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§1 September 2, 2014

§1.1 Boring stuff

Sets include R, Z, et cetera. A subset Y ⊆ X is exactly what you think it is.
Q, {0}, {1},∅,R ⊆ R. Yay.
X1 ∪X2, X1 ∩X2.
. . . Gaitsgory what are you doing
For a fixed universe X, we write Y , X \ Y , X − Y for {x ∈ X | x /∈ Y }.

Lemma 1.1

For Y ⊂ X, (
Y
)

= Y.

Proof. Trivial.
darn this is being written out?

x ∈
(
Y
)
⇐⇒ x /∈ Y ⇐⇒ x ∈ Y.

Hence
(
Y
)

= Y .

Lemma 1.2

(X1 ∩X2) = X1 ∪X2.

Proof. Compute

x ∈ X1 ∩X2 ⇐⇒ x /∈ X1∩X2 ⇐⇒ x /∈ X1∨x /∈ X2 ⇐⇒ x ∈ X1∨x ∈ X2 ⇐⇒ x ∈ X1∪X2.

Lemma 1.3

X1 ∪X2 = X1 ∩X2.

Proof. HW. But this is trivial and follows either from calculation or from applying the
previous two lemmas.

Given a set X we can consider its power set P(X). It has 2n elements.

§1.2 Functions

Given two sets X and Y a map (or function) X
f−→ Y is an assignment ∀x ∈ X to an

element fx ∈ Y .
Examples: X = {55 students}, Y = Z. Then f(x) = $ in cents (which can be

negative).

Definition 1.4. A function f is injective (or a monomorphism) if x 6= y =⇒ fx 6= fy.

Definition 1.5. A function f is surjective (or an epimorphism) if ∀y ∈ Y ∃x ∈ X : fx = y.

Composition;

X
f−→ Y

g−→ Z.
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§1.3 Equivalence relations

An equivalence relation ∼ must be symmetric, reflexive, and transitive. A relation ∼ will
partition its set X into cosets or equivalence classes. (The empty set is not a coset.)

Lemma 1.6

Let X be a set and ∼ an equivalence relation. Then for any x ∈ X there exists a
unique coset x with x ∈ x.

Proof. Very tedious manual work.

Now we can take quotients X/ ∼, and we have projections π : X → X/ ∼.

6
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§2 September 4, 2014

§2.1 Review of equivalence relations go here

meow

§2.2 Universal property of a quotient

X
f
- Y

X/ ∼

π

?

f̃

-

Proposition 2.1

Let X and Y be sets and ∼ an equivalence relation on X. Let f : X → Y be a
function which preserves ∼, and let π denote the projection X → X/ ∼. Prove that
there exists a unique function f̃ such that f = f̃ ◦ π.

The uniqueness follows from the following obvious lemma.

X
f
- Y

X ′

g

?

f 2

-

f 1

-

Lemma 2.2

In the above commutative diagram, if g is surjective then f1 = f2.

Proof. Just use g to get everything equal. Yay.

§2.3 Groups

Definition 2.3. A semi-group is a set G endowed with an associative1 binary operation
∗ : G2 → G.

Lots of groups work.

Example 2.4 (Starfish)

Let G be an arbitrary set and fix a g0 ∈ G. Then let ab = g0 for any a, b ∈ G. This
is a semigroup.

A “baby starfish” has |G| = 1.

1(ab)c = a(bc)

7



Evan Chen (Fall 2014) 2 September 4, 2014

Definition 2.5. A semi-group G is a monoid if there exists an identity 1 ∈ G such that
∀g ∈ G, g · 1 = 1 · g = g.

Proposition 2.6

The identity of any semi-group G is unique.

Proof. Let 1, 1′ be identities. Then

1 = 1 · 1′ = 1′.

Definition 2.7. A group is a monoid G with inverses: for any g ∈ G there exists g−1

with
gg−1 = g−1g = 1.

Proposition 2.8

Inverses are unique.

Proof. Suppose x1, x2 are both inverses of g. Then

x1 = x1gx2 = x2.

Definition 2.9. A group is abelian if it is commutative.

§2.4 Homomorphisms

Definition 2.10. Let G and H be groups. A group homomorphism is a map f :
G→ H that preserves multiplication.

8
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§3 September 9, 2014

§3.1 Direct products

Given two sets X and Y we can define the direct product

X × Y = {(x, y) | x ∈ X, y ∈ Y } .

For example, R2 is the Euclidean plane.
Hence the operation of a semigroup should be thought of as

G×G mult−−−→ G.

Given f : Y1 → Y2 we define idf × f : X × Y1 → X × Y2 by

(x, y1) 7→ (x, fy1).

§3.2 Commutative diagrams

We can then rephrase associativity using the following commutative diagram.

G×G×G
idG × ∗- G×G

G×G

∗ × idG

? ∗
- G

∗

?

We can also rephrase homomorphisms as follows: given ϕ : G → H we require the
following diagram to commute.

G×G
ϕ× ϕ
- H ×H

G

∗G

? ϕ
- H

∗H

?

§3.3 Sub-things

Definition 3.1. Let G be a semigroup / monoid / group. We say H ≤ G is a sub-
semigroup if h1, h2 ∈ H =⇒ h1h2 ∈ H. Moreover, if G is a monoid and 1 ∈ H then H
is a sub-monoid. Finally, if H is closed under inverses as well then H is a subgroup.

Example 3.2

Let G be the additive group of integers. Then N is a sub-semigroup, Z≥0 is a
sub-monoid, and 2Z is a subgroup.

Lemma 3.3

If H1 ≤ G and H2 ≤ G are subgroups, then H1 ∩H2 is a subgroup.

Proof. Obvious.

9



Evan Chen (Fall 2014) 3 September 9, 2014

§3.4 Let’s play Guess the BS!

“In what follows I’ll state some false statements. You will be asked to prove them at your
own risk.”

Lemma 3.4

Given ϕ : G→ H a homomorphism, ϕ(G) is a subgroup of H.

Proof. Given any ϕ(a), ϕ(b) in ϕ(G) we have

ϕ(a)ϕ(b) = ϕ(ab) ∈ ϕ(G).

Then use ϕ(1) = 1 to get the rest of the conditions.

Lemma 3.5

If ϕ : G→ H and H ′ ≤ H, then ϕ−1(H ′) is a subgroup of G.

Proof. This one turns out to be true.

Fact 3.6. Given H1, H2 subgroups of G, H1 ∪H2 need not be a subgroup of G.

Proof. Take G = Z, H1 = 100Z, H2 = 101Z.

§3.5 Kernels

Definition 3.7. Given a homomorphism ϕ : G→ H, the kernel kerϕ is defined by

kerϕ = ϕ−1({1}).

Proposition 3.8

Let ϕ : G → H be a homomorphism. Then ϕ is injective as a map of sets if and
only if kerϕ = {1}.

Proof. In all cases 1 ∈ kerϕ. If |kerϕ| 6= 1 then clearly ϕ is not injective. On the other
hand, suppose kerϕ = {1}. If ϕa = ϕb we get ϕ(ab−1) = 1, so if we must have ab−1 = 1
or a = b.

Definition 3.9. Let G be a group and let H ≤ G be a subgroup. We define the right
equivalence relation on G with respect to H ∼r as follows: g1 ∼r g2 if ∃h ∈ H such that
g2 = g1h.

Define ∼` similarly.

To check this is actually an equivalence relation, note that

1 ∈ H =⇒ g ∼r g

and
g1 ∼ g2 =⇒ g1 = g2h =⇒ g1h

−1 = g2 =⇒ g2 ∼r g1.
Finally, if g1 = g2h

′ and g2 = g3h
′′ then g1 = g3(h

′h′′), so transitivity works as well.
Note that g1 ∼r g2 ⇐⇒ g−11 g2 ∈ H.

Definition 3.10. Let G/H be the set of equivalence classes of G with respect to ∼r.

10
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§3.6 Normality

Definition 3.11. Let H be a subgroup of G. We say H is normal in G if ∀g ∈ G and
∀h ∈ H we have ghg−1 ∈ H. (This called the conjugation of h by g.)

Theorem 3.12

Let H be a normal subgroup of G. Consider the canonical projection π : G→ G/H.
Then we can place a unique group structure on G/H for which π is a homomorphism.

Proof. For uniqueness, apply the lifting lemma to the following commutative diagram

G×G
∗
- G

π
- G/H

G/H ×G/H

π × π

? .....
.....

.....
.....

.....
.....

.....
.....

.....
..

f

-

Now we claim existence when H is normal.
Let’s ignore normality for now. Given x, y ∈ G/H, we choose x′y′ = π(xy) for

x ∈ π−1(x′) and y ∈ π−1(y′). Now to check this is well-defined (and makes the diagram
commutative).

Given π(x1) = π(x2) = x′ and π(y1) = π(y2) = y′, we want to check that

π(x1 · y1) = π(x2 · y2).

Evidently x2 = x1h
′ and y2 = y1h

′′, so the above would be equivalent to

π(x1 · y1) = π(x1h
′y1h

′′).

You can check this is equivalent to

y−11 h′y1 ∈ H

for all choices of y1 ∈ G and h′ ∈ H.
That’s where (and only where) the normal condition comes in. It implies that our map

is indeed well-defined, and we win.
Finally, we need to show associativity and inverses. We want the following diagram to

commute.

G3

G/H ×G/H ×G/H
id× ∗
-

π 3

-

G/H ×G/H

G/H ×G/H

∗ × id

?

∗
- G/H

∗

?

Note that the G3 has been added in. We use associativity of G to do cool things. OK
the rest of the details are left as an exercise.
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§3.7 Examples of normal groups

Example 3.13

Any subgroup of an abelian group is normal.

Example 3.14

Let G = S3 be the permutations of three elements. If H = {1, (1 2)} then this
subgroup is not normal.

Here are some other useful examples of non-normal subgroups.

• In a dihedral group D2n =
〈
rn = s2 = 1

〉
, the subgroup 〈s〉 is not normal.

• Take the free group F2 on two letters. Plenty of subgroups are not normal here, for
example 〈a〉.

Lemma 3.15

kerϕ is normal.

Proof. ϕ(ghg−1) = ϕ(g)ϕ(h)ϕ(g−1) = ϕ(g)ϕ(g−1) = 1.

It is not true that ϕ(G) is not normal in general. Take any non-normal H ≤ G, then
we can build ϕ : H → G be the identity, so ϕ(H) = H.

12
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§4 September 11, 2014

Happy birthday to Max Schindler!

§4.1 Rings

Definition 4.1. A ring R is a set endowed with two binary operations + and ·, addition
and multiplication, such that

(i) R is an abelian group with respect to addition. The additive identity is 0.

(ii) R is a monoid2 with respect to multiplication, whose identity is denoted 1.

(iii) Multiplication distributes over addition.

The ring R is commutative if multiplication is commutative as well.

Example 4.2

Here are examples of commutative rings:

• Z, R are rings.

• R[t1, t2, . . . , tn] are rings.

• The integers modulo n are rings.

Example 4.3

Square matrices are the standard example of non-commutative rings.

Lemma 4.4

Let R be a ring. Then r · 0 = 0.

Proof. Compute
r · 0 = r · (0 + 0) = r · 0 + r · 0.

Hence r · 0 = 0.

Lemma 4.5

In a ring, r · (−1) = −r.

Proof. Compute

r · (−1) + r = r · (−1) + r · 1 = r · (−1 + 1) = r · 0 = 0.

A little sidenote made at the end of class.

Definition 4.6. A commutative ring R is a field if R− {0} is a group with respect to
multiplication.
2Some sources do not require a 1 to exist, but in practice no one cares about rings without 1 anyway.

13
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§4.2 Ring homomorphisms

As usual, we figure out how two rings talk to each other.

Definition 4.7. Given rings R and S, a ring homomorphism is a function ϕ : R→ S
which respects addition and multiplication such that ϕ(1) = 1.

Example 4.8

We can embed Z in R, Q in R, and so on. These maps will all be homomorphisms.
Moreover, we can compose ring homomorphisms.

Example 4.9

We can construct a homomorphisms from R[t] into R by sending p(t) to p(2014).

§4.3 Modules, and examples of modules

In this section, fix a ring R. The addition is + and has identity 0; the multiplication has
identity 1 and is written r1r2.

Definition 4.10. A left R-module is an additive abelian group M (meaning M is an
abelian group with operation +) equipped with an additional multiplication: for each
r ∈ R and m ∈M we define an r ·m ∈M . This multiplication must satisfy the following
properties for every r1, r2 ∈ R and m ∈M :

(i) r1 · (r2m) = (r1r2) ·m.3

(ii) Multiplication is distributive, meaning (r1+r2)·m = r1·m+r2·m. and r·(m1+m2) =
r ·m1 + r ·m2.

(iii) 1 ·m = m.

A module generalizes the idea of vector spaces.

Example 4.11

A trivial example of a module is M = {0}. All the axioms of modules are identities
inside M , so there is nothing to verify.

Example 4.12

Additionally, we can let M be additive abelian group underlying R. The action of
M on R is just left multiplication.

3Note that if R is not commutative, then it is not necessarily possible to define a right R-module by
simply setting m · r = r ·m. In other words, left and right modules are different beasts.

14
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Example 4.13

The following module, denoted R⊕2, R2, R⊕R, is the module M whose elements
are R×R and whose addition is done componentwise. The action r ·m is given by

r · (r1, r2) = (rr1, rr2) .

Obviously we can generalize to R⊕R⊕ · · · ⊕R = R⊕n.

Example 4.14

Let R be the n× n matrices with real coefficients and let M = Rn. Then we get our
standard linear algebra thing.

§4.4 Abelian groups are Z-modules

Lemma 4.15

Let A be an abelian group. The structure of an abelian group can be uniquely
extended to a structure of a Z-module.

Proof. Suppose · is the action of Z on A. We must have, for every positive integer n,

n · a = (1 + 1 + · · ·+ 1) a = a+ a+ · · ·+ a.

Thus there is at most one possible · : Z × A → A, the form given above. (Negative
integers are not hard to grab.)

Now you can check that since A is abelian, all the axioms hold for this ·, and we are
done.

§4.5 Homomorphisms of R-modules

Definition 4.16. An R-module homomorphism is a map ϕ : M → N which respects
the addition and action, meaning ϕ(m1 +m2) = ϕ(m1) + ϕ(m2) and ϕ(rm) = r · ϕ(m).

Notice that homomorphisms can, once again, be composed.

§4.6 Matrices

Let m and n be positive integers, and consider a map of sets

Rm
T−→ Rn.

Define
e1 = (1, 0, . . . , 0) ∈ Rm.

Now consider the column vector
T (e1) ∈ Rn.

Now we define a matrix

M =

 | | |
T (e1) T (e2) . . . T (em)
| | |


︸ ︷︷ ︸

m

}
n.
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Proposition 4.17

The above map from HomR (Rm, Rn) to Matn×m(R) is a bijection of sets.

