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§1 September 5
No cluster algebras for first lecture, we discuss a predecessor first.

§1.1 Frieze patterns
We start with an example of a frieze pattern of order 5, which consists of four infinite
rows.

1 1 1 1 1 1 1 1 1 1

1 2 2 1 3 1 2 2 1 3

1 3 1 2 2 1 3 1 2 1

1 1 1 1 1 1 1 1 1 1

Definition 1.1. A frieze pattern of order n is an arrangement of n−1 rows with indents
as above such that:

(1) There are n− 1 rows and the first and last rows are filled with all 1’s.

(2) In the diamond
b

a d

c

we always have
ad− bc = 1.

(3) All entries are positive real numbers.

Theorem 1.2 (Coxeter)
Rows of frieze patterns of order n are periodic with period n.

In fact there is a stronger result that implies this property.

Definition 1.3. A glide reflection consists of a reflection of a horizontal axis plus a
vertical translation to the right.

PC: https://mathbitsnotebook.com/Geometry/Transformations/glide2.jpg
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Theorem 1.4
Frieze patterns are invariant under gliding reflections where the translation is by
n/2.

Thus one can find a fundamental domain (red triangle in later picture).

Example 1.5
Consider n = 4. The Frieze pattern then must have central row x, 2/x, and so on
(alternating). Thus the set of Frieze patterns of order 4 is isomorphic to R>0, and
the only possibility giving integer Frieze patterns is x ∈ {1, 2}.

§1.2 Clusters
Moreover, consider a lattice path x1, . . . , xn−3 joining 1 to 1.

Proposition 1.6
The rest of the Frieze pattern is uniquely determined by any positive real numbers
x1, . . . , xn−3. Moreover, all other entries are uniquely expressed as subtraction-free
rational formulas with monomial denominators (Laurent polynomials).

1

1

1

1

1 1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

x1

x2

x3

x4

x5

1

x4+1
x5

In general, the idea is that we will have some sort of structure where we want to choose
a “cluster” that uniquely determines the rest of the picture. These clusters will be related
by “mutations”; for example replacing the red x5 by the blue x4−1

x5
as the independent

variable.
Let’s go back to the example with n = 5.

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

x y+1
x

x+1
y

y

y x+y+1
xy x

Nicely enough:

Theorem 1.7
For any n, these expressions are in fact Laurent polynomials!
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Let’s then turn our attention to integer polynomials. For the specific example, there
are five pairs (x, y) such that x, y, x+1

y , y+1
x , x+y+1

xy are all integers, namely

(x, y) ∈ {(1, 1), (1, 2), (2, 1), (3, 2), (2, 3)} .

And in fact:

Theorem 1.8
For Frieze patterns of order n, there are exactly

Cn−2 =
1

n− 2

(
2n− 4

n− 2

)
integer Frieze patterns of order n.

Moreover there is an explicit bijection between these integer Frieze patterns with
traiangulations of an n-gon.

The bijection is given as follows: given a triangulation of an n-gon, count the number
of triangles touching each vertex, read off the labels clockwise, and use the numbers as
the entries of the first Frieze pattern, periodic every n. Then use the diamond rule to
determine the rest of the entries.

3

1
2

2
1

1 1 1 1 1 1 1 1 1 1

1 2 2 1 3 1 2 2 1 3

1 3 1 2 2 1 3 1 2 2

1 1 1 1 1 1 1 1 1 1

In fact, in this bijection we can even determine the entries of the diagonal under each
entry. Label the vertices of n-gon by {1, . . . , n} and fix the triangulation; right down the
first row.

The rule for pi,j is as follows:

1. Label vertex i by 0.

2. Label all neighbors of i by 1.

3. Henceforth, if a triangle has two labels a and b and the third vertex is empty, write
a+ b at the empty vertex.

Then the label of j is the entry pij .

5
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§2 September 7
§2.1 Frieze patterns continued
Recall that once we determine a lattice path, the rest of the frieze pattern is uniquely
determined. If we believe the claim that the resulting polynomials are subtraction-free
with Laurent denominators, then it follows that one valid choice is to set all the numbers
equal to 1.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

(We don’t consider the 1’s in the topmost and bottom row to be part of the lattice path
anymore.) There are 2n−4 ways to go left/right then, and n places to start the lattice
path; modding out by the glide reflection gives

2n−4 · n
2

= 2n−5n

frieze patterns obtained from setting a lattice path equal to 1.
Since 2n−5n < Cn−2 = 1

n+1

(
2n
n

)
, it follows there are some Frieze patterns that don’t

arise this way. We’ll give these on later in the lecture.

§2.2 Notation for Frieze patterns
Suppose we label the entries of the Frieze patterns as:

· · · p12 p23 p34 · · ·

p13 p24

p14

Extending modulo n, we can then view a Frieze pattern as (pi,j)i,j∈Z satisfying

1. det
[

pi,j pi,j+1

pi+1,j pi+1,j+1

]
= 1.

2. pi,i+1 = pi,i+(n−1) = 1.

