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§1 February 8, 2017

Examples of chip-firing games.

§1.1 Bert Kostant’s game

Actually “find the highest root”.
Let G = (V,E) be a simple graph, and set V = [n]. For i ∈ V let N(i) denote the

neighbors of i.
For i ∈ V we have ci ≥ 0 chips; the vector (ci)1≤i≤n is called a configuration. We say a

vertex i is:

• Happy if ci = 1
2

∑
j∈N(i) cj .

• Unhappy if ci <
1
2

∑
j∈N(i) cj .

• Excited if ci >
1
2

∑
j∈N(i) cj .

Goal: make everyone happy or excited.
The game is played as follows. Initially no chips are present (hence ci = 0 for all i,

and all vertices are happy). Then, we place a chip at vertex vi0 = 1, so i0 is excited but
neighbors of i0 are unhappy. Subsequently, do the following “reflection”:

Pick any unhappy vertex i, and replace ci by

ci 7→ −ci +
∑
j∈N(i)

cj .

Here’s an example of a couple steps.

1 3 2 1

0

5

1 3 2 6

0

5

1 3 7 6

0

5

More examples.

Example 1.1 (Kostant’s game on Pn and Cn)

Check that:

• Let G = Pn, the game ends with all vertices having exactly one chip.

• Let G = Cn, the game never ends.

We now say:

Definition 1.2. The graph G is of finite type if the game ends.

Of course, in order for this definition to make sense, we have to prove the following
claim.
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Proposition 1.3

If there is a way to play so that the game ends, then any sequence of moves eventually
leads to a terminating state. Moreover, the final configuration vector does not depend
on the choice of moves, nor on the initial vertex we added a chip on.

Example 1.4 • If G is a path on n vertices, then the terminating state is all 1.

• If G is the graph at the beginning, the terminating state is:

1 2 2 2

1

1

§1.2 Sponsor game

(This name is not standard, and is idiosyncratic. Postnikov says that if anyone sponsors
his next teaching of the class with $106, he will henceforth name the game after them.)

Everything is the same as previous game except the reflection step, which is replaced
by:

Pick any unhappy vertex i, then replace ci by

ci 7→ ci + 1.

So instead of the reflection process, the sponsor gives them a chip.

Example 1.5 (Sponsor game on Pn and Cn)

If G = Pn or G = Cn, both games terminate after n steps, with all vertices having
exactly one chip.

§1.3 Excited sponsor game

Everything is the same as previous except the reflection step, which is replaced by:

Pick any unhappy or happy vertex i, then replace ci by

ci 7→ ci + 1.

In other words, the sponsor wants everyone to be excited, not just happy.

0 1 0 0 0 1 1 1 1 1

1 2 2 2 1 2 3 3 3 2

and after a long time
3 5 6 5 3

7
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On the other hand the excited sponsor game never terminates on a cycle, because it
is impossible for the inequality ci >

1
2(ci−1 + ci+1) to hold for all i (by noting that the

minimal vertex is always un-excited).
So the excited sponsor game feels more like Kostant’s game, but the terminal state is

different in the path case (35653 rather than 11111).

§1.4 Chip-firing game

Also called “abelian sandpile model”.
Retain the notation G = (V,E), V = [n], and ci.

Definition 1.6. A vertex i is stable if ci < degG(i), and unstable if ci ≥ degG(i).

In a firing move, we pick an unstable i, we move a chip from i to each neighbor of i.
Obviously the game goes on forever if the number of chips is sufficiently large (since

the number of chips is invariant). To fix this, we add a sink : a vertex which eats all
chips fired at it.

It turns out:

Proposition 1.7

With a sink, chip-firing games always terminate.

8
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§2 February 10, 2017

§2.1 Chip-firing with games

Chip-firing game (with sink) continued.

4

3

1

5

9

Chip-firing with sink has the following property

Lemma 2.1

In chip-firing with sink:

• (Finiteness) After finitely many steps the game stops.

• (Uniqueness) The result is unique.

In contrast to other games: not all games we consider who have finiteness, but when they
do we will have uniqueness results.

In fact finiteness is easy to see (olympiad-style monovariant). The correct invariant is∑
d≥0

(num chips distance d) · εd

with ε being positive but smaller than any particular real number (i.e. lex sort by
coefficients).

Someone considers asking multiple sinks. One way to subsume it is to contract the
sinks together, allowing multiple edges (which doesn’t change anything).

§2.2 Cartan firing

Our fourth game: same setup as chip-firing, but without a sink. Instead of using degG i,
we use the number two. In other words, we say

• vertex i is stable if ci ∈ {0, 1} and

• vertex i is unstable if ci ≥ 2.

As usual we fire unstable vertices. If i is unstable,

• ci 7→ ci − 2 (i.e. it loses two chips)

• cj 7→ cj + 1 for all neighbors j (meaning each neighbor gains a chip).

So that means the number of chips total is not invariant.
Here is an example.

2 2 2 3 0 3 1 1 3 2 0 2

0 1 2 0 2 0 1 0 1

9
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Actually one can get.

Claim 2.2. For any path, the game terminates.

In contrast:

Claim 2.3. In a cycle, if weights of 2 are placed at each vertex, then the game goes on
forever.

Actually, for cycles (and essentially only cycles) chip-firing and Cartan firing coincide.

§2.3 Matrix firing

We now formulate a more general game.
Let A = (aij) be a n× n matrix, symmetric for now, satisfying the following condition:

all diagonal entries are positive, and all other entries are nonpositive. (In symbols, aii ≥ 0
and aij < 0 for i 6= j.)

Definition 2.4. We let Ai denote the ith row of the matrix.

A configuration is then a vector c = (c1, . . . , cn) where ci ≥ 0. Then a firing move for
a vertex i consists of the following: if ci ≥ aii, then we do the map

c 7→ c−Ai.

Example 2.5 (Special cases of matrix firing)

Let G be a graph.

(a) Chip-firing without a sink corresponds to setting A to the Laplacian matrix
LG.

(b) Standard chip-firing corresponds to A being the truncated Laplacian matrix
in which one row and column of L′G are deleted (corresponding to the sink).

(c) The Cartan matrix for G, denoted AG, is the same as LG except with 2’s
on diagonal. (The matrix is actwually called the generalized simply-laced
Cartan matrix.)

Remark 2.6. The truncated Laplacian matrix already has combinatorial interest; for
example detL′G is equal to the number of spanning trees of G, by Kirchoff’s matrix
theorem.

The general terminating condition is as follows.

Proposition 2.7 (Finiteness of A-firing)

Let A be as above (aii ≥ 0, aij < 0 for i 6= j). Then the following are equivalent.

(1) A-firing is finite for any initial configuration.

(2) There exists h = (h1, . . . , hn) > 0 such that A · h > 0.

(3) A is positive definite (for example, all principal minors are positive).

10
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The notation h > 0 means hi > 0 for all i. Since the proof (2) ⇐⇒ (3) is linear algebra,
we will prove (2) =⇒ (1).

Proof that (2) =⇒ (1). A · h > 0 implies the dot product 〈h,Ai〉 is positive for each i.
Thus over configurations c, the dot product 〈h, c〉 is decreasing over time, as it decreases
by 〈h,Ai〉 when i is fired. On the other hand h > 0 and c ≥ 0 so done.

So it remains to show uniqueness in the strongest sense possible: for fixed A, games
either terminate always in exactly the same way, else they never terminate. The proof of
this recalls on so-called diamond lemma.

§2.4 Diamond lemma

We state the diamond lemma in the context of A-firing.

Lemma 2.8 (Diamond lemma)

If there are two ways to fire, say c
i−→ c1 and c

j−→ c2, where i 6= j, then we can
complete the diagram to get

c

c1 c2

c3

i j

j i

Proof. Just c3 = c−Ai −Aj .

Remark 2.9. This “commutativity property” expressed by the diamond lemma is why
we physicists call this game “abelian sand piles”.

Proof of uniqueness from diamond lemma. Consider the following diagram:

c c′1 c′2 . . .

c1

c2

...

c`

11
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Assume for contradiction c` is final. Then, assume ` is minimal. Then diamond lemma
repeatedly gives a downward path from c′1, until we find an index k such that ck+1 = c′′k,
for example

c c′1 c′2 . . .

c1 c′′1

c2 c′′2

c3

...

c`

This contradicts minimality of ` then.

In fact, this diamond lemma applies for every game (sponsor game, A-firing, etc.)
except the second game.

Definition 2.10. G is Cartan finite if Cartan firing is finite for any initial configuration.

Lemma 2.11

If a graph is Cartan finite, then any subgraph is Cartan finite.

12
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§3 February 15, 2017

§3.1 Diamond/Hex Lemma

We now consider Kostant’s game, since it is not subsumed by the previous theory. (This
is the one firing on ci 7→

∑
j∈N(i) cj − ci.)

Here is a fake example (which is “fake” in the sense that the initial configuration should
have just 1 chip on a single vertex), in the shape of hexagon (see the lemma below).

2 1 2 4

2 3 2 4 2 1 3 4

2 3 5 4 2 4 3 4

2 4 5 4

These fit in a so-called “diamond / hexagon” lemma.

Lemma 3.1 (Diamond or hexagon lemma)

For Kostant game, suppose i 6= j are two moves for which c
i−→ c′ and c

j−→ c′′. Then

• If i and j are not adjacent, we get the same statement as in the diamond
lemma.

• Otherwise, we get a hexagon

c

c′ c′′

• •

clast

i

j

j i

i

j

§3.2 Roman lemma

More generally, suppose that we have a diamond/hexagon lemma. The following theorem
tells us something good about this.

13
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Theorem 3.2 (Roman lemma)

Let C be a connected directed graph without self-loops (possibly infinite!). Suppose
that: for every vertex c with at least 2 outgoing edges, we can find 2 converging
paths of the same length (as in the diamond/hexagon lemma) to some other vertex.
Then one of the following is true:

• C has no end-points (vertex of C with outdegree zero).

• C has exactly one end-point cend and all directed paths eventually reach cend,
and have the same length. In other words C should be a graded poset with a
unique minimum.

Here the graph C should be interpreted as the set of possible configurations. One
interpretation of the name is “all roads lead to Rome”. (We can joke that this has
religious connotations in the sense that: either you wander forever, or we always end up
in the same place no matter what we try to do.)

Proof. Assume C has an endpoint. . . .

14
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§4 February 17, 2017

§4.1 Review

• Cartan’s firing game: Let G be a simple graph, and define the Cartan matrix

A = AG = 2I − adj matrix of A.

Then a configuration c = (c1, . . . , cn) ∈ Zn≥0. Now let e1, . . . , en be the standard
basis of Rn.

Then firing fi as usual corresponds to

fi : c 7→ c−Aei.

• Kostant’s game (a reflection game):

si : c 7→ c− (Ac, ei) ei

if (Ac, ei) < 0. (We are using (•, •) for the dot product.)

We have written this in terms of an arbitrary matrix A, since we will use this generality
later. In what follows, all graphs G are connected.

§4.2 Vinberg’s additive function

We replace the notion with “happy” now.

Definition 4.1. A configuration h ∈ Zn≥0 is called a(n)

• (Vinberg) additive function if Ah = 0.

• subadditive function if Ah ≥ 0 (happy or excited)

• strictly subadditive function if Ah > 0 (excited).

We think of h as a function from vertices to Z≥0, hence the name.

We now give a complete classification of all additive functions.

15
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Theorem 4.2 (Vinberg’s theorem)

All additive functions h (up to scaling) are given by the following list.

• If G is a cycle, then h(v) = 1 for each vertex v. We call this the graph Ãn if
there are n+ 1 vertices.

• G is a tree as follows: a path on k vertices, say v1, v2, . . . , vk is given, and
then adds two leaves on each of v1 and vk for a total of k+ 4 vertices. Then we
let h(vi) = 2 for each i = 1, . . . , k and h(w) = 1 for each of the four leaves w.

We call this D̃n where n = k + 3.

• The following graphs:

D̃4 =

2

11

11

Ẽ6 =
1 2 3 2 1

2

1

Ẽ7 =
1 2 3 4 3 2 1

2

Ẽ8 =
1 2 3 4 5 6 4 2

3

We won’t prove this yet, but we’ll show the existence of such an additive function
implies:

Lemma 4.3

For all graphs in the list above, both Kostant’s game and the Cartan game are
infinite.

Proof. Assume (h1, . . . , hn) be an additive function. Indeed, take any initial configuration
such that c = (c1, . . . , cn) where ci ≥ 2hi for each i. Then we contend that if we fire each
vertex i exactly hi times, then we can check that we return to the same configuration c,
as

c 7→ c−Ah = c.

§4.3 Infinitude of Kostant games

16
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Proposition 4.4

For all graphs G in the above list let h be the (nonzero) additive function on G
above, and let ei be the configuration where one chip is dropped on a vertex i. Then
there exists a way to play Kostant’s game such that we reach the configuration ei+h,
unless G is a cycle in which case we can reach ei + 2h instead.

One just checks this manually for each of the graphs. Example for the five-vertex
graph above:

1

00

00 →

1

11

11 →

3

11

11

Now we contend that Kostant’s game is invariant under addition by additive func-
tions.

Proposition 4.5

For Kostant’s game, if there exists a sequence of moves taking c to c′, then the same
sequence of moves takes c+ h to c′ + h.

Corollary 4.6

Kostant’s game is infinite on any of the graphs above.

Proof. By the two preceding propositions, we have a sequence ei → ei+h→ ei+2h→ . . .
for every i. So there is one infinite way to play the game, hence all ways of playing the
game never terminate.

§4.4 Simply-laced Dynkin diagrams

If G is a graph and has one of the above graphs as a subgraph, then we see the game is
infinite on it too. Consequently, if G is a graph on which Kostant’s game is finite, then

• G has no cycles, hence is a tree

• G has no vertex of degree ≥ 4 (because of the 4-star)

• G has at most two trivalent vertices (since then there’s a path between them).

Hence, G is either a chain, or it is a “three-legged graph” consisting of a single trivalent
vertex v with paths of length a, b, c leaving them.

v 1 . . . a1. . .b

1

. . .

c

17
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On the other hand, the three exceptional graphs in Vinberg’s theorem imply that
min(a, b, c) < 2, hence WLOG a = 1. Then we must have min(b, c) < 3, hence b ≤ 2, and
also when b = 2 it follows that c ≤ 4.

Thus we conclude that

Theorem 4.7 (Simply-laced Dynkin diagrams)

The only graphs on which Kostant game is finite are the simply-laced Dynkin
diagrams:

• An, the path on n vertices.

• Dn, which has n vertices, one trivalent vertex with two leaves and a path on it.

• E6, E7, E8.

The earlier graphs are then called the extended Dynkin diagrams since they are
achieved from the Dynkin diagrams by adding one vertex (hence the tilde notation).

As for the Cartan game:

Proposition 4.8 (Finiteness of Cartan game)

For each of the A-D-E graphs, there exists a strictly sub-additive function h > 0
(meaning Ah > 0). Thus the Cartan game is finite exactly on these graphs.

§4.5 Recap

Putting everything together for today and previous lectures:

Theorem 4.9 (Master finiteness theorem)

The following are equivalent for a connected graph G.

(1) Kostant’s game is finite.

(2) Cartan’s firing game is finite for any initial configuration.

(3) The Cartan matrix A is positive definite (all principal minors are positive).

(4) All principle minors of A are nonzero.

(5) There exists a strictly sub-additive function h > 0 on G.

(6) G has no subgraphs isomorphic to any of the extended Dynkin diagrams Ãn,
D̃n, Ẽ6, Ẽ7, Ẽ8.

(7) G is isomorphic to one of An,Dn, E6, E7, E8.

This is the so-called “ADE classification”. However, we mentioned that the main study
of object in the class is the root system, which are classified in this way: so we have
managed to classify the root system before defining them! We’ll see the definition of this
next time.
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§5 February 21, 2017

We will now consider so-called cluster algebra games, in which we not only change
configurations but also alter the graph.

§5.1 Reflection game (generalize Kostant game)

Definition 5.1. A generalized Cartan matrix is a matrix A = (aij) with integer
entries such that:

(1) aii = 2 for all i

(2) aij ≤ 0 for i 6= j.

(3) if aij < 0 then aji < 0.

As usual we can obtain a graph G on vertices {1, . . . , n} by letting (i, j) be an edge
exactly when ai,j < 0. As usual we may assume G is connected (since otherwise we may
sub-divide the matrix).

We then have the reflection game (generalizing Kostant’s game) as follows.

Definition 5.2. Let e1, . . . , en be a standard basis of Rn. Then the reflection game
consists of moves

si : Rn → Rn

by

c 7→ c−
(
A>c, ei

)
ei.

To be explicit, the map is

(c1, . . . , cn) 7→ (c1, . . . , c
′
i, . . . , cn)

where
c′i = −ci −

∑
j 6=i

ajicj .

As usual s2
i = id.

So this is somewhat symmetric, but not quite as symmetric as before. This time we
(for now) place no constraints on the ci in order to “reflect” by si.

§5.2 Weyl group

We now give an unorthodox definition of root systems. This is not the “usual” definition,
but it is equivalent to them.

Definition 5.3. A Weyl group W and real root system Φ is defined as follows.

• W ⊆ GL(n) is the subgroup generated by si.

• Φ = W {e1, . . . , en} ⊆ Zn is the image of basis elements under the reflections in W .
The elements of Φ can be called roots. (Remark for experts: they are currently
written in some particular choice of coordinates.)

We are interested in when W and Φ are finite.
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Example 5.4 (n = 2 case)

Let n = 2. Then we can write

A =

[
2 −a
−b 2

]
.

In that case, the following are equivalent:

(1) W is finite

(2) Φ is finite

(3) ab < 4. That is, A must be one of the matrices

A2 =

[
2 −1
−1 2

]
B2 =

[
2 −2
−1 2

]
G2 =

[
2 −1
−3 2

]
or one of the transposes.

So we can imagine the graphs as follows:

• A2 corresponds to two vertices joined by a single edge.

• B2 corresponds to two arrows right and an arrow left:

• G2 corresponds to three arrows left and one arrow right:

By convention a picture

with k lines means that we have k arrows in the direction of the arrow head, and just 1
arrow in the reverse direction.

§5.3 Classification of finite Weyl groups

Theorem 5.5

The following are equivalent.

(1) Φ is finite.