Here HomR (Rm, Rn) is the set of ring homomorphisms. In other words, with T a
homomorphism, our T is determined uniquely by T (e1), T (e2), . . . , T (en).

Proof. First, suppose M is given. We will construct T from M . Obviously we will need
to have

T (ei) =


mi1

mi2
...

min


in other words, the ith column of M . If T is going to be a homomorphism, we had better
have

T (〈r1, r2, . . . , rm〉) = T (r1e1 + r2e2 + · · ·+ rmem) =

m∑
i=1

riT (ei) .

Hence we know exactly what T needs to be based on M . Hence, we just have to show it
is actually a homomorphism, which is not hard.

Conversely, it is trivial to produce M given T .

§4.7 Sub-modules and Ideals

Let M be an R-module.

Definition 4.18. A left R-submodule of M is a subset M ′ ⊆M such that

• M ′ is a subgroup (with respect to inherited addition).

• If m′ ∈ M ′ then ∀r ∈ R, we have rm′ ∈ M ′. In other words, M ′ absorbs left
multiplication.

Definition 4.19. A left ideal in I is a subset of R which is also a left R-submodule
under the natural interpretation. Explicitly, I is a left ideal if and only if

(i) I is closed under addition, meaning i1 + i2 ∈ I for all i1, i2 ∈ I,

(ii) 0 ∈ I, and i ∈ I =⇒ −i ∈ I,

(iii) For any r ∈ R and i ∈ I, ri ∈ I.

A right ideal is defined similarly, where the last axiom has ir ∈ I (as opposed to ri ∈ I).
If I is both a left and right ideal, it is a two-sided ideal or just ideal.

Example 4.20

If R = Z, then {0}, 2Z, 999Z, and Z are all submodules.
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§5 September 16, 2015

§5.1 Review

Below is problem 10 on the previous problem set, which is apparently important.

Proposition 5.1

For any R-module M , the map from HomR(R,M) to M by α 7→ α(1) is an isomor-
phism. In other words, a homomorphism of R to an R-module is determined by its
value at 1.

Also we have the following obvious bijections. We have a map

Hom(X1 ∪X2, Y )→ Hom(X1, Y )×Hom(X,Y )

by
α 7→ (α ◦ i1, α ◦ i2) .

X1 tX2

X1

i 1

-

X2

�

i2

We have another map

Hom(X,Y1 × Y2)→ Hom(X,Y1)×Hom(X,Y2)

by
β 7→ (p1 ◦ β, p2 ◦ β) .

Y1 × Y2

Y1
�

π 1

Y2

π
2

-

§5.2 Direct Sums of Modules

The analog of these two maps in the world of modules is the direct set.

Definition 5.2. Let M1 and M2 be R-modules. We define the direct sum, denoted
M1 ⊕M2, as the module whose underlying group is M1 ×M2. The action of R on
M1 ⊕M2 is

r · (m1,m2) = (rm1, rm2) .

Definition 5.3. If M is an R-module, then M⊕n represents the direct product of M n
times.

17
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M1 M2

M1 tM2

π 2

-
�

π
1

M1

i 1

-

M2

�

i2

Proposition 5.4

For R-modules M1 and M2 composition with π1 and π2 defines a bijection

HomR(N,M1 ⊕M2)→ HomR(N,M1)×Hom(N,M2).

Moreover, there is a bijection by pre-composition with i1 and i2:

HomR(M1 ⊕M2, N)→ HomR(M1, N)×Hom(M2, N).

We can consider larger direct sums M1 ⊕M2 · · · ⊕Mn. In particular, we have a bijection

HomR(R⊕n,M)→ HomR(R,M)n 'Mn.

As a corollary, we can re-derive something we showed last week, namely

HomR

(
R⊕n, R⊕m

)
' Matm×n(R).

Let’s now consider three integers

R⊕n
T−→ R⊕m

S−→ R⊕k.

Of course we can take the composition of these two maps.

Proposition 5.5

Let us take the matrix M which corresponds to composing the two maps

R⊕n
T−→ R⊕m

S−→ R⊕k.

Then M = ST .

§5.3 Direct Products of Modules

Let A be an indexing set, meaning we consider a sequence (Ma)a∈A of modules. We
claim that

M =
∏
a∈A

Ma

also has a module structure.
We have the following analogous theorem.
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Proposition 5.6

There is a bijection

HomR

(
N,
∏
a

Ma

)
→
∏
a

Hom(N,Ma)

by composition with pa.

However, surprisingly enough, it is NOT true that we have a bijection

HomR

(∏
a

Ma, N

)
→
∏
a

HomR(Ma, N).

We have to make the following modification.

Definition 5.7. We define the infinite direct sum
⊕

aMa, a subset of
∏
aMa, in which

at most finitely many indices a have a nonzero value.

Proposition 5.8

There is a bijection

HomR

(⊕
a

Ma, N

)
→
∏
a

HomR(Ma, N).

by pre-composition with inclusion.

Note that
∏
aMa =

⊕
aMa when we have finitely many indices.

§5.4 Sub-Modules

Let M ′ be a submodule of a module M . Then we have a projection π : M →M/M ′.

Lemma 5.9

The set M/M ′ acquires a unique structure of an R-module so that π is a homomor-
phism of R-modules.

Proof. We already know we can put the necessary group structure. So we first have to
show there is a map act′r such that the following diagram commutes.

M
π
- M/M ′

M

actr

?

π
- M/M ′

act′r

?

................

π ◦
act
r

-

The universal property (Proposition 2.1) implies that act′r exists and is unique if and
only if π ◦ actr vanishes on M ′. Note that

π ◦ actr(m
′) = π(r ·m′) = 0
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since m′ ∈M ′ =⇒ r ·m′ ∈M ′, end of story.
The axioms on act′r follow by inheritance from M because we commutative diagram

are magic. For example, if you want to show associativity, that’s equivalent to

actr1r2 = actr2 ◦ actr1 .

If I plug these two things into the dotted arrow, both make the diagram commute. That’s
enough to make them equal. (This was Lemma 2.2.)

Lemma 5.10

Let M ′ be a R-submodule of the R-module M . Let T : M → N be an R-module
homomorphism such that T (M ′) = 0. Then there is a unique T ′ : M/M ′ → N such
that T ′ ◦ π = T .

M
T
- N

M/M ′

π

?

T
′

-

Proof. We already know T ′ is a homomorphism of groups. So M has an actR, while
M/M ′ also has an action act′R. We wish to show that

act′R ◦T ′ = T ◦ actR .

Consider the following commutative diagram.

M/M ′

M/M ′ �
π

ac
t
′
R

-

M
T
- N

T ′

-

N

ac
tR

-

T ′
-

Do magic. Again, verifying axioms is just a matter of the “both satisfy the dotted arrow”
trick in the previous proof.

§5.5 Free Modules

Definition 5.11. Let R⊕A be the free module, which is the set of maps{
A

ϕ−→ R | ϕ(a) = 0 except for finitely many a
}
.
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Theorem 5.12

Any R-module M is isomorphic to the quotient of a free module by the image of a
map from another free module. That is, we can find A, B and

R⊕B
T−→ R⊕A

such that M is isomorphic to R⊕A/ Im(T ).

The proof uses the following lemma.

Lemma 5.13

For any R-module M there exists a free module R⊕A equipped with a surjection
R⊕A →M .

Proof of Lemma. Specifying a map R⊕A →M is equivalent to specifying a map R→M
for all a ∈ A, which by Proposition 5.1 is specifying an element ma ∈M for each a ∈ A.
So a brutal way to do this is to select A = M , and ma = a ∈ M = A. Also, this is
obviously surjective.

Proof of Theorem. First, we have a surjection S : R⊕A → M and consider ker(S). We
have another surjection

T : R⊕B → ker(S) ⊆ R⊕A.

Now Im(T ) = kerS. By the first isomorphism theorem,

M = R⊕A/ kerS = R⊕A/ Im(T ).

§5.6 Return to the Finite

Recall that m1, . . . ,mn ∈ M specify a R⊕n → M by Proposition 5.1. Call this map
S ∈ HomR(R⊕n,M).

Note: None of this actually needs to be infinite.

Lemma 5.14

The following are equivalent.

(i) The map S is surjective

(ii) If
∑
rimi = 0 then ri = 0 ∀i; that is, there are no nontrivial linear combina-

tions of the mi which yield 0.

Proof. Let ei be the vector with 1 in the ith coordinate and zero elsewhere. Note that∑
rimi =

∑
riS(ei) == S

(∑
riei

)
= S (〈r1, . . . , rn〉) .

So
∑
ri · mi = 0 if and only if S(〈r1, . . . , rn〉) = 0. That is equivalent to S being

surjective.

Definition 5.15. In the above lemma, if the conditions hold, we say that m1, . . . ,mn

are linearly independent.
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Lemma 5.16

S is surjective if and only if ∀m ∈M , ∃r1, . . . , rn ∈ R such that m =
∑n

i=1 rimi.

Definition 5.17. In the above lemma, if the conditions hold, we say that m1, . . . ,mn

span M .

Lemma 5.18

The following are equivalent.

(a) For all m ∈M , there is a unique choice of r1, . . . , rn such that m =
∑
rimI .

(b) S is an isomorphism.

(c) The (mi) are both linearly indepndent and span M .

Definition 5.19. If (mi) are linearly independent and span M then we say that (mi) is
a basis.
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§6 September 18, 2014

Recall that
HomR(Rn,M) ∼M×n

is a bijection by
α 7→ (α(e1), . . . , α(en)) .

Fix a T : Rn →M by

〈r1, . . . , rn〉 7→ m1r1 + · · ·+mnrn.

Note that T is injective, surjective, bijective if and only if the ri are linearly independent,
span, and a basis, respectively.

Henceforth, assume R is a field. We also denote this with k.

Definition 6.1. A k-module (that is, a module of a field), is called a vector space.

§6.1 Linearly independent, basis, span

Proposition 6.2

Let V be a vector space and v1, . . . , vn ∈ V . The following are equivalent.

(1) v1, . . . , vn are a basis.

(2) v1, . . . , vn are a span, but no proper subset of them is a span.

(3) v1, . . . , vn are linearly independent, but for any w ∈ V , the set {v1, . . . , vn, w}
is not linearly independent.

This is the only point that we will use the fact that R is a field. Afterwards, we will
basically ignore this condition. So all our other work will rely on this proposition.

Proof. To show (1) implies (2), assume for contradiction that v2, . . . , vn span, then write
v1 as a linear combination of these. Notice that this does not use the condition that R is
a field.

To show (1) implies (3), just write w with the vi. Again we do not use the fact that R
is a field.

To show (2) implies (1) now we need the condition. Suppose there is a
∑
aivi = 0.

WLOG a1 6= 0, now we have v1 =
∑n

i=2
−ai
a1
vi, and now we can trash v1 in any of our

spans.
To show (3) implies (1), suppose for contradiction that

a0w +
∑

aivi = 0.

Since v1, . . . , vn are linearly independent, a0 6= 0 and division gives that w is the span of
the {vi}, which is a contradiction.

In the proof that (2) implies (1) we isolate the following lemma that does not require
the field condition.
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Lemma 6.3

Let R be a ring (not even necessarily commutative). If m1, . . . ,mn span M and
m1 =

∑n
i=2 rimi. Then m2, . . . ,mn span M .

The proof is immediate.

Corollary 6.4

If v1, . . . , vn span V , there exists a subset of these vi’s which is a basis.

Proof. Take the minimal subset which spans V .

§6.2 Dimensions and bases

Definition 6.5. The vector space V is finite-dimensional if and only if it has a finite
spanning collection.

Corollary 6.6

A finite dimensional vector space admits a basis.

Corollary 6.7

Any finite dimensional vector space is isomorphic to kn for some n.

Proof. Just look at the basis and do the natural projection.

Now we have the following good theorem.

Theorem 6.8

Let v1, . . . , vn span V and let w1, . . . , wm be linearly independent. Then m ≤ n.

Proof in end of this lecture. Note that at this point, we use k-linear map to refer to
maps of k-modules.

§6.3 Corollary Party

This theorem has the following corollaries.

Corollary 6.9

Any two bases of a vector space have the same size.

Proof. Let the sizes be m and n. Use the lemma m ≤ n and n ≤ m gives m = n.

Definition 6.10. The size of the basis of a vector space V is the dimension of that
space.

24



Evan Chen (Fall 2014) 6 September 18, 2014

Corollary 6.11

Let T : kn → km be a k-linear map.

(1) If T is surjective, then n ≥ m.

(2) If T is injective, then n ≤ m.

(3) If T is bijective, then n = m.

Proof. Let B = {ei} be a basis of kn.

(1) T (B) spans km by surjectivity.

(2) T (B) is linearly independent km by injectivity.

(3) Combine (1) and (2).

Corollary 6.12 (Completion to a Basis)

Let V be a finite-dimensional basis and consider a subspace V ′ ⊆ V . Then any
linearly independent subset W of V ′ can be completed to a basis in that subspace.

Proof. Let W = {w1, . . . , wk}. Construct wk+1, . . . inductively.
Suppose wk+1, . . . , wk+i has been added but we’re not done. Then we can add in

wk+1+i so that all the guys are linearly independent (if this isn’t possible then our
proposition implies that what we had was already a basis).

We can only get up to n, since we cannot have a linearly independent set of size n+ 1
within V , much less V ′.

Corollary 6.13

If V is finite dimensional then any linearly independent collection can be completed
to a basis.

Proof. Put V ′ = V in the above.

Corollary 6.14

Let V be a finite-dimensional vector space and V ′ a subspace. Then V and V/V ′

are finite dimensional, and

dimV = dimV ′ + dimV/V ′.

Proof. By previous corollary, V ′ has a basis w1, . . . , wk. Moreover V/V ′ has a spanning
set (just project a basis of V down). Let v1, . . . , vm, be a basis of V = V ′. Then our
homework shows that

w1, . . . , wk, v1, . . . , vm

are a basis of V .
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Definition 6.15. Let T : V →W be a k-linear map. If V and W are finite dimensional
define

rank(T ) = dim(T (V )).

Moreover, set
coker(T ) = W/T (V ).

Corollary 6.16

dimV = rank(T ) + rank(kerT ).

Proof. V/ ker(T ) ∼= =(T ) by First Isomorphism Theorem.

Lemma 6.17

If T : V →W is k-linear, then

dimV − dim ker(T ) = dimW − dim coker(T) .

Proof. Both are equal to dim Im(T ) by the previous corollary.

Proposition 6.18

Let T : V → V . Then T is injective if and only if it is surjective.

Proof. Injectivity is equivalent to

dim kerT = 0

and surjectivity is equivalent to

dim coker(T ) = 0.

But dim kerT = dim coker(T ) by the previous corollary.

§6.4 Proof of Theorem

Our goal is to show that if v1, . . . , vn are spanning, and w1, . . . , wm are linearly indepen-
dent, then m ≤ n.