3. pi+n,j = pi,j+n = pi,j (we take indices modulo n).

4. pi,j > 0 if i 6≡ j (mod n), and pi,j = 0 if i ≡ j (mod n).

5. pi,j = pj,i (glide reflection).

Thus each pi,j depends only on the unordered pair {i, j} modulo in Z/nZ. In other words,
pi,j corresponds to the diagonals and sides of a regular n-gon.
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v1

v2
v3

v4
v5

p12

p14

The rule that we gave at last lecture then goes verbatim; given a triangulation T we
get (pi,j) as follows. For every i:

1. Label vertex i by 0.

2. Label all neighbors of i by 1.

3. Henceforth, if a triangle has two labels a and b and the third vertex is empty, write
a+ b at the empty vertex.

Then the label of j is the entry pij .
Going backwards is even simpler: (pi,j) gives a triangulation T by drawing an edge

between {i, j} if pi,j = 1.

§2.3 Missing frieze patterns
Let’s return to the question at the beginning of the lecture.

v1 v2

v3

v4v5

v6

Applying the rule gives the corresponding frieze pattern.

1

3

2

3

1

1

1

2

1

1

1

3

2

3

1

1

1

2

1

1

This is an example where there is no lattice path of 1’s.
In fact, we can now identify the “missing” patterns:

Proposition 2.1
Triangulations which correspond to lattice paths of 1’s are those with no internal
triangles.

Hence the first n = 6 example.

§2.4 Ptolemy’s theorem
Consider the following picture:
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a

c

d

b

e

e′

From elementary geometry we have the following result.

Theorem 2.2 (Ptolemy’s theorem)
We have

ee′ = ad+ bc.

This gives a silly way to remember the following definition.

Definition 2.3. The Ptolemy algebra has variables

pi,j 1 ≤ i < j ≤ n

subject to the relations that whenever i < j < k < `,

pi,k · pj,` = pi,j + pk,` + pi,` + pj,k

This has a more modern name: “the coordinate ring of the Grassmannian Gr(2, n)”,
with pi,j bearing the name “Plücker coordinates”.

The choice of reused notation is deliberate:

Theorem 2.4
Frieze patterns of order n correspond to arrays (pi,j)1≤i<j≤n which satisfy Ptolemy’s
relations and pi,j > 0, p12 = p23 = · · · = p(n−1)n = p1n = 1.

Thus the diamond relations from frieze patterns are actually equivalent to Ptolemy’s
relations. In particular, the diamond relation is a particular instance of the Ptolemy
relations:

pi,jpi+1,j+1 = pi,i+1pj,j+1 + pi,j+1pi+1,j = 1 + pi,j+1pi+1,j .

8
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§3 September 10, 2018
§3.1 The coordinate ring of the Grassmannian
We will show that the coordinate ring of the Grassmannian Gr(2, n) is given by

Pn = F[xij ]/ 〈xikxj` = xijxk` + xi` + xjk | 1 ≤ i < j < k < ` < n〉 .

In what follows we will take the indices modulo n, and set xii = 0 for every i. (Here, we
use xij rather than pij to emphasize that these are indeterminates.)

Now, let

pij = det
[
ai aj
bi bj

]
for i < j (this is anti-symmetric, unlike xij which are symmetric). To check that the pij
satisfy the Ptolemy relations, one can assume WLOG that ai = 1 (by replacing each
(ai, bi) with (1, bi/ai)), at which point

(bi − bk)(bj − b`) = (bi − bj)(bk − b`) + (bi − b`)(bj − bk)

as desired.
Homework:

Problem 3.1. Show that these are the only relations.

§3.2 A proof of the (Euclidean!) Ptolemy’s theorem
Let A1A2A3A4 be a cyclic quadrilateral. We will encode by picking a 4× 2 matrix[

a1 a2 a3 a4
b1 b2 b3 b4

]
and then letting

zi = ai + bi
√
−1.

Then, the vertex Ai corresponds to

Ai =
z2i
|z2i

=
zi
zi
∈ C

on the unit circle.

|Ai −Aj | =
∣∣∣∣zizi − zj

zj

∣∣∣∣
=

∣∣∣∣zizj − zjzi
zizj

∣∣∣∣
=

2

|zi||zj |

∣∣∣∣det
[
ai aj
bi bj

]∣∣∣∣ .
So Ptolemy’s theorem from Euclidean geometry is equivalent to the Plücker relations.

9
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§3.3 Assigning values to triangluations
We retain the relations and variables for xij . Let T be a triangulation of an n-gon and let

XT = {xij | (i, j) is an edge of Tj} .

This is called a cluster ; it includes xij when j = i− 1 due to the sides.

Proposition 3.2
Fix the triangulation T .

1. Any xij is expressed in terms of variables from XT by subtraction-free rational
expressions.

2. The xij are linearly independent.

3. If we assign a positive value to every xij in XT , then there is a unique assignment
of values to all xij which satisfies all the Ptolemy relations.