(2) W is finite.

(3) A is corresponds to one of the following Dynkin diagrams: An, Bn, Cn, Dn,
E6, E7, E8, F4, G2.

Here are pictures of each of them:

• An:

• Bn:

• Cn:
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• Dn:

• E6, E7, E8 as before.

• F4:

• G2:

The types An, Bn, Dn are thus called simply-laced because they don’t have double
edges.

(1) ⇐⇒ (2). Obviously if W is finite then Φ is finite (|Φ| ≤ n |W |). To see the other
direction, assume Φ is finite; there is then a canonical map

W → SΦ

onto permutations of Φ. As Φ contains the basis elements e1 . . . , en the map is injective;
hence |W | ≤ |SΦ| <∞.

Now let’s give an example.

Example 5.6 (Root system for A2)

Take A2, so W = {s1, s2} and Φ can be interpreted in the following diagram.

(1, 1)

(1, 0) (0, 1)

(−1, 0) (0,−1)

(−1,−1)

s2

s1

s1 s2

s2
s2

The roots (1, 0) and (0, 1) are called simple roots. They are divided into positive
roots and negative roots in the obvious manner.
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Example 5.7 (Root system for B2)

Let’s consider B2, so the matrix is [
2 −2
−1 2

]
.

(1,2)

(1,0)

(−1,0)

(−1,− 2)

(1,1)

(0,1)

(0,− 1)

(−1,− 1)

s2

s2

s1

s1

s1

s2

s1

s2

s2

s1

Note that this is not connected. This is the difference between simply laced and non
simply laced diagrams.

Example 5.8 (D4 poset)

Here is the picture of the roots of D4.

In fact, we get a poset which is graded by the sum of all the components.

§5.4 Proof of uniqueness

From now on we will orient the si edges of Φ we drew earlier in one direction, namely
upwards in the poset. Thus the undirected graphs earlier now have directions on them,
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similar to our situation before, and we would like for the game to terminate.
We now prove the lemma from before. The main idea remains intact from before.
The analog of “diamond/hexagon lemma” from before is:

Lemma 5.9 (Diamond / hexagon / octagon / dodecagon lemma)

Suppose si : c 7→ c′ and sj : c 7→ c′′. Then there are four cases:

• If aij = aji = 0, then we have a diamond lemma as before.

• If aij = aji = −1, we have a hexagon lemma as before.

• If aijaji = 2, then there are two paths of length 4 converging to a given end
configuration (octagon).

• If aijaji = 3, then there are two paths of length 6 converging to a given end
configuration (dodecagon).

Consequently, the Roman Lemma implies the uniqueness result: if we climb a (finite)
root system following the edges si, we will always end at a unique place.

(Note that this is per connected component; for example the root system of B2 has
two connected components.)

§5.5 Proof of finiteness

All that remains to do is show finiteness. Again:

• A function h ∈ Rn is called an additive function if h > 0 and A>h = ~0.

As before we just need to exhibit a bunch of additive functions in order to get a list of
forbidden subgraphs. We now give a list of all additive functions.

• Ãn, D̃n, Ẽ6,7,8 are as before.

• If A =

[
2 −2
−2 2

]
, we have the additive function

1 1

• If A =

[
4 −2
−1 2

]
, the additive function is

1 2

• 1 2 3

• 1 2 1

• . . . to be finished next lecture.
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§6 February 22, 2017

We are now going to generalize from graphs to general matrices with real entries.

§6.1 Linear algebra results

We first state the following linear algebra result.

Lemma 6.1 (Farkas lemma)

Let A be an m× n matrix, b ∈ Rm. Exactly one of the following is true:

(1) There exists u ∈ Rn such that u ≥ 0 and Au = b.

(2) There exists v ∈ Rm such that A>v le0 and (v, b) > 0.

Proof. Let a1, . . . , an denote the columns of A. Consider the hypercone spanned by the
ai. Then

• If b lies in the cone, then some nonnegative combination of ai equals b, hence u
exists as desired.

• Else there is a separating hyperplane: there exists a linear function f(x) such that
f(b) < 0 while f(ai) ≤ 0. Then the coefficients of f give the vector v.

Here is a variant of this lemma.

Lemma 6.2

Let A be an m× n matrix. Exactly one of the following is true:

(1) There exists u ∈ Rn such that u ≥ 0, u is not the zero vector, and Au ≥ 0.

(2) There exists v ∈ Rm such that v > 0 and A>v < 0.

The proof is left as a homework question.

§6.2 Axioms for square matrices

We know consider a square matrix A on which we will again play A-firing games.
Consider the following set of matrices

(M0) All aij are integers.

(M1) aij ≤ 0 for all i 6= j.

(M2) aij 6= 0 if and only if aji 6= 0.

(M3) aii = 2 for all i.

Then we have the following situations we’ve seen.

1. All real matrices: will examine this class.

2. Matrices satisfying M1: this implies the diamond lemma, so then the Roman lemma
then gives us a uniqueness theorem right away.
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3. Matrices satisfying M1 and M2. This already implies a lot about the matrix.

4. Matrices satisfying all four: these are the generalized Cartan matrices we discussed
last class. Kostant’s game makes sense in this context.

5. Simply-laced generalized Cartan matrices: those matrices coming from simple
graphs (meaning aij ∈ {0,−1} for i 6= j). For these we have the ADE classification,
and the very strong uniqueness result that the result of the Kostant game doesn’t
depend on the starting position of the initial chip.

§6.3 Finite, affine, indefinite type

Here is the theorem:

Theorem 6.3 (Vinberg, see [Kat, Theorem 4.3])

Let A be an indecomposable n × n matrix which satisfies conditions (M1), (M2).
Then exactly one of the following is true:

• (Finite type) There exists a vector u > 0 such that Au > 0.

• (Affine type) There exists a vector u > 0 such that Au = ~0.

• (Indefinite type) There exists a vector u > 0 such that Au < 0.

Moreover, A and A> are of the same type.

Note (M0) and (M3) are explicitly not required.

Remark 6.4 (Contiuining the religious connotations). In our old terminology:

• Finite type is “heaven” because we can make everyone excited.

• Indefinite type is “hell” because we can make everyone unhappy.

• Affine type is “purgatory” because we can make everyone happy but not excited.

In fact, affine type and finite type turn out to be much more closely related to each other
(while indefinite type is much “worse” than both), in the same way that people go to
heaven after purgatory.

Remark 6.5. Note that if any diagonal is negative (note that there’s no axioms on
diagonal entries) then A is automatically of indefinite type.

In fact, there’s more.

Theorem 6.6 (Vinberg, continued)

Retain the setting of the previous theorem. Then

• Suppose A is of finite type. Whenever Av ≥ 0, either v > 0 or v = ~0.
Moreover detA 6= 0.

• Suppose A i s of affine type. If Av ≥ 0, then Av = ~0. Moreover, the column
rank of A is exactly 1.

• Suppose A is of indefinite type. If Av ≥ 0 and v ≥ 0, then v = ~0.
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In other words:

• Whenever A is of finite type, there are no additive functions but there exists a
sub-additive function.

• Whenever A is of affine type, then every sub-additive function is additive.

• Whenever A is of indefinite type, then we cannot find any sub-additive functions
at all.

We now give a characterization in terms of the firing game.

Corollary 6.7 (via Firing Game)

For A satisfying (M1) and (M2):

(1) A is of finite type if and only if the A-firing game is finite for every initial
configuration.

(2) Assume also A has integer entries. Then A is of affine type if and only if there
exists a cycle in the A-firing game.

§6.4 Generalized Cartan matrices

From now on assume all of (M0)-(M3).
Recall that we have the list of finite type diagrams, with their labels marked, and with

excited vertices marked in red.

• An: 1 1 1 1 1

We can make this affine by adding a single vertex to get Ãn.

1 1 1 1 1

• Bn: depending on where we drop the initial chip, we can get the following two
diagrams. First, if we drop the initial chip at the second vertex, we get:

1 2 2 2 2

1 2 2 2 2

1

On the other hand, if we drop the initial chip at the far right, we instead get the
picture

1 1 1 1 1

1 1 1 1 11

• Type Cn will be more interesting: there will be three extensions, not just two.
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§7 February 24, 2017

§7.1 Outline of proof of Vinberg theorem

Definition 7.1. Let A be an indecomposable real n×n matrix (so the resulting directed
multi-graph is connected). We say c ∈ Rn≥0 is

• additive if A>c = ~0,

• coadditive if Ac = ~0,

• subadditive if A>c ≥ 0, and

• co-subadditive if Ac ≥ 0.

Here is the key observation for the Vinberg trichotomy theorem we mentioned last
time, which seems almost trivial at first.

Lemma 7.2

For any (co)subadditive c, either c = ~0 or c > 0.

Proof. Assume c 6= ~0. Consider neighboring vertices i and j, where cj 6= 0. (meaning
aij < 0). Since A>c ≥ 0, we require

aiici ≥
∑
j 6=i
−aijcj .

The right-hand side is strictly positive now, so ci > 0.
Hence connected-ness now implies ck > 0 for every k.

Now, consider the cone
KA = {u ∈ Rn | Au ≥ 0}

and the positive orthant
O = {u ∈ Rn | u ≥ 0}

and observe that KA ∩O consists exactly of the co-subadditive functions. The previous
lemma then implies KA intersects the boundary of O only at the origin. This geometric
surprise then implies that one of three situations happens:

• KA is completely contained inside O — the finite case.

• KA is a line through the origin — the affine case.

• KA is completely disjoint from O — the indefinite case.

(Image below, with KA drawn in red.)

~0 ~0 ~0
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§7.2 Matrix firing for A via Vinberg theorem

We consider firing as before, with real entries. Explicitly, if the ith position has more
than aii counters, then we may fire by subtracting off the ith column.

We can imagine the configuration space as points in Rn. Then the three cases we
mentioned are as follows:

• Finite: any firing process is finite.

• Affine: any firing process is bounded (stays inside some simplex).

• Indefinite: any firing process is unbounded given sufficiently large starting configu-
rations.

Here’s the key example: let G be an undirected graph or network1. Then we let LG
denote the Laplacian matrix, meaning the ith diagonal entry contains the outdegree of i
and the (i, j)th entry is the negative of the weight from i to j.

Example 7.3 (Laplacian matrix)

Consider the graph

1 2

3

2

2

The Laplacian matrix is then

LG =

 1 −1 0
−2 3 −1
0 −2 2


This is of affine type because it has an eigenvector [1, 1, 1]>. This corresponds to
chip-firing without a sink.

Example 7.4 (Reduced Laplacian matrix)

Instead consider L′G the reduced Laplacian (corresponding to chip-firing with a sink),
which is LG with a row or column deleted. Then L′G has finite type.

Thus in fact

• Finite case corresponds exactly to reduced Laplacian matrix.

• Affine case corresponds exactly to Laplacian matrix.

• Indefinite case is weird.

1 Networks are graphs where we allow multiplicity of edges to be nonnegative real numbers rather than
integers
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§7.3 Cartan matrices via Vinberg theorem

Let A be a generalized Cartan matrix now, meaning aij ∈ Z, aii = 2 in addition to
previous assumptions. These two conditions “make everything very rigid”, meaning that
there are only a few finite and affine cases.

Remark 7.5 (Classification philosophy). The hardest part is to write down this list.
Once it’s done, one can “by examination” verify that it’s correct.

§7.4 Finite list

• For n > 1, on An there are two excited vertices, shown in red.

1 1 1 1 1

When n = 1, there’s only a single vertex which is somehow “doubly excited”.

1

• Bn: there are two ways to play the Kostant game, depending on whether we place
the initial chip on the left and right, respectively.

1 2 2 2 2

1 1 1 1 1

Like with An there is an exceptional case B2:

1 2

• Cn: there are two ways to play the Kostant game, depending on whether we place
the initial chip on the left and right, respectively. Again we have “doubly excited
points”.

2 2 2 2 1

1 2 2 2 1

Note C2 = B2.

• Dn:

1 2 2 2

1

1

• E6:

1 2 3 2 1

2

• E7:

2 3 4 3 2 1

2
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• E8:

2 4 6 5 4 3 2

3

• F4:

2 3 4 2 1 2 3 2

• G2:

3 2 2 1

Remark 7.6. Postnikov mentions that combinatorialists like An and lie theorists like
E8.

§7.5 Affine list

We now complete the finite diagrams by adding one vertex.
For n > 1 we extend An to Ãn by adding one vertex (marked blue):

1 1 1 1 1

1

As for Ã1, there are two extensions, one with two arrows going each direction and one
with a quadruple arrow (!).

1 1
2 1
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§8 February 27, 2017

§8.1 Constructing affine diagrams

We obtain the affine diagrams from the finite ones by the following procedure. Consider
an affine diagram with some excited ones. Take a new node and add it adjacent to these
excited nodes.

• Given an excited node with 2 chips, we add one edge and a chip with 1.

2 1

• If there is just 1 chip, do the same but add 2 edges to the new one and 1 back.

2 2

• If there is a doubly excited node with 2 chips, there are two possible extensions.

2 1 2 2

• If there is a doubly excited node with 1 chip again there are two possible extensions
as mentioned last time (the last involving a quadruple arrow).

1 1 1 2

Finally, in the case An when there are two excited vertices we simply add a single
vertex adjacent to both. This gives us a recipe to construct the affine diagram from the
finite one.

§8.2 Draw all affine diagrams

For n > 1 we extend An to Ãn by adding one vertex (marked blue):

1 1 1 1 1

1

As for Ã1, there are two extensions, one with two arrows going each direction and one
with a quadruple arrow (!).

1 1
2 1

Here is B̃n:

1 2 2 2 2

1

1 1 1 1 11

Here is C̃n:
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2 2 2 2 11

1 2 2 2 12

1 2 2 2 1

1

Here is D̃n:

1

2 2 2

1

1

1

Here are Ẽ6, Ẽ7, Ẽ8:

• Ẽ6:

1 2 3 2 1

22

• Ẽ7:

2 3 4 3 2 1

2

1

• Ẽ8:

2 4 6 5 4 3 2

3

1

Here are the two versions F̃4:

2 3 4 21 1 2 3 2 1

Here are the extensions of G̃2:

3 2 1 2 11

§8.3 Observations

Recall that:

• Finite type iff there exists a nonzero subadditive function which is not additive.

• Affine type iff there exists a nonzero additive function.
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Lemma 8.1

Any proper induced subgraph of a graph of finite or affine type is of affine type.

Proof. Simply restrict the additive function to the subgraph.

Lemma 8.2

The following Dynkin diagrams are of indefinite type:

(1) The two-vertex graph corresponding to[
2 −a
−b 2

]
Pictorially this is:

a

b

(2) Any cycle which has at least one nonsimple edge.

(3) A triple edge adjacent to any non-simple edge.

Proof. We check (2) only. Indeed, we have some inequalities 2ci ≥ ci−1 + ci+1 + stuff,
where the stuff is some more nonnegative coefficients corresponding to the non-simple
edges.

c1 c2 cn

c0

Then adding all the inequalities gives

2
∑

ci ≥ 2
∑

ci + stuff

where the stuff has at least one more term; hence it follows that c = ~0.

The main observation that

Theorem 8.3

Any graph G has no subgraph from the affine list or from the previous lemma belongs
to the finite list we provided.

So the converse implies that our finite list is complete.

Proof. Indeed, suppose G avoids both obstructions (not in affine list or in the previous
lemma). Then:

• G has no cycles, since An is contained in the affine list and the previous lemma
excludes cycles which at least one non-simple edge.

• G can’t have more than four arrows on any edge (because of Ã1).
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• If G contains a triple edge, then G = G2 (because of the extensions G̃2 and the
cycle condition).

• There is at most one double edge, because of B̃n, C̃n.

• There exists at most one trivalent vertex (because of D̃n) and moreover in such a
graph we have no double edges (because of the last C̃n).

• . . .

Thus we have shown the lemma together with the forbidden subgraphs Ãn, B̃n, C̃n, D̃n,
Ẽ6, Ẽ7, Ẽ8, F̃4, G̃2 give us the conclusion.

This proof is weird because it seems almost circular. The algorithm is:

• Write down the finite list, and claim it’s complete.

• Generate the affine list by augmenting the finite list appropriately.

• Use the lemma along with the affine list as forbidden subgraphs, and check that
these forbidden conditions restrict us back to the finite list we started with.

Thus we have

Theorem 8.4

This is a complete classification of finite and affine generalized Cartan matrices.

Corollary 8.5

Kostant’s game is finite if and only if the generalized Cartan matrix is finite.

Proof. If the game stops, then the ending point is a subadditive function which is not
additive, since in a final configuration has at least one excited vertex.

Exercise 8.6. Prove that if A is of finite type, then Kostant’s group is finite, without
using classification.

§8.4 Root system

We now define a root system (at last!).

Definition 8.7. Suppose V is a Euclidean space (Rn with a dot product) and let α
be a nonzero vector. By Hα we denote the hyperplane orthogonal to α and by sα the
reflection about Hα.

Definition 8.8. A root system is a finite subset

Φ ⊂ V \ {0}

such that

(1) If α ∈ Φ, then sαΦ = Φ. In other words reflecting one root with another root gives
another root.

(2) Φ spans V .
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(3) If α and β are linearly dependent, then either α = β or α = −β.

(We alluded to a “crystallographic” condition that can be added. But we give the full
definition next lecture.)

Condition (1) is the main condition. For (2), we can restrict any non-spanning Φ to
its span anyways. Condition (3) is cosmetic, and some authors omit it.

In the next lecture we will see that this root system picture corresponds exactly to
Cartan matrices of finite type.
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§9 March 1 2017

Today we’ll be going through standard notations and definitions of root systems, and
then in the near future talk about some “numerology” of these root systems (some special
numbers associated to them). Afterwards the direction of the course may vary depending
on interest and demand.

§9.1 Notations

From now on V is a Euclidean space of dimension r with inner product (−,−) (we have
switched to the letter r, which is standard in this area of mathematics). As in last lecture,
we let Hα be the hyperplane perpendicular to a nonzero vector 0 6= α ∈ V and we let sα
be the reflection across Hα by

sα : λ 7→ λ− 2
(λ, α)

(α, α)
α.

(We can check this works since sα(α) = −α and that it fixes the hyperplane.) We
introduce the following notation:

Definition 9.1. For each 0 6= α ∈ V denote

α∨
def
=

2

(α, α)
α.