The proof is by induction on m. If m = 1 then clearly n ≥ 1. Now assume the theorem
holds for m− 1.

Our first step is to reduce to the case v1 = w1. Here we use for the last time that R is
a field. WLOG we can write

w1 =

n∑
i=1

aivi

with a1 6= 0. Then

v1 =
1

a1
w1 +

∑
i≥2
−ai
ai
vi.
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Here we have a rare occasion where we use that R is a field. Since v1, . . . , vn span, we
can throw in w and get a span v1, . . . , vn, w, but then we can delete v1 and get that

v2, . . . , vn, w1

is a span. Thus this reduces us to the case v1 = w1.
Now, set V ′ = k · w1 and consider V = V/V ′ (in other words, we look mod w1). Since

w1, v2 . . . , vn span V , we have w1, v2, . . . , vn span V . Since w1 = 0, we can ignore it.
Hence v2, . . . , vn span V .

Now we claim that w2, . . . , wn are still linearly independent. Suppose a2w2 + · · · +
anwn ≡ 0 (mod w1). (Gaitsgory is going to write this as a2w2 + · · · + anwn = 0, but
why would you do that. . . ) By definition, there is some a with

aw1 = a2w2 + · · ·+ anwn

holds in V . This contradicting the fact that the {wi} were linearly independent.
By applying the inductive hypothesis on V , we get m− 1 ≤ n− 1 or m ≤ n.
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§7 September 23, 2014

§7.1 Midterm Solutions

1, 5 pts Let V →W be a surjection of vector spaces with W finite-dimensional. Show
that it admits a right inverse.

2, 5 pts Let
0→ V1 → V → V2 → 0

be a short exact sequence of vector spaces with V2 finite-dimensional. Show that it admits
a splitting.

3, 5 pts Let T : V → W be a map of finite-dimensional vector spaces. Show that V
admits a basis v1, ..., vk, vk+1, ..., vn and W admits a basis w1, ..., wk, wk+1, ..., wm such
that {

T (vi) = wi for i ≤ k
T (vi) = 0 for i > k.

Solution 1

Take T : V →W . Pick vi such that T (vi) = wi for each i. Set S(wi) = vi.

Solution 2

Refer to PSet3, Problem 3b.

Solution 3

Applying Problem 2, consider the short exact sequences

0→ kerT → V → =(T )→ 0

and
0→ Im(T )→W → coker(T )→ 0.

Then V = kerT ⊕ Im(T ) and W = Im(T ) ⊕ coker(T ). Pick a basis in ker(T ), Im(T ),
coker(T ).

§7.2 Endomorphisms

The third midterm problem suggests that maps between vector spaces are boring. In
this section we discuss endomorphisms.

A linear map T : V → V is an endomorphism of vector spaces. Throughout this
section, all vector spaces are finite-dimensional, and T is such an endomorphism on the
finite-dimensional vector space V .

There are two extreme cases, a nilpotent endomorphism and an invertible endomor-
phism.

Definition 7.1. The map T is nilpotent if Tn ≡ 0 for some nonnegative integer n.

Gaitsgory: “Oh I forgot, it’s for me to start learning names”.
The following lemma is only valid in the finite-dimensional case.
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Lemma 7.2

T is nilpotent if and only if for every vector v there exists an m such that Tm(v) = 0.

Proof. One direction is trivial. For the other direction, pick a spanning set, and take an
m which makes everything on the spanning set vanish. Then all elements of T vanish.

Definition 7.3. A subspace V ′ ⊆ V is T -invariant if

v ∈ V ′ =⇒ T (v) ∈ V ′.

We’ll write T |V ′ : V ′ → V ′ in this case. For our purposes, this notation only makes
sense if V ′ is T -invariant.

Lemma 7.4

If T is nilpotent then T |V ′ is nilpotent.

Proof. Obvious.

Theorem 7.5

T is nilpotent if and only if and only if V has a basis in which the matrix of T is
strictly upper-triangular; i.e. there exists a basis e1, . . . , en such that

T (ei) =
∑
j<i

aijej .

Proof. Homework.

Definition 7.6. The map T : V → V is invertible if it admits a two-sided inverse.

Lemma 7.7

If V ′ ⊆ V is T -invariant, and T is invertible, then T |V ′ is invertible.

Proof. The map T |V ′ : V ′ → V ′ is injective. Since it’s an endomorphism, and V ′ is
finite-dimensional, that forces injectivity (look at ranks).

A homework problem is to show that this fails when V is not finite-dimensional.

§7.3 Given a map we can split into invertible and nilpotent parts
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Theorem 7.8

Take T : V → V . Then there exist V nilp, V inv ⊆ V such that

• both are T -invariant

• T |V nilp is nilpotent,

• T |V inv is invertible

and
V nilp ⊕ V inv ∼= V.

Proof. Consider
ker(T ) ⊆ ker(T 2) ⊆ . . .

The dimension of these is bounded by dimV , so ∃N such that

ker(TN ) = ker(TN+1) = . . . .

We call this ker(T∞); this is called the eventual kernel.
For brevity, denote the eventual kernel by K.

Claim. K is T -invariant and T |K is nilpotent.

Proof of Claim. It is not hard to see that T maps ker(T i) into ker(T i−1). The second
claim is obvious. �

Next, consider the decreasing sequence

Im(T ) ⊇ Im(T 2) ⊇ . . .

So there exists an N such that

Im(TN ) = Im(TN+1) = . . .

Set I = T∞(V ) to be this eventual image.

Claim. I is T -invariant and T |Im(T∞) is invertible.

Proof of Claim. Note that T surjects Im(T i) onto Im(T i+1) Moreover, T is a surjection
from Im(TN ) to Im(TN+1) = Im(TN ), so it is an isomorphism. �

We wish to show that the map

T : K ⊕ I → V

is an isomorphism.

Proof of injectivity. The map M ′ ⊕M ′′ →M is injective if and only if m′ +m′′ 6= 0 for
any nonzero m′,m′′; hence we just want to show K ∩ I = 0.

Let W = I ∩ K. Then one can check that T |W is invertible since T |I is invertible.
Similarly, T |K is nilpotent since T |K is nilpotent. Now T |W is a map which is both
invertible and nilpotent; this can only occur if W = {0}. �
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However, for a sufficiently large positive integer N we have K = ker(TN ) and I =
Im(TN ), and hence

dimK + dim I = dimV.

So T is an injective map between two spaces of the same dimension, and hence the proof
is complete.

Remark. One cannot replace the eventual image and eventual kernel with just Im(T )
and ker(T ). For a counterexample, put V = K2, T (e1) = 0, T (e2) = e1.

§7.4 Eigen-blah

Fix T : V → V again, with the field F underlying V .

Definition 7.9. An eigenvector of T in V is a vector v ∈ V with v 6= 0 such that
T (v) = λv for some λ ∈ F . Over all eigenvectors v, the set of λ that can be achieved are
the eigenvalues. The spectrum Spec(T ) is the set of all of the eigenvalues.

Can we bound the number of eigenvalues from below? The answer is no, other than
trivial bounds.

Example 7.10

If V = R2 and T is rotation by 90◦ then Spec(T ) is the empty set. No eigenvalues
or eigenvectors exist at all.

Now, we search from bounds from above.

Proposition 7.11

For any T ,
|SpecT | ≤ dimV.

This follows from the following proposition, which actually does not require the fact that
dimV is finite.

Proposition 7.12

Let v1, . . . , vm be eigenvectors with distinct eigenvalues. Then they are linearly
independent.

Proof. Suppose
a1v1 + a2v2 + · · ·+ amvm = 0

and moreover assume m is minimal (so that ai 6= 0 for any i). Actually, we can also
assume ai = 1 since aivi is also an eigenvector.

Hence we have ∑
vi = 0.

Then
0 = T (vi) =

∑
λivi = 0.

Moreover,

λm
∑

vi = 0.
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Subtracting, we now have that ∑
(λi − λm) vi = 0.

But this is a smaller combination since it has only m− 1 nonzero terms.

§7.5 Diagonalization

Let T : V → V be a matrix map on the basis e1, . . . , en. Observe that T is a diagonal
matrix precisely when every ei is an eigenvector.

Definition 7.13. We say T is diagonalizable if V has a basis of T -eigenvectors.

The goal of spectral theory is to make everything into a diagonal form.
To be continued Thursday.
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§8 September 25, 2014

Recall the definition of Spec(T ) last time.

§8.1 Eigenspaces

Definition 8.1. Set an eigenspace V λ as

V λ = ker (T − λI) = {v ∈ V | Tv = λv} .

Here I is the identity matrix. Notice that V λ 6= 0 ⇐⇒ λ ∈ Spec(T ).

Corollary 8.2⊕
λ V

λ ↪→ V is injective.

Proof. We have (v1, . . . , vm) 7→ v1 + · · ·+ vm; WLOG the vi are nonzero. Suppose the
latter is zero. The guys have distinct eigenvalues, so they are linearly independent.

Recall the definition of a diagonalizable matrix.

Lemma 8.3

If T is both diagonalizable and nilpotent then T = 0.

Proof. Just view T as a matrix, then T k is just the kth power of each diagonal entry
(and zeros elsewhere).

Proposition 8.4

Let T : V → V . Then the following are equivalent.

(a) T is diagonalizable

(b) ∃Vλ ⊆ V (where λ ∈ Spec(T )) which is T -invariant such that

T |Vλ = λ · idVλ

and
⊕
Vλ ∼= V .

(c)
⊕

λ∈Spec(T ) V
λ → V is an isomorphism.

Proof. To show (a) implies (b), let Vλ be the span of all basis elements ei of T which
give the eigenvalue λ.

For (c) to (a), just take a basis of each V λ.
For (b) to (c), observe that Vλ ⊂ V λ. now⊕

λ

Vλ →
⊕
λ

V λ ↪→ V

where the last arrow denotes an injection.
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§8.2 Generalized eigenspaces

Definition 8.5. For any λ in our field, set V (λ) to be the eventual kernel of T − λI. In
other words

V (λ) = ker ((T − λI)∞) = {v ∈ V | ∃n : (T − λI)nv = 0} .

This is called the generalized eigenspace for T with eigenvalue λ.

Observe that V λ ⊆ V (λ).

Example 8.6

V (0) = V if and only if T is nilpotent, but V 0 = V if and only if T = 0.

Lemma 8.7

The following are equivalent.

(a) V λ 6= 0, meaning there exists some eigenvector with eigenvalue λ.

(b) V (λ) 6= 0

(c) T − λI is not invertible.

Proof. Let S = T − λI. Since we are finite-dimensional, kerS = 0 and kerS∞ = 0 if and
only if S is invertible.

§8.3 Spectral Theorem

Definition 8.8. Let

V non-spec =
⋂

λ∈Spec(T )

Im ((T − λI)∞) .

We can let λ run over the entire field since if λ /∈ Spec(T ) implies T − λI is invertible,
which means that the eventual image is all of V . Think of these as “invisible”. That is,
V non-spec is precisely the set of elements which are not killed by any T − λI. In other
words, the component V non-spec has empty spectrum.

Remark. It’s worth noting at this point that V non-spec = 0 in the case that V is
algebraically closed. For then we can necessarily find a λ which is a root of det (T − λI),
forcing it to be non-invertible. (Just expand the determinant as a polynomial).

Theorem 8.9 (Spectral Theorem)

For any T : V → V  ⊕
λ∈Spec(T )

V (λ)

⊕ V non-spec → V

is an isomorphism.

Next week we will show V non-spec = 0 given some assumptions on V .
Here are some corollaries.
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Proposition 8.10

The vector subspaces
V λ, V (λ), Im ((T − λI)∞)

are T -invariant.

Proof. Clear for V λ, so focus on the latter two.

V1
S
- V2

V1

T1

? S
- V2

T2

?

In the PSet problem, S intertwines T1 and T2. This implies that S maps ker(T∞1 ) into
ker(T∞2 ). Similarly for the eventual image.

Suppose we only have one space V and two maps T, S : V → V with T ◦ S = S ◦ T .
Then S maps ker(T∞) and Im(T∞) to itself; i.e. this are S-invariant. Similarly for S
and T .

Now let S = T − λI. We claim that TS = ST . Check this. Now apply the above.
Then we get V (λ) and Im((T − λI)∞).

Corollary 8.11

If v1, . . . , vn with vi ∈ V (λi) and suppose all the λi are distinct. then v1, . . . , vn are
linearly independent.

In other words, generalized eigenvectors with distinct eigenvalues are linearly
independent.

Proof. It’s equivalent to
⊕

λ V
(λ) ↪→ V is an injection, which follows from the spectral

theorem.

§8.4 Lemmata in building our proof

Definition 8.12. Let V be a vector space decomposed as a direct sum V1 ⊕ V2. We
shall say that a vector subspace V ′ ⊂ V is compatible with the given direct sum
decomposition if the map

(V ′ ∩ V1)⊕ (V ′ ∩ V2)→ V ′

is an isomorphism.

Proposition 8.13 (PSet 4.5)

If V ′ ⊆ V is T -invariant then it’s compatible with the splitting of T into the eventual
image and eventual kernel.

We combine these to prove the following lemma.
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Lemma 8.14

Suppose S ◦ T = T ◦ S, then

(ker(T∞) ∩ ker(S∞))⊕ (Im(T∞) ∩ ker(S∞))

⊕ (ker(T∞) ∩ Im(S∞))⊕ (Im(T∞) ∩ Im(S∞))

→ V

is an isomorphism.

Proof. First write
V ∼= ker(T∞)⊕ Im(T∞).

Since ker(T∞) is S-invariant we note that

ker(T∞) = ker(T∞) ∩ ker(S∞)⊕ ker(T∞) ∩ Im(S∞).

Similarly for the other guy.

We like to now generalize this to n spaces.

Lemma 8.15

Let T1, . . . , Tn be pairwise commuting maps. Consider the set of all 2n functions
α : {1, 2, . . . , n} → {I,K}. Then⊕

α

V α(1) ∩ · · · ∩ V α(n)

is isomorphic to V , where V α(i) is ker(T∞i ) or Im(T∞i ) depending on the α(i).

Proof. Induct on n.

Lemma 8.16

Let T1, . . . , Tk be endomorphisms of V pairwise commuting, but assume that

ker(T∞i ) ∩ ker(T∞j ) = 0

for all i 6= j. Then
k⊕
i=1

ker(T∞i )
⊕ k⋂

i=1

Im(T∞i ) ∼= V.

Proof. In the preceding lemma, any term which has α(i) = α(j) = K with i 6= j
immediately disappear by our hypothesis. So the only remaining terms are

⋂k
i=1 Im(T∞i )

and
ker (T∞i )

⋂
j 6=i

Im(T∞j ).

So it suffices to prove that for any i 6= j, we have

ker(T∞i ) ∩ Im(T∞j ) ∼= ker(T∞i ).
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Since ker(T∞i ) is a Tj-invariant subspace, we know that

ker(T∞i ) ∼=
(
ker(T∞i ) ∩ Im(T∞j )

)
∩
(
ker(T∞i ) ∩ ker(T∞j )

)
but the right term is zero.