In fact we will later see that these are not only rational, but Laurent polynomials.

Proof. 1. Local swapping argument: given any quadrilateral in the triangulation, one
can flip its diagonal and use Ptolemy theorem.

2. We have #XT = n−3+n = 2n−3, but it is known that dim Gr(2, n) = 2(n−2) =
2n−4 as a subspace of projective space. Once we add in the extra degree of freedom
for rescaling, we account for the discrepancy of 1.

3. Uniqueness follows from (1). Existence left as homework exercise. (Hint: need to
check only for a specific triangulation.)

We claim now that this proposition explains all the results on Frieze algebras that we
had before. We will prove Theorem 1.2 and Theorem 1.4 in the following way.

Theorem 3.3
Frieze patterns are n-periodic and have glide symmetry; they are exactly the arrays
(pij) such that

(1) All Plücker relations are satisfied,

(2) pij > 0,

(3) pi,i+1 = pi,i+n−1 = 1.

Indeed the diamond relations are a special case of Plücker relations as we stated before.
On the other hand, it is not exactly true that the diamond relations imply all the Plücker
relations: one can consider the values pij = 1, pk` = 1, with all other values equal to 0.
In that case the general Plücker relations fail.

The remedy is to require all values positive.

Claim 3.4 — If xij > 0, then the diamond relations imply all Plücker relations. In
other words, Frieze patterns satisfy the Plücker relations.

10
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Proof. It suffices to check it for the special star triangulation T with edges (1, i) for every
i.

v1

v2
v3

v4
v5

Repeatedly throw the diamond relations in order to show there is at most one way to fill
in the entries.

1 1 1 1 1 1

1 1 1

p12 p22 · · · p(n−1)n

p13

...

p1n

Finally, we now officially state the Laurent phenomenon:

Proposition 3.5
In Proposition 3.2 the expressions are all Laurent polynomials

Proof. By induction, using the recursion that was given when we mapped T to integer
Frieze patterns.

§3.4 An explicit description of the formulas
We give an explicit (i.e. not recursive) description of the Laurent polynomials which are
arising.

Given a triangulation T , construct a bi-colored graph G such that we have blue vertices
{1, . . . , n} corresponding to the vertices of the polygon, and red vertices corresponding
to the triangles in the triangulation; connect each red vertex to the three blue vertices
making up the triangle. (The graph is bipartite for now, but later on they may not be.)

Example below.

11
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1 2

3

4

5

This graph obviously has no perfect matching since the number of vertices doesn’t match,
but:

Definition 3.6. An almost perfect matching is one that matches all but two of the
vertices.

Then the number of such matchings will actually correspond to pij . Next lecture we
will also give a weighting on such matchings.

12
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§4 September 12, 2018
§4.1 Infinite Frieze patterns
We now consider Frieze patterns with n→∞, at which point it doesn’t make sense to
talk about periodicity anymore. We will take a doubly infinite matrix

pij = ai+j

for i, j ∈ Z, so the antidiagonals are constant. Thus the diamond relation becomes the
condition that

ai+2ai = a2i+1 + 1.

Example 4.1 (Fibonacci)
If a0 = a1 = 1, then the terms an for n ≥ 0 are

1, 1, 2, 5, 13, 34, . . . .

These are alternating Fibonacci numbers: we have an = F2n−1.

In particular, it turns out that the terms are all integers! Since there is an explicit
formula for Fibonacci numbers, this lets us check it directly with computation (exercise).

In general, suppose a0 = x and a1 = y, and then generate the next terms by the same
recursion:

x, y,
y2 + 1

x
,
(y

2+1
x )2 + 1

y
, . . .

Exercise 4.2. Prove that these polynomials are all Laurent polynomials and give a
combinatorial interpretation of these polynomials.

Interestingly, there are other sequences with these type of properties. For example:

Definition 4.3. The Somos-4 sequence is the one satisfying

an+4an = an+3an+1 + a2n+2.

The Somos-5 sequence is the one satisfying

an+5an = an+4an+1 + an+3an+2.

For k ≥ 4 we can define Somos-k sequence analogously.

In general, Somos-k sequences satisfy the same Laurent phenomenon for k ∈ {4, 5, 6, 7}.

Exercise 4.4. Prove the same properties for Somos-4 and Somos-5.

§4.2 Laurent polynomial formula
Recall last time we were considering Pn, the algebra R[xij ] modulo Ptolemy relations.
We will

13
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Remark 4.5 (Historical). Fomin-Zelevinsky (2001) proved the Laurent phenomenon in the
more general context of cluster algebras, which we’ll prove later. They conjectured Laurent
positivity. Carroll-Price (2002), among others includin Propp and Schiffler, gave positive
formulas.

(Note that positive numerator and denominator isn’t enough: x3+y3

x+y = x2− xy+ y2. The
claim is this never happens in cluster algebra settings.)

§4.3 Explicit interpretation in GT

Given a triangulation T , we define the graph GT with red/blue vertices as in the end
of lecture 3 (example again below). We will let Mij denote the set of almost-perfect
matchings of GT that cover all vertices except the blue vertices i and j.

