdense coding.

• Quantum weirdness (Greenberger-Horne-Zeilinger).

• Simple quantum algorithms, Deutschz-Jozsa.

• Quantum Fourier transform (e.g. apply to a given)

• Phase estimation

• Shor’s algorithm

• Grover search algorithm.

• A little on quantum error-correcting codes. (E.g. construct a code that corrects
the following type of error.)

You need to be able to rotate a single qubit around a given axis. You need to able to
complete reduced density matrices.

§A.2 Classical and Quantum Logic

Reversible logic gates: Toffoli, Fredkin, CNOT, NOT, wire. Universal set of gates e.g.
AND, OR, NOT, (COPY). Toffoli and Fredkin are universal on their own with suitable
additional inputs.

In a qubit system, we have |0〉 =

(
1
0

)
and |1〉 =

(
0
1

)
and thus a state is given by

|ψ〉 = α |0〉+ β |1〉, where |α|2 + |β|2 = 1.
The Pauli matrices are

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
.

As for SU(2), we consider a vector ~ = j1σx + j2σy + j3σz, then

exp(−iθ/2σ~) = cos(
1

2
θ)id− i sin(

1

2
θ)σ~.

to rotation by θ about the ~ axis. (There will be a problem on this.)
A measurement corresponds to a Hermitian operator A = A†. The outcome of

the measurement corresponds to an eigenvalue ai of A and leaves the system in the
corresponding eigenstate |i〉.

Two qubits, tensor products, operators σA ⊗ σB. The singlet and triplet states. Be
able to take partial traces.

No-cloning theorem. Superdense coding. “What should Alice do if she sees |Φ+〉?”
(Write down answers for all four singlets.)
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§A.3 Quantum Algorithms

Quantum Fourier Transform: |x〉 7→ 1√
2n

∑1...1
y=0...0 exp

(
2πixy
2n

)
|y〉. Finds periodicity in

wave functions.
Shor’s algorithm. Quantum phase algorithm. Grover’s algorithm. Error correcting

codes.

§B Notes for Exam

For the final exam we were permitted two pages of notes, double sided. On the next
pages is a copy of the notes that I used. The condensing of material was done using
savetrees (it actually could have fit on three pages with tighter line spacing).
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1 Logic Gates

Universal set: Toffoli, Fredkin, CNOT, NOT, wire.-
• Toffoli: [a, b, c] 7→ [a, b, ab+ c].
• Fredkind: Given abc, swaps b and c iff a = 1.

2 Rotation Matrices

The Pauli matrices are

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
.

Normalized eigenvectors:

|↑〉 =

(
1
0

)
|↓〉 =

(
0
1

)

|→〉 =
1√
2

(
1
1

)
|←〉 =

1√
2

(
1
−1

)

|⊗〉 =
1√
2

(
1
i

)
|�〉 =

1√
2

(
1
−i

)
.

As for SU(2), we consider a vector ~ = j1σx + j2σy + j3σz,
then

exp(−iθ/2σ~) = cos(
1

2
θ)id− i sin(

1

2
θ)σ~.

to rotation by θ about the ~ axis.

3 Spukhafte Fernwirkung

|Ψ−〉 =
1√
2

(|↑〉A ⊗ |↓〉B − |↓〉A ⊗ |↑〉B) .

We also define

|Ψ+〉 =
1√
2

(|↑〉A ⊗ |↓〉B + |↓〉A ⊗ |↑〉B)

|Φ+〉 =
1√
2

(|↑〉A ⊗ |↑〉B + |↓〉A ⊗ |↓〉B)

|Φ−〉 =
1√
2

(|↑〉A ⊗ |↑〉B − |↓〉A ⊗ |↓〉B).

4 Reduced Density Matrices

Consider a state

|ψ〉 =
∑

i,j

ψi,j |i〉A|j〉B ∈ V1 ⊗ V2

The reduced density matrix is

ρA
def
=
∑

i,i′,j

ψi,jψi′,j |i′〉 〈i|

Partial trace:

TrB
∑

i,i′,j,j′

ψi,jψi′,j′(|i′〉 ⊗A 〈i|)⊗ (|j′〉 ⊗B 〈j|)

def
=

∑

i,i′,j,j′

ψi,jψi′,j′(|i〉 ⊗A 〈i′|) 〈j|j′〉 .