This lets us simplify the formula sα to

sα(λ) = λ− (λ, α∨)α.

§9.2 Definition of root systems

We recall the definition of the root system from the previous lecture. We add in the
following terminology:

• The rank of a root system Φ is the dimension of the ambient vector space.

• The elements of Φ are called roots.

Finally, we add a new condition:

Definition 9.2. A root system Φ is crystallographic if for any α, β ∈ Φ, we have
(α∨, β) ∈ Z. Thus sα(β) will be an integer linear combination of α and β.

§9.3 Examples of root systems

§9.3.1 Crystallographic examples of rank two

The following root system is A1 ×A1, a square.
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A hexagon also works, called A2.

Next is B2, inscribed in a square.

Finally, there’s a root system G2.

These are all such systems up to isomorphism.

§9.3.2 Non-crystallographic examples of rank two

Once the crystallographic condition is dropped, one can take any rotation or scaling. In
addition, we obtain a new family of examples I2(n), the vertices of a 2n-gon.

I think I
should add
the construc-
tion for An
here

I think I
should add
the construc-
tion for An
here

§9.4 Structure of root systems

Definition 9.3. Let Φ1 ⊂ V1, Φ2 ⊂ V2 be root systems. Then we can define the root
system

Φ1 ∪ Φ2 ⊆ V1 ⊕ V2

in the obvious way. (Really this is (Φ1, 0) ∪ (0,Φ2).)

Definition 9.4. We say Φ is irreducible if it cannot be written as the union of root
systems of lesser rank.

Definition 9.5. The Weyl group W = WΦ ⊆ GL(V ) is the group generated by sα by
all α ∈ Φ. Since W acts by permutations on Φ, it is finite.
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Definition 9.6. Pick a generic linear form f(x) = (λ, x) on V , not vanishing on any
element of Φ. We define

• The positive roots α ∈ Φ+
λ such that f(α) > 0.

• The negative roots β ∈ Φ−λ such that f(β) < 0.

Thus vectors of Φ are split into Φ+ and Φ−.

There are multiple choices of λ but in fact they are all equivalent.

Lemma 9.7 (Positive roots are unique)

Let Φ+
λ and Φ+

λ′ be two choices of positive roots. Then there exists w ∈W such that

w(Φ+
λ ) = Φ+

λ′ .

In fact we will later see that the choice of this w is unique. For now, to prove this lemma
we use the notion of a Weyl chamber.

Definition 9.8. The Coxeter arrangement is the collection of hyperplanes orthogonal
to any some root of Φ. The resulting regions are called Weyl chambers.

Example 9.9 (Coxeter arrangement for A2)

We draw in blue the three hyperplanes in the Coxeter arrangement for A2. This
divides the two-dimensional space into six Weyl chambers.

Proof of lemma. First note that the choice of roots depends only on the Weyl chamber
that λ lies in.

If λ and λ′ live in Weyl chambers separated by Hα, we then see that w = sα works.
Otherwise, all we have to do is take a path between λ and λ′ which is generic in

the sense that it doesn’t pass through any intersection points of multiple hyperplanes.
This path intersects hyperplanes Hα1 , . . . , Hαk , say. Then the reflection w = sαk . . . sα1

works.

Thus, since the choice of Weyl chamber doesn’t matter, we will fix a fundamental
chamber, thus fixing a choice of Φ+ of positive roots. We then consider the cone
generated by α ∈ Φ+, ∑

α∈Φ+

cαα | cα ≥ 0

 .

Thus we can take α1, . . . , αm ∈ Φ+ a minimal set of generators for this cone.
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Example 9.10 (Cone in A2)

Here is an example of a cone for A2, with α1 and α2 being positive roots generating
the cone, and the third root in the cone being marked in blue.

α1

α2

The key lemma for these roots is:

Lemma 9.11 (All angles between generators are non-acute)

Retain the notation above. For any i 6= j, we have (αi, αj) ≤ 0.

Proof. Take the two-dimensional plane spanned by αi, αj , and look at the subset of Φ
inside it. We have a root system of rank two inside Φ, some of which are positive.

Assume for contradiction that (αi, αj) > 0, meaning the angle is acute. Then consider
±sαi(αj). Exactly one of these is positive and neither lie inside it.

Remark 9.12. Actually it isn’t hard to see that in a two-dimenisonal root system, all
angles around the origin due to closure under reflections. So αi and αj must end up
being “nearly opposite” vectors.

αi

αj

These αi are span V , but in fact.

Lemma 9.13 (Generators of positive cone form a basis)

Retain the notation α1, . . . , αm as before. Then αi form a basis for V . In particular,
m = r = dimV .

Proof. It’s clear they are spanning, so we want to check linear dependence. This will be
the same as the proof of Farkas lemma. Suppose that we have a linear dependence

c1α1 + · · ·+ cmαm = 0.

First if ci ≥ 0 for all i, we claim all ci are zero. This is obvious geometrically; formally,
apply a dot product αi on both sides of the dependence. Similarly if all ci are negative,
we have another contradiction.

On the other hand if some ci are negative and some are positive, we move all the
coefficients to the same side,

v = d1α1 + · · ·+ dsαs = ds+1αs+1 + · · ·+ dmαm
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where each di is nonnegative. We have v 6= 0 by the preceding paragraph. But now

0 < (v, v) = (d1α1 + · · ·+ dsαs, ds+1αs+1 + · · ·+ dmαm) .

The right hand side is non-positive by expanding the dot product. Contradiction.

Thus in summary, we have that:

• A choice of Weyl chamber gives a set of positive roots.

• This gives us a choice of basis, which we call simple roots.
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§10 March 3, 2017

I was not feeling well this fine Friday afternoon, and thus did not attend lecture. Thanks
to Tom Roby for sending me his handwritten notes.

§10.1 Simple reflections

Let Φ be a root system for the Weyl group W , and let Φ+ ⊂ Φ be the positive roots. We
denote by α1, . . . , αr the simple roots. We have the following properties:

• α1, . . . , αr form a basis of V .

• (αi, αj) ≤ 0 for i 6= j.

• Any α ∈ Φ+ is a N-linear combination of αi’s.

• For any other choice of simple roots α′1, . . . , α
′
r, there exists w ∈ W such that

w {α1, . . . , αr} = {α′1, . . . , α′r}.

• For all α ∈ Φ, there exists αi and w ∈W such that w(αi) = α.

Definition 10.1. A simple reflection is one of the form

si
def
= sαi

for some 1 ≤ i ≤ r (as noted αi is a simple root).

Lemma 10.2 (Simple reflections generate W )

W is generated by simple reflections s1, . . . , sr.

Proof. Here is a geometric proof. Note that si correspond to reflections around walls of
the fundamental chamber C0. So if C ′ is an adjacent chamber, then C ′ = si(C0).

Then reflections with respect to walls of C ′ are of teh form

s′j = ssi(αj) = sisjsi

for some j, with i fixed (C ′ = si(C0)). And so on. Later we’ll see more details of this
construction.

§10.2 Cartan matrices

Recall that α∨ = 2α
(α,α) . Now given a root system Φ with simple roots {α1, . . . , αr}, we

can construct the matrix

A = AΦ = (aij) where aij =
(
α∨i , αj

)
.

We now have:
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Proposition 10.3 (It’s a generalized Cartan matrix)

Let A = AΦ = (aij) as above.

(i) aii = 2.

(ii) aij ≤ 0 for i 6= j.

(iii) aij 6= 0 ⇐⇒ aji 6= 0.

(iv) aij ∈ Z if Φ is crystallographic.

Hence A is a generalized Cartan matrix.

This lets us relate configurations to the Kostant game in the following way: a configu-
ration maps to a vector via

~c = (c1, . . . , cr) 7→ λ = c1α1 + · · ·+ crαr.

We now compute

si(λ) = λ−
(
α∨i , λ

)
αi

= λ−
∑
j

aijcjαi

= c1α1 + · · ·+ c′iαi + · · ·+ crαr.

with c′i corresponding to Kostant game.
Then we observe that

Theorem 10.4 (Root system ↔ Kostant game)

Thus vectors lying in the cone of the root system Φ correspond exactly to con-
figurations in Kostant’s game with the matrix A = AΦ, with simple reflections
corresponding to firings.

Accordingly,

Theorem 10.5 (Irreducible Φ ← finite type Cartan)

Crystallographic irreducible root systems correspond to generalized indecomposable
Cartan matrices of finite type, up to re-ordering the rows and columns of the matrix
(equivalently, relabelling the nodes of the Dynkin diagram).
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§11 March 6, 2017

Let W be a Weyl group with simple reflections s1, . . . , sr as usual.

§11.1 Presentation of the Weyl group

Theorem 11.1 (Presentation of the Weyl group)

The group W is generated by s1, . . . , sr with the following Coxeter relations:

(1) s2
i = 1 for all i, and

(2)
sisjsi . . .︸ ︷︷ ︸ = sjsisj . . .︸ ︷︷ ︸ for all i 6= j

where 2mij = # {±αi,±αj ,±si(αj),±sj(αi),±sisj(αi), . . . }.

Remark 11.2. In the crystallographic case, we have only four cases for mij .

mij Graph Picture Matrix

mij = 2 i j
aij = aji = 0

mij = 3 aij = aji = −1
mij = 4 aij = −2, aji = −1
mij = 6 aij = −3, aji = −1.

§11.2 Proof of Coxeter relations

It’s not hard to see the Coxeter relations are true; we want to show they are necessary.

Proposition 11.3

Let C0 be the fundamental Weyl chamber and let C any other Weyl chamber. If

si1 . . . sik(C0) = sj1 . . . sjk′ (C0) = C

then si1 . . . sik and sj1 . . . sjk′ are related by Coxeter moves.

Proof. Suppose w = si1 . . . sik ∈W . We are going to write

w = . . . (si1si2si3s
−1
i2
s−1
i1

)
(
si1si2s

−1
i1

)
si1 = sβk . . . sβ1

where sβ1 = α−1
i1

, β2 = si1αi2 , β3 = si1si2(αi3), and so on. The trick is that:

The sβ will tell us which hyperplanes we cross when we go from C0

to C.

For example, consider the following figure:
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C0

C1

C2

α1

α1 + α2

α2

λ

λ′

Then we have β1 = α1, β2 = α1 + α2 β3 = α2 and β4 = −α2, corresponding to the four
walls that we pass.

Thus we have a way to translate a path into a sequence of reflections in W . We would
like to go the other way, and we can go do so as long we have some “generic” condition.

Definition 11.4. Let p be any smooth continuous path from λ ∈ C0 to λ′ ∈ C such that
all interescitons of p wyth hyperplanes Hβ are transversal, meaning,

• p is not tangent to any Hβ and

• p does not pass any intersection of Hβ’s which is codimension of ≥ 2.

Now what we would like is to “deform” one path p to another path p̃. We can do this,
but we will occasionally (in the process of deforming) run into non-transversal paths. So
we need two local moves in addition to continuous deformation:

• If a path crosses Hβ and then crosses Hβ again, then we can pretend it never
crossed Hβ to begin with. Geometrically this corresponds to tangency; algebraically
this gives us the relation AsisiB → AB.

• If a path crosses a codimension two intersection, we can push it through this
intersection:

Algebraically, this is the same as changing sisjsi . . . to sjsisj . . . .

We will avoid codimension three or higher intersections (geometrically it’s clear this is
possible). Thus these two local moves complete the proof.

Thus we arrive at the result:
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Corollary 11.5 (W bijects to Weyl chambers)

There are exactly |W | Weyl chambers, corresponding to w(C0) for w ∈W .

§11.3 Dual description

Here is a dual description of the result we just proved. Let W be a Weyl group with
fundamental chamber C0.

Definition 11.6. For λ any point strictly inside C0, we define the W -permutohedron
Π(λ) by taking the convex hull w(λ) for w ∈W .

Then we have the following results.

Theorem 11.7 (W -permutohedron properties)

Take Π(λ) as above.

(1) Π(λ) has |W | vertices.

(2) Two vertices u(λ) and w(λ) are connected if and only if the corresponding
Weyl chambers are adjacent, if and only if they differ by a simple reflection
(meaning w = u · si).

Proof. (1) It is obvious each w(λ) are distinct, since they are in different Weyl chambers.
To see they are all vertices, use the fact that W acts on the points in a symmetric
transitive way, meaning either all points are vertices of Π(λ) or none of them are.

(2) Again by symmetry.

As an example,

α1 α2

λ

s1λ

s1s2λ

s1s2s1λ

s2s1λ

s2λ

§11.4 Weak Bruhat

We can now construct the following graph out of this.

Definition 11.8. The weak Bruhat graph is defined by setting the vertices to be
w ∈W and the edges (u,w) where w = usi.

There are two ways to label the edge [u,w]:
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• The right label of [u, usi] is i

• The left label of [u,w] is w = sβu.

It will be convenient to have 1 on the bottom, so our example now reads:

s1s2s1 = s2s1s2

s1s2 s2s1

s1 s2

1

1
α2 2

α1

2 α1+α2 1 α1+α2

1α1

2
α2

A decomposition of w = si1 . . . sik = sβk . . . sβ1 corresponds then to a walk (path with
repeated vertices) from 1 to w, where i1, ik are right labels of edges and β1, . . . , βk are
left labels.

Actually, the graph we drew came be made by a poset as follows.

Definition 11.9. For a w ∈W , we let `(w) be the length of the shorted decomposition
of w = si1 . . . si` . Such a decomposition is called a reduced decomposition.

Thus the Weyl group becomes a graded poset by `, called the weak Bruhat order.
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§12 March 8, 2017

As usual W is a Weyl group with simple reflections s1, . . . , sr satisfying the Coxeter
relations.

We retain the notation `(w) from last lecture. Notice that `(w) = `(w−1) just because
if w = si1 . . . si` hen w−1 = si` . . . si1 .

§12.1 Inversions

Definition 12.1. An inversion of w is a root α ∈ Φ+ such that w(α) ∈ Φ−. We let
Inv(w) denote the set of such inversions.

Lemma 12.2 (Length is number of inversions)

For any w we have `(w) = `(w−1) = # Inv(w).

Proof. Let λ be strictly dominant, meaning λ is in the interior of the fundamental
chamber C0. Then we’ve seen already that `(w) is the minimal number of hyperplanes
Hα we need to cross to get from λ to w(λ).

Now take α ∈ Φ+, so (α, λ) > 0. Then we have that Hα separates λ and w(λ) if and
only if

(w(λ), α) < 0 ⇐⇒ (λ,w−1(α)) < 0 ⇐⇒ w−1(α) ∈ Φ−1.

So the number of separating planes is exactly Inv(w−1).

Corollary 12.3 (βi are inversion set)

Let w = si1 . . . si` be a reduced decomposition and assume w = sβ` . . . sβ1 as last
lecture. Then Inv(w−1) = {β1, . . . , β`}.

Corollary 12.4 (Weak Bruhat order via inversions)

We have u ≤ w in the weak Bruhat order exactly if Inv(u−1) ⊆ Inv(w−1).

Remark. u ≤ w 6 ⇐⇒ u−1 ≤ w−1.

§12.2 Construction of root system of type An−1

We’ll adopt the convention r = n− 1. Let V be the vector space

V =
{

(x1, . . . , xn) ∈ Rn |
∑

xi = 0
}
⊆ Rn

be a hyperplane of codimension one. If we equip Rn with the usual basis e1, . . . , en. Then,
we let

Φ =
{
αij

def
= ei − ej | i 6= j

}
and let Hαij = {x ∈ V | xi = xj}. This forms the so-called braid arrangement. Finally,
the reflection sαij turns out to be

sαij : (x1, . . . , xi, . . . , xj , . . . , xn) 7→ (x1, . . . , xj , . . . , xi, . . . , xn) .
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We pick simple roots αi = αi,i+1 whence si are adjacent transpositions. Then, W ∼= Sn
is the symmetry group.

Why is this related to An−1? To see this, we simply construct the Cartan matrix, and
find that it coincides with that of a chain on n vertices.

§12.3 Wiring diagrams

Here is just an example when n = 4 (hence r = 3) Consider the following permutation

w =

(
1 2 3 4
4 3 1 2

)
.

We can imagine this as a series of “wires”, which have some intersections from left to
right; this gives us a wiring diagram. We label each intersection of wires with sh where
1 ≤ h ≤ r is the “height” of the intersection (which is the number of wires below that
intersection point, plus one).

1

2

3

4

1

2

3

4

12

13

23

14

24

s1 s2 s1 s3 s2

The intersections are height 1, 2, 1, 3, 2, and writing these from right to left we obtain

w = s2s3s1s2s1 .

Moreover, it happens that the intersection points correspond exactly to the inversions of
the permutation (with the “reduced” condition corresponding to no two paths intersecting
twice).

§12.4 Generalizing permutation statistics to Weyl groups

In combinatorics, people are quite interested in the numerology of permutations. Roughly,
most falls into one of there categories:

• Mahonian statistics, based on the number of inversions in the permutation.

• Eulerian statistics, related to the number of descents (meaning w(i) > w(i+ 1)).
These are based on the Eulerian numbers A(n, k) which is the number of w ∈ Sn
with k + 1 descents (or k descents, depending on convention).

• Stirling-ian statistics, based on the number of cycles in w.

We’re going to make the following point:

All of these make sense for general Weyl groups.
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Specifically, we’ve said i ∈ {1, . . . , r} is an inversion if w ∈W when i ∈ Inv(w). Now we
add:

Definition 12.5. We say i ∈ {1, . . . , r} is a descent of w ∈ W if `(wsi) < `(w).
This corresponds to going “downwards” in the Bruhat picture. Thus we can define
Coxter-Eulerian numbers by

AΦ(k) = {w ∈W with k descents} .

(Here we’re identifying numbers i with simple roots si. In Lie theory, apparently people
don’t do this.)

Remark 12.6. The Coxter-Eulerian numbers give the so-called h-numbers (defined
below) of the permutahedron Π(λ) we saw earlier.

To define the h-numbers for a polyhedron P, we first define

fi = #i-dimensional faces of P

and we let the f -polynomial be f(x) =
∑

i ge0 fix
i. Then we define the h-polynomial to

satisfy

f(x− 1) = h(x) =
∑
i≥0

hix
i.