We will also label the edges of the triangulation with variables in the following way: in
a triangle with edges x, y, z, the cevian away not touching the edge z will be labeled z,
etc. Example below.

1 2

3

4

5

w

z

t

uv

x

y

x w

z

t

y

x

u v

y

Definition 4.6. If M is an almost perfect matching, we define

weight(M) =

∏
e edge of M weight(e)∏

(i′, j′) internal diagonal of T xi′,j′
.

An example of a matching M ∈M1,4 is shown below, with weight(M) = wxu
xy . For this

particular example, |M1,4| = 3.

14
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w

xu

1 2

34

5

Theorem 4.7

xij =
∑

M∈Mij

weight(M).

Let x̃ij denote the right-hand side; we wish to show x̃ij .
We start with one observation.

Lemma 4.8
The quantity x̃ij depends only on the part T ′ of the triangulation given by all
triangles whose interiors intersect with (i, j).

Proof. An example of T and T ′ is given below, where (i, j) = (3, 6) is highlighted in
brown.

1 2

3

4

56

7

8

2

3

4

56

8

Then, it suffices to check that when we delete a single triangle from the triangulation.
When we do this, we lose exactly one red and one blue vertex v (that is not {i, j}), so
the number of matchings is still in obvious bijection, and one can check the weight(M)
does not change under the bijection.

We state two sub-claims.

Claim — If xij ∈ XT , then x̃ij = xij .

Proof. Follows from lemma, since one can remove all triangles.

15
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Claim — Whenever i < j < k < ` we have

x̃ik =

(
xk`
xj`

)
x̃ij +

(
xjk
xj`

)
x̃i`.

Proof. Similar, to be finished next time.

By repeating the second claim, it follows by induction (with the first claim as base case)
that x̃ij = xij .

16
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§5 September 14, 2018
The graph GT from before is a special case of a plabic graph, which means “planar
bicolored graph”, embedded in a disk (in the sense that the graph is inscribed in a disk).

§5.1 Finishing proof of weighting formula with plabic graphs
Let us prove the claim from last time that if (j, k, `) is a triangle in T , then we have

x̃ik =

(
xk`
xj`

)
x̃ij +

(
xjk
xj`

)
x̃i`

We zoom in on the part T ′ of the triangulation T that intersects the diagonal joining i
and k.

j

k

ℓ

v

i

Let T ′′ be the triangulation T ′ with 4jk` deleted. By considering the cases of how v is
paired off (either to j or `), we have

Mik (GT ′) =M(1)
ik tM

(2)
ik

=Mij(GT ′′) tMi`(GT ′′).

§5.2 Trailer for cluster algebras
We now start setting up for cluster algebras. To give a preview of what’s coming up:

Old terminology New terminology

triangulation of n-gon cluster
flipping diagonals mutation
variables for sides of n-gon frozen variable
variables for diagonals of n-gon mutable variable

§5.3 Quivers attached to triangulations
We had previously considered triangulations T . We then constructed a plabic graph GT

earlier. Here it is again (this time with the disk drawn):

17
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1 2

3

4

5

We will also define for each triangulation T the quiver QT . (A quiver is officially a
directed graph, but the word will carry different connotations.) We take the midpoint
of every edge in the triangulation, and then we draw all the clockwise medial triangles
(directed edges). The quiver of the same graph is given below, in deep green, with seven
vertices and nine directed edges. We also consider it embedded in a disc, dashed below
also in green (this will give us some counterclockwise faces).

1′

2′

3′4′

5′

Hence, we have the following dictionary of our three viewpoints.

Triangulation T Plabic graph GT Quiver QT

vertices blue vertices counterclockwise faces
edges faces vertices
faces red vertices clockwise faces

Depending on which viewpoint we go, this gives us various generalizations of Pn.

• Pn can be generalized to cluster algebras for trianglutade surfaces, see Fomin-
Shaprio-Thusdon 2007 and Musiker-Schiffler-Williams 2009.

• It can also be generalized to positroid cluster algebras, Gr≥(k, n). See Postinkov
2006 or Oh-Postinkov-Speyer 2011.

• Cluster algebra for general quivers generalize both of these; see Fomin-Zelevinsky
2001.
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Let’s examine the Ptolemy relation in terms of the quiver.

y1

x2y2

x1

z

=⇒

y1

x2y2

x1

z′

In the Ptolemy case, we have z′ = x1x2+y1y2
z . We have mutated both the quiver and the

variables.
In the general situation, if we have edges x1 → z, . . . , xk → z, and z → y1, . . . , z → y`,

the mutations consists of replacing z by

z′ =
x1x2 . . . xk + y1 . . . y`

z

and flipping the arrows touching z, and toggling some other arrows between the x’s and
y’s (to be described next lecture).
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§6 September 17, 2018
§6.1 Quivers, continued
Recall the construction of QT from last lecture. We now define a quiver officially.