Partial trace ρA for matrices:


a b c d
e f g h
i j k l
m n o p


→

[
a+ f c+ h
i+ n k + p

]

Derivation: the expected output applying MA ⊗ idB

〈ψ|ABMA ⊗ idB |ψ〉AB

=


∑

i,j

ψi,j 〈i| ⊗ 〈j|


MA ⊗ idB


∑

i′,j′

ψi′,j′ |i′〉 ⊗ |j′〉




=
∑

i,j,i′,j′

ψi,jψi′,j′ 〈i|MA |i′〉 〈j| idB |j′〉

=
∑

i,j,i′,j′

ψi,jψi′,j′ 〈i|MA |i′〉 δj,j′

=
∑

i,j,i′

ψi,jψi′,j 〈i|MA |i′〉

=
∑

i,j,i′

ψi,jψi′,j Tr(〈i|MA |i′〉)

=
∑

i,j,i′

ψi,jψi′,j Tr(|i′〉 〈i|MA)

= Tr(
∑

i,j,i′

ψi,jψi′,j |i′〉 〈i|MA)

= Tr(ρAMA).

5 Deutsch-Jozsa

First, consider functions f : {0, 1}m → {0, 1}. Want to
differentiate between constant and balanced.

Now, consider a box

(x, y)
f
7→ (x, f(x) + y mod 2).

If we have m-bit inputs, then we clearly require

2m−1 + 1

queries in order to prove that f is constant/balanced, since
in the worst case we could get the same output 2m−1 times.

In quantum, can do with one function call given an oracle
Uf : |x〉 |y〉 7→ |x〉 |x+ f(y)〉.

|0〉 /n H⊗n
Uf

H⊗n

|1〉 H

Output:

1

2n

2n−1∑

y=0

[
2n−1∑

x=0

(−1)f(x)(−1)x·y
]
|y〉



where x · y is a dot product. The probability of measuring
|0〉⊗n is

∣∣∣∣
1

2n

2n−1∑

x=0

(−1)f(x)
∣∣∣∣
2

which is 1 for constant and 0 if balanced.

6 Greenberger-Horne-Zeilinger Paradox

Take the state

|Ψ〉GHZ =
1√
2

(|0〉A |0〉B |0〉C − |1〉A |1〉B |1〉C) .

Consider the following set of measurements:

σAy ⊗σBy ⊗σCx , σAy ⊗σBx ⊗σCy , σAx ⊗σBy ⊗σCy , σAx ⊗σBx ⊗σCx .

Compute

〈Ψ|GHZ σ
A
x ⊗ σBx ⊗ σCx |Ψ〉GHZ = −1

and

〈Ψ|GHZ σ
A
y ⊗ σBy ⊗ σCx |Ψ〉GHZ = 1.

(Possible hint: σAx ⊗ σBx ⊗ σCx |Ψ〉GHZ = − |Ψ〉GHZ.)

Something is weird about this. Let SAX = {±1} be the
result of measuring by σAx on the state, and define other
variables similarly. Thus the possible results are SAy S

B
y S

C
x ,

SAy S
B
x S

C
y , SAx S

B
y S

C
x , SAx S

B
x S

C
x , with each variable being ±1,

and with product (−1)3 · 1 = −1. However, the product of
them all is 1, because of the squares!

What this means is that the values of the observations
do not exist beforehand; in some sense they are “created”
at the time of measurement.

7 Superdense coding

This is quantum communication.
Assume Alice is trying to communicate with Bob by

sending qubits. For every qubit Alice sends across a channel,
it’s been shown Bob can receive at most one bit of classical
information.

But now suppose that Alice and Bob additionally both
possess access to an entangled state

|Ψ−〉AB =
1√
2

(|0〉A |1〉B − |1〉A |0〉B) .