It turns out hi are symmetric and nonnegative as long as P is simple.
For the permutahedron Π(λ) we get AΦ(k).

Example 12.7 (h-numbers for A2, a hexagon)

Let W = A2, so Π(λ) is a hexagon. This has six vertices, six edges and one
2-dimensional face, so

f(x) = 6 + 6x+ x2 =⇒ h(x) = f(x− 1) = 1 + 4x+ x2.

These correspond to 1 + 4 + 1 = 6 permutations on three letters: an identity, four
with one descent and one with two descents.

49



Evan Chen (Spring 2017) 18.218 Lecture Notes

§13 March 10, 2017

Let Φ be a crystallographic root system. This lecture we’ll generalize the formula |Sn| = n!
to a formula for |W | for any Weyl group W .

§13.1 The root poset

Definition 13.1. We define the root poset to be the partial ordering on the positive
roots Φ+ with the relation ≥ where α ≥ β if α − β is a nonnegative combination of
positive (equivalently, simple) roots.

Thus the simple roots are the bottom of the poset.

Proposition 13.2 (The Highest Root)

For irreducible root systems the root poset has a unique maximal element θ called
the highest root.

Example 13.3 (Root poset for An−1)

Take W = An−1. Then
Φ+ = {αij = ei − ej}

with simple roots αi = αi, i+ 1. Then αij ≥ αi′j′ ⇐⇒ i ≤ i′ < j′ ≤ j.
Here is a picture of the poset for n = 5:

α1 α2 αn−1

θ = α1n

Remark 13.4. In fact, we get the height function for the poset by: when α = c1α1 · · ·+
crαr we get

ht(α) = c1 + · · ·+ cr.

This implies the poset is graded.
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Example 13.5 (Root poset for Bn)

In this example we have

Φ+ = {ei ± ej | 1 ≤ i < j ≤ n} ∪ {ei | 1 ≤ i ≤ n}

The simple roots are αi = ei − ei+1 and αn = en. Here is the picture of the poset for
n = 3; it is “half” the An picture.

θ

α1 α2 αn−1 αn

In the context of Kostant game, θ corresponds to the following endpoint.

1 2 2 2 2

§13.2 Coxeter number

We now define some “magic numbers” of Weyl groups.

Definition 13.6. A Coxeter element of W is an element of the form c = s1 . . . sr ∈W .

Lemma 13.7 (Coxeter elemens are conjugate)

Fixing W , all Coxeter elements are conjugate to each other (as we vary the order in
which the si are multiplied).

Thus we can define

Definition 13.8. The Coxeter number h is the order of the Coxeter element (well-
defined since they’re all conjugate).

Definition 13.9. The exponents of W are positive integers 0 < m1 ≤ · · · ≤ mr < h
such that the eigenvalues of a Coxeter element c ∈ GL(V ) (actually c ∈ O(V )) are

exp
(

2πi · mj

h

)
j = 1, . . . , r.

Finally,

Definition 13.10. The index of connection f is the determinant of the Cartan matrix.
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Now, let θ = a1α1 + · · ·+arαr and set a0 = 1. Then (a0, . . . , ar) is an additive function
on the nodes of the extended Dnykin diagram.

Example 13.11 (D̃n)

Suppose we have the Dynkin diagram D̃n.

1

2 2 2

1

1

1

Then we choose
(a0, . . . , ar) =

(
1, 1, 2, . . . , 2︸ ︷︷ ︸

r−3

, 1, 1
)
.

Theorem 13.12 (h and f determined by θ)

We have

h = a0 + a1 + · · ·+ ar = ht(θ) + 1

f = # {i | ai = 1} .

Theorem 13.13 (Exponents determined by root poset; Kostant)

Let λ = (mr,mr−1, . . . ,m1) be a partition and λ∗ = (k1, . . . , kmr) its conjugate
partition. Then ki is the number of positive roots of height i.

In particular, mr = h− 1 and k1 ≥ k2 ≥ · · · ≥ kh−1.

Example 13.14 (Exponents for An)

For W = An, we have k1 = r, k2 = r − 1, . . . , kr−1 = 1. Thus λ∗ = (r, r − 1, r −
2, . . . , 1). This is self-dual, so we obtain

λ = (r, r − 1, . . . , 1)

hence the exponents are 1, 2, . . . , r.

Example 13.15 (Exponents for Bn)

For W = Bn, we have

λ∗ = (r, r − 1, r − 1, r − 2, r − 2, . . . , 1, 1).

Taking the dual gives
λ = (1, 3, 5, . . . , 2r − 1)

hence the exponents are 1, 3, 5, . . . , 2r − 1.
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Actually, the exponents satisfy the following properties.

• m1 = 1 and mr = h− 1.

• mi = mr−i+1 = h for all i.

Now the number of elements in the root poset is equal to∣∣Φ+
∣∣ = m1 + · · ·+mr =

rh

2

so we obtain

Theorem 13.16 (Number of roots)

We have
|Φ| = rh.

In fact the following theorem is true too.

Theorem 13.17 (Order of the Weyl group)

For any W , we have the following two formulas:

|W | =
r∏
i=1

(1 +mi)

= f · r! · a1 . . . ar.
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§14 March 13, 2017

Last time we saw Weyl’s formula

|W | = f · r! · a1 . . . ar

where θ is the highest root a1α1 + · · ·+ arαr and f = detAΦ = #{1 ≤ i ≤ r | ai = 1} is
the index of connection. This lecture we’ll prove this formula, using the so-called affine
Weyl group (which is infinite!).

§14.1 Root lattice and weight lattice

In fact we well define four lattices in this section: the (co-)root lattice, the (co-)weight
lattice.

Definition 14.1. We say λ ∈ V is an integral weight if (λ, α∨) ∈ Z for each α ∈ Φ.

The fundamental weights, denoted ω1, . . . , ωr, are the dual basis to the basis of
simple co-roots α∨i (i = 1, . . . , r), in the sense that

(ωi, α
∨
j ) =

{
1 i = j

0 else.

Definition 14.2. The weight lattice P is the Z-lattice of all the integral weights,
generated by ωi.

Definition 14.3. The root lattice Q is the Z-lattice of all roots α ∈ Φ (or equivalently,
just the simple roots α1, . . . , αr).

Proposition 14.4 (Q ⊂ P )

The root lattice in contained inside the weight lattice.

Proof. It suffices to show each simple root αi is an integral weight. Assume αi =
c1ω1 + · · · + crωr, so (αi, α

∨
j ) = cj for each j, which is an entry of the Cartan matrix,

hence an integer.

Remark 14.5 (Cartan matrix corresponds to αi in wj). In fact, this shows that when
we express αi as linear combinations of ωi, we end up with the Cartan matrix. For

example in A2 with A =

[
2 −1
−1 2

]
we will find α1 = 2ω1 − ω2 and α2 = −ω1 + 2ω2.

Definition 14.6. The co-root lattice and co-weight lattice are defined by

• The co-root lattice Q∨ is defined by α∨1 , . . . , α
∨
r .

• The co-weight lattice P∨ is defined by ω∨1 , . . . , ω
∨
r .

Remark 14.7. This is a bit confusing since two types of duality are going on:

• The duality going from Q to P corresponds to taking the transpose of the Cartan
matrix.

• The between Q and P∨ is the (Euclidean) dual basis (with respect to inner product).
Ditto for Q∨ and P∨.
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Proposition 14.8 (Index of connection)

f = [P : Q] = [P∨ : Q∨].

Proof. Since f = detA, follows by Remark 14.5.

§14.2 A picture

Example 14.9 (Lattice in A2)

Let V = {(x1, x2, x3) | x1 + x2 + x3 = 0} be the usual ambient subspace of R3. Then
we have

α1 = α∨1 = (1,−1, 0)

α2 = α∨2 = (0, 1,−1).

In that case, one can check

ω1 = ω∨1 = (1, 0, 0)− 1

3
(1, 1, 1)

ω2 = ω∨2 = (1, 1, 0)− 2

3
(1, 1, 1).

Here is the picture:

α1α2
ω1ω2

We see visibly, f = 3 which follows as

α1 = 2ω1 − ω2

α2 = −ω1 + 2ω2

and hence

A =

[
2 −1
−1 2

]
hence f = detA = 3.
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§14.3 Affine Weyl group

Definition 14.10. Let α ∈ Φ, and k ∈ Z. We define2 the affine hyperplanes by

Hα,k = {λ ∈ V | (λ, α) = k}

and thus the affine reflection sα,k the reflection with respect to Hα,k.
Thus we have

s(α, k)(λ)
def
= sα(λ) + kα∨

= λ− (λ, α)α∨ + kα∨

= λ− ((λ, α)− k)α∨.

Definition 14.11. The affine Coxeter arrengement is the hyperplane arrangement
consisting of the (infinitely many!) hyperplane arrangements Hα,k. The affine Weyl
group Waff is the group generated by all sα,k.

Lemma 14.12 (Affine Weyl group is semidirect product)

We have Waff = W nQ∨.

Proof. For β ∈ Q∨, we let shβ be the shift λ 7→ λ+β. We claim Waff = {shβ ◦w}. Clearly
Waff ⊆ {shβ ◦w}; on the other hand shα∨ = sα,1 ◦ sα.

Definition 14.13. The regions in the affine Weyl arrangement are called alcoves.

Here is a picture of an affine Weyl arrangement, with the hyperplanes drawn in dotted
lines.:

α∨
1α∨

2
ω∨
1ω∨

2

2 Some people prefer to use α∨ instead of α in the definition of Hα,k.
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Lemma 14.14 (Invariance under Waff)

The affine Coxeter arrangement Waff is invariant under the action of Waff .

Lemma 14.15 (Waff simply transitive)

Waff acts simply transitively on the alcoves.

Proof. Same proof as we did for W acting on chambers, with the word “chamber” replaced
by “alcove” everywhere.

Thus as before we like to pick a fundamental alcove A0. Like before all of them are
equivalent, but typically we like to select the alcove A0 inside the fundamental chamber
C0 which touches the origin. It turns out that

A0 = {x ∈ V | (αi, x) ≥ 0 and (θ, x) ≤ 1} .

and in particular A0 is a simplex.
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§15 March 15, 2017

We continue the proof of Weyl’s formula using Waff .

§15.1 Recap

As before W is a Weyl group with weight lattice P and root lattice Q ⊂ P . We set

Waff = W nQ∨.

We let C0 be the fundamental Weyl chamber, (the cone generated by fundamental weights
ω1, . . . , ωr).

Then we let A0 be the fundamental alcove, cut out by Hθ,1.

A0

Hθ,1

We have the following characterization of the chamber.

Lemma 15.1 (Characterize A0)

We have the characterization

A0 = C0 ∩ {x | (x, θ) = 1}
= {x | (αi, x) ≤ 0 ∀i, (θ, x) ≤ 1} .

Equivalently, A0 is the convex of hull of 0 and ω∨i /ai, where θ =
∑
aiαi is the

highest root as usual.

Since Waff acts simply transitively, we have

Theorem 15.2 (Alcoves ↔ Waff)

All alcoves are of the form w(A0), w ∈Waff , in a one-to-one correspondence.
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Theorem 15.3 (Presentation of Waff)

Waff is generated by reflection with respect to the walls of A0. In fact, if we set s1,
. . . , sr as before and s0 = sθ,i the relations of the presentation are

• s2
i = 1 for i = 0, . . . , r.

• sisjsi . . .︸ ︷︷ ︸
mij

= sjsisj . . .︸ ︷︷ ︸
mij

for 0 ≤ i < j ≤ r.

Proof. Essentially the same as the proof last time.

Remark. One computational comment from the proof from last time: if two words on si
are equal, then one can show they are equal only be deleting sisi and using the Coxeter
relation (i.e. we never need to introduce a double sisi). This more or less follows directly
from the geometric picture.

§15.2 Proof of Weyl’s formula

We now put together what we know about Waff in order to prove Weyl’s formula. The
proof will be geometric.

Consider two polytopes (both parallelpiped):

Π = {x ∈ V | 0 ≤ (x, αi) ≤ 1 ∀i = 1, . . . , r} .
H =

{
x ∈ V | −1 ≤ (x, α) ≤ 1 ∀α ∈ Φ+

}
.

Here is a picture in A2, with Π and H shaded in orange and green (respectively).

α∨
1α∨

2
ω∨
1ω∨

2

Π

H

Each of Π and H consists of finitely many alcoves, since each of the boundaries lies
along the grid cut out by Hα,i. Now we observe that
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• Π is really the parallelpiped generated by ω∨1 , . . . , ω∨r . Meanwhile A0 is the
parallelpiped generated by ω∨1 /a1, . . . , ω∨r /ar. Consequently, we obtain

Vol Π

VolA0
= r!a1 . . . ar.

• Since H consists of all alcoves adjacent to the origin, it has |W | alcoves, meaning

VolH

VolA0
= |W |.

So it remains to compare H and A0. For this we use the following lemma.

Lemma 15.4 (Π, H are fundamental domains of P∨, Q∨)

We have that:

• Π is the fundamental domain of the coweight lattice P∨.

• H is the fundamental domain of the coroot lattice Q∨.

Proof. Equivalently, if we take Π and translate by P∨ we tile the whole space, while if
we take H and translate by Q∨ we also tile the whole space.

The first one is more or less obvious. For the second one, follows from Waff =
W nQ∨.

Thus, we have that

|W |
r!a1 . . . ar

=
VolH

VolP
= [P∨ : Q∨] = f.

This implies Weyl’s formula.

§15.3 Example: An−1

Claim that in the case W = An−1, Waff corresponds to affine permutations, i.e. permu-
tations w : Z → Z for which w(i + n) = w(i) + n subject to the additional constraint
w(1) + · · ·+ w(n) = 1 + · · ·+ n. More about this example coming next lecture.
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§16 March 17, 2017

§16.1 The example An−1

Let r = n− 1, so we have An−1. We consider the roots as living in the vector space

V =
{

(x1, . . . , xn) ∈ Rn |
∑

xi = 0
}

and for which we have the dual space

V ∗ = Rn/(1, . . . , 1)R ' V.

The simple roots αi = (0, . . . , 0, 1,−1, 0, . . . 0) and the fundamental weights ωi are
given modulo (1, . . . , 1) by

ωi =

1, . . . , 1︸ ︷︷ ︸
i

, 0, . . . , 0

 ≡
1, . . . , 1︸ ︷︷ ︸

i

, 0, . . . , 0

− i

n
(1, . . . , 1) ∈ V ∗.

Then the root lattice is given by

Q =
{

(x1, . . . , xn) ∈ Zn |
∑

xi = 0
}
.

and the weight lattice is
P = p(ZN )

where p is the projection onto the
∑
xi = 0 plane used earlier,

p : Rn −→ V

(x1, . . . , xn) 7−→ (x1, . . . , xn)−
∑
xi
n

(1, . . . , 1).

§16.2 Affine permutations, and cylindrical wiring diagrams

In the case W = An−1 we are describing, Waff becomes the so-called affine permutations.

Definition 16.1. Fix n ≥ 1. A map w : Z→ Z is an affine permutation if

(i) w is a bijection.

(ii) w(i+ n) = w(i) + n for all i.

(iii) w(1) + · · ·+ w(n) = 1 + 2 + · · ·+ n.

These permutations from a group under function composition, which we call the George
group after George Lusztig.

We introduce the following notation. Given w an affine permutation, we identify w
with

w = [w(1), . . . , w(n)]

and then
w = (w(1) mod n, . . . , w(n) mod n) .

Obviously w is a bijection on Z/n.
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Proposition 16.2

The George group is isomorphic to Waff where W = An−1.

Explicitly, si corresponds to the permutation for which

si(k) =


k + 1 k ≡ i (mod n)

k − 1 k ≡ i+ 1 (mod n)

k else

or in our bracket notation

s1 = [2, 1, 3, 4, . . . , n]

s2 = [1, 3, 2, 4, . . . , n]

...

sn−1 = [1, 2, . . . , n− 2, n, n− 1]

s0 = [0, 2, 3, . . . , n− 1, n+ 1] .

Example 16.3 (Examples of computation with si)

Let n = 4. We can compute the following entries:

id = [1, 2, 3, 4]

s1 = [2, 1, 3, 4]

s1s3 = [2, 1, 4, 3]

s1s3s0 = [−1, 1, 4, 6]

s1s3s0s2 = [−1, 4, 1, 6] .

Like before, we can draw this with a wiring diagram, except we will this time have
them on a cylinder rather than a plane. Since I am not skilled with 3D diagrams, here
is a hacked-together one: you should imagine the straight lines as on the “back” of the
cylinder.

1

2

3

4

1

2

3

4

(0, 3)

(2, 5)

(4, 5)(2, 3)

s1s3s0s2
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Definition 16.4. An affine inversion is a pair i < j such that w(i) > w(j).

To see the decomposition Waff = W oQ∨, we can write

w = [w(1), . . . , w(n)] 7→
(
w ∈ Sn, x ∈ Q∨

)
where x = (x1, . . . , xn) is defined by w(i) = w(i) + xi · n, since w(i) ≡ w(i) (mod n).

§16.3 Alcoves in the example

Now, how do these correspond to alcoves? The claim is the following.

Proposition 16.5 (Alcoves in An−1)

Let A = w(A0) be the alcove corresponding to w ∈W = An−1. Then the center of
mass of the alcove is

1

n
(w(1), . . . , w(n)) .

In fact, the following is true.

Lemma 16.6 (Kostant)

Let W be any Weyl group. For every alcove there is exactly one point of the lattice
1
hQ
∨ strictly inside of A, where h is the Coxeter number.

Here is the example for A2, with Coxeter number h = 3. The points of the co-root
lattice Q∨, are marked in green, and the points of 1

hQ
∨ are marked in grey (unless they

are grey already). We indeed see exactly one point inside each alcove.

α∨
1α∨

2
ω∨
1ω∨

2
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Proof of Kostant’s lemma. Consider a point λ ∈ 1
hQ
∨. Then λ lie in an alcove exactly if

λ ∈ Hα,k ⇐⇒ (λ, α) /∈ Z ∀α ∈ Φ.

Thus the conditions are hλ ∈ Q∨ and (hλ, α) 6≡ 0 (mod h) for all α. (Why does this
finish?)