Definition 6.1. A quiver is a directed graph with no loops or 2-cycles. Its vertex set
will be partitioned into two parts

V = Vint t Vbound

for interior vertices and boundary vertices (also called “frozen” vertices).
Each vertex v of a quiver graph Q will correspond naturally to algebraically independent

variables xv, which will be called mutable if v is an internal vertex and frozen if v is a
boundary vertex. We denote X = (xv)v∈V the collection of variables, which we call an
initial cluster.

Definition 6.2. Let v ∈ Vint be an internal vertex of a quiver (Q,X). The mutation
operator µv to get a quiver (Q′, X ′), in the following way.

Suppose the edges adjacent to v in Q are

• a1 → v, a2 → v, . . . , ak → v, and

• v → b1, v → b2, . . . , v → b`

Then variable xv is replaced by the variable

xv′ =
xa1 . . . xak + xb1 . . . xb`

xv
.

Next, the quiver Q is changed in the following way.

1. We flip the direction of all the arrows touching v.

2. If a→ v → b are edges in Q, then
• if there is at least one edge b→ a, we delete one of those edges;
• otherwise, we add an edge a→ b

One can imagine this as adding in the edge a→ b and then cancelling any “double
edge” (2-cycle).

Lemma 6.3
µv is an involution, i.e. µ2

v = 1.

Theorem 6.4 (Fomin-Zelevinsky)
After some number of mutations, the new set of variables x̃v ∈ ‹X will be some
Laurent polynomials in xv ∈ X.
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§6.2 Plabic graphs and quivers
WE now also officially define plabic graphs.

Definition 6.5. A plabic graph G is a planar graph which is

• drawn inside a disk,

• has n vertices which are connected to the boundary,

• and all internal vertices are colored in two colors (the coloring need not be proper).

Here is an example (where “white” is actually “medium grey”). The marks on the
boundary are not considered vertices (in particular they are not colored).

1

2

3

4

5

6

7

8

9

Definition 6.6. A bipartite plabic graph is a plabic graph whose associated 2-coloring
is a proper coloring (and in particular the graph is bipartite).

Definition 6.7. A trivalent (3-valent) plabic graph is one internal vertices are all 3-valent,
except for possibly lollipops, which are degree 1 vertices attached to the boundary.

We consider the following two simple moves:

(M1) Contract an internal edge where both vertices are the same color, or un-contract
such a vertex

(M2) Remove/add a vertex of any color in the middle of an edge.

We also have the following move:

(Msq) Given a square with 3-valent vertices, we swap the colors on the four vertices.
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Definition 6.8. A plabic tiling is the planar dual of a bipartite plabic graph.
In general, a plabic quiver is given by a planar dual where whenever two faces are

joined by a black-white edge, we draw an arrow such that the white vertex is on the
right.

The plabic quiver of the earlier graph is shown below.

1

2

3

4

5

6

7

8

9

Observe that the square move corresponds to our Ptolemy move on the generated
plabic quiver.
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§7 September 19, 2018
§7.1 Wiring diagrams of permutations
Here is just an example when n = 4 (hence r = 3) Consider the following permutation

w =

(
1 2 3 4
4′ 3′ 1′ 2′

)
.

We can imagine this as a series of “wires”, which have some intersections from left to
right; this gives us a wiring diagram. We label each intersection of wires with sh where
1 ≤ h ≤ r is the “height” of the intersection (which is the number of wires below that
intersection point, plus one).

1

2

3

4

1′

2′

3′

4′

12

13

23

14

24

s1 s2 s1 s3 s2

The intersections are height 1, 2, 1, 3, 2, and writing these from right to left we obtain

w = s2s3s1s2s1 .

Moreover, it happens that the intersection points correspond exactly to the inversions of
the permutation (with the “reduced” condition corresponding to no two paths intersecting
twice). As usual, we do this subject to the relations

sisj = sjsi |i− j| ≥ 2

sisi+1si = si+1sisi+1

(and also s2i = 1 but we won’t use this since we will assume there are no double crossing
anyways).

§7.2 Wiring diagrams to plabic graphs
We now show how to transform a wiring diagram into plabic graph. Any time we would
have a wire intersection, we instead draw a bridge, which is a black/white edge. For
example, given the permutation

w =

(
1 2 3 4 5
4′ 1′ 3′ 5′ 2′

)
the wiring diagram becomes the following plabic graph:

23



Evan Chen《陳誼廷》 — Fall 2018 18.217 Lecture Notes

1

2

3

4

5 6

7

8

9

10

§7.3 Rules of the road
Given a trivalent graph G whose vertices are bicolored black and white, we can get a
permutation as well by following so-called “rules of the road”: starting from a boundary
vertex,

• we turn left at every white vertex,

• and right at every black vertex.

Example on seven boundary points, with four of the strands drawn in through various
colors:
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1

2

3

4

5

6

7

This naturally gives a map from every point on the boundary to some other point on the
boundary. We denote it by π.

Lemma 7.1
The map π which results is a permutation. Moreover, this permutation π is invariant
under the various operations on plabic graphs.