We say they have one e-bit of shared entanglement.
We now claim that if Alice and Bob possess one e-bit,

then Alice can send a qubit to transmit two classical bits.
Note that Alice can transform |Ψ−〉AB into any of the triplet
states by acting on exactly one qubit, since

• Do nothing to get |Ψ−〉AB ,
• Do σAx to get |Φ−〉AB ,
• Do σAz to get |Ψ+〉AB ,
• Do σAy to get |Ψ−〉AB .

Thus, the algorithm is:

• Perform an operation on the entangled state, and then
• Send her half of the entangled pair to Bob.

From here Bob recovers the qubits in his basis.

8 Teleportation

Alice and Bob again share an entangled state |Ψ−〉AB.
Moreover, Alice has a state |φ〉 = α |0〉 + β |1〉. The Bell
basis of C2 ⊗ C2 consists of the singlet and triplet state.

Now, Alice measures |φ〉A and the first half of her entan-
gled state, in the Bell basis, to get two classical bits k. Then,
Bob will be able to recover the state |ψ〉 up to global base
by applying a certain transformation Uk (depending on k).

Let |φ〉 = (α |0〉B + β |1〉B . The key is the identity

2
√

2 · (α |0〉+ β |1〉)⊗ |Ψ−〉AB
=(|0〉 |1〉A − |1〉 |0〉A)⊗ (α |0〉B + β |1〉B)

+ (|0〉 |0〉A − |1〉 |1〉A)⊗ (α |0〉B + β |1〉B)

+ (|0〉 |0〉A + |1〉 |1〉A)⊗ (α |0〉B + β |1〉B)

+ (|0〉 |1〉A + |1〉 |1〉A)⊗ (α |0〉B + β |1〉B)

= |Ψ−〉 ∗A⊗ φB
+ |Φ+〉 ∗A⊗−iσBy φB
+ |Φ−〉 ∗A⊗ σBx φB
+ |Φ+〉 ∗A⊗ σBz φB

Thus, we can now use “spooky action at a distance”.
Specifically, Alice makes a measurement, and

• If she observes |Ψ−〉, tells Bob to do nothing.
• If she observes |Φ−〉, tells Bob to apply σx.
• If she observes |Φ+〉, tells Bob to apply σy.
• If she observes |Ψ+〉, tells Bob to apply σz.

9 Quantum Fourier Transform

Consider a function f : {0, . . . , 2n − 1} → C such that∑
x |f(x)|2 = 1 (normalization). The wave function is

represent by

|ψ〉 =
2n−1∑

x=0

f(x) |x〉

and its quantum Fourier transform is defined as

|ψ〉 7→ 1

2n/2

2n−1∑

x=0

2n−1∑

y=0

exp (2πixy/2n) f(x) |y〉

The inverse operation is

∑

y

g(y) |y〉 7→ 1

2n/2

∑

x,y

exp(−2πixy/2n)g(y) |x〉 .

Expressing x binary notation, this is equivalent to

|xnxn−1 . . . x1〉 7→
1

2n/2
(|0〉+ exp(2πi · 0.x1) |1〉)

⊗ (|0〉+ exp(2πi · 0.x2x1) |1〉)
⊗ . . .
⊗ (|0〉+ exp(2πi · 0.xn . . . x1) |1〉)

Abbreviating the controlled rotation

Rk =

(
1 0
0 exp(2πi/2k)

)



for n = 3 the circuit is given by

|x3〉 H R2 R3 |y1〉

|x2〉 • H R3 |y2〉

|x1〉 • • H |y3〉

10 Quantum Phase Algorithm

Suppose we have U as described above (operating on m
qubits). So of course

Uk |j〉 = exp(ikϕj) |j〉 .

First, assume |ψ〉 = |j〉. The input is initially

|j〉 ⊗ |0 . . . 0〉 .

After the Hadamard, we have

1√
2n
|j〉 ⊗

2n−1∑

k=0

|k〉 .

The controlled operators (applying depending on whether
the bit fed into them is 0 or 1) then gives

1√
2n

2n−1∑

k=0

exp(ikϕj) |j〉 ⊗ |k〉 .

Discard the |j〉 now, to get

1√
2n

2n−1∑

k=0

exp(ikϕj) |k〉 .