§8.5 Proof of spectral theorem

We want to apply the previous lemma. Set Ti = T − λiI.
It is not hard to check that these pairwise commute. We’d like to apply the previous

lemma (as it implies the Spectral Theorem), but we need to verify that pairs of kernels
have trivial intersection; that is

V (λ) ∩ V (µ) = 0

for all λ 6= µ. To see this, look at the operator T − µI restricted to V (λ) ∩ V (µ). Since
it’s nilpotent over V (µ), it’s nilpotent over the intersection. But

T − µI = (T − λI) + (λ− µ)I.

For this we just require the following lemma.

Lemma 8.17

Let S : W →W be nilpotent. Then for any ν 6= 0, the map S − νI is invertible.

Proof. If not, then S − νI has a kernel, so ∃w ∈ W such that Sw = λw. But S is
nilpotent, which is impossible since then Snw = λnw.

Proof 2. Alternatively, suppose SN = 0. It’s equivalent to prove that I − S is invertible,
but the inverse explicitly is

(I − S)−1 = I + S + · · ·+ SN−1.

Now we’re done.

§8.6 Recap of Proof

We considered T − λiI. We looked at eventual kernels / images, showing that they’re
all compatible, and constructed a map. There are 2n terms, but it turns out only n+ 1
survive, and we got the Spectral Theorem.
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§9 September 30, 2014

Adjusted office hours: this week is Wed 3-4PM and next week is Monday 3-4PM (instead
of Monday).

We will now carry on with spectral theory.

§9.1 Review

We have T : V → V . Last time we showed that we had a decomposition

V =
⊕
λ

V (λ) ⊕ V non-spec.

See the last lecture for their definitions. Note that T |V non-spec has an empty spectrum.

Lemma 9.1

Suppose we have the following commutative diagram.

V1
T1 - V1

V2

S

?

T2
- V2

S

?

In that case S maps V
(λ)
1 to V

(λ)
2 for each λ and V non-spec

1 and V non-spec
2 .

Proof. The map S intertwines (T1 − λI)N with (T2 − λI)N . Hence it sends their kernels
and images to each other. This solves 9 and 10(a), which probably means I got them
wrong.

§9.2 Taking polynomials of an endomorphism

Let V be a vector field over k. The set of T : V → V is denoted End(V ), and is a
k-algebra. We can define a homomrphism of k-homomorphisms from k[t]→ End(V ) by
mapping t to any particular endomorphism T .

k[t] - End(V )

k

-
�

Evidently ker(ϕ) is an ideal in k[t]. Recall that in a polynomial ring over a field, any
algebra is generated by a single monic polynomial

I = (p)

Now consider the following definition.

Definition 9.2. We have ϕ : k[t] → End(V ), and ϕ sends t to T . Now suppose
kerϕ = (minT ). We call minT the minimal polynomial of T .
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Now if kerϕ = 0, then minT is zero. But we claim this never happens.

Remark 9.3. This is silly. All we’re doing is look at “polynomials” in T , i.e. things like

T 3 + 2T 2 + 99T − 4

as an endomorphism in End(V ). The stuff about ϕ is just unnecessary obfuscation.

Lemma 9.4

For any ϕ : k[t]→ End(V ) a k-algebra homomorphism, kerϕ 6= 0.

Proof. The point is to show that ϕ cannot be injective. Indeed, note that End(V ) is the
set of n×n matrices whose entries are in k, so it has dimension n2. But k[t] has “infinite”
dimension, and we can take, say, the polynomials of degree at most n2 + 1 only; already
the map cannot be injective.

Lemma 9.5

minT = tn if and only if T is nilpotent.

Proof. If tn = 0 then Tn = 0. Conversely, if TN = 0 then tn = 0 and minT | tn.

§9.3 Minimal Polynomials

Lemma 9.6

Consider T : V → V . Suppose we have a T -invariant subspace V ′. Let T ′ : V ′ → V ′

and T ′′ : V/V ′ → V/V ′ in the canonical manner.

(a) minT ′ divides minT and minT ′′ divides minT .

(b) minT divides minT ′ ·minT ′′ .

Proof. In this proof you should really ignore the ϕ’s because they actually suck and just
make it more confusing. Basically, minT ′ divides minT is equivalent to

(minT ′) ⊆ (minT )

(these are ideals); in other words any polynomial p which makes T vanish also makes T ′

vanish. Of course this is obvious. The same goes for minT ′′ , completing (a).
For (b) this is just saying that if p makes both T ′ and T ′′ vanish then p also makes T

vanish.

Hi Luran.

Lemma 9.7

Given T : V → V over the field k, and consider λ ∈ k. Then λ ∈ Spec(T ) if and
only if λ is a root of minT .
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Proof. First suppose λ ∈ Spec(T ). Let V ′ = ker(T − λI) 6= 0 and let T ′ : V ′ → V ′ be
the restriction to V ′ (observing that V ′ is T -invariant). Observe that minT ′ = t− λ and
minT ′ | minT .

Conversely, suppose λ is a root of minT . Then (t− λ) divides minT . If λ /∈ Spec(T )
now, then T − λI is invertible, and this yields a contradiction to the minimality of
minT .

§9.4 Spectral Projector

Theorem 9.8

For all λ ∈ Spec(T ) there exists pλ ∈ k[t] such that pλ(T ) is the identity when re-
stricted to V (λ) and is the zero polynomial on

⊕
µ6=λ V

(µ)⊕V non-spec, aka “everything
else”.

Definition 9.9. The pλ is called the spectral projector.

Proof. Let stuff =
⊕

µ6=λ V
(µ) ⊕ V non-spec.

Let minT = (t− λ)n · f with n maximal. Bezout’s lemma states we may find r, q ∈ k[t]
such that

r(t− λ)n + qf = 1.

We claim that pλ = qf works.
We need to show that

r(T )(T − λ)n ≡ 0

is the zero operator for over V (λ) (since in that case qf = 1), and we also want

q(T )f(T ) ≡ 0

when restricted to stuff.
To prove the first statement, let V ′ = V (λ) be a subspace and now minT ′ divides

(t− λ(n·f . But minT ′ = (t− λ)m for some m, and m ≤ n, so (T − λ)n kills V (λ).
For the second statement, we wish to show that f(T ) kills stuff. But minT = (T −

λ)nf(T ) kills everything. So we just have to show (T − λ)n is invertible over all the
V (µ) and V non-spec. We can replace (T − λ)n with T − λ. It’s invertible over V (µ) by
Lemma 8.17 and it’s invertible over V non-spec since T has empty spectrum over it.

§9.5 Polynomials

Proposition 9.10

The following are equivalent over any field k.

1. Every polynomial factors into linear factors.

2. Every polynomial has a root.

3. Every polynomial irreducible polynomial is linear.

Proof. Clear.

Definition 9.11. We say that a field k is algebraically closed if the above equivalent
conditions hold.
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Example 9.12

The complex numbers C are algebraically closed. Actually, you can show that any
field k you can embed it into an algebraically closed field k.

Proposition 9.13

Let k be an algebraically closed field. If V 6= 0 then Spec(T ) 6= 0 for any operator T .

Proof. Note that minT has a root.

Corollary 9.14

If k is algebraically closed, V =
⊕

λ V
(λ).

Proof. We have V non-spec = 0.

Proposition 9.15

Let k be non-algebraically closed. Then there exists a V and T : V → V such that
Spec(T ) is empty.

Proof. Let p be an irreducible polynomial of degree n > 1, and set V = k[t]/(p). You
can check that this is indeed a field; it has a basis t0, t1, . . . , tn−1. Now let T : V → V by
q 7→ tq (all mod p). We claim it has empty spectrum.

Consider any λ ∈ k. Then T − λ, which is the map q 7→ (t− λ)q. The map t− λ is
nonzero since n > 1, and it is invertible since we’re in a field.
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§10 October 2, 2014

This lecture will discuss Jordan canonical form.

§10.1 Jordan Canonical Form

Let T : V → V be nilpotent.

Definition 10.1. The map T is regular if there exists a basis e1, . . . , en such that
T (ei) = ei−1 for each i ≥ 2 but T (e1) = 0.

Example 10.2

This is a regular 4× 4 matrix. 
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 .

The goal of the lecture is to prove the following theorem.

Theorem 10.3

Given nilpotent T : V → V , it is possible to write

V =
⊕
i

Vi

such that for any i, Vi is T -invariant and T restricted to Vi is regular.
Moreover, the multiset

{dimV1,dimV2, . . . }

is unique.

In terms of the matrix, this looks like

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0


.

§10.2 A big proposition
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Proposition 10.4

Let V be n-dimensional and T nilpotent. The following are equivalent.

(i) The map T is regular.

(ii) There exists v ∈ V such that v, Tv, T 2v, . . . form a basis.

(iii) The map Tn−1 is nonzero.

(iv) For each 1 ≤ i ≤ n, then dim ker(T i) = i.

(v) dim ker(T ) = 1.

Proof. Go in a line.

(i) =⇒ (ii) Pick v = e1.

(ii) =⇒ (iii) Otherwise Tn−1(v) = 0 is in a basis.

(iii) =⇒ (iv) Apply problem 1 from PSet 4, which states that

dim(ker(T i+1))− dim(ker(T i)) ≤ dim(ker(T i))− dim(ker(T i−1)).

(iv) =⇒ (v) Set i = 1.

(v) =⇒ (i) Use PSet 4, Problem 1.

Corollary 10.5

Let T be regular. The inclusion

imT i ⊆ kerTn−i

is an equality.

Proof. The inclusion follows from the fact that Tn−i ◦ T i ≡ 0. Now just compare the
dimensions; both are n− i.

It’s worth pointing out the following consequence explicitly.

Lemma 10.6

If S is regular on W and dimW = m then

dim kerSi =

{
i if i ≤ m
m if i ≥ m.

§10.3 Young Diagrams

Consider a Jordan decomposition V =
⊕

i Vi. Let ni = dimVi, and assume that

n1 ≥ n2 ≥ · · · ≥ nk.
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Moreover, n = n1 + · · ·+ nk.
Then we look at Young diagrams4. For a partition p, let (p)X denote the partition

corresponding to flipping the Young diagram. That is, if n = n1 + · · ·+ nk is a partition
p, then pX is

n = nX1 + · · ·+ nX`

where nXi is the number of blocks in the ith row.
This proposition will imply the uniqueness.

Proposition 10.7

Let V =
⊕

i Vi and let ni = dimVi. Define nXi as above. Then

nXi = dim kerT i − dim kerT i−1.

Proof. It’s equivalent to show that the volume of the first i rows of the Young diagram
is equal to dim kerT i.

The value of the first i rows is ∑
j

{
i nj ≥ i
nj nj ≤ i.

Moreover5 we have
kerT i =

⊕
j

ker
(
T i|Vj

)
.

Thus
dim kerT i =

∑
j

dim kerT i|Vj .

Remark 10.8. This is a refinement of “looking at the orders of T to distinguish”. The
pattern of the ni that we have is dictated by the integers which cause the T i to vanish
on a Vi.

§10.4 Proof of Existence

We now prove existence of the Jordan decomposition. We go by induction on dimV .
Let n be the minimal integer such that Tn = 0, so that Tn−1 6= 0. There exists v ∈ V

such that Tn−1(v) 6= 0.
Define

V ′ = Span
(
v, Tv, T 2v, . . . , Tn−1v

)
.

Evidently V ′ is T -invariant (cue laughter) and T |V ′ is regular. Moreover, V ′′ = V/V ′ has
lesser dimension.

Consider the short exact sequence

0→ V ′ → V → V ′′ → 0

By induction hypothesis (dimV ′′ < dimV ), we may write

V ′′ =
⊕
i

V ′′i

4These apparently will show up again at the end of the semester.
5In general, given T : V1 ⊕ V2 →W we have kerT = kerTV1 ⊕ kerTV2 .
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where V ′′i is T ′′ invariant (where T ′′ is the induced operator).
Let’s consider the commutative diagram.

0 - V ′
i
- V

π
- V ′′ - 0

0 - V ′

T ′

? i
- V

T

? π
- V ′′

T ′′

?
- 0

Needles to say p is a projection. We’ll now attempt to construct a right inverse j : V ′′ → V
of π so that

T ◦ j = j ◦ T ′′.
If we can construct j we are done since we can isomorph

V ′ ⊕ V ′′ (i,j)−−→ V.

The property that T ◦ j = j ◦ T ′′ is necessary!
To create a map j :

⊕
V ′′ → V , recall that to map out of a direct sum is to map out of

each summand. Set Vi = ppre(V ′′i ) for each i. For each i we have a short exact sequence

0→ V ′ → V
pi−→ V ′′i → 0.

So we can focus on splitting pi, and we will omit the indices i until further
notice. Thus there exists w ∈ V ′′ such that

w, (T ′′)w, (T ′′)2w, . . . , (T ′′)m−1w

is a basis.
Say that we managed to select j(w) = w̃ ∈ V . By construction,

p(w̃) = w.

Then,

j(T ′′(w̃)) = T (w̃)

j((T ′′)2(w̃)) = T 2(w̃)

...

Hence this lets us construct the entire function j which does the right thing w, T ′′w, up
to (T ′′)m−2(w). However, we still need to check that it does the right thing for Tm−1(w),
meaning we still need to verify

T ◦ j(Tm−1(w)) = j ◦ T ′′
(
(T ′′)m−1(w)

)
= 0.

So really, we need to find a w̃ such that p(w̃) = w and Tmw̃ = 0.
Choose ˜̃w such that only the first condition p( ˜̃w) = w. We want to show that we can

set w̃ = ˜̃w − u for some “correction” term u ∈ V ′; note that the projection sends u to
zero, so we just need

Tm
(

˜̃w
)

= Tm(u).

Thus we want Tm
(

˜̃w
)
∈ im(T ′)m. But

im(T ′)m = ker(T ′)n−m

because we’re in a regular situation. But

(T ′)n−m
(
Tm ˜̃w

)
= 0

follows from Tn ≡ 0.
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§11 October 7, 2014

Oops we messed up the answer to problem 8 on the last PSet.
I guess Tm vanishes completely too.

§11.1 Order of a Group

Definition 11.1. Let G be a group and g an element of it. We define ordG(g) = ord g,
the order of g, to be the smallest integer n ≥ 1 with gn = 1, or ∞ if no such element
exists.

Lemma 11.2

If gm = 1 then ord g | m.

Proof. Clear.

Note that if n = ord g then there is a natural injection from Z/nZ to G by 1 7→ g.

Definition 11.3. For a finite group G, we say the order of G is the number of elements.
We write this as |G|.

Lemma 11.4

Given a subgroup H of G, the order of H divides the order of G.

Corollary 11.5

Given g ∈ G, ord g | |G|.

Proof. The set
{

1, g, . . . , gn−1
}

is a subgroup of G, where n = ord g.