Exercise 7.2. Prove it.

§7.4 Reduced plabic graphs
In the same way that we define a reduced wiring diagram, we want to be able to talk
about reduced plabic graphs.

Definition 7.3. In a reduced plabic graph, the strands are required to satisfy the
following properties:

• The strands are not self-intersecting.

• No closed strands.

• No bad double crossings: there should not be two strands which intersect at edges
a and such that both strands point from a to b.

Theorem 7.4 (Postnikov)
Two reduced plabic graphs are move-equivalent if and only if they have the same
strand permutation.
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§8 September 24, 2018
Last time, we had quivers, which we then specialized to plabic quivers, and today we will
restrict to so-called “split-chessboard quivers”.

§8.1 Split chessboard pictures
We use the following notation for this class (invented):

Definition 8.1. An R-simply connected region in R2 is a region bounded by piecewise-
linear curves with vertical/horizontal/diagonal edges, and all vertices in Z2.

A split-chessboard tiling is a tiling by black and white unit squares and unit right
triangles (with side lengths 1, 1,

√
2) in a chessboard fashion.

We assign a cluster variable to every lattice point R ∩ Z2 which is mutable iff it is not
on the perimeter.

§8.2 Mutations of split chessboards
Now in a move, suppose we have an internal vertex u which is not adjacent to any
diagonal; then we can transform as follows:

ux

y

z

t

=⇒
u′

x

y

z

t

Here, among the four edges x, yz, zt, tx, we add an edge if it was not present already,
and delete if it was present.

Finally, in a similar way we can define strand permutations as last time: starting from
the edges, we turn left on white and right on black.
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1

2

3

4

8

7

6

5

§8.3 Reduction of rhombus and domino tilings to chessboard tilings
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§9 September 26, 2018
§9.1 Chessboard triangulations
We can think of the previous split-chessboard tilings in the following way.

Definition 9.1. A chessboard triangulation is a tiling of a region R by black and
white unit right triangles (side lengths 1, 1,

√
2) such that any two orthogonally adjacent

triangles have different colors.

As usual, we consider such configurations up to certain moves. The following moves
are permitted:

• Given a unit square formed by two triangles of the same color, we can change the
diagonal.

x y

z t

x y

z t

• Suppose four triangles meet at a vertex u (and thus the colors alternate). Then we
switch the colors of all four triangles while replacing the variable u with

u′ =
xz + yt

u

given by the Ptolemy relation.

x

y

z

t

u x

y

z

t

u′

Given a chessboard triangulation, we can then define a height function

h : R ∩ Z2 → Z

up to constant shifts, by dictating that its values along any triangle fall into the following
shapes:

h

h+ 1 h

h h+ 1

h

h− 1 h

h

h

h h− 1

h

h− 1 h

h h− 1

h

h+ 1 h

h

h

h h+ 1
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Here is an example.

0 −1 0

1
0

−1
0

0 −1 0
1

0 1

You can visualize this with the height function h actually representing the height
of the point off the paper. Then, e.g. the color-swap move corresponds to taking a
half-octahedron and replacing it with the mirror image.

h

h

h

h

h− 1
h

h

h

h

h+ 1

§9.2 Octahedron recurrence
We continue to push the 3D picture by embedding our tiled region into 3D according to
height.

Define the lattice

L =
{
(x, y, z) ∈ Z3 | x+ y + z ≡ 0 (mod 2)

}
.

As a Z-module this is isomorphic to Z3 with basis given by (0, 1, 1), (1, 0, 1), (1, 1, 0). It
has natural layers given by

Lh
def
= {(x, y, z) ∈ L | z = h} .

Definition 9.2. A little octahedron is an octahedron ABCDEF such that ABCD is a
square in Lh of side length

√
2, E is in Lh+1, F is in Lh−1.

Then, the Ptolemy relation amounts to specifying f : L→ R>0 such that

f(E)f(F ) = f(A)f(C) + f(B)f(D).

what is this?
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Now fix a constant k ∈ Z. We define

L̃
def
=

{
(a, b, c, d) ∈ Z4 | a+ b+ c+ d = k

}
⊂ V

def
=

{
(a, b, c, d) ∈ R4 | a+ b+ c+ d = k

}
' R3.

There is a natural correspondence

L̃←→ L by


x 7→ a+ b

y 7→ b+ c

z 7→ c+ a.

§9.3 Hyperplane arrangements
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§10 September 28, 2018
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§11 October 1, 2018
§11.1 Tropical calculus
We continue our discussion of tropical calculus by completing the table of analogies below.

Rational calculus Tropical calculus
x · y x+ y
x/y x− y
x+ y max(x, y)
1 0
2 0

1
1
x
+ 1

y

= xy
x+y min(x, y) = −max(−x,−y)

It turns out that most of our previous results will have tropical variants. For example,
we had the octahedron recurrence

E · E′ = A · C +B ·D.

which becomes the tropical octahedron recurrence

E + E′ = max(A+ C,B +D).