§16.4 Bruhat orders

We again draw the weak Bruhat order for S3:

s1s2s1 = s2s1s2

s1s2 s2s1

s1 s2

1

1

2

2 1

1

2

We now define the strong Bruhat order by letting ul w if w = usα, with the weight
of the edge being h(α). Here it is for S3:

s1s2s1 = s2s1s2

s1s2 s2s1

s1 s2

1

1

1

1

2

1
2

1

2

It turns out that in both of these, if we take all the saturated paths and then the
product of the labels, we get

(
n
2

)
!. For example, in the weak one we have 1 ·2 ·1+2 ·1 ·2 = 6

and in the strong one we get 1 · 1 · 1 + 1 · 2 · 1 + 1 · 2 · 1 + 1 · 1 · 1 = 6.
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§17 March 20, 2017

(Logistic announcements: problem set 1 is up. There are lots of problems; solving 3-4 of
them should be sufficient.)

§17.1 Reduced decomposition

We’ll be mostly discussing reduced decompositions, mostly for the longest element θ.
For example, for the element

w0 =

(
1 2 . . . n
n n− 1 . . . 1

)
∈ Sn

and `(w0) = # Inv(w0) = |Φ+|.
As before we can draw this with a wiring diagram.

1

2

3

4

1

2

3

4

12

13

14 23

24

34

s1 s3 s2 s3 s1 s2

Theorem 17.1 (Stanley)

The number of reduced decompositions of the longest permutation w0 ∈ Sn is equal
to the number of standard Young Tableau of the staircase shape (n− 1, n− 2, . . . , 1).
By the hook-length formula, this equals(

n
2

)
!

1n−13n−25n−3 . . . (2n− 1)1
.

§17.2 Commutation classes

Reduced decompositions probably aren’t unique, and often you can commute two elements
with each other; for example in the above picture the elements s1 and s3 could have been
listed in any other.

Definition 17.2. A commutation class of a reducible decomposition is an equivalence
class obtained by the move

sisj = sjsi.

For Sn, commutation classes are in bijection with pseudo-line arrangements with n
pseudolines. They are also in bijection with so-called rhombus tilings of a 2n-gon.
Without going into too much detail, here’s the earlier example with n = 4. draw pathsdraw paths
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1

2

3

4

4’

3’

2’

1’

§17.3 Inversion sets

Definition 17.3 (Stembridge). An element w ∈ W is fully commutative if there is
only commutative class of reducible decompositions for w.

Theorem 17.4

A permutation w ∈ Sn is fully commutative if and only if w is 321-avoiding. Hence
there are 1

n+1

(
2n
n

)
avoiding.

Definition 17.5. A root triple is (α, β, γ) ∈ Φ+ is a triple such that

α+ γ = β.

Recall also that Inv(w) = {α ∈ Φ+ | w(α) ∈ Φ−}.

Theorem 17.6 (Description of inversion sets)

A subset I ⊂ Φ+ is an inversion set of some w ∈ W if and only if for every root
triple (α, β, γ) we have

α, γ ∈ I ⇐⇒ β ∈ I.

Theorem 17.7 (Description of fully commutative sets)

Assume W is simply laced. The element w ∈W is fully commutative if and only if
its inversion set contains no root triples.

Remark 17.8. The earlier theorem about S − n follows from the description of fully
commutative sets. Indeed 321 pattern in w corresponds to i < j < k such that sij , sik,
sjk are in Inv(w), and sij + sjk = sik.

Thus root triples generalize 321-avoiding permutations.
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§17.4 Order ideals

Definition 17.9. An upper order ideal of (Φ+, <) is a subset I ⊆ Φ+ such that if
α ∈ I and β > α then β ∈ I. Such an ideal is abelian if it does not contain a root triple.

Proposition 17.10

For An−1 the number of such ideals is Cn = 1
n+1

(
2n
n

)
. The number of abelian ideals

is 2n−1.

§17.5 Recap

We can think of all the classes of objects as the set of root triples which avoid certain
signs. For W simply laced:

Class Forbidden root triples For An−1 Other types

Inversion set +−+, −+− n! |W |
Fully commutative +−+, −+−, + + + Cn (to be announced)
Upper order ideals +−+, +−−, −−+ Cn Coxeter-Catalan numbers
Abelian ideals +−+, +−−, −−+, + + + 2n−1 2rankW

By the signs I mean e.g. that when +−+ is forbidden, then if (α, β, γ) is a root triple it
is not the case that α, γ ∈ Φ+, β ∈ Φ−.

§17.6 A bijection

We will give a bijective proof that inversion sets correspond exactly to upper order ideals.

Definition 17.11 (Edelman-Green). A balanced tableau is a filling of the staircase
Young diagram λ = (n− 1, n− 2, . . . , 1) by 1, 2, . . . N =

(
n
2

)
without repetition such that:

for every hook H in λ the corner entry of H is the median of all entries in H.

Example 17.12 (A balanced tableau for n = 5)

Here is a balanced tableau for n = 5.
6 7 3 10
4 5 1
8 9
2


For example, the hook at 7 has entries 3 < 5 < 7 < 9 < 10.

Right now this looks specific to An because it involves Young tableau. But we will now
generalize this to any Weyl group. Label the entries of the tableau by (i, j), 1 ≤ i < j ≤ n,
in the following way: 

15 25 35 45
14 24 34
13 23
12


Now, we give the following weaker condition which also implies the median prop-

erty.
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Lemma 17.13 (Balanced tableaus)

A filling T of λ = (n − 1, n − 2, . . . , 1) is balanced if and only if for any indices
i < j < k the entries a, b, c in boxes (i, j), (i, k), and (j, k) satisfy either a < b < c
or a > b > c.

Thus we can generalize the notion of balanced tableau to any root system.

Definition 17.14. A balanced Φ-tableau is a bijection

T : Φ+ → {1, . . . , N}

such that given any root triple (α, β, γ) the number T (β) is the median of {T (α), T (β), T (γ)}

This will give us a bijection to reduced decomposition. We claim it as follows: if

w = si1 . . . siN = sβN . . . sβ1 .

Then set T (βi) = i.
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§18 March 22, 2017

§18.1 Tableaus

As before we identify the boxes of the Staircase Young diagram with the pairs(
[n]

2

)
= {(i, j) | 1 ≤ i < j ≤ n}.

Then recall that a balanced tableau is a bijective map

T :

(
[n]

2

)
→ {1, . . . ,

(
n

2

)
}

such that T (i, k) is between T (i, j) and T (j, k) (equivalent to the hook property).
This generalizes to give us the following definition for a general root system.

Definition 18.1. Let Φ be a crystallographic root system. A balanced Φ-tableau is a
bijection

Φ+ →
{

1, . . . , |Φ+|
}

such that for any root triple α, β, γ ∈ Φ+ such that β = α+γ we have T (α) < T (β) < T (γ)
or T (α) > T (β) > T (γ).

Theorem 18.2 (Dyer)

Balanced Φ-tableaux are in canonical bijection with reduced decomposition of the
longest element w0 ∈W .

The bijection is explicitly given as follows: given a reduced decomposition w0 =
si1 . . . siN = sβN . . . sβ1 in the usual way (β1 = α− i1, β2 = si1(αi2), and so on), then
the corresponding tableau is given by T (βi) = i.

One can also think of this as a reflection ordering, corresponding to an ordering

β1 < β2 < · · · < βn

of the set of positive roots (by T ), satisfying the “balanced” condition.

Remark 18.3. The balanced condition can be rewritten as follows. Consider any rank 2
root subsystem Ψ in Φ; for crystallographic Φ we have three possibilities (four possibilities
if we count A2 ×A2, but we’ll ignore it).

• In A2, we have three positive roots, say γ1, γ2, γ3 in that order; we will require that

T (γ1) < T (γ2) < T (γ3) or T (γ1) > T (γ2) > T (γ3).

• In B2 we have four positive roots γ1, γ2, γ3, γ4 in that order, and we will require

T (γ1) < T (γ2) < T (γ3) < T (γ4) or T (γ1) > T (γ2) > T (γ3) > T (γ4).
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• In G2 we have six positive roots γ1, γ2, γ3, γ4, γ5, γ6 in that order. We will require

T (γ1) < T (γ2) < T (γ3) < T (γ4) < T (γ5) < T (γ6)

or
T (γ1) > T (γ2) > T (γ3) > T (γ4) > T (γ5) > T (γ6).

Remark 18.4. Dyer’s theorem also holds for non-crystallographic root systems, if we
replace it with the Ψ condition above: if Ψ has m positive roots γ1, . . . , γm in that order,
we require T (γ1) < · · · < T (γm) or T (γ1) > · · · > T (γm).

§18.2 The easy direction

We prove the easy direction. Given

w0 = si1 . . . sin

hence giving an ordering β1 < · · · < βN , we have

Inv(si1 . . . sik) = {β1, . . . , βk} k = 1, . . . , N.

Now let H = {x | (λ, x) = 0} be the hyperplane separating Φ+ and Φ−, and let H+ =
{x | (λ, x) ≥ 0} ⊃ Φ+ and H− = {x | (λ, x) ≥ 0} ⊃ Φ−. Then we can also write the
equivalent definition

Inv(w) = roots in H+ ∩ w−1(H−).

We also now define

Non-Inv(w)
def
= Φ+ \ Φ+

=
{
β ∈ Φ+ | w(β) ∈ Φ+

}
= roots in H+ ∩ w−1(H+).

Both of the sets H+ ∩w−1(H−) and H+ ∩w−1(H+) are “convex”, being the intersection
of two half planes.

Now, consider a subsystem Ψ as before, with positive roots γ1, . . . , γm (here m ∈
{3, 4, 6} in the crystallographic case).

γ1

γ2

γm

Then for convexity reasons, Inv(w) ∩ {γ1, . . . , γm} is either of the form {γ1, . . . , γi} or
{γi, γi+1, . . . , γm}.

This implies that T (γ1), T (γ2), . . . , T (γm) is monotone.
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§18.3 The hard direction

The hard direction is to show that the monotonicity condition is sufficient, since the
remarks above show it’s necessary. For now we will give some comments showing this is
indeed hard.

For this we will use A3. To draw a picture of A3 in the plane (despite the fact that
A− 3 lives in R3), we take the affine hyperplane

H̃ = {x | (λ, x) = 1}

and then take the intersection of the ray for each positive root with the plane H̃. These
gives the six positive roots of A3, drawn in the following picture:

e1 − e2 e3 − e4

e2 − e3

e1 − e3 e2 − e4

e1 − e4

As before the Inversions of a w are then given by drawing the plane w−1(H), and then
taking the inversions to be those on one side of the line. Thus the condition is that

For any collinear points, the inversions are separated from the non-inversions.

But the situation is more complicated in general. Consider n lines in general position,
giving

(
n
2

)
intersections. Then we would hope:

Claim 18.5. Given an assignment of + and − such that on each line the + and −’s are
separated, is it always possible to separate them by a line?

For example:

− +

+

− +

+

Here’s the caveat. For general line arrangements, while we can draw a curve separating
the + and − signs, but it is not true pure geometrically; there exists line arrangements in
R2 for which it’s impossible to straighten the line. The miracle is that for root systems,
it turns out it’s in fact always possible to straighten the line, not only in the rank three
case but generally for any root system in higher dimensions.

§18.4 Edelman-Greene Correspondence
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§19 March 24, 2017

Missed class for spring break. Covered Edelman-Greene algorithm.
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§20 April 3, 2017

Recall from March 20 lecture the bijection between wiring diagrams and rhombus tilings.
In this lecture we’ll generalize this to get the so-called higher Bruhat orders B(n, k),

generalizing the weak Bruhat order. They were introduced by Manin-Schekhtman, studied
by Kapronav-Voevodsky, Ziegler,

(All these constructions are specific to type An.)

§20.1 Examples

Before we define these higher Bruhat orders, we give motivating examples for k = 0 and
k = 1.

• When k = 0, B(n, 0) is the Boolean lattice, i.e. the 1-skeleton of the n-hypercube.

• When k = 1, B(n, 1) is the weak Bruhat order on Sn.

• When k = 2, B(n, 2) is the partial order on commutation classes of reduced
decompositions of the longest element w0 ∈ Sn (equivalently, on ordering on pseudo-
line arrangements). Covering relation corresponds to Coxeter moves: Asisi+1siBl
Asi+1sisi+1B.

Here are pictures of all of these:

Exercise 20.1. The Hasse diagram of B(n, 2) is a graph with vertices of degree ≥ n− 2.
Equivalently every arrangement of n pseudo-lines contains at least n triangles.

§20.2 Definition

The original definition of B(n, k) was recursive: one may let B(n, k+ 1) denote the order
on saturated chains in B(n, k) modulo certain “commutation relations”. However the
official definition for this course is not recursive.
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Definition 20.2. We define B(n, k) to consist of subsets S ⊆
( [n]
k+1

)
(so sets of sets)

satisfying the following “separation condition”:

For every J = {j1 < · · · < jk+2} ⊆ [n], let Ji = J \ {ji}. Then there must
exist r ∈ {0, . . . , k + 2} such that

• J1, . . . , Jr ∈ S and Jr+1, . . . , Jk+2 /∈ S, or

• J1, . . . , Jr /∈ S and Jr+1, . . . , Jk+2 ∈ S, or

Equivalently, for a < b < c we forbid the patterns (Ja ∈ S, Jb /∈ S, Jc ∈ S)
and (Ja /∈ S, Jb ∈ S, Jc /∈ S).

Finally,the covering relation S l S′ means S′ = S ∪ {∗} (i.e. |S′| = |S|+ 1 and S′ ⊃ S).

Remark 20.3. The covering relation is not the same as the inclusion ordering.

The idea is that the elements of S should be thought of as “higher inversions”.
Examples:

• If k = 0, we have S ⊆
(

[n]
1

) ∼= [n], and the separation condition is trivial. Hence the
Boolean lattice.

• If k = 1, we have S ⊆
(

[n]
2

)
, we can interpret S as the set of inversions of a

permutation (the separation discussion being what we discussed in the past already).

• Now let k = 2, and considering a wiring diagram. The idea will bet hat a “higher
inversion” corresponds to wires a < b < c such that bc intersects and then ac
intersects.

a

b

c
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§21 April 5, 2017

Recall the definition of B(n, k) we gave in terms of sets. We’re going to give characteri-
zations of this again.

§21.1 Saturated chains

Let’s try to check the recursive definition in terms of saturated chains coincides with the
official one.

Proposition 21.1

This B(n, k) has a unique element 0̂ = ∅ and a unique maximal element 1̂ =
( [n]
k+1

)
.

Thus a saturated chain looks like

∅ = S0 l S1 l S2 l · · ·l SN =

(
[n]

k + 1

)
where N =

(
n
k+1

)
.

As we go from 0̂ to 1̂, we are adding in sets J1, . . . , Jk+2 are added from left-to-right
or right-to-left (in the separation). Now we let S̃ be the set of all J which were added
right-to-left.

Claim. S̃ is an element of B(n, k + 1).

Now we know about rhombus tilings from before; the correct analogy in general is
cyclic zonotopes. The theorem is going to be that:

Theorem 21.2 (Ziegler)

The elements higher Bruhat order B(n, k) are in bijection with (fine) zonotopal
tilings of the cyclic zonotope Z(n, k).

To do this we will have to define

• Cyclic polytopes, then

• Cyclic zonotopes, and finally

• Fine zonotopal tilings.

§21.2 Cyclic polytopes

We define the moment map R→ Rd by t 7→ (t, t2, t3, . . . , td) and let C(n, d) denote the
convex hull of the points (x(t1), . . . , x(tn)). For example, when d = 2 this is a parabola,
and so the convex hull is necessarily an n-gon.

More generally:

Theorem 21.3 (Gale evenness condition)

The combinatorial structure (i.e. the structure of faces) of C(n, d) does not depend
on the choice of t1 < · · · < tn.

Moreover, C(n, d) is a simplicial polytope. Finally, for any I ⊆ [n], the points
(x(ti) | i ∈ I) form a facet of C(n, d) if and only if any two elements of [n] \ I are
separated by an even number of elements ofI.
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Example 21.4 (C(5, 2))

Let d = 2. Then we get an n-gon, and the facets are {1, 2}, {2, 3}, . . . , {n− 1, n},
{1, n}.

1

2

3

4

5

Example 21.5 (C(5, 3))

Here is a picture of the four faces of C(5, 3), which are 125, 235, 345, 134.

1

2

3

4

5

§21.3 Proof of Gale evenness condition

We’ll project the polytope onto the plane x0 = 1, and thus let

x̃(t) = (1, t, t2, . . . , td) ∈ Rk

where k = d+ 1. Consider the matrix

A =


1 1 . . . 1
t1 t2 . . . tn
t21 t22 . . . t2n
...

...
. . .

...
td1 td2 . . . d

n



Proposition 21.6

Any k × k minor of A is positive.

Proof. It’s a Vandermonde determinant!

Now, how can we determine a facet? Let I = {i1, . . . , id} ⊆ [n]. Then I corresponds
to a facet of C(n, d) if and only if all other x̃(tj) for j 6= I lies on the same side of the
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hyperplane spanned by (̃xi). In other words we require that all determinants

Dj = det


1 1 . . . 1 1
ti1 ti2 . . . tid tj
t2i1 t2i2 . . . t2id tj
...

...
. . .

...
...


have the same sign for all j 6= I. But because again we have Vanerdomde determinants,
the sign of Dj is determine just by the position of j relative to the (id). More explicitly,
if tik < tj < tik+1

then the sign of Dj is (−1)k−d.
This directly implies the Gale evenness condition, because it means that every j /∈ I

ought to move the same number of columns.

§21.4 Cyclic zonotopes

We define the cyclic zonotope Z(n, k) as follows. As before, let x̃(t) =
{

1, t, t2, . . . , tk−1
}

.
Now recall the definition of the Minkowsky sum:

Definition 21.7. Given sets A and B in R2, we let A+B = {a+ b | a ∈ A, b ∈ B}.

Then:

Definition 21.8. Pick t1 < t2 < · · · < tn as usual. The cyclic zonotope Z(n, k) is the

Minkowsky sum of the n line segments joining the origin from 0 to (̃xi), for i = 1, . . . , n.

Exercise 21.9. Describe the facets of Z(n, k) and show that they don’t depend on the
choice of ti.

Example 21.10 (Z(n, 2))

Here is a picture of Z(4, 2). In general, Z(n, 2) is a centrally symmetric 2n-gon.