This is a wave function, so we can extract the phase using
the inverse quantum Fourier transform, and obtain

1

2n

∑

k,`

[exp(2πik · (ϕj/2π − `/2n)] |`〉 .

Intuitively, we get ≈ |2n ϕj

2π 〉. If `/2n = ϕj/2π, then this
isolates the specific phase: roots of unity filter.

In summary, the circuit is

|ψ〉 /m U U2 · · · U2n−1

|0〉 H • · · ·

F−1n

|0〉 H • · · ·
...

...
...

|0〉 H · · · •

11 Shor’s Algorithm

Let N = pq where p and q are prime numbers. Suppose we
wish to factor N . Pick n so that N2 < 2n < 2N2, and by
modular exponentiation obtain the state

1√
2n

∑

k

|x〉 |xk mod N〉 .

This takes O(n3) time, starting from 1√
2n

∑
k |x〉 |0〉.

Suppose we make a measurement on the second reg-
ister and get some value z for the second register. The
entanglement goes away, and we obtain

∑

k
xk≡z

|k〉 |z〉 .

Thus, we get k0, k0+r, . . . , or something. (The measurement
of z is actually irrelevant.)

Now we discard the second register. Then the quantum
Fourier transform gets us r. Thus using QFT on the first
register, we arrive at

1

2n

∑

j,`

exp

(
2πi · j(k0 + `r)

2n

)
|j〉

For any fixed j the coefficient of |j〉 is positive if and only

if jr
2n is close to an integer.
So, by measurement, we obtain a value of j such that

jr/2n ≈ s, (here s ∈ Z is unknown, and r ∈ Z is what we
want). Thus

j

2n
≈ s

r
.

But r < N . So you can use continued fractions to compute
both s and r, since j/2n is known.

12 Grover’s Search Algorithm

Unstructured database search. There are n items labeled
{0, 1, . . . , n− 1} one of which is marked, say w. How many
items do you have to sample to get it? Classically, n/2 times
to get a 1

2 success rate. For quantum algorithm,
√
n.

Indeed, classically we can test in the form

i 7→ f(i) ≡
{

1 i = w

0 else.

In the quantum situation consider |i〉 7→ (−1)f(i) |i〉. This
comes from the circuit

|i〉 •
|1〉 H f H

Now, let |1〉 = 1√
n

∑n−1
i=0 |i〉 be an “all-1” vector and define

U1 = id− 2 |1〉 〈1| .
Remark 1. Observe that if n = 2m, then |1〉 is the output
of taking |0 . . . 0〉 (m times) and passing it through m
Hadamard operators, i.e.

H⊗m |0 . . . 0〉 = |1〉 .
Note that UG never takes a state out of the subspace

spanned by |w〉, |1〉. Also, note that

〈1|w〉 =
1√
n
.

Consider the subspace Hω By Gram-Schmidt orthogo-
nalization, we can consider

|w̃1〉 = |1〉 − 〈w|1〉 |w〉



which is orthogonal to w, and normalize it to get

|w1〉 =
1√

1− 1/n
|w̃1〉 .

Now note that

1 =
√

1− 1/n |w1〉+
1√
n
|w〉

|1〉 〈1| = 〈w1| |w1〉+
1√
n

√
1− 1

n
σx +

1

n
σz

=
1

2
(id− σz) +

1√
n

√
1− 1

n
σx +

1

n
σz.

So one can compute

UG = U1Uw = exp

(
−iθ

2
σy

)

where cos( 1
2θ) = 1− 2/n and sin( 1

2θ) = 2√
n

√
1− 1

n . So all

we’re doing is rotating. After ` iterations, we have `θ ≈ π.

13 Error Correction

Classically, a error correcting code for one bit is 000 or 111
for 0 and 1, respectively. Quantum version for at most one
σx flip:

|ψ〉 • •
Ebit

• • |ψ〉
|0〉 •
|0〉 •

This will restore the state |ψ〉 completely. Similarly,

|ψ〉 • • H

Ephase

H • • |ψ〉

|0〉 H H •

|0〉 H H •

is a code to deal with up to one σz rotation. (What about
σy?)
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