§11.2 RSK
One can formulate the RSK correspondence using the following recursions and picture.

RSK

Missing
figure

µ′
k+1 + µk = max (λk+1, νk+1) + min (λk, νk)

µ′
1 = max(λ1, ν1) + x.

The translation of this (birational toggle) gives

µ′
k+1 =

(λk+1 + νk+1)
λkνk
λk+νk

µk

µ′
1 = (λ1 + ν1) · x.

We are going to now change variables to get the octahedron recurrence out of this.
Inspired by Green’s theorem, we make a change of variables

`k = λ1 + · · ·+ λk

mk = µ1 + · · ·+ µk

nk = ν1 + · · ·+ νk.
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This gives

m′
k+1 +mk = max(λk+1, νk+1) + min(λk, νk)

+ max(λk, νk) + min(λk−1, νk−1)

+ · · ·+ max(λ1, ν1) + x

= max(λk+1, νk+1)

+ (λk + νk) + (λk−1 + νk−1) + . . .

+ (λ1 + ν1) + x

= max(λk+1, νk+1) + `k + nk + x

= max(`k+1 +mk, `k +mk+1) + x.

In summary we have

m′
k+1 +mk = max(`k+1 + nk, `k + nk+1) + x

which is almost the same as the octahedron recurrence, but with a +x term.

nk+1

`k+1 mk nk

`k

Taking the geometric lift (i.e. detropicalizing) gives

m′
+1 ·mk = (`k+1 · nk + `k · nk+1) · x

§11.3 A general triply indexed recursion
We now consider the following more general setup. We have an input matrix X = (xij)
and we will output a triply indexed matrix Y = (yijk) such that

yij(k+1)yijk = (yi,j−1,k+1 · yi,j+1,k + yi−1,j,k+1 · yi+1,j,k) · xij .

Define a re-scaled version
ỹijk =

yijk∏
i′≤i+k−1
j′≤j+k−1

xi′j′

so that we have the recursion instead

ỹij(k+1)ỹijk = ỹi,j−1,k+1 · ỹi,j+1,k + ỹi−1,j,k+1 · ỹi+1,j,k.

which now has the data of the X matrix captured in the initial values

ỹij0 =
1∏

i′≤i−1
j′≤j−1

xi′j′

instead of having it in the recursion.
One can imagine the k = 0 values as forming an “input chessboard”.
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1 1 1 1 1

1

1

1

1

x−1
11 x−1

11 x
−1
12

We allow ourselves to apply an octahedron move for a vertex v (including in the first
row or column) if there are no diagonal edges.
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§12 October 12, 2018
§12.1 General situation
For G = GLn, we may let

• B denote the upper triangular matrices (the Borel subgroup of G),

• B− denote the lower triangular matrices (the opposite Borel subgroup of G),

• G>0 the subgroup of totally positive matrices,

• G≥0 the subgroup of totally nonnegative matrices,

• W the Weyl group (which for us is Sn).
We pick this notation since in general one can do the same construction with G a connected,
reductive algebraic group over an algebraically closed field, B a Borel subgroup of G,
and W a Weyl group of G corresponding to a maximal torus of B.

There exist two Bruhat decompositions of G by

G =
⊔
u∈W

BuB =
⊔
v∈W

B−vB−.

Exercise 12.1. Prove this.
This means we can define the double Bruhat cells

Gu,v = (BuB) ∩ (B−vB−)

as well as their positive parts G>0
u,v = Gu,v ∩G≥0.

Theorem 12.2 (Double Bruhat decomposition of G≥0)
We have

G≥0 =
⊔

u,v∈W
G>0

u,v.

Moreover, each piece G>0
u,v is homeomorphic to an “open ball” R`(u)+`(v)+n

>0 .
Finally, if we order the cells by containment, the resulting partial order is the

product of two copies of the strong Bruhat order.

Example 12.3 • G>0 = G>0
w0,w0

is the top cell.

• T>0 = G>0
id,id consisting of diagonal matrices with positive entries is the bottom

cell.

§12.2 Lusztig’s parametrization
Define Ei(x) = Fi(x) to be the matrix with 1’s on the diagonal, and x in the (i+ 1)st
column, e.g.

E2(x) = F2(x) =


1

1 x
1

1
. . .
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To parametrize this, we take a shuffle of any two reduced decompositions u = si1 . . . si`
and v = sj1 . . . sjr . Rather than writing the definition, here is an example with n = 3,
u = s1s2 in blue, v = s2s1 in red:

y1

y2x1

x2

t1

t2

t3

then
A = diag(t1, t2, t3)F1(y2)E2(x2)F2(y1)E1(x1).

Theorem 12.4
Any A ∈ G>0

u,v can be written uniquely in this form.

One can draw this without color in the following way:

1 1 1

1 1 1 1 1

1 1 1

x1

y1 x2

y2

A1

A2

A3

B1

B2

B3

(The choice of weight 1 doesn’t matter much, since one can rescale any junction (x, y, z)
to (x/t, y/t, z/t) for t > 0.)