0

x0 = 1

The analogy is: generalizing n-gons to higher dimensions correspond to cyclic polytopes;
generalizing 2n-gons are the cyclic zonotopes.
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§21.5 Zonotopal tilings

We now have the correct generalization of rhombus tilings.

Definition 21.11. A (fine) zonotopal tiling of Z = Z(n, k) is a subdivision of Z into
parallelepipeds called tiles such that

• The edges of each parallelepiped tile are parallel translations of some edges of the
zonotope Z.

• Z is the union of the tiles.

• Every pair of tiles T and T ′ intersects at the common face of these tiles (possibly
empty).

Thus for k = 2 we get rhombus tilings.
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§22 April 7, 2017

§22.1 Vinberg with integer entries

Theorem 22.1

If A is an n × n matrix with integer entries, then there exists v > 0 with integer
entries such that:

• If A is finite type, then v > 0 and Av > 0.

• If A is affine type, then v > 0 and Av = 0.

• If A is indefinite type, then v > 0 and Av < 0.

(The previous result was shown with A a real matrix, with v ∈ Rn instead.)

Proof. In the finite case, we can easily pick v in Qn with this property; then scale v
upwards.

In the affine case, we need Dirichlet approximation theorem in the following way.

Theorem 22.2 (Dirichlet)

Let α1, . . . , αd be real numbers and pick some integer M ≥ 1. Then there exists
integers p, q1, . . . , qd ∈ Z such that 1 ≤ p ≤M and∣∣∣∣αi − qi

p

∣∣∣∣ ≤ 1

pM1/d
∀i.

Then let αi be the entries of v, C = maxj
∑

i |Aij| and then pick M = (2C)d. Then
A~q = 0 with q as in Dirichlet, so A(p~q) = 0 and p~v ∈ Zn.

§22.2 Pseudoline arrangements have n− 2 arguments

Proposition 22.3

In a pseudoline arrangement with n pseudolines, it has at least n − 2 triangular
regions.

Consider the obvious planar graph on
(
n
2

)
vertices, which has E = n2 − 2n and

F = n2−3n+2
2 .

We use a so-called “discharging” argument: we put one unit of charge on each edge e.
Then for each edge e = vw, we let x be the intersection of the pseudolines through v and
w, and discharge the edge into the face on the same side of e as x.

Claim 22.4. A face has at most 3 units of charge, with equality if and only if it’s a
triangle.
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§23 April 10, 2017

§23.1 A remark on moment

Earlier we used the moment curve

x(t) =
(
t, t2, . . . , td

)
and define the cyclic polytope

C(n, d) = Hull (x(t1), . . . , x(tn))

for any choice t1 < t2 < · · · < tn.
However, we claim that we don’t really need the moment curve itself to study the

combinatorial structure of C(n, d). We can replace it as follows:

Theorem 23.1

Let A = [v1, . . . , vn] be a k × n matrix, where k = d+ 1. Assume that:

• All maximal k × k minors are positive

• All endpoints of vi lie in some affine hyperplane (this condition is cosmetic,
since one can scale).

Then the convex hull of v1, . . . , vn is combinatorially equivalent to C(n, d).

Proof. Our proof of Gale’s evennes condition used only positivity of matrix minors.

In fact, the following converse holds.

Theorem 23.2

If P is combinatorially equivalent to C(n, d) with a given order of the vertices v1,
. . . , vn, then all maximal minors of A = [v1, . . . , vn] are positive.

§23.2 Positive Grassmannian

In what follows the base field always R.
We define the positive Grassmannian Gr>0(k, n) as the set of k×n (real) matrices

with positive matrix minors, modulo the action of GL(k). This is a very rich structure
that one can teach a whole course on. For now we’ll just talk about:

This is essentially the same thing as “moduli spaces of cyclic polytopes”.

Remark 23.3. There exists an even more complicated object, the amplituhedron,
developed my physicists. We may talk about this more later, but the point is the positive
Grassmannian is just the tip of the iceberg.

§23.3 Cyclic zonotopes

Recall the cyclic zonotope Z(n, k) is produced from the cyclic polytoppe C(n, k − 1) by
taking Minkowski sums.
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Z(4, 3)

Missing

figure

(Vertices correspond to subsets of {1, 2, . . . , n}.)

Exercise 23.4. Show that vertices of Z(n, 3) correspond to cyclic intervals. What about
Z(n, k)?

Exercise 23.5. Any tiling of Z(n, k) has exactly
(
n
k

)
tiles.

§23.4 B(n, n− 3)

Recall:

• B(n, n− 1) has just two elements.

• B(n, n− 2) has a Hasse diagram which gives a 2n-gon.

So let’s start with the interesting case B(n, n − 3). These correspond to subsets of(
[n]
n−2

)
satisfying the separation condition. We can think of it in terms of cyclic line

arrangements which we separate using a pseudoline.

Cyclic line arrangement

Missing

figure

§23.5 Generalization of B(n, n− 3)

Let A be any pseudoline arrangement (corresponding to commutation classes of reduced
decompositions of the longest word w0 ∈ Sn). Let B(A) denote all admissible subsets S
of vertices of A (all pseudoline elements in S are separated from elements not in S), with
the poset structure S l S′ if S′ = S ∪ {∗}.

Proposition 23.6

The poset B(A) has a unique minimal element 0̂ = ∅ and a unique maximal element
1̂. In particular, the Hasse diagram of this poset is connected.

The proof is based on the following lemma.
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Lemma 23.7

Given any pseudoline arrangement and a directed pseudoline, consider the vertices
to the left of this pseudoline. Then as long as there is at least one vertex on the left,
then there is a triangle using a vertex on the left and an edge along the directed
pseudoline.

This is not true in higher dimensions (possibly not even in three dimensions).
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§24 April 12, 2017

Today: Schubert calculus! We’ll be working over C today for convenience.

§24.1 Invariant algebra

Let Φ ⊆ V be a root system of rank r and W a Weyl group. The symmetric algebra is

Sym(V ) = C[V ∨] = C[y1, . . . , yr]

is the polynomial ring on the dual space V ∨.
Then W acts on this set of polynomials C[V ∨]. We’ll consider C[V ∨]W the subalgebra

of W -invariant polynomials.

Theorem 24.1 (Chevalley)

We have C[V ∨]W = C[f1, . . . , fr] where fiare homogeneous, algebraically independent
polynomials with degrees deg fi = mi + 1. (Here mi are the exponents of Φ.)

Example 24.2 (Fundamental theorem of symmetric polynomials)

Let Φ = An−1 hence W = Sn as usual (V = {x ∈ Rn | x1 + · · ·+ xn}). Then

C[V ∨]W = C[x1, . . . , xn]Sn/(x1 + · · ·+ xn)

is the algebra of symmetric polynomials.
The fundamental theorem of symmetric polynomials then gives us C[x1, . . . , xn]Sn

is generated by homogeneous independent polynomials.
Of course there are many choices of bases. Two common examples:

• the elementary symmetric ones ek =
∑

i1<···<ik xi1 . . . xik , or

• the complete homogeneous polynomials hk =
∑

i1≤i2≤···≤ik xi1 . . . xik .

Note that we’ve modded out by e1 = h1 already in the context of the theorem. The
exponents of An−1 are {1, 2, . . . , n− 1} and hence the fi have degrees {2, 3, . . . , n}.

So we see that while the choice of {fi} is not unique at all, the degrees are determined
completely.

§24.2 Coinvariant algebra

Definition 24.3. Let IW denote the ideal in C[V ∨] generated byW -invariant polynomials
with no constant term. Then we define the coinvariant algebra by

CW = C[V ∨]/IW .

Equivalently, IW is the ideal generated by f1, . . . , fr in the context of Chevalley’s
theorem.
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Corollary 24.4 (Corollary of Chevalley theorem)

CW is a finite dimensional algebra graded by degree:

CW =
⊕
k≥0

CW,k.

Its Hilbert series satisfies the relation

Hilb(CW ) =
∑
i≥0

qi · dimCW,i =
r∏
i=1

[mi + 1]q

where as usual [n]q
def
= 1 + q + · · ·+ qn−1 = 1−qn

1−q .

Proof. We have

Hilb(CW ) =
Hilb(C[V ∗])

Hilb(IW )

=
(1− q)−r∏

i(1− qmi+1)−1

as desired.

Now compare this to the earlier formula

∑
w∈W

q`(w) =
r∑
i=1

[mi + 1]q.

Hence we deduce dimCW = |W |.

Example 24.5 (An−1)

In this case we have
Hilb(CW ) = [2]q[3]q . . . [n]q

which is sometimes denoted [n]q! for obvious reasons.

Example 24.6 (A2)

Let W = S3. In this case,

CW = C[x, y, z]/ 〈x+ y + z, xy + yz + zx, xyz〉
= C[x, y]/

〈
xy − (x+ y)2, xy(x+ y)

〉
.

One choice of linear basis: {1, x, y, x2, xy, x2y}. This matches

HilbCW = [2]q[3]q = (1 + q)(1 + q + q2) = 1 + 2q + 2q2 + q3.

Exercise 24.7. For An−1, one choice of basis for C[x1, . . . , xn−1]/ 〈e1, . . . , en〉 is those
elements of the form xa11 x

a2
2 . . . x

an−1

n−1 where a1 ≤ n− 1, a2 ≤ n− 2, . . . , an−1 ≤ 1.
(Possible hint: Gröbner basis.)

84



Evan Chen (Spring 2017) 18.218 Lecture Notes

§24.3 Geometrical background

Here is some geometrical context for the invariant and coinvariant algebra. In what
follows it’s important that our ground field is C.

Definition 24.8. The flag manifold over C is the manifold whose points are complete
flags over C:

Fln = {{0} = V0 ( V1 ( V2 ( · · · ( Vn = Cn} .
(Here dimVi = i for each i.) It is isomorphic to SL(n)/B where B is the group of upper
triangular matrices.

We can generalize this to any root system in a way that we won’t define now: there is
a so-called generalized flag manifold G/B where G is a semisimple Lie group and B
is Borel group. The previous flag manifold corresponds to type An−1.

The connection is:

Theorem 24.9 (Borel’s Theorem)

We have an isomorphism of the cohomology ring of G/B to the coinvariant algebra:

H•(G/B) ∼= C[V ∨]/IW .

This isn’t really a theorem since we haven’t defined G/B. But you can think of it as a
justification for studying C[V ∨]/IW .

Now H•(G/B) turns out to have a “natural” linear basis of Schubert classes, so this
isomorphism should imply that there’s one distinguished nice linear basis C[V ∨]/IW .

So, all this motivates the construction of Schubert classes.

§24.4 Schubert classes

There are two algebraic/combinatorial ways to construct the Schubert classes σw ∈
C[V ∨]/IW .

• The “bottom-to-top” approach (using so-called Monk-Chevalley formula) is a
recursive construction starting from the identity element and going upwards along
the strong Bruhat order.

• The “top-to-bottom” approach (Bernstein-Gelfand-Gelfand, see also Demazure)
starts from the longest element and goes down the edges of the weak Bruhat order.

Some historical remarks: the Monk-Chevalley formula came first and was geometric.
Then Bernstein-Gelfand-Gelfand deduced from Monk-Chevalley that their algebraic
method should exist. Then Lascoux-Schützenberger used this in order to obtain the
so-called Schubert polynomials using the work of Bernstein-Gelfand-Gelfand.

This gives us one nice choice of (fi). They are not the only ones; for example, the
Kostant polynomials also behave well.

The key of the BGG approach is the divided difference operators. Given α ∈W ,
we define

∂α : C[V ∨]→ C[V ∨]

by

f(x) 7→ f(x)− sαf(x)

α
.

This is well-defined since α divides f(x)− sα(f(x)), since it’s symmetric with respect to
the reflection about α, so the numerator is actually divisible by α as claimed.
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§25 April 14, 2017

§25.1 Divided differences

As before we define the divided difference operators.

Definition 25.1. Given α ∈W , we define

∂α : C[V ∨]→ C[V ∨]

by

f(x) 7→ f(x)− sαf(x)

α
.

Let ∂i
def
= ∂αi .

This is well-defined since α divides f(x)− sα(f(x)), since it’s symmetric with respect
to the reflection about α, so the numerator is actually divisible by α as claimed.

Example 25.2 (∂i in An−1)

In type An−1,

∂i : f(x1, . . . , xn) 7→ f(x1, . . . , xn)− f(x1, . . . , xi−1, xi+1, xi, . . . , xn)

xi − xi+1
.

This is a polynomial since the numerator remains unchanged when we interchange
xi and xi+1, so is divisible by xi − xi+1.

The ∂i satisfy “nil-Coxeter relations” similar to the original Coxeter relations in
W .

Lemma 25.3 (nil-Coxeter relations)

We have

1. ∂2
i = 0

2. ∂i∂j∂i . . .︸ ︷︷ ︸
mij

= ∂j∂i∂j . . .︸ ︷︷ ︸
mij

Proof. For (1), in what follows 1 denotes the identity operator. Note that

∂i =
1

αi
(1− si) = (1 + si) ◦

1

αi

since α−1
i anti-commutes with si (this is an identity of operators on C[V ∨]). Thus

∂i∂i =
1

αi
(1− si)(1 + si)

1

αi
=

1

αi
(1− s2

i )
1

αi
= 0.

Part 2 is an exercise (main idea is to “open up” parentheses).
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§25.2 Divided difference via Weyl group

Definition 25.4. Henceforth, if w = si1 . . . si` is a reduced decomposition then we let

∂w
def
= ∂i1 . . . ∂i` .

Lemma 25.5

∂w is well-defined in the sense that it depends only on w and not on the choice of
reduced decomposition.

Proof. This follows from the fact that the nil-Coxeter relations above give a presentation.
Our approach earlier was via alcove walks; another proof is by the so-called exchange
lemma.

Lemma 25.6

Let w = si1 . . . si` = sj1 . . . sj` be a reduced decomposition of w. Then there exists
r ∈ {1, . . . , `} such that

w = si1 . . . sir−1sir+1 . . . si`sj` .

Consequently, for all w ∈W we have a well-defined action ∂w : C[V ∨]→ C[V ∨]. These
∂i function much like derivative operators: they drop the degree of the polynomial by 1.
Actually, we in fact have the following “product formula”.

Lemma 25.7 (Product rule aka Leibniz formula)

We have
∂i(fg) = ∂i(f)g + si(f)∂i(g).

Proof. Easy exercise (plug and chug).

Corollary 25.8

If f is W -invariant, then ∂i(fg) = f∂i(g).
Thus, ∂i (and hence ∂w) preserve the ideal IW , so they induced well-defined

operators on the coinvariant algebra C[V ∨]/IW .

§25.3 BGG

Theorem 25.9 (Bernstein-Gelfand-Gelfand)

The Schubert classes σw ∈ C[V ∨]/IW are given by

σw = ∂w−1w0
(σw0).

These form a linear basis of C[V ∨]/IW .

(You can take this as the definition of Schubert classes, if you like.)
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Remark 25.10. One may obtain polynomial representations of these Schubert classes
in the following way:

1. Take any fw0 ∈ C[V ∨] of degree `(w0).

2. Set fw = ∂w−1w0
(fw0).

3. Rescale them so that f1 = 1.

The basis of C[V ∨]/IW does not depend on the initial choice, but the actual representative
polynomials do.

§25.4 Choices of basis polynomials

A good choice of fw0 is the Kostant polynomial

Pw0 =
1

|W |
∏
α∈Φ+

α.

For example, in type An−1 this gives 1
n! =

∏
i<j(xi − xj). These then obey the relation

Pwsi = ∂iPw if `(wsi) = `(w)− 1.

Exercise 25.11. Prove that P1 = 1 in this case, so the “scaling” step is not needed.

Remark 25.12. The above polynomials don’t have N coefficients.

In type An−1 a particularly nice starting choice is

Definition 25.13 (Schubert polynomials). We let

Sw0 = xn−1
1 xn−2

2 . . . xn−1.

Then Swsi = ∂iσw if `(wsi) = `(w)− 1. These are very nice combinatorially and have
N-coefficients.
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§26 April 19, 2017

Last time we defined the single-variable Schubert polynomials Sw(x) by stipulating
Sw0 = xn−1

1 . . . x1
n−1 and Swsi = ∂iSw for `(wsi) = `(w)− 1.

§26.1 Double Schubert polynomials

We define the double Schubert polynomials as follows.

Definition 26.1. We let Sw(x, y) = Sw(x1, . . . , xn, y1, . . . , yn) according to the relations

Sw0(x, y) =
∏

i+j≤n
i,j∈[n]

(xi − yj)

and Sws0(x, y) = ∂iSw(x, y) if `(wsi) = `(w)− 1.

These satisfy the following properties.

Proposition 26.2 (Properties of Sw(x, y))

We have:

• Sw(x) = Sw(x, 0) is a linear basis for the co-invariant algebra.

• Sw(x,−y) has nonnegative integer coefficients.

• Sw(x,−y) = Sw−1(y, x) (symmetry).

• Let w ∈ Sn and w̃ ∈ Sn+1 by fixing n+ 1. Then Sw(x, y) = Sw̃(x, y).

These will be proven later; see the next lecture.

§26.2 Nil-Hecke Algebra

Definition 26.3. We define the nil-Hecke algebra NHn over C (say) to be the algebra
generated by u1, . . . , un−1 with the following relations:

• u2
i = 0,

• uiuj = ujui for |i− j| ≥ 2,

• uiui+1ui = ui+1uiui+1.

Definition 26.4. We let hi(x) = 1 + xui ∈ NHn[x].

The hi satisfy the following relations:

Lemma 26.5 (Yang-Baxter relations)

The following relations hold in NHn[x, y].

hi(x)hi(y) = hi(x+ y)

hi(x)hj(y) = hj(y)hi(x) |i− j| ≥ 2

hi(x)hi+1(x+ y)hi(y) = hi+1(y)hi(x+ y)hi+1(x).

Thus x and y “commute with everything”.
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§27 April 21, 2017

Definition 27.1. Recall that for w = si1 . . . si` then we have uw = ui1 . . . ui` (noting
that we get 0 for any non-reduced decomposition).

§27.1 Main Theorem

Theorem 27.2 (BJS, FS, FK)

We have

Φn
def
=

n−1∏
i=1

1∏
j=n−i

hi+j−1(xi − yj) =
∑
w∈Sn

Sw(x, y)uw

where Sw(x, y) is the double Schubert polynomial.