§11.2 Groups of prime powers

Lemma 11.6

Z/pZ has no nontrivial subgroups (i.e. other than the trivial group and itself).

Proof. Let H be a subgroup. By our lemma |H| divides p, so either |H| = 1 or
|H| = p.

Definition 11.7. Let p be a prime. We say that G is a p-group if |G| is a prime power.

Notice that in a p-group the order of g is also a power of p. It turns out that, conversely,
if all orders are powers of p then G is a p-group. This will be shown on Thursday.

However, for now we focus on finite abelian groups. Write it additively.
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Proposition 11.8

Let A be a finite abelian group.

(1) A is a p-group.

(2) Each element is a power of p.

(3) Multiplication by p (here p · a = a+ · · ·+ a) is nilpotent. (This makes G into
a Z-module.)

(4) There exists
0 = A0 ≤ A1 ≤ · · · ≤ An ≤ A

for which Ai/Ai−1 = Z/pZ.

Proof. Go in a line again.

Proof that (i) =⇒ (ii) The order divides |A| = pn.

Proof that (ii) =⇒ (iii) Multiplication by pn is the zero map.

Proof that (iii) =⇒ (iv) Suppose |A| = pn. We go by induction on n. Take any element
g, and suppose it has order pm 6= 1 Then g′ = pm−1 · g has order p. Now take
modulo the subgroup 〈g′〉. We can decompose A/ 〈g′〉, yay.

Proof that (iv) =⇒ (i) Check that Ai has order pi.

Here is a second proof that (iii) =⇒ (iv). Let Bi = ker pi. Observe that we have a
flag 0 = B0 ⊆ B1 ⊆ B2 ⊆ · · · ⊆ Bn = A. Now all elements in Bi/Bi−1 have order p. We
can then decompose it into further by 0 = C0 ⊆ C1 ⊆ · · · ⊆ Ct = Bi/Bi−1 for each i;
combining these gives a good breakdown of A.

§11.3 Abelian groups and vector spaces are similar

Let A be a finite abelian group written additively. Let T : A→ A be an endomorphism.

Proposition 11.9

We have A = ker(T∞)⊕ im(T∞).

Proof. We have A = ker(Tn)⊕ im(Tn) by first isomorphism theorem. By order, things
must stabilize. GG.

There are actually lots of analogies between abelian groups and vector spaces over
algebraically closed fields. Orders correspond to ranks; dim kerT + dim imT = dimV
corresponds to |G| = |kerT | |imT |.

We exhibit these in the following table.
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A V
T−→ V

primes k (algebraically closed)
Z k[t]
Z/pZ dimV = 1

p-group V (λ) = V
primes dividing |A| Spec(T )∑

p νp(|A|) dimV

|A| ∈ Z chT ∈ k[t]
maximal order in A minT ∈ k[t]
Z/pnZ T − λ is regular and nilpotent
Z/nZ6 T is regular⊕

p Z/pZ diagonalizable

In here we used the following.

Lemma 11.10

If T : V → V and V has no nontrivial T -invariant subspaces, then dimV = 1. Here
V is a vector space over an algebraically closed field.

Proof. Take any eigenvector v (possible since k is algebraically closed).

Why does dimV correspond to
∑

p νp(|G|)? The idea is that “length” corresponds to
the length of a flag

0 = V0 ⊆ V1 ⊆ · · · ⊆ Vn = V

where each quotient is irreducible. Then n = dimV .

§11.4 Chinese Remainder Theorem

Here is the analog of the spectral theorem.

Theorem 11.11

For any finite abelian group A, we have A =
⊕

pA
(p), where each A(p) is a p-group.

Actually, A(p) is the eventual kernel of the map a 7→ p · a.

Definition 11.12. A p-group is regular if it is the cyclic group of order pn.

Proposition 11.13

Let A be a p-group with size pn. The following are equivalent.

(i) A is regular.

(ii) There exists a ∈ A which generates A.

(iii) Ap
n−1 6= A.

(iv)
∣∣∣Api∣∣∣ = pi.

(v) |Ap| = p.
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Here An denotes the kernel of the map a 7→ n · a. Finally, we have a “Young dia-
gram”.

Theorem 11.14

Let A be a p-group. Then we may write

A =
⊕
n

Z/pnZ.

Moreover, the multiset of orders of this group is uniquely determined by A.

§11.5 Not algebraically closed

What occurs if k is not algebraically closed? The point is that the characteristic polynomial
of p ∈ k[t] is not reducible iff the vector space V has no nontrivial T -invariant subspaces.
Note that k[t]/(p) is a field.

Hence we’ve replaced “eigenvalues” with “monic irreducible polynomials”. It just so
happened that when k is algebraically closed, the “monic irreducible polynomials” were
just t− λ, i.e. the eigenvectors.

A V
T−→ V

primes irreducible polynomials is k[t]
Z k[t]
Z/pZ V = k[t]/(p); p = chT irreducible
p-group p(T ) is nilpotent
primes dividing |A| factorization of chT∑

p νp(|A|)
∑
ni where chT =

∏
i p
ni
i

|A| ∈ Z chT ∈ k[t]
maximal order in A minT ∈ k[t]
Z/pnZ k[t]/(pn)

We actually lied about V non-spec. When we wrote

V =
⊕
λ

V (λ) ⊕ V non-spec

it turns out that V non-spec breaks down based on irreducible polynomials. All we did was
lump together all the guys that were not t− λ into one big “junk” pile V non-spec. (And
that’s why I couldn’t find anything on it. . . )
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§12 October 9, 2014

Today’s course was taught by the CA’s. Gaitsgory was not present.

§12.1 Group Actions

Let G be a group and X a set.

Definition 12.1. A set X is a G-set if there exists · : G×X → X such that

1. g1 · (g2 · x) = (g1g2) · x for all g1, g2,∈ G, x ∈ X.

2. 1 · x = x for all x ∈ X.

If X is a G-set then we say that G acts on X. We write Gy X.

Note: the actual lecture used the notation m(g, x) for g ·x. I think the former notation
sucks and will mostly use the latter.

Lemma 12.2

Let X be a G-set. Then the map X → X by x 7→ gx is an automorphism.

Proof. Given g · x1 = g · x2, we find x1 = g−1 · g · x1 = g−1 · g · x2 = x2. Surjectivity
follows from g · (g−1 · x) = x.

§12.2 How do G-sets talk to each other?

Definition 12.3. Let X1 and X2 be G-sets. A map φ : X1 → X2 is a map of G-sets if
φ(g · x1) = g · φ(x1) holds. We let HomG(X1, X2) denote the set of all such maps.

It’s equivalent to this digram commuting.

G×X1
act1- X1

G×X2

id× φ

?

act2
- X2

φ

?

Lemma 12.4

Let φ be a G-set map that is also a bijection. Then φ−1 is also a G-set map.

Proof. Just do it.

§12.3 Common group actions

Definition 12.5. Suppose Gy X. Define

XG = {x ∈ X : gx = x∀g ∈ G} .

If x ∈ XG we say X is a G-invariant, and XG are called the G-invariants.
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Example 12.6

Let pt = {∗} be a set consisting of a single element. Then any group G has exactly
one G-action on pt, namely the trivial action.

Let X be a G-set and consider

ϕ : HomG(pt, X)→ X

by
(f : pt→ X) 7→ f(∗).

Then imφ = XG, and this is an bijection.

Example 12.7

Take any group G. Then there exist a canonical action Gy G called “left-regular”
which is just left-multiplication.

Let X be a G-set. Then we have an isomorphism

φ : HomG(G,X)→ X

by
(f : G→ X) 7→ f(1).

Example 12.8

Take any group G. There is a canonical action Gy G called “right-regular” which
by

g · x = xg−1.

Remark. Note that for G not abelian, the map g · x 7→ xg is in fact not a group action.

Example 12.9

Combining the previous two examples, we have an action G×Gy G by

(g1, g2) · g 7→ g1gg
−1
2 .

Example 12.10

Suppose Gy X and ϕ : H → G is a group homomorphism. Then H y X by

h · x = ϕ(h) · x.

Example 12.11

The adjoint action (which I called conjugation when I grew up) is the action
Gy G given by

g · x = gxg−1.
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Example 12.12

Let X be a set, and define AutSet(X) to be the set of automorphisms (for sets, just
bijections) on X. You can check this is a group. This gives a tautological action
AutSet(X) y X. my σ · x = σ(x).

Definition 12.13. For a positive integer n let

Sn
def
= Autset ({1, 2, . . . , n}) .

We call this the symmetric group on n letters.

Example 12.14

Let V be a vector space over some field k. Define GL(V ) = Autk-linear(V ). Then we
have an obvious action GL(V ) y V .

Example 12.15

Let V a be a field. Let Fl(V ) denote the set of complete flags in V ; i.e. a flag

0 = V0 ( V1 ( · · · ( Vn = V

where n = dimV , meaning that dim(Vi/Vi−1) = 1 for all i. Observe that if T ∈
GL(V ) then we have a standard action

GL(V ) y Fl(V ).

§12.4 More group actions

Let G be a group and H a subgroup. We define G/H = {gH | g ∈ G} (cosets, so G/H
is not necessarily a group). Let π : G→ G/H be the natural projection.

We have a natural group action Gy G/H by

g · (g′H) = gg′H.

Let X be a G-set. We define a map

φ : HomG(G/H,X)→ X

by
(f : G/H → X) = f(1H).

Lemma 12.16

im(φ) ⊂ XH , and φ : HomG(G/H,X) 7→ imφ is a bijection.

Definition 12.17. Suppose Gy X. For x ∈ X, we define the stabilizer

StabG(x) = {g ∈ G : gx = x} .
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Example 12.18

Recall the adjoint action Gy G. Then

StabG(g′) = Z(g′)
def
=
{
z ∈ G : zg′ = g′z

}
.

Example 12.19

Let Sn y {1, . . . , n}. Prove that

StabSn(a) ∼= Sn−1.

Lemma 12.20

Let X be a G-set and let H be a subgroup. If H ⊆ StabG(x), for some x ∈ X then
there exists a unique φ : G/H → X such that

φ(1H) = x.

Moreover, φ is injective if and only if H = StabG(x).

§12.5 Transitive actions

Definition 12.21. Suppose Gy X. We say the action is transitive if

∃g ∈ G : gx = y ∀x, y ∈ X.

We say it is simple if
StabG(x) = {1} ∀x ∈ X.

We say it is simply transitive both conditions hold.

Lemma 12.22

Let φ : X1 → X2 be a map of nonempty G-sets. Suppose Gy X2 is transitive. The
φ is surjective.

Proof. Clear.

Proposition 12.23

Let G act transitively on X, and take x ∈ X. Then there exists a unique isomorphism
of G-sets

φ : G/StabG(X)→ X

with φ(1) = x. Here G/ StabG(x) is being interpreted as a G-set by left action.

Proof. The only possible map is g·StabG(x) 7→ gx. evidently φ(g StabG(x)) = φ(g′ StabG(x)) =⇒
gx = g−1x =⇒ gg−1 ∈ StabG(X). Surjectivity is evident by transitivity.
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§12.6 Orbits

Definition 12.24. Suppose Gy X. Define an equivalence relation ∼ on X by

x ∼ y ⇐⇒ ∃g ∈ G : gx = y.

These equivalence classes are called orbits.

Note that G acts transitively on orbits by definition.

Proposition 12.25

Suppose G, X are finite. For each orbit O ⊆ X, pick a representative xO ∈ O. Then

|X| =
∑
O⊆X

|G|
|StabG(XO)|

.

Proof. Note that O ∼= G/ StabG(XO) by a previous proposition

|X| =
∑
O⊆X

|O| =
∑
O⊂X

|G|
|StabG(xO)|

.

Corollary 12.26

Let G be a p-group and suppose p - |G|. Then XG 6= ∅.

Proof. If not, then StabG(xO) 6= G for all O. Take the above proposition modulo p; each
term on the RHS is divisible by p but the LHS is not.

§12.7 Corollaries of Sylow’s Theorem

Aaron Landesman takes over at this point.
For the rest of the lecture, we will assuem |G| = pnm, for a prime p, n a positive

integer, and m a positive integer not divisible by p.

Definition 12.27. Let H ⊂ G be a group. It is called a p-Sylow group if |H| = pn.

Now here is the nuclear silo.

Theorem 12.28 (Sylow)

Let G be an arbitrary finite group.

(a) A p-Sylow group Gp must exist.

(b) If H ⊂ G is a p-group then there exists a g ∈ G such that gHg−1 ⊆ Gp.

Now for our theorem appreciation session.
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Corollary 12.29

Let G be a group, and let Gp be a p-Sylow subgroup.

(i) Any two p-Sylow subgroups is conjugate to Gp.

(ii) In particular, Gp is normal in G if and only if it is the only p-Sylow group.

(iii) In particular, if g has order pn, then there exists a g′ such that g′g(g′)−1 ∈ Gp.

Proof. (i) Use part (b) of Sylow’s Theorem on one of these subgroups.

(ii) Use the previous statement.

(iii) Use the previous statement on 〈g〉, which is a p-Sylow subgroup.

A very obvious corollary is that if a prime q does not divide the order of any element
in G, then q does not divide |G| either.

Corollary 12.30

The following are equivalent.

(i) G is a p-group.

(ii) For any g, ord(g) = pk for some k (depending on g).

(iii) p | ord g for all g 6= 1.

Proof. Trivial.

§12.8 Proof of (b) of Sylow’s Theorem assuming (a)

“We have five minutes so we’re going to prove half of Sylow’s Theorem”.
Let Gp be the p-Sylow subgroup. Look at G/Gp as a set.
Let H be a p-group and consider the action H y G/Gp. Now |G/Gp| = pnm

pn = m.
Hence

gcd (|H| , |G/Gp| = 1.)

By our (mod p) prime corollary, that means there exists a g ∈ G/Gp ∩ Stab(H).
We will now prove the following easy lemma; applying it with G′ = Gp solves the

problem.

Lemma 12.31

Let G be a group, and take H,G′ ⊂ G. Let H y G/G′. If g ∈ G/G′ is H-invariant,
then any lifting g has

g−1Hg ⊆ G′.

Proof. For all h, the action tells us hg = gg′ for some g′ ∈ Gp. Hence g−1hg = g′ ∈ Gp,
which is what we wanted.
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§13 October 14, 2014

I was out with the flu this day; by this time I had recovered enough that I could walk out
of my room, but not enough to be able to eat meals. Thanks to Wyatt for his notes for
this day, which I’ve adapted below.

§13.1 Proof of the first part of Sylow’s Theorem

This is already in the Math 122 notes and is pretty widely known, so I won’t bother too
much here. I’ll give a brief outline though.

The main idea is to consider the subsets of |G| = pnm with cardinality pn. There are(
pnm
pn

)
6≡ 0 (mod p) of them (Lucas’ Theorem). So if G acts on X by left multiplication,

there is an orbit O with p - |O|. Take any representative x ∈ O. Then show that
|StabG(x)| = pn.