The resulting matrix A is totally nonnegative.
This follows from a general lemma:

Lemma 12.5 (Linström Lemma, aka Gessel-Viennot method)
Let Γ be any acyclic directed planar graph drawn on the plane such that all sources
A1, . . . , An are on the left and B1, . . . , Bn are on the right of a curve which encloses
Γ. Denote the edge weights by xe. Then define a matrix A = (aij) by

aij =
∑

p : Ai→Bj

∏
e∈P

xe.

Then
detA =

∑
(P1,...,Pn)

∏
i

∏
e∈Pi

xe

where the product is across tuples Pi : Ai → Bi of non-crossing paths (not even
common vertices).
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Involution proof. We have

det(A) =
∑
w∈Sn

sign(w)
∑

P1 : A1→Bw(1)

P2 : A2→Bw(2)
...

∏
i

∏
e∈Pi

xe

Thus we seek a sign-reserving, weight-preserving involution of path tuples (P1, . . . , Pn)
with at least one crossing; this way, only the terms with no crossing will remain.

The hardest part is to define the “first crossing”; we do so as follows.

• Let i be the minimal index such that there exists a crossing on Pi.

• Let C be the first crossing on Pi.

• Let j be the minimal index j > i such that Pj passes through the vertex C.

Then, swap the tails of Pi and Pj at C. This map

(P1, . . . , Pn) 7→ (P1 . . . , P
′
i , . . . , P

′
j , . . . , Pn).

gives the desired involution and flips the sign. Indeed, since we changed w by a transpo-
sition, so the change is by sign, and the multiset of edges is the same so the weight is
the same. Finally, the (careful) way we chose “first crossing” ensures that the point C
remains as the first crossing.

Note that det(A) is a nonnegative expression. In particular, if xe > 0 for every edge e,
then every minor of A is necessarily nonnegative, by applying the lemma to minors of A.
Thus:

Corollary 12.6
The matrix A from the wiring diagram earlier is totally nonnegative.

In fact, there is a following inverse Lindström lemma:

Proposition 12.7
Every totally nonnegative matrix can be achieved as the corresponding matrix for a
wiring diagram as above.
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§13 October 15, 2018
Last time we introduced double wiring diagrams; today we will use these to give two
parametrizations of the double Bruhat cells G>0

u,v.

§13.1 Lustzig’s parametrization continued
Recall last time we took n = 3, u = s1s2, v = s2s1, and obtained a decompostion

A = diag(t1, t2, t3)F1(y2)E2(x2)F2(y1)E1(x1).

1 1 1

1 1 1 1 1

1 1 1

x1

y1 x2

y2

A1

A2

A3

B1

B2

B3

This gives us Lusztig variables x1, x2, y1, y2, t1, t2, t3, hence we have a seven-dimensional
cell, that is

dimGu,v = `(u) + `(v) + n = 7.

Now, let’s reintroduce the colored strands from before. First consider the blue strands;
above the blue strand starting from i, we write a blue i in every cell which lies above the
blue strand starting from i. Similarly we write a red i in every cell which lies above the
red strand ending at Bi.

x1

y1 x2

y2

A1

A2

A3

B1

B2

B3

1 2 2

12 12 23

123

∅

2 2 1

23 12 12

123

∅

This will give us four chamber minors ∆1,2, ∆2.2, ∆2.1, ∆12,23, ∆12,12, ∆23,12, ∆123,123.
Indeed, this gives us another system of variables; in particular, the quantities

#chamber minors = #regions− 1

#edge variables = #edges−#vertices

should be equal, wich holds by Euler. We now wish to give a parametrization of xi, yi, ti
in terms of the chamber minors. (Relevant keywords: chamber ansatz, twist map.)

If we mark all the Ai and Bi in black, then we can draw the usual quiver (as before); I
will have a few extra edges (dashed) induced by the black
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A1

A2

A3

B1

B2

B3

§13.2 Lusztig’s tranfsormation
Notice that the braid relation s1s2s1 ↔ s2s1s2 corresponds to the identity

E1(x)E2(y)E1(z) = E2(x
′)E1(y

′)E2(z
′).

Picture:

1 1 1

1 1

1 1 1

z x

y

1

2

3

1

2

3

If we do the calculation, this amounts to1 x+ z yz
1 y

1

 =

1 y′ x′y′

1 x′ + z′

1


and solving this gives

x′ =
yz

x+ z

y′ = x+ z

z′ =
xy

x+ z
.

As for the Lewis Carroll transformation, if we set

E1(x)F1(y) = F1(x
′)E1(y

′)

[
t1 0
0 t2

]
solving this now gives

x′ =
y

1 + xy

y′ = x(1 + xy)

t1 = (1 + xy)−1

t2 = 1 + xy.
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§14 October 24, 2018: Protean chromatic polynomial (lecture
by Bruce Sagan)

Seems the slides are online, so I’ll just link them: http://users.math.msu.edu/users/
sagan/Slides/pcp.pdf
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