Example 27.3 (Theorem with n = 3)

Let n = 3. Consider the wiring diagram for s1s2s1:

y1

y2

y3

x1

x2

x3
x1 − y2 x2 − y1

x1 − y1

We obtain that:

• This diagram gives Ss1s2s1 = (x1 − y2)(x1 − y1)(x2 − y1).

• Undoing the x1 − y2 crossing gives Ss1s2 = (x1 − y1)(x2 − y1).

• Undoing the x2 − y1 crossing gives Ss1s2s1 = (x1 − y2)(x1 − y1).

• Undoing the x1 − y1 crossing gives an invalid double crossing (corresponding
to s1s1 which isn’t reduced).

• Undo both x1 − y2 and x2 − y1 to get Ss1 = x1 − y1.

• Undoing x1−y1 and either of x1−y2 or x2−y1 gives Ss2 = (x1−y2)+(x2−y1).

• Undoing all three crossings gives S1 = 1.

Proof. Let Φn =
∑

w fw(x, y)uw. We want to show fw gives Schubert polynomials.
The top element is clearly as desired: fw0 =

∏
i+j≤n(xi − yj) = Sw0(x, y).

Now, consider the following claim.

Claim. ∂i(Φn) = Φn · ui.
In fact this lemma is equivalent to: ∂i(fw) = fwsi if `(wsi) = `(w)− 1, which is the

defining relation for the double Schubert polynomials. We have the following relations
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from nil-Coxeter algebra:

uvui =

{
uvsi `(vsi) = `(v) + 1

0 otherwise.

Also, consider the following calculation:

∂i(Φn) = Φnui

⇐⇒ 1

xi − xi+1
(1− si)(Φn) = Φnui

⇐⇒ (1− si)Φn = Φn · ui(xi − xi+1)

⇐⇒ si(Φn) = Φn (1 + (xi+1 − xi)ui)
= Φnhi(xi+1 − xi).

since xi commutes with ui. So it suffices to prove si(Φn) = Φnhi(xi+1 − xi). We invoke
the Yang-Baxter relations below.

Lemma 27.4

si(Φn) = Φnhi(xi+1 − xi).

Example 27.5 (n = 3, i = 2)

We have

Φnhi(xi+1 − xi) = h2(x1 − y2)h1(x1 − y1)h2(x2 − y1)︸ ︷︷ ︸
=Φ3

h2(x3 − x2)

= h2(x1 − y2)h1(x1 − y2)h2(x3 − y1) = s2(Φ3).

Example 27.6 (n = 3, i = 2)

We have

Φnhi(xi+1 − xi) = h2(x1 − y2)h1(x1 − y1)h2(x2 − y1)︸ ︷︷ ︸
=Φ3

h1(x2 − x1)

= h2(x1 − y2)h2(x2 − x1)h1(x2 − y1)h2(x1 − x1)

= h2(x2 − y2)h1(x2 − y1)h2(x1 − x1) = s1(Φ3).

An outline of the general proof. We have

Φn = hn−1(x1 − yn−1)hn−2(x1 − yn−2)hn−1(x2 − yn−2) . . .

h1(x1 − y1)h2(x2 − y1) . . . hn−1(xn−1 − y1) · hi(xi+1 − xi).

Then commute the hi until it bumps into something, and keep throwing Yang-Baxter
relations at it.
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§27.2 A Word on RC graphs

Usually, RC graphs are drawn in a staircase fashion in the following way (equivalent to
what we’ve been already doing, but. . . ).

Draw a staircase as below. In each cell we place either a cross or two bends. Also, we
put a single bend at the edge of each staircase.

1 2 3 4 5 6 7

2

5

1

7

6

4

3

The polynomials we get out of this correspond to the crosses:

• (x1 − y1)(x1 − y0)

• (x2 − y1)(x2 − y2)

• (x2 − y3)

• (x3 − y2)(x3 − y3)

• (x4 − y2)(x4 − y3)

• (x0 − y1).

The condition is that we avoid double crossings.
Call them strands, pipes, wires, etc . . .
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§28 April 24, 2017

§28.1 RC graphs

We reproduce the graph from the previous lecture:

1 2 3 4 5 6 7

2

5

1

7

6

4

3

This is an RC-graph, which is required to not have double intersections within the
strands.

Definition 28.1. For a given permutation w ∈ Sn, we let RC(w) denote the set of all
RC-graphs for that w ∈ Sn.

For D ∈ RC(w), we let

xD
def
=

n∏
i=1

x#cross in row i
i .

For example, the diagram from last time, we have

w =

(
1 2 3 4 5 6 7
2 5 1 7 6 4 3

)
we have xD = x2

1x
3
2x

2
3x

2
4x

1
6.

The content from last lecture essentially shows that:

Sw(x) =
∑

D∈RC(w)

xD

Sw(x, y) =
∑

D∈RC(w)

∏
(i,j) crosses

xi − yj

(Note that Sw(x) = Sw(x, 0) by definition.) These combinatorial definition implies three
properties about the Schubert polynomials.
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Corollary 28.2 (Properties of Schubert polynomials)

The Schubert polynomials satisfy the following properties.

• (Positivity) Sw(x,−y) is a polynomial in x1, . . . , xn−1 and y1, . . . , yn−1 with
nonnegative integer coefficients.

• (Symmetry) Sw(x,−y) = Sw−1(y, x−1).

• (Stability) Consider the map Sn ↪→ Sn+1 by w 7→ w̃ with w̃ fixing n+ 1. Then
Sw(x, y) = Sw̃(x, y).

Proof. First two are obvious. Stability follows by noting that to avoid a double crossing,
the only way that a strand from n + 1 to reach n + 1 is for it to never encounter a
crossing.

§28.2 Cauchy formula

Theorem 28.3 (Cauchy formula for Schubert polynomials, Lascoux 1982)

Sw(x, y) =
∑
u,v

w=v−1u
`(w)=`(u)+`(v)

Su(x)Sv(−y).

Hence this expresses double Schubert polynomials in terms of the ordinary Schubert
values.

In particular, if w is the longest permutation, we deduce that∑
i+j≤n
i,j≥1

(xi − yj) = Sw(x, y) =
∑
w∈Sn

Sw(x)Sw0w(−y).

Remark 28.4 (Digression on Schur polynomials). This is reminiscent of Schur polyno-
mials sλ(x) (which turn out to be a special case of Schubert polynomials, which we’ll
define later). To be concrete, the dual Cauchy formula for Schur polynomials states∑

λ

sλ(x)sλ′(y) =
∏
i,j

(1 + xiyj)

where λ and λ′ are the dual. (The usual Cauchy formula for Schur polynomials states∑
λ

sλ(x)sλ(y) =
∏
i,j

(1− xiyj)−1

instead.)

We now prove Cauchy’s formula. Define Φn(x, y) = Φn(x1, . . . , xn−1, y1, . . . , yn−1) as
in previous lectures.

Lemma 28.5

Cauchy’s formula is equivalent to

Φn(x, y) = Φn(0, y)Φn(x, 0).
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Proof. Recall the notation uw = ui1 . . . ui` if w = si1 . . . si` in the nil-Coxeter algebra.
Then

uvuw =

{
uv·w `(v · w) = `(v) + `(w)

0 else.

So one sees this just by writing out definition of Φn(x, y).

Thus we prove Φn(x, y) = Φn(0, y)Φn(x, 0). This will be repeated application of
Yang-Baxter relations.

Example 28.6 (n = 2)

Let’s check the above formula for n = 2. Recall that Φ2(x, y) = h1(x1 − y1) and so
it’s equivalent to show

h1(x1 − y1) = h1(−y1)h1(x1)

which is more or less obvious.

Example 28.7 (n = 3)

Let’s check the above formula for n = 3. Recall that We wish to show

Φ3(x, y)
def
= h2(x1 − y2)h1(x1 − y1)h2(x2 − y1)

= h2(−y2)h1(−y1)h2(−y1)h2(x1)h1(x1)h2(x2).

Again keep using Yang-Baxter relations.

§28.3 Linear space of Schubert polynomial

We let
Stairn =

{
xa11 x

a2
2 . . . x

an−1

n−1 | ai ≤ n− i
}

be the n! monomials which divide xn−1
1 xn−2

2 . . . x1, and let 〈Stairn〉 denote their span
(which is an n!-dimensional space). Obviously, if D ∈ RC(w) we have D ∈ 〈Stairn〉. We
now make the following claim about the linear bases of 〈Stairn〉.

Theorem 28.8 (Basis of 〈Stairn〉)
The space 〈Stairn〉 has the following three linear bases.

• xa11 . . . x
an−1

n−1 , i.e. the elements of 〈Stairn〉 (by definition).

• Sw(x) for w ∈ Sn.

• Products

ei1(x1)ei2(x1, x2)ei3(x1, x2, x3) . . . ein−1(x1, x2, . . . , xn−1)

of elementary symmetric polynomials. Here ik ∈ {0, 1, . . . , k} for each k.

Moreover the images of these polynomials in the coinvariant algebra also form a
basis.
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In order to do this, we will need for each w to find D ∈ RC(w) for which xD is
lexicographically minimal.

It’s easier to describe the construction in reverse. Let ~a be a vector for which x~a ∈
〈Stairn〉. Then we can define an RC diagram by taking all the crosses to be left-justified.
For example, if ~a = (4, 2, 3, 0, 2, 0) we get the following:

1 2 3 4 5 6 7

5

3

6

1

7

2

4

The claim with this particular procedure is that:

Claim 28.9. When we do this procedure with any given vector ~a (satisfying ai ≤ n− i),
each permutation w arises exactly once.

In fact we have ai = #{j > i | wj < wi} equal to the number of inversions with smaller
component i. The bijection is called the Lehmer code.

Claim 28.10. Let w be the permutation obtained by this procedure from ~a. Consider
another RC-graph D with the same number of crossings in each row, and let w′ be the
associated permutation. Then w′ ≤ w in the lexicographical order on permutations.

Using these claims we will construct the Kostka-Schubert matrix (Kw,a), which is
an n! × n! matrix, such that the (w, a)th entry is equal to #

{
D ∈ RC(w) | xD = xa

}
.

Thus this serves as a transition matrix from the Sw(x) basis to x~a basis. In fact the
claim is that the Kw,a is an upper-triangular matrix once sorted in lexicographical order.
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§29 April 26, 2017

Recall K = (Kw,a) as defined last lecture, with the property that

Sw =
∑
a

Kw,ax
a.

§29.1 The n = 3 example

The poset of Schubert polynomials is:

S321 = x2
1x2

S312 = x2
1

S132 = x1 + x2

S123 = 1

S231 = x1x2

S213 = x1

The entries of K can be arranged as follows, with columns indexed by vectors a and
rows indexed by permutations.

K =

00 01 10 11 20 21

123 1 0 0 0 0 0
132 0 1 1 0 0 0
213 0 0 1 0 0 0
231 0 0 0 1 0 0
312 0 0 0 0 1 0
321 0 0 0 0 0 1

As claimed last time, the claim is that K is upper triangular with respect to the lexical
order above. Moreover, the entries on the main diagonal correspond to the lexically
minimal term xa.

Thus in particular K is invertible, and so Sw is a linear basis of 〈Stairn〉.
Problem 29.1. Find a combinatorial (subtraction-free) formula for K−1.

§29.2 Infinite permutations

From S1 ⊂ S2 ⊂ S3 ⊂ . . . let us consider the limit

S∞ = lim−→Sn

consisting of those infinite permutations w : Z→ Z which fix all co-finitely many points
(i.e. w(i) = i for all sufficiently large i, in terms of w).

Then, it follows we can define polynomials Sw for w ∈ S∞.

Corollary 29.2

Sw for w ∈ S∞ forms a linear basis of C[x1, x2, . . . ].

Remark 29.3. Not clear how to write Kw,a for S∞, since the usual lexicographic order
isn’t great here: one would have to write infinitely many things like 01 . . . , 02 . . . ., et
cetera, before writing 100 . . . . It would be interesting to figure out what the correct order
is.
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§29.3 Geometrical background

Consider the two manifolds we define earlier:

• Fln, the complete flags of Cn.

• Grk,n, the manifold of k-dimensional linear subspaces in Cn, for k ≤ n.

There is a natural map

p : Fln � Grk,n

(V0 ⊆ V1 ⊆ · · · ⊆ Vn) 7→ Vk.

This gives a map of cohomology rings

p• : H•(Grk,n) ↪→ H•(Fln).

We now give a description of the two bases of these maps. First, notation for the ideal:

Definition 29.4. Let In denote the ideal generated by homogeneous symmetric polyno-
mials of positive degree. (This notation will be retained in next lectures.)

• H•(Grk,n) has a linear basis of Schubert polynomials σλ, where λ is partition whose
Young diagram fits inside a k × (n − k) rectangle. (That is, λ = (λ1, λ2, . . . , λk)
where n− k ≥ λ1 ≥ λ2 ≥ · · · ≥ λk.) This space has dimension

(
n
k

)
.

• H•(Fln) ∼= C[x1, . . . , xn]/In has a linear basis of Schur polynomials σw, where
w ∈ Sn. This space has dimension n!.

Both of these cohomology rings can be thought of as quotients for the cohomology ring.
So the bottom line is the we have a map

λ 7→ w(λ) ∈ Sn

for which Sw(λ) is sλ(x1, . . . , xk).
Let’s now describe this map taking partitions to permutations. First, we describe the

permutations achievable as the image of Grk,n.

Definition 29.5. A permutation w ∈ Sn is (n, k)-Grassmanian if w1 < w2 < · · · < wk
and wk+1 < wk+2 < · · · < wn.

Lemma 29.6

Grassmanian permutations are in bijection with Young diagrams λ which fit inside
k × (n− k) rectangles.

Given a partition λ, the permutation w = w(λ) is such that:

The Lemer code of w(λ) coincides with (λk, λk−1, . . . , λ1, 0, . . . , 0).
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Example 29.7

Let n = 9 and k = 4. An example of a (9, 4)-Grassmanian permutation is

w = 2 5 6 9 | 1 3 4 7 8.

In that case the Lemer code of w is (1, 3, 3, 5, 0, 0, 0, 0), so the corresponding Young
diagram is λ = (5, 3, 3, 1).

Remark 29.8. An equivalent, perhaps more concrete, way to describe the bijection is
that

λ = (wk − k,wk−1 − (k − 1), . . . , w1 − 1).

§29.4 Wiring diagrams of Grassmanian permutations

Main claim: these diagrams are totally commutative. Let’s take the Young diagram for
(5, 3, 3, 1) again:

We add crosses into it and rotate it by 45 degrees.
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1

2

3

4

5

6

7

8

9

6

1

2

7

8

3

4

9

5

One can even embed this diagram as follows. Rotate and reflect, them embed in upper
left: Here is the previous example:
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1 2 3 4 5 6 7 8 9

2

5

6

9

1

3

4

7

8

This is not the only RC graph for the permutation, although it is the lexicographically
minimal one. But:

Claim 29.9. The RC-graph for w = w(λ) are in bijection with semi standard Young
tableau with entries in {1, 2, . . . , k}.
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§30 April 28, 2017

§30.1 The correspondence

We claim that RC-diagrams of Grassmanian are in bijection with semi-standard Young
tableaux. Here is the bijection. Consider the following RC diagram for the same
permutation as last time.

1 2 3 4 5 6 7 8 9

2

5

6

9

1

3

4

7

8

This is obtained by taking the original embedded guy and then letting the red crosses
“float” northeast.

We can then fill an inverted Young tableau by recording the row number in which the
intersections occur after floating: 

1
2 1 1
3 3 2
4 4 3 2 1


This is increasing strictly downwards, and decreasing weakly to the right. To obtain a
semi-standard Young tableau we can then just invert the entries and flip it:

1 1 2 3 4
2 2 3
3 4 4
4
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Now this is weakly increasing to right, and strictly increasing down. The associated
polynomial is x2

1x
3
2x

3
3x

4
4, with xi having #i as an exponent.

§30.2 Schur symmetric polynomial

Definition 30.1. We define

sλ(x) = sλ(x1, . . . , xk)
def
=
∑

x#1
1 x#2

2 . . . x#k
k

where the sum is taken over all semi-standard Young tableau of shape λ with entries in
{1, . . . , k}.

The bijection earlier gives:

Corollary 30.2

If w = w(λ), then Sw(λ) = sλ(x1, . . . , xk).

Examples:

• Ssk = x1 + x+2 + · · ·+ xk = e1(x1, . . . , xk).

• Ssk−i+1sk−i+2...sk = ei(x1, . . . , xk).

• Ssk+i−1sk+i−2...sk = hi(x1, . . . , xk) (complete homogeneous polynomial).

§30.3 Symmetry of H•(Fln) = C[x1, . . . , xn]/In

Those familiar with this area may know of the so-called involution ω defined by

xi 7→ −xn−i+1

si 7→ sn−i

Thus if w = si1si2 . . . si` , and ω(w) = sn−i1 . . . sn−i` = w0ww0. In terms of Young
diagram, this corresponds to conjugation of λ.

Proposition 30.3 (ω on Schubert polynomials)

ω sends σw to σw0ww0 .

Corollary 30.4

Sw(x1, . . . , xn) ≡ Sw0ww0(−xn,−xn−1, . . . ,−x1) (mod In).

Corollary 30.5

sλ(x1, . . . , xk) ≡ sλ′(xn,−xn−1, . . . ,−xk+1) (mod In).

Corollary 30.6

ei(x1, . . . , xk) = hi(−xn,−xn−1, . . . ,−xk+1) (mod In).
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Example 30.7

When i = 1 in the last corollary, we have e1(x1, . . . , xk) = x1 + · · · + xk, and
h1(−xn,−xn−1, . . . ,−xk+1) = −xn−xn−1−· · ·−xk+1. But In contains x1+· · ·+xn ≡
0.

Exercise 30.8. Check the last corollary algebraically from definitions, for all i.

§30.4 Monk’s formula

There are many variations; here is one.
Recall that Sw forms a basis of C[x1, . . . ] for w ∈ S∞.

Theorem 30.9 (Monk’s formula)

Ssk︸︷︷︸
=x1+···+xk

·Sw =
∑
i,j

i≤k<j
`(wtij)=`(w)+1

Swtij

where tij is the transposition (i j).