§13.2 Abelian group structure on set of modules

Let R be a ring and let M and N be R-modules. Then there’s a natural abelian group
structure HomR(M,N) by

T1 + T2
def
= (m 7→ T1(m) + T2(m)) .

(But note that the sum of two ring homomorphisms, in contrast, is in general not a ring
homomorphism.)

We claim that we can upgrade the structure of HomR(M,N) to a R-module if R
happens to be commutative. The multiplication is

r · φ def
= (m 7→ r · φ(m)) .

Let us explain why we needed R to be commutative. We need for r · φ to actually be an
R-module homomorphism. Any map in HomR(M,N), including r · φ, must obey

(r · φ)(r′ ·m) = r′ · (r · φ)(m).

You can check that’s equivalent to rr′ = r′r.

§13.3 Dual Module

Definition 13.1. For any module M we now define M∨ = HomR(M,R) as the dual of
M .

This also has the structure of a right R-module by

T · r def
= (m 7→ T (m) · r) .

One way to think of this is as follows: suppose M is the set of column vectors over R of
size n. Then M∨ is the set of row vectors over R of size n, but these aren’t points in
space, they are 1× n matrices. In particular they act on M by left multiplication which
gives a single element of R.

Lemma 13.2

(M1 ⊕M2)
∨ 'M∨1 ⊕M∨2 .

Proof. We have the bijection of sets. Check the structure is preserved.
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Lemma 13.3

As a right R-module, R is isomorphic to its dual R∨.

Proof. Same as previous.

Corollary 13.4

(Rn)∨ is isomorphic to Rn (again as right modules).

Definition 13.5. Now consider T : M → N . Then we define T∨ : N∨ →M∨ by

T∨(ξ)
def
= ξ ◦ T.

where ξ ∈ N∨ and m ∈M .

The correct way to think of T∨ is that if ξ is n× 1 matrix, then T∨ sends ξ to ξT ; i.e.
T∨ just applies T on the right. At least in the finite dimensional case.

Exercise 13.6. Show that in the special case T : Ra → Rb, the dual T∨ is a map
Rb → Ra which is the transpose of T .

§13.4 Double dual

It is natural to construct (M∨)∨. We want a map M → (M∨)∨. For a given m ∈M , we
can send it to the map

canM (m) : M∨ → R

which sends ξ ∈M∨ to map ξ(m). (This is “evaluation at m”.) Hence canM itself is a
map from M to (M∨)∨.

Remark 13.7. This map canM need not be an isomorphism. If R = Z, M = Z2, we
find that M∨ is trivial.

Lemma 13.8

If M = Rn, then canM is an isomorphism.

Lemma 13.9

If T : M → N is surjective, then T∨ : N →M is injective.
If T : M → N is injective, then T∨ : N →M is surjective, provided that N/M is

free or they are finite-dimensional.

§13.5 Real and Complex Vector Spaces

Henceforth, k ∈ {R,C} and V is a vector space over k.

Definition 13.10. An inner form (•, •) : V × V → k is a map with the following
properties.
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• The form is linear in the first argument, so (a + b, c) = (a, c) + (b, c) and
(ca, b) = c(a, b).

• If k = R, (a, b) = (b, a) and if k = C, (a, b) is the complex conjugate (b, a). For
brevity, we’ll just write this as

(a, b) = (b, a)

since x = x for all x ∈ R.

• The form is positive definite, meaning (v, v) ≥ 0 is a real number, and equality
takes place only if v = 0.

Observe that these properties imply (a, cb) = c(a, b) but (a, b+ c) = (a, b) + (a, c).

Example 13.11

If V = Cn, then an inner form is (〈an〉 , 〈bn〉) =
∑

i aibi.

§13.6 Obvious Theorems

Definition 13.12. We define the norm by

‖v‖ =
√

(v, v) ≥ 0.

Theorem 13.13 (Pythagorean Theorem)

If (v, w) = 0, then we have ‖v + w‖ = ‖v‖+ ‖w‖.

Theorem 13.14 (Cauchy-Schwarz)

For any v, w ∈ V we have the inequality

|(v, w)| ≤ ‖v‖ · ‖w‖ .

Equality holds if and only if v and w are linearly dependent.

Theorem 13.15 (Triangle Inequality)

We have
‖v + w‖ ≤ ‖v‖+ ‖w‖

with equality if and only if v and w are linearly dependent.

§13.7 Inner form induces a map

The inner form yields a map V → V ∨ by

v 7→ (v, •).
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Theorem 13.16

If V is finite-dimensional, this map is an isomorphism.

Proof. The map is injective since (v, w) = 0 =⇒ w = 0 (for v 6= 0). By dimension
arguments it is also an isomorphism.
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§14 October 16, 2014

§14.1 Artificial Construction

Last time we tried to construct

V
Bv−−→ V ∨ = Hom(V,C)

sending v → ξv, where ξv is the map w 7→ (w, v). Unfortunately, ξv is apparently not
C-linear (conjugation problems).

So we do an artificial trick where we biject V to V , by v 7→ v. Call the map ϕ.
Clearly if e1, e2, . . . , en is a basis of V then ϕ(e1), . . . , ϕ(en) is an isomorphism.
Let’s use the inner form to do the following.

Definition 14.1. For a given v, we can define a map ξv ∈ V ∨ as follows:

ξv(w)
def
= (w, v).

Now we can construct a map Bv : V → V ∨ by v 7→ ξv. And it’s necessary to use V
instead of V since otherwise you can check that the map is in fact not k-linear.

Lemma 14.2

If V is finite dimensional then Bv is an isomorphism.

Proof. This map is injective since v ∈ V implies ξv(v) 6= 0. Then it’s bijective for
dimension reasons.

Since Bv is an isomorphism from V to V ∨, we obtain the following readily.

Corollary 14.3

For every ξ ∈ V ∨ there exists a v such that ξ = ξv.

§14.2 Orthogonal Subspace

Let i : W → V be an inclusion, where W ⊆ V . We now present the two distinct concepts
of W⊥ which unfortunately use the same symbol.

First, suppose V doesn’t have an inner form. We consider the map i∨ dual to the
inclusion V ∨ →W∨. Then we define

W⊥ = ker i∨ =
{
ξ ∈ V ∨ | ξ|W = 0

}
.

The second thing we define is W⊥ which lives in V (not V ∨). We’ll assume k = R in
what follows. Define

{v ∈ V | (v, w) = 0 ∀w ∈W} .

While these live in different spaces, they are isomorphic.

Lemma 14.4

The map Bv : V → V ∨ is an isomorphism between the W⊥’s.
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Corollary 14.5

dimW⊥ = dimV − dimW .

For the rest of this lecture, we take the W⊥ inside V .

Proposition 14.6

Let V be a finite-dimensional map. Let W be a subspace of V . Then the map

W ⊕W⊥ → V

by (w, v) 7→ w + v is an isomorphism.

Proof. The dimensions agree. For injectivity, if w + v = 0 then (w′, w) + (w′, v) = 0 for
any 0 6= w′ ∈W . Now (w′, v) = 0, so (w′, w) = 0.

§14.3 Orthogonal Systems

Definition 14.7. Let v1, . . . , vn ∈ V . We say that vi are orthogonal if (vi, vj) = 0 for
all i 6= j. Moreover, it is orthonormal if ‖vi‖ = 1 for all i.

Lemma 14.8

Any orthogonal set of vectors is linearly independent.

Proof. Suppose
∑
aivi = 0. Then 0 = (v1,

∑
aivi) = a1.

Proposition 14.9 (Gram-Schmidt)

Let v1, . . . , vn be a linearly independent set. Set Vi = span(v1, . . . , vi). There exists
a unique e1, . . . , en with the following properties:

• e1, . . . , en is orthogonal (in particular, also linearly independent)

• For all i, Vi = span(e1, . . . , ei).

• The images of vi+1 and ei+1 in V/Vi are equal,

Proof. Let V = Vi ⊕ (Vi)
⊥. Then vi+1 = w + u uniquely for some w ∈ Vi, u ∈ (Vi)

⊥.
Now it’s easy to check that ei+1 = u is the only thing that works.

§14.4 Adjoint operators

In what follows, we’ll sometimes clarify which inner form we’re using by (•, •)V denoting
the inner form for V . But remember all the inner forms output in the same field k.

Definition 14.10. Suppose that T : V →W , and V and W have inner forms. We define
a map T ∗ : W → V , the adjoint operator, as follows. For any w, we let T ∗(w) be the
unique vector with

ξT ∗(w) = (v, T ∗(w))V = (T (v), w)W

for all v.
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In other words: given T : V → W and w ∈ W , we have a map in V ∨ by sending
v 7→ (T (v), w)W . Evidently this equals some ξx, and we define T ∗(w) to be this x.

Lemma 14.11

(T ∗)∗ = T .

Proof. We wish to check (T ∗)∗(v) = T (v). We have

(T ∗)∗(v) = T (v) ⇐⇒ ((T ∗)∗(v), w) = (T (v), w)

but the left is (w, (T ∗)∗(v)) = (T ∗(v), w) = (v, T ∗(w)).

First, let’s check the following.

Lemma 14.12

Given any subspace V ′ of V we have(
(V ′)⊥

)⊥
= V ′.

Proof. It is not hard to check that V ′ ⊆
(
(V ′)⊥

)⊥
. Then the inclusion is strict for

dimension reasons.

Lemma 14.13

We have

(a) (imT )⊥ = kerT ∗

(b) (kerT )⊥ = imT ∗.

Proof. For the first part, note that

w ∈ (imT )∗ ⇐⇒ (w,w′) = 0 ∀w′ ∈ imT

⇐⇒ (w, T (v)) = 0 ∀v ∈ V
⇐⇒ (T ∗(w), v) = 0 ∀v ∈ V
T ∗(w) = 0.

For the second part, just use that

imT ∗ =
(

(imT ∗)⊥
)⊥

= ker(T ∗)∗ = (kerT )⊥.

§14.5 Spectral theory returns

Let k = C.

Definition 14.14. T : V → V is diagonalizable in a way compatible with the inner
form if V admits an orthonormal basis of eigenvectors.
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Lemma 14.15

The following are equivalent.

(1) T is diagonalizable in a way compatible with the inner form.

(2) We can take Vλ ⊆ V such that T |Vλ = λIdVλ such that
⊕

λ Vλ ∼ V , and
Vµ ⊥ Vλ for any µ 6= λ.

(3) T is diagonalizable and V λ ⊥ V µ for all λ 6= µ.

Proof. (3) =⇒ (1) is clear, just use Gram-Schmidt to get what we want.
(1) =⇒ (2) is easy, just set

Vλ = Span {ei | T (ei) = λei} .

(2) =⇒ (3): We know Vλ ⊆ V λ, but we have injections⊕
λ

Vλ →
⊕
λ

V λ → V.

Definition 14.16. Given an endomorphism T : V → V , we say T is normal if and only
if T ∗ ◦ T = T ◦ T ∗.

Theorem 14.17

Let T : V → V be a map over complex vector spaces. The map T is diagonalizable
in a way compatible with the inner form if and only if it is normal.

Proof. First, assume it’s diagonalizable in such a way. Let V =
⊕
Vλ. The point is that

if we have T1 : V1 → W1 and T2 : V2 → W2 with V1 ⊥ V2 and W1 ⊥ W2, then we want
T ∗ : W1 → V1 and T ∗ : W2 → V2. Like we want to check

(v1 + v2, T
∗
1 (w1) + T ∗2 (w2)) = (T1(v1) + T1(v2), w1 + w2).

Perpendicularity makes this clear.
Our proof is now by induction on dimV . Let T be normal. Since we are over C and

not R, there exists λ such that V λ 6= 0. So

(V λ)⊕ (V λ)⊥ ∼ V.

It is enough to show that (V λ)⊥ is T -invariant, then we can use the inductive hypothesis
on (V λ)⊥. Now

V λ = ker(T − λI)

so
(V λ)⊥ = im(T ∗ − λI).

So we merely need to show T commutes with T ∗ = λ · I. We know that T commutes
with T ∗ − λ · I. Hence T preserves its image.
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§14.6 Things not mentioned in class that any sensible person should know

There are some really nice facts out there that are simply swept under the rug. For
example the following proposition makes it immediately clear what the adjoint T ∗ looks
like.

Theorem 14.18

Let T : V → W , and take an orthonormal basis of V and W . Consider the
resulting matrix for T as well as T ∗ : W → V . They are complex transposes.

Proof. Orthonormal basis bashing.

Note that Gram-Schmidt lets us convert any basis to an orthonormal one. Do you now
understand why (T ∗)∗ = T is completely obvious?

Proposition 14.19

Let T be normal. Then T is self-adjoint if and only if its spectrum lies in R.

Proof. Take an orthonormal basis, now T is a diagonal matrix, and its adjoint just
conjugates all the entries on the diagonal.

§14.7 Useful definitions from the homework

On the homework we also have the following definitions.

Proposition 14.20

Let T : V → V be normal. The following are equivalent.

• We can take a basis in which the matrix of T is diagonal and has only
nonnegative real entries. In particular, T has eigenvalues consisting only of
nonnegative reals.

• We have (T (v), v) ≥ 0 for all v.

Definition 14.21. The map T : V → V is called non-negative definite if it satisfies
the above conditions.
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Theorem 14.22 (Unitary Maps)

Let T : V →W . The following are equivalent.

• T is invertible and T ∗ = T .

• T respects inner forms, i.e. we have

(T (v1), T (v2))W = (v1, v2)V

for any v1, v2 ∈ V .

• T : V →W respects just the norms, meaning

‖T (v)‖W = ‖v‖V

for any v ∈ V .

Definition 14.23. The map T : V →W is unitary if it satisfies the above conditions.
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“Today will be a challenging class”.

§15.1 Generators

Definition 15.1. Let M be a right R-module and let N be a left R-module. The tensor
product M ⊗R N be the abelian group generated by elements of the form m⊗ n, subject
to the following relations.

(m1 +m2)⊗ n = m1 ⊗ n+m2 ⊗ n
m⊗ (n1 + n2) = m⊗ n1 +m⊗ n2

mr ⊗ n = m⊗ rn

Not going to write down the definition “generated by elements of λi subject to relations”.
Look up “group presentation” for a human explanation.

Lemma 15.2

Suppose Λ is generated by generators λi and some relations. To specify a map
S : Λ→ Ω is to specify the image of each generator, preserving all relations.

Proof. Intuitively clear. Too lazy to copy down this proof since it’s buried in cokernels
and commutative diagrams.

As usual, abelian groups are being interpreted as Z modules. Like every element is
just a sum of the form

∑
(m,n)∈M×N cm,n(m⊗ n) subject to the above conditions.

OK fine I’ll sketch it. Basically, if you have a group G with generators (gi)i∈I
and relations (Rj)j∈J (here I and J are indexing sets), then you can define a map
T : A⊕J → A⊕I which sends every element of A⊕J to the corresponding thing we want
to make zero in G. Then G ∼= coker(T ).

§15.2 Basic Properties of Tensor Products

Lemma 15.3

To specify a map M ⊗RN
S−→ Ω is to specify a map S(m⊗n) where m ∈M , n ∈ N ,

satisfying the relations.

Lemma 15.4

M ⊗R R ∼= R.

Proof. The point is that m⊗ 1 7→ m. Explicitly, the bijection is m⊗ r 7→ m · r. Check
that it’s a map. It is obviously a surjection.

Lemma 15.5

(M1 ⊕M2)⊗N ∼= (M1 ⊗N)⊕ (M2 ⊗N).
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Proof. Meow.

Consider an left R-module N . Given a map T : M1 →M2 of right R-modules, we can
construct a map T ⊗ id by to get a map

M1 ⊗R N →M2 ⊗R N by m1 ⊗ n 7→ T (M1)⊗ n.

Proposition 15.6

Suppose we have M1
T−→M2

π−→M → 0 are right R-modules, and let N be a right
R-module. This gives a map

M1 ⊗R N →M2 ⊗R N →M ⊗R N.

Let M = coker(T ). Then coker(T ⊗ id) ∼= M ⊗R N .

Proof. Essentially we want (m2 ⊗ n) 7→ m⊗ n as the bijection. Blah.

§15.3 Computing tensor products

We begin this with the following quote.

“I want an honest confession now. Who has underspoken? You will have to
construct a map in one direction. Come out of your own free will, or you will
have to construct a map in both directions.” – Gaitsgory

Example 15.7

We wish to show Z2 ⊗Z Z3 = 0. Let M = Z2, N = Z3. Let M1 = Z, M2 = Z, and
consider the map T = 2. This gives us the maps

Z⊗Z Z3
T⊗id−−−→ Z⊗Z Z3.

We have an isomorphic map

Z3
2−→ Z3

and the cokernel of this map is 0. Hence Z2 ⊗Z Z3 = 0.

§15.4 Complexification

Let T : V1 → V2. We obtain a natural map.

id⊗ T : C⊗R V1 → C⊗R V2.

Let’s generalize this. Here’s the setup Let ϕ : R1 → R2, let M be a right R1-module,
and let N be a left R2 module.

Definition 15.8. Any left R2-module N is also a left R1-module according to the rule

r1 · n
def
= φ(r1) · n.
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We can put an right R1-module structure on R2 by saying

r2 · r1 = r2ϕ(r1).

Then it makes sense to consider the tensor product

X = R2 ⊗R1 M.

One can check that X is a left R2-module by the structure

r′2 · (r2 ⊗m)
def
= (r′2r2)⊗m.

Hence by our definition above, X is also an R1-module.
The result of all this setup is the following.

Theorem 15.9

In the above setup,

HomR1(M,N) ∼= HomR2(X,N) by T 7→ T ◦ Tuniv

Tuniv : M → X by m 7→ 1⊗ x.

What does this mean? The motivating example is M = R2, N = C5, R1 = R, R2 = C.
Basically if we specify an R-linear map R2 → C5, we just have to map each basis element,
but this automatically extends to a map C2 → C5 since we already know how to multiply
by i. And of course, the inclusion R2 ←↩ C2 of R-modules means that any map C2 → C5

gives us a map R2 → C5. What this means is that

HomR
(
R2,C5

) ∼= HomC
(
C2,C5

)
.

You can check that X plays the role of C2 in our examples, because X = C ⊗R R2 '
(C⊗R R)2. But C⊗R R is just deciding how to “extend” R to C.
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§16 October 23, 2014

Today we will continue tensor products. For this lecture, assume that R is commutative;
hence left and right modules are the same thing. We will abbreviate ⊗R as ⊗ unless
specified otherwise.

§16.1 Tensor products gain module structure

As R is commutative, M ⊗N has a structure of an R module by

r · (m⊗ n) = rm⊗ n.

Indeed, just check this.
We know that to map M⊗RN into an arbitrary abelian group Ω, it suffices to map each

(m,n) such that B(rm, n) = B(m, rn). Now that our tensor product has an R-module
structure, we want to map preserving R-modules.

Lemma 16.1

Let L be an R-module. A map B : M ⊗N → L is specified by a map from M ×N
to L satisfying

B(rm, n) = B(m, rn) = rB(m,n).

Proof. meow.

Lemma 16.2

M ⊗R N ' N ⊗RM .

This makes sense since R is commutative, so the concept of left and right module coincide.

Proof. Clear by the preceding lemma.

§16.2 Universal Property

Now (M1 ⊗M2)⊗M3
∼= M1 ⊗ (M2 ⊗M3). This is really annoying by normal means. So

we are going to present something called the “universal property”, which lets us not have
to deal with this nonsense.

We are going to define a module M1 ⊗M2 ⊗M3
def
= M in one shot.

Theorem 16.3

We claim there is a unique module M and a map Tuniv : M1 ×M2 ×M3 →M such
that for any other map L and T : M1×M2×M3 → L, there is a unique ϕ such that

M1 ×M2 ×M3
Tuniv - M1 ⊗M2 ⊗M3

L
�

ϕT

-
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Proof. First, we prove that Tuniv is unique. Suppose on the contrary that we have the
M ′, M ′′, T ′univ, T ′′univ with these properties. So consider:

M ′

M1 ×M2 ×M3

T
′
un
iv

-

M ′′

φ

?

ψ

6

T ′′univ -

We can construct φ and ψ based on the universal properties. Now observe

ψ ◦ φ ◦ T ′′ = T ′′ = id ◦ T ′′

and the universal property implies ψ ◦ φ = id. Similarly, φ ◦ ψ = id. Hence M and M ′

are isomorphic.
One will see this over and over again, in completely different problems with exactly

the same argument. This is what motivates category theory.
Now let’s prove existence. We will explicitly construct M and Tuniv by

M
def
= (M1 ⊗M2)⊗M3

and Tuniv(m1,m2,m3) = (m1 ⊗m2)⊗m3. Then we’ll be done by our uniqueness.
We have the commutative diagram

M1 ×M2 ×M3
Tuniv - (M1 ⊗M2)⊗M3

L
�

ϕ
T

-

Just do standard blah.

§16.3 Tensor products of vector spaces

In what follows, we now assume the ground ring is in fact a field. Hence we are considering
tensor products of vector spaces.

Let V and W be a finite dimensional vector space over k. We’ll identify V ' kn. In
that case,

k⊕n ⊗W ' (k ⊗W )⊕n 'W⊕n

By explicitly writing the bijection, we derive the following.

Corollary 16.4

Let V and W be vector spaces over k with basis e1, . . . , en and fi, . . . , fm. Then
ei ⊗ fj forms a basis of V ⊗W .

Now we will construct a map V ∨ ⊗W → Hom(V,W ) by ξ ⊗ w 7→ Tξ,w ∈ Hom(V,W ),
where Tξ,w(v) = ξ(v) · w.
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Lemma 16.5

The above map
V ∨ ⊗W → Hom(V,W )

is an isomorphism provided that V and W are finite-dimensional.

Proof. If e∨1 , . . . , e∨n is the basis of V ∨ corresponding to e1, . . . , en, we find that the image
of the map above is

e∨i ⊗ fj → Tij

where Tij is the matrix with 1 in (i, j) and zero otherwise. Hence we send basis to basis,
and we’re done.

In the homework one will actually show the map is an isomorphism if and only if at least
one of V or W are finite-dimensional.

§16.4 More tensor stuff

Lemma 16.6

The following diagram commutes.

V ∨ ⊗W - Hom(V,W )

W ⊗ V ∨

∼

?

(W∨)∨ ⊗ V ∨
?

- Hom(W∨, V ∨).
?

This gives us a way to interpret the dual map.

Lemma 16.7

Let ev : V ⊗ V ∨ → k be a canonical evaluation map. The following diagram
commutes.

(U∨ ⊗ V )⊗ (V ∨ ⊗W ) - Hom(U, V )⊗Hom(V,W )

U∨ ⊗ (V ⊗ V ∨)⊗W

'

?

U∨ ⊗ k ⊗W ' U∨ ⊗W
?

- Hom(U,W ).
?
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Definition 16.8. The trace Tr : End(V ) → V is defined as the unique map which
makes the following diagram commute.

V ∨ ⊗ V
'
- End(V )

k

ev

?�

Tr

One can check that this coincides with the “sum of the diagonals” definition.

§16.5 Q & A

“The first midterm was a joke. It was completely straightforward. This one
will require actual thinking.”

First, a note: I kept complaining that V ∨ is just V rotated. This is true, but it is not
natural to replace V ∨ with V everywhere. This is because a different choice of basis gives
a different isomorphism. So V is not more related to V ∨ than any arbitrary vector space
of the same dimension.

Let’s do PSet review.

Prove that any T : V → V can be uniquely written as T = T diag +T nilp, with
the two components commuting.

Proof. Look at the generalized eigenspaces V =
⊕

λ V
(λ) with respect to T . First, we

show existence. Let T diag be the map which multiplies on λ on each V (λ). Then just
set T nilp = T − T diag. You can check these components commute because we simply
need T to commute with T diag, which follows by noting that each V (λ) is T -invariant by
definition, so we only need to check commuting over each V (λ) and this is clear. Also, it
is easy to see that T nilp = T − T diag.

(If T commutes with S, then T preserves the eigenstuff because it preserves the kernels
and images.)

Now let’s show uniqueness. Consider a decomposition T = T diag+T nilp. Let V =
⊕
Vλ,

where Vλ are the λ eigenspaces of T diag. You can check that T − λ is nilpotent over each
Vλ from the fact that T commutes with T diag. Hence Vλ ⊆ V (λ) (reminder that Vλ is
with respect to T diag and V (λ) is with respect to T ). And now we have⊕

λ

Vλ ↪→
⊕
λ

V (λ) ' V.

So V (λ) = Vλ. That’s enough to imply that our T diag is the same as the one we explicitly
constructed.

Polynomial stuff follows from that you can write T diag using spectral projectors.
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§17 October 28, 2014

§17.1 Midterm Solutions

Darn these solutions are correct why did I lose points qq.

17.1.1 Problem 1

Let V and W be vector spaces (not necessarily finite-dimensional).

(a) Consider the map
V ∨ ⊗W∨ → (V ⊗W )∨

that sends ξ ⊗ η to the functional on V ⊗W that takes v ⊗ w to ξ(v) · η(w). Show
that this map is an isomorphism if one of these vector spaces is finite-dimensional.

Assume by symmetry that V is finite-dimensional. By [Pset 8, Problem 6a], the canonical
map V ∨ ⊗W∨ → Hom(V,W∨) by ξ ⊗ η 7→ (v 7→ ξ(v) · η) is an isomorphism. By [Pset
8, Problem 7a] the map Hom(V,W∨) → (V ⊗W )∨ by θ 7→ (v ⊗ w 7→ θ(v)(w)) is an
isomorphism. Composition shows that the requested map is an isomorphism.

(b) Let V and W be vector spaces with W finite-dimensional. Define a linear map

Hom(V,W )⊗Hom(W,V )→ k

by
T ⊗ S 7→ TrW (T ◦ S).

Note that by [Pset 8, Problem 7a], the above map defines a map

Hom(V,W )→ (Hom(W,V ))∨.

Show that this map is an isomorphism.

Let Ψ : Hom(V,W )→ (Hom(W,V ))∨ be the map in question, and let W have basis e1,
. . . , en. Then Ψ is given by T 7→ (S 7→ TrW (T ◦ S)) and we wish to show that this is an
isomorphism.

Using [Pset 8, Problem 6a] it is easy to compute

Tr(T ◦ S) = ev

(
n∑
i=1

e∨i ⊗ (T ◦ S)(ei)

)
=

n∑
i=1

e∨i ((T ◦ S)(ei)) .

Hence we wish to prove that Ψ : T 7→ (S 7→
∑n

i=1 e
∨
i (T ◦ S)(ei)) is an isomorphism. To

construct the reverse map, consider the map Θ by

Θ : ξ 7→

[
v 7→

n∑
i=1

(
ξ

[
ek 7→

{
v if k = i

0 otherwise.

])
ei

]

It is tautological to check that Θ is a two-sided inverse to Ψ. Indeed, verify that

Θ(Ψ(T )) =

(
v 7→

n∑
i=1

e∨i (T (v)) · ei

)
= T
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and

Ψ(Θ(ξ)) =

S 7→
n∑
i=1

e∨i

v 7→


n∑
j=1

(
ξ

[
ek 7→

{
v if k = j

0 otherwise.

])
ej


(S(ei)

)
=

S 7→
n∑
i=1

e∨i

 n∑
j=1

(
ξ

[
ek 7→

{
S(ei) if k = j

0 otherwise.

])
ej


=

{
S 7→

n∑
i=1

(
ξ

[
ek 7→

{
S(ei) if k = i

0 otherwise.

])}

=

{
S 7→ ξ

[
n∑
i=1

(
ek 7→

{
S(ei) if k = i

0 otherwise.

)]}
= {S 7→ ξ [ek 7→ S(ek)]}
= {S 7→ ξ(S)}
= ξ.

It follows that Ψ is an isomorphism.

17.1.2 Problem 2

(a) Let V1, V2 and W be finite-dimensional vector spaces, and let T : V1 → V2 be an
injective map. Show that the map T ⊗ id : V1 ⊗W → V2 ⊗W is also injective.

Since T is injective there is a map S : V2 → V1 such that S ◦ T = id. We claim S ⊗ id
is also a left inverse for T ⊗ id. To prove that (S ⊗ id) ◦ (T ⊗ id) is the identity, it suffices
to verify this for the spanning set {v1 ⊗ w | v1 ∈ V,w ∈ V }, which is evident:

(S ⊗ id) ◦ (T ⊗ id)(v1 ⊗ w) = S(T (v1))⊗ w = v1 ⊗ w.

(b) Let TR be a real n× n matrix, and let TC be the same matrix but considered as
a complex one. Show that minTC ∈ C[t] equals the image of minTR ∈ R[t] under the
tautological map R[t]→ C[t].

Set T = TC, and let p = minT . WLOG p is monic. Since C is algebraically closed, it
follows that we can decompose V =

⊕
λ V

(λ). Now the minimal polynomial is given by

p(t) =
∏

λ∈Spec(T )

(t− λ)mλ

where mλ is the smallest integer such that Tmλ annihilates V (λ).
We now prove that p consists of real coefficients. To do so, it suffices to prove that

mλ = mλ for any λ ∈ C. But T = T as T ∈ Rn×n and the claim follows immediately
upon observing that

(T − λ)k (v) = 0 ⇐⇒
(
T − λ

)k
(v) = 0 = 0.

Hence the minimal k to kill a λ-eigenvector is the same as the minimal k to kill a
λ-eignvector.