The sum is exactly the covering relations in the strong Bruhat order on S∞. (We really
want S∞, not just Sn! So e.g. when computing Ss3S315462 it’s possible that some new
terms will have 7 in them.)
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§31 May 1, 2017

Was ill today. To be written.
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§32 May 3, 2017

Was ill today. To be written.
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§33 May 4, 2017

Was ill today. To be written.

107



Evan Chen (Spring 2017) 18.218 Lecture Notes

§34 May 8, 2017

§34.1 Generalizing Schubert calculus

This week we will introduce some generalizations of the Schubert calculus we talked
about in the past.

Schubert calculus essentially studies cohomology rings H(G/B) (which in the An case
is H(Fln)); this ends up being the ω-invariant algebra.

Some possible generalizations:

• The T -equivariant cohomology HT (G/B), which gives the double Schubert polyno-
mials.

• The quantum cohomology groups QH(G/B), which count intersections of Schubert
varieties. (The name “quantum” here is misleading, not the same as in “quantum
groups”.) This lead to quantum Schubert polynomials.

• K-theory: this is K(G/B). This is the Grothendiek rings, which replaces Schubert
polynomials with Grothendiek rings.

(You can put all three directions together in so-called “quantum equivariant K-theory”.)
Today we’ll talk about the K-theory.

§34.2 K-theory of G/B

Let Φ, W , αi, ωi (1 ≤ i ≤ r) be as always and let P = 〈ω1, . . . , ωr〉Z be the weight lattice.
We define Z[P ] as the group algebra of P , with

• linear basis eλ, λ ∈ P , and

• multiplication by eλ · eµ = eλ+µ.

In other words,
Z[P ] = Z[e±ω1 , . . . , e±ωr ]

becomes the ring of Laurent polynomials in r variables eωi . Now, W acts on Z[p] via
w(eλ) = ew(λ).

Theorem 34.1 (Grothendiek Ring)

We have
K(G/B) ' Z[P ]/J

where J is the ideal generated by expressions of the form f − f(1) (i.e. those
polynomials with vanishing constant term).

Here when f =
∑
cλe

λ we mean f(1) =
∑
cλ.

Example 34.2 (Example when W = A1)

Let’s take W = A1, so Z[P ] = Z[e±ω1 ], and s1(eω1) = e−ω1 . Thus

f =
∑
j∈Z

cje
j·ω1 .

In that case J =
〈
ejω1 + e−jω1 − 2

〉
. So K(G/B) would be generated by linear span

of 1 and eω1 .
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§34.3 Linear basis of K(G/B)

In general, dimK(G/B) = |W |.
In fact the ring is isomorphic to the coinvariant algebra. Despite the fact that K(G/B)

is isomorphic to the coinvariant algebra, there is something new here. It turns out
K(G/B) has a linear basis of the form [Ow], w ∈W . We won’t discuss the geometry of
this basis, but these are actually structure sheafs. The main question is to understand
[Ou][Ov].

In order to define Ow, we need to define the Demazure operators (analogous to the
divided difference operator before).

Definition 34.3. The ith Demazure operator is defined by

Di : Z[P ]→ Z[P ]

f 7→ f − e−αisi(f)

1− e−αi .

Proposition 34.4

The Demazure operators satisfy the 0-Hecke relations:

(1) D2
i = Di.

(2) DiDjDi · · · = DjDiDj . . . (each mij times, as usual).

Exercise 34.5. Check the relations.

Thus again given w = si1 . . . si` reduced, we may define

Dw
def
= Di1 . . . Di`

which depends only on w and not the choice of reduced decomposition.

Theorem 34.6 (Kostant-Kumar)

We have the relation
[Ow] = Dw−1([O1])

with 1 ∈W being the identity of W .

Thus [Ow] is a K-theoretic analogue of σw0w. Anyways, since we haven’t given the
geometric definition of Ow yet, we can just take this as a definition.

§34.4 Specializing to An−1

We now specialize to type An−1.
We introduce variables z1, . . . , zn such that z1z2 . . . zn = 1 and

eωi = z1z2 . . . zi

eαi =
zi+1

zi
.

We then have
K(Fln) = Z[z±1

1 , . . . , z±1
n ]/J.

Here Jn is generated by f − f(1) for symmetric Laurent polynomials f . The claim is
that:
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Theorem 34.7

We have an isomorphism of the n!-dimensional rings

Z[z±1
1 , . . . , z±1

n ]/Jn → Z[x1, . . . , xn]/In

zi 7→ 1− xi.

So the Schubert classes σw correspond to Schubert polynomials, while [Ow] correspond
to so-called Grothendiek polynomials under this isomorphism.

Under this isomorphism the Demazure operators gain the following shape:

f 7→
f − zi

zi+1si(f)

1− zi
zi+1

=
zi+1f − zisi(f)

zi+1 − zi
.

These are called isoberic divided differences.
So the interesting thing happening is that the expression 1 − zi

zi+1
that we get in

K-theory becomes zi+1 − zi in cohomology.

§34.5 Construction of Grothendiek polynomial

In the language of the xi, one first notices that Di preserves the ideal Jn, then writes

πi(f)
def
= ∂i ((1− xi+1)f)

where ∂i is the usual divided difference. These satisfy the relations

(1) π2
i = πi.

(2) πiπj = πjπi

(3) πiπi+1πi = πi+1πiπi+1.

When then constructs the Grothendiek polynomial Gw (Gothic G) by replacing ∂i with
πi, verbatim. The interesting bit is that πi is not homogeneous in degree n.

For example, with n = 3 we get

G321 = x2
1x2

G312 = x2
1

G132 = x1 + x2 − x1x2

G123 = 1

G231 = x1x2

G213 = x1

so the only difference in G132 = x1 +x2−x1x2. There is also an RC-graph interpretation,
but the big change is that Monks’ rule becomes very interesting. We’ll see this in future
lectures.
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§35 May 10, 2017

Quick logistical announcement: problem set 2 is up. Reproduced in its entirety below.

Optional problem set. Turn in by May 17, 2017.

Solve any number of exercises or problems that were given in lectures during
the semester, or prove any claim(s) that was stated in lectures without proof.

§35.1 Definition of Grothendiek polynomials

These were introduced by Lascoux Schützenberger. They represent [Ou], classes of
structure sheaf of Schubert varieties in K(Fln) ' Z[x1, . . . , xn]/ 〈e1, . . . , en〉.

This is actually a special case of a construction that works for any Weyl group, vie
the Demazure operators. In type An−1 they are the isobaric divided difference
operators

πi : Z[x1, . . . , xn]→ Z[x1, . . . , xn]

f 7→ ∂i ((1− xi+1)f)

where ∂i = f−si(f)
xi−xi+1

is as usual. Then, the Grothendiek polynomials

Gw w ∈ Sn

are defined in analogy to Schubert polynomials with πi in place of ∂i, meaning that

Gw0 = xn−1
1 xn−2

2 . . . xn−1

Gwsi = πi(Gw) if `(wsi) = `(w)− 1.

See the examples as before.
These Grothendiek satisfy the following properties.

(1) The Schur polynomial Sw is the lowest homogeneous component (i.e. the component
of degree `(w)) of Gw.

(2) Gw are stable under the embedding Sn ↪→ Sn+1. Hence Gw can be defined for
w ∈ S∞.

(3) (Positivity) We have Ĝw
def
= (−1)`(w)Gw(−x1,−x2, . . . ) has nonnegative integer

coefficients.

§35.2 Grothendiek pipe dreams

This will be almost the same as with Schur polynomials except instead of the nil-Coxeter
relation u2

i = 0, we have 0-Hecke u2
i = ui.

The wiring pictures will also be the same, except now the strings may intersect multiple

times. This means that there are 2(n2) permitted diagrams this time: there are no longer
any constraints on the diagram.

The weight of the diagram is

xD =
∏
i

x#cross in ith row
i .

Here is the picture for a diagram D, for which xD = x2
1x

2
2x

1
3x

1
4.
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1 2 3 4 5

2

4

1

5

3

There is one more difference in reading the permutation from the wiring diagram —
the relation u2

i = ui means that if two strands intersect twice, then we have to ignore the
second cross (and thus turn at a sharp right angle at the cross). So for example, in the
above example,

w(D) =

(
1 2 3 4 5
2 4 1 5 3

)

Theorem 35.1 (Fomin-Kirillov)

We have
Ĝw =

∑
D:w(D)=w

xD.

Proof. Basically exactly the same. Exercise: do so.

§35.3 Extended Example for n = 3

We draw all the 23 = 8 diagrams for n = 3:

• The permutation 321 and monomial x2
1x2.

1 2 3

3

2

1

• The permutation 231 and monomial x1x2.
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1 2 3

2

3

1

• The permutation 312 and monomial x2
1.

1 2 3

3

1

2

• The permutation 132 and monomial x1x2. (This is the new term that wasn’t there
before; note the double crossing, and how 3 and 2 don’t switch at the southwest
intersection.)

1 2 3

1

3

2

• The permutation 213 and monomial x1.

1 2 3

2

1

3

• The permutation 132 and monomial x1.
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1 2 3

1

3

2

• The permutation 132 and monomial x2.

1 2 3

1

3

2

• The permutation 123 and monomial 1.

1 2 3

1

2

3

§35.4 Monk’s Formula for Grothendiek polynomials

Let K(G/B) ' Z[P ]/J , with

Z[P ] =

{∑
λ∈P

aλe
λ

}
J =

〈∑
aλe

λ | aλ = aw(λ)∀λ ∈ P,w ∈W and
∑

aλ = 0
〉
.

Here
∑
aλ = 0 really is f(1) = 0.

When we stated Monk’s formula for Schur polynomials, we saw formulas for σsi · σw
and [λ] · σw; these are equivalent since σsi = [wi]. We will use the latter form.

Consider the map

H(G/B)→ K(G/B)

σw 7→ [Ow0w]

[λ] 7→ [Lλ] = eλ.
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Here Lλ is a line bundle (which we haven’t defined); then we have

eλ · [Ow] =
∑
u

cλ,u,w[Ou]

and the point of Monk’s formula is to compute the coefficients cλ,u,w.
This formula is complicated: the first part is based on so-called alcove path model.

§35.5 Alcove path model

Consider the affine Coxeter arrangement for the dual root system Φ∨, which is given by

Hα,k =
{

(x, α∨) = k | α ∈ Φ, k ∈ Z
}

The resulting regions are alcoves; the fundamental alcove A0 is marked.
Let λ be any root, and consider any path p from A0 to A0 − λ (drawn in red below).

A λ-chain is then defined as follows: it is a sequence of roots (β1, . . . , β`) corresponding
to the intersection of p with the hyperplanes. This chain is not unique, and it need not
even be shortest.

A0

A0 − λ

α1α2

The sign of the chain is determined by whether we go from the positive side to the
negative side of the hyperplane, or vice-versa. For example, in the red path shown, we
have a chain

(α2, α1 + α2, α2, α1 + α2) .

in the purple path, we instead get the chain

(α1, α1 + α2, α2, α1 + α2, α2, α1 + α2,−α1 − α2,−α1) .

So again these chains need not be unique.
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Next, for α ∈ Φ+ we define the operator

Bα : [Ow] 7→
{

[Owsα ] if `(wsα) = `(w)− 1

0 otherwise.

Then define B−α = −Bα. Now, the result, due to Leneert and Postnikov, is:

Pick any λ-chain (β1, . . . , β`). We have

eλ · [Ow] = (1 +Bβ`)
(
1 +Bβ`−1

)
. . . (1 +Bβ1) ([Ow]) .
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§36 May 12, 2017

§36.1 Another perspective on pipe dreams

Given w ∈ Sn, we can consider the so-called Rothe diagram.
Definition by example: let

w =

(
1 2 3 4 5 6
3 5 2 1 6 4

)
We place an X in all the cells, then shade in all the squares which are not either below
or to the right of any X. This gives the Rothe diagram; the dominant part is the
connected component in the upper-left (which may be empty if w(1) = 1); this will be a
Young diagram.

X

X

X

X

X

X

1

2

3

4

5

6

1 2 3 4 5 6

Exercise 36.1. The Rothe diagram coincides with the dominant part (i.e. no other
squares) if and only if the permutation is 132-avoiding.

Pick any outer corner (i.e. x adjacent to dominant part), denote it (i, j), so that
w(i) = w(j).

Claim 36.2. We have

(xi − yj)Sw(x, y) =
∑
w′mw
w′(i)6=j

Sw′(x, y).

Here the covering m is in the strong Bruhat order; so it’s equivalent to w′(i) > j.

Claim 36.3. Given the Rothe diagram for w, all pipe dreams for w have;

• a cross inside the dominant part, and

• a non-crossing in each dominant corner.
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By changing one of the non-crossings to a crossing, we get also the recursion

(xi − yj)Sw =
∑
w′mw
w′(i)=j

Sw′ .

Also related: https://arxiv.org/abs/1704.00851.

§36.2 Alcove path model, continued

We now continue where we left off last lecture.
Let K(G/B) ' Z[P ]/J as before, with Z-basis [Ow]; we gave last time a formula for

multiplication is the algebra. We restate it now:

Theorem 36.4 (K-Chevalley formula)

Pick any λ-chain (β1, . . . , β`). We have

eλ · [Ow] = (1 +Bβ`)
(
1 +Bβ`−1

)
. . . (1 +Bβ1) ([Ow])

where we have defined the operator

Bα : [Ow] 7→
{

[Owsα ] if `(wsα) = `(w)− 1

0 otherwise.

for α ∈ Φ+, with B−α = −Bα for −α ∈ Φ−.

Here eλ plays the role of xi while [Ow] plays the role of Schubert polynomial.
In type An−1, let Z be the set of center of mass of all the alcoves, and embed it in the

coordinate system as before. Then

nZ = {µ = (µ1, . . . , µn) ∈ Zn | µ1, . . . , µn distinct mod n, µ1 + · · ·+ µn = 1 + · · ·+ n}

is the set of affine permutations, with n serving the role of the Coxeter number h. Under
this bijection, the fundamental alcove is

ρ = (n, n− 1, . . . , 1).

The adjacency is as follows: for alcoves µ, if µi + 1 ≡ µj (mod n) then and µ+ αij are
adjacent, where αij = ei − ej (with edge directed). (The first condition is necessary since
otherwise

µ+ αij = (. . . , µi + 1, . . . , µj − 1, . . . )

would not have distinct residues modulo n. The implicit claim is that given two adjacent
alcoves separated by α, the centers differ by the vector α/h).

Example for n = 4:

ρ = (4, 3, 2, 1)
−α23−−−→ (4, 2, 3, 1)

−α13−−−→ (3, 2, 4, 1)
−α24−−−→ (3, 1, 4, 2)

−α14−−−→ (2, 1, 4, 3).

If ω2 = (1, 1, 0, 0) (mod (1, 1, 1, 1)) = (1
2 ,

1
2 ,−1

2 ,−1
2), then ρ − nω2 = (2, 1, 4, 3), so an

ω2-chain is
(α23, α13, α24, α14) .
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This gives us an ω2-chain example. So, we can now apply the formula to

eω2 [O4321] =
∑
u∈W

nu[Ou]

where nu is the number of decreasing chains from 4321 to u whose label path forms a
subsequence of (α23, α13, α24, α14). One can compute the corresponding terms:

• [O4321] from the empty sequence.

• [O4231] from α23

• [O3241] + [O4132] from α23α13 and α23α24

• [O3142] from α23α13α24.

• [O2143] from α23α13α24α14.

Monk’s formula corresponds to the “linear part of this” i.e. the length-one chain [O4231]
in the above.
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§37 May 15, 2017

To be added.

120



Evan Chen (Spring 2017) 18.218 Lecture Notes

§38 May 17, 2017

In this lecture we’ll briefly mention a lot of the topics that we didn’t get to.

§38.1 Weyl Characters

In last lecture we discussed the characters

ch(Vλ) =
∑
µ

mλ(µ)eλ.

(In type An−1 these are Kostant numbers.) Related topics:

• Weyl’s character formula

• Demazure character formula

• Littlemenn path model

• Berenstein-Zelevinsky polytopes

• Alcove path model (Gaussat-Littlemann galleries)

The ultimate goal is to understand the irreducible representations Vλ of Uq(g). The
models we have do a very good job of giving the characters ch(Vλ), but this doesn’t tell
us the whole Vλ. Related keywords: Lustzsig’s canonical basis, Koshiwara’s crystal basis.

§38.2 Kostant partition function

For λ ∈ Q, we let K(λ) denote the number of ways to express λ as a positive linear
combination of positive roots. We thus have∏

α∈Φ+

1

1− eα =
∑
λ∈Q+

K(λ)eλ.

For example, in type An−1, we end up with

∏
1≤i<j≤n

(
1− xi

xj

)−1

=
∑

(a1,...,an)∈Zn
a1+···+ak≥0 ∀k
a1+···+an=0

K(a1, . . . , an)xa11 . . . xann .

Example 38.1

We compute K(2,−1,−1) in the case A2. The ways to write (2, 1,−1) as the sum
are:

(2,−1,−1) = (1,−1, 0) + (1, 0,−1)

= 2(1,−1, 0) + (0, 1,−1)

So K(2,−1,−1) = 2.
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Example 38.2

We compute K(1, 2,−3) in the case A2.

(1, 2,−3) = (1,−1, 0) + 3(0, 1,−1)

= (1, 0,−1) + 2(0, 1,−1).

So K(1, 2,−3) = 2.

Theorem 38.3 (Conjectured by Chan-Robbins-Yuen, proved in 1998 by D. Ziellberger)

In type An−1, we have

K

(
1, 2, 3, . . . , n,−

(
n+ 1

2

))
= C1C2 . . . Cn

where Ck = 1
k+1

(
2k
k

)
is the Catalan number.

Example 38.4

This implies K(1, 2, 3,−6) = 1 · 2 · 5 = 10. One can visualize this as follows: we can
place the coefficeints of the root in the triangular latticea b c

d e
f


Then we require that

a+ b+ c = 1

d+ e− a = 2

f − (d+ b) = 3.

Remark 38.5. It turns out one can express mλ(µ) as an alternating sum of K(µ̃).

It turns out this result is a special case of Morris identity, proved analytically: the
one-page proof is https://arxiv.org/abs/math/9811108v2. However, apparently no
combinatorial proof is known.
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