Alternatively, one can use note that if 1, TR, . . . , Tn−1R are linearly independent then
so are 1, TC, . . . , Tn−1C .
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17.1.3 Problem 3

(a) Let V be a complex vector space endowed with an inner form, and let T : V → V
be an endomorphism. Show that T is normal if and only if there exists a polynomial
p ∈ C[t] such that T ∗ = p(T ).

First, suppose T ∗ = p(T ). Then T ∗T = p(T ) · T = T · p(T ) = TT ∗ and we’re done.
Conversely, suppose T is diagonalizable in a way compatible with the inner form (OK

since V is finite dimensional). Consider the orthonormal basis. Then T consists of
eigenvalues on the main diagonals and zeros elsewhere, say

T =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 .

In that case, we find that for any polynomial q we have

q(T ) =


q(λ1) 0 . . . 0

0 q(λ2) . . . 0
...

...
. . .

...
0 0 . . . q(λn)

 .

and

T ∗ =


λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn

 .

So we simply require a polynomial q such that q(λi) = λi for every i. Since there are
finitely many λi, we can construct such a polynomial of degree at most n − 1 using
Lagrange interpolation. The conclusion follows.

Notice moreover the set of polynomials that work is precisely the set of q such that
q(λ) = λ for every λ ∈ Spec(T ) (this becomes important in 3c).

(b) Let V be a real vector space, and let v1, ..., vn and w be elements. Let VC := CR⊗V
be its complexification, and let 1 ⊗ v1, ..., 1 ⊗ vn and 1 ⊗ w be the corresponding
elements of VC. Show that w belongs to the span of v1, ..., vn if and only if 1 ⊗ w
belongs to the span of 1⊗ v1, ...1⊗ vn.

If w =
∑
akvk then 1⊗ w =

∑
ak(1⊗ wk) is clear (here ai ∈ R). Conversely, suppose

that 1⊗w =
∑

(xk + yki)⊗ vk, where xi and yi are reals. Then 1⊗w = 1⊗ (
∑
xkvk) +

i⊗ (
∑
ykvk), so

1⊗
(
w −

∑
xkvk

)
= i⊗

(∑
ykvk

)
.

Because of the relations between v⊗w, this can only occur if w−
∑
xkvk =

∑
ykvk = 0,

which is what we wanted to show.

(c) Let V be a real vector space endowed with an inner form, and let T : V → V be
an endomorphism. Show that T is normal if and only if there exists a polynomial
p ∈ R[t] such that T ∗ = p(T ).
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Again if T ∗ = p(T ) then we clearly have T ∗T = p(T )T = Tp(T ) = TT ∗.
The hard part is showing that if T ∗T = TT ∗, then T ∗ = p(T ) for some T ; we no longer

have an orthonormal basis of eigenvectors. However, taking T in C gives us a polynomial
q ∈ C[t] for which q(T ) = T ∗.

We observe that since T can be written in a real matrix, it follows that T (v) = λv =⇒
T (v) = λv. So it follows that if λ ∈ Spec(T ) implies λ ∈ Spec(T ).

Hence we suppose the distinct eigenvalues of Spec(T ) over C are λi, λi, for λi ∈ C−R,
and µj ∈ R, and that there are a total of N distinct eigenvalues. Consider the minimal
complex polynomial P (by degree) such that

P (λi) = λi, P (λi) = λi, P (µj) = µj .

By Lagrange interpolation we have that degP ≤ N − 1, and by Problem 3(a) this
polynomial forces T ∗ = P (T ). Let P be the polynomial whose coefficients are the
conjugate of those in P . We find that

P (λi) = λi, P (λi) = λi, P (µj) = µj .

Hence P is also a polynomial of the same degree which also satisfies the conditions. Hence
P −P is the zero polynomial over N distinct complex numbers, but it has degree at most
N − 1, so P − P ≡ 0. Hence P ≡ P . That means P (t) ∈ R[t] and we are done.

§17.2 The space Λn
sub(V )

Oh man this is not in the notes PAY ATTENTION CHILDREN.
Let V be a finite dimensional vector space over a field k, and let n be a positive integer

with n ≥ 2. Consider the space V ⊗n.

Definition 17.1. We define

Λ2
sub(V )

def
= Span {v1 ⊗ v2 − v2 ⊗ v1 | v1, v2 ∈ V } .

Then, we define for n ≥ 3 the space Λnsub(V ) as(
Λ2
sub(V )⊗ V ⊗(n−2)

)
∩
(
V ⊗ Λ2

sub(V )⊗ V n−3) ∩ (V 2 ⊗ Λ2
sub(V )⊗ V n−4) ∩ · · ·

i.e. we set

Λnsub(V ) =

n−2⋂
k=0

(
V k ⊗ Λ2

sub(V )⊗ V n−2−k
)
.

Let’s focus first on n = 2.

Lemma 17.2

If V has a basis e1, . . . , en then the elements ei ⊗ ej − ej ⊗ ei, i < j, are a span for
Λ2
sub.

Proof. Clear. In a moment we’ll see the elements are linearly independent, so in fact
they form a basis.

On to general n (in the actual lecture, we define Λnsub only here). In subsequent weeks
we will study actions of group on vector spaces. Actually, we claim that the symmetric
group Sn acts on V ⊗n. The map is simply

v1 ⊗ · · · ⊗ vn
σ∈Sn7→ vσ(1) ⊗ · · · ⊗ vσ(n).

We will now point out that this map is actually very simple, mainly because the case of
a transposition is just negation.
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Lemma 17.3

Let sign : Sn → {±1} be the sign of a permutation. The Sn action preserves

Λnsub(V ) ⊆ V ⊗n

and actually, for all w ∈ Λnsub(V ), we have σ · (w) = sign(σ) · w.

Proof. Because Sn is generated by transpositions, it’s enough to prove the lemma in the
special case where σ = (i i+ 1). We’ll show that for any

w ∈ V ⊗(i−1) ⊗ Λ2
sub(v)⊗ V ⊗(n−i−1)

we in fact have σ(w) = −w. The conclusion will follow because this is a subset of the
massive intersection which is Λnsub(v).

And now we’re basically done, because we only look at the middle Λ2
sub(v). In fact

we’re basically looking at the case n = 2, this is clear; note that

σ(vi ⊗ vi+1 − vi+1 ⊗ vi) = vi+1 ⊗ vi − vi ⊗ vi+1.

In the homework, we will show that Λnsub(v) is equal to LHn = {w | σ(w) = −w} except
in the case where the ground field has characteristic 2, since in that case

σ(v ⊗ v) = v ⊗ v = −v ⊗ v =⇒ v ⊗ v ∈ LHn.

§17.3 The space Λn
quot(V )

Definition 17.4. Let us define V ⊗nbad ⊆ V
⊗n as the span of elements of the form

v1 ⊗ · · · ⊗ vi−1 ⊗ v ⊗ v ⊗ vi+2 ⊗ · · · ⊗ vn.

Then, we define
Λnquot(V ) = V ⊗n/V ⊗nbad .

We will let π denote the projection V ⊗n → Λnquot(V ).

Lemma 17.5

v ⊗ w + w ⊗ v ∈ V ⊗ V is bad. Moreover, v ⊗ w ⊗ v ∈ V ⊗3 is bad. More generally,
any element of the form

v1 ⊗ · · · ⊗ vn
is bad if vi = vj for some 1 ≤ i < j ≤ n.

Proof. It is equal to (v +w)⊗ (v +w)− v ⊗ v −w⊗w. Thus modulo bad guys, we have

v ⊗ w ⊗ v modulo bad≡ −v ⊗ v ⊗ w ∈ Vbad.

The general claim follows by repeating this swap operation multiple times.

Hence, like in life, there are more bad guys than one might initially suspect.
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§17.4 The Wedge Product

Definition 17.6. We will write (v1 ∧ · · · ∧ vn)quot to denote π(v1 ⊗ · · · ⊗ vn).

Note that we can swap two elements for a negation by what we knew above: explicitly

(v1 ∧ · · · ∧ vi ∧ · · · ∧ vj ∧ · · · ∧ vn)quot = −(v1 ∧ · · · ∧ vj ∧ · · · ∧ vi ∧ · · · ∧ vn)quot.

Corollary 17.7

Let V be an m-dimensional vector space. Then Λnquot(V ) is spanned by the elements
of the form

(ei1 ∧ · · · ∧ ein)quot

where 1 ≤ i1 < · · · < in ≤ m.

Now let us consider the composite map

Λnsub(V )→ V ⊗n → Λnquot(V ).

In the case n = 2, we see this map gives

v1 ⊗ v2 − v2 ⊗ v1 = 2v1 ∧ v2.

Hence this map is an isomorphism unless k has characteristic 2; i.e. this is an isomorphism
unless 2 = 0.

So we need a different approach to an isomorphism. . .

§17.5 Constructing the Isomorphism

Now let us consider the map
T : V ⊗n → V ⊗n

given by

v1 ⊗ · · · ⊗ vn 7→
∑
σ∈Sn

sign(σ)
(
vσ(1) ⊗ · · · ⊗ vσ(n)

)
.

We will prove two facts about T .

Lemma 17.8

T kills the bad guys; i.e. Vbad is contained in kerT .

Proof. We wish to show T kills the element v1 ⊗ · · · ⊗ vi ⊗ vi+1 ⊗ · · · ⊗ vn whenever
vi = vi+1. Let s = (i i+ 1). Then in the sum over σ ∈ Sn, we see that the terms σ and
σ ◦ s cancel each other out.

Lemma 17.9

imT ⊆ Λnsub(V ).

Proof. This is deferred to the homework.
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Now from these two lemmas we can define a map T̃ from the quotient Λnquot(V ) into
Λnsub(V ). In other words, we have the commutative diagram

V ⊗n
T
- V ⊗n

Λnquot(V )

project

? T̃
- Λnsub(V )

inclusion

6

Choose a basis e1, . . . , em in V .

Proposition 17.10

Consider the spanning set

(ei1 ∧ · · · ∧ ein)quot ∈ Λnquot(V )

for 1 ≤ i1 < · · · < in ≤ m. The images of such elements under T̃ are linearly
independent.

Proof. Basically, recall that

T̃ ((ei1 ∧ · · · ∧ ein)quot =
∑
σ

sign(ω)
(
eσ(1) ⊗ · · · ⊗ eσ(n)

)
.

But the eσ(1) ⊗ · · · ⊗ eσ(n) are all linearly independent, and there is no repetition.

Combining with an earlier observation, we obtain the following.

Corollary 17.11

The (ei1 ∧ · · · ∧ ein) are actually a basis for Λnquot(V ).

Proof. We already saw earlier they were a spanning set. Because their images are linearly
independent by the proposition, they elements themselves were linearly independent.

Now we are in a position to prove the following theorem.

Theorem 17.12

The map T̃ defined above is an isomorphism.

Note that since isomorphism take bases to bases, this theorem implies (ei1 ∧ · · · ∧ ein) is
a basis of Λnsub(V ). We’ll prove this next time.

Definition 17.13. Now that we know Λnsub(V ) ' Λnquot(V ), we will simply denote them
both by Λn(V ).

Obviously the theorem gives dim(Λn(V )) =
(
dimV
n

)
.
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§17.6 Why do we care?

These are notes from a discussion after class with JT (thanks!), and were not part of the
lecture.

Let’s motivate all of this. It’s actually the case that the wedge product (particularly
in physics) lets you talk about areas and volumes meaningfully.

Wikipedia motivates this well; see http://en.wikipedia.org/wiki/Exterior_algebra#
Motivating_examples. The single best line I can quote is

(ae1 + be2) ∧ (ce1 + de2) = (ad− bc) e1 ∧ e2

which gives you the area of a parallelogram. More generally, any v1 ∧ · · · ∧ vn reduces to
a linear combination of guys like ei1 ∧ · · · ∧ ein , each corresponding to a hyper-volume
that you assign to a certain set of basis elements.

So what does the algebra mean? Well, if we’re interested in v ∧ w expressing some
notion of “area” we better have

v ∧ v = 0.

(You probably also want the relation cv ∧ w = v ∧ cw, but that follows from the fact
that these are tensor products.) This is claim is actually equivalent to the relation
v∧w = −w∧ v by writing the 0 = (v+w)∧ (v+w). And the miracle is that the relation
v∧ v = 0 is all that you ever really need in order to get the nice geometry analog to work!

If you take this interpretation it’s obvious that v1 ∧ · · · ∧ vn ought to be zero if vi = vj
for some i < j, because you have zero hypervolume. The “bad” guys that Gaitsgory
talks about are just the wedge combinations which have zero volume. Of course you
mod out by these. And the homework problem about determinants is natural, because
determinants are also ways of expressing hyper-volumes of maps.

So all that Λsub and Λquot is doing are expressing two different ways of making
v1 ⊗ · · · ⊗ vn formally into v ∧ · · · ∧ vn. And the T̃ just shows you that the these notions
are isomorphic.
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§18 October 30, 2014

§18.1 Review

Recall that we defined Λ2
sub(v) and

Λnsub(V ) =
(

Λ2
sub(V )⊗ V ⊗(n−2)

)
∩ · · · ∩

(
V ⊗(n−2) ⊗ Λ2

sub(V )
)

and
V ⊗nbad ⊆ V

⊗n

as the span of elements of the form

v1 ⊗ · · · ⊗ vi−1 ⊗ v ⊗ v ⊗ vi+2 ⊗ · · · ⊗ vn.

Then, we define
Λnquot(V ) = V ⊗n/V ⊗nbad

and let π denote the projection V ⊗n → Λnquot(V ).
We see that if e1, . . . , em is a basis of V then

ei1 ∧ · · · ∧ ein ∈ Λnquot(V )

is the basis of Λnquot(V ) (and henceforth I’m going to drop the (·)quot).
We have an averaging map Avsign : V ⊗n → V ⊗n by

v1 ⊗ · · · ⊗ vn =
∑
σ∈Sn

sign(σ)
(
Vσ(1) ⊗ · · · ⊗ vσ(s)

)
.

In the homework we see that we have a commutative diagram

V ⊗n
Avsign

- V ⊗n

Λnquot(V )

π

?

Ãv
sign
- Λnsub(V )

⊆

6

Last time we saw that Ãv
sign

sent the basis elements of Λnquot(V ) to a linearly indepen-
dent collection. This gave a couple nice corollaries.

Today we will prove that

dim Λnsub(V ) = dim Λnquot(V ).

This will complete the proof of the theorem we left out last time.
We first need to recall something though. Suppose we have W1 ⊆W2, and we have an

inclusion i : W1 →W2. Recall that we define W⊥1 ⊆W∨2 by

W⊥1 = ker i∨ =
{
ξ ∈W∨2 | ξ(w) = 0∀w1 ∈W1

}
.
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§18.2 Completing the proof that Λn
sub(V ) = Λn

quot(V )

Notice that we have spaces
Λnsub(V ∨) ⊆ (V ∨)⊗n

and (
Λnquot(V )

)∨ ⊆ (V ⊗n)∨.

Of course, (V ∨)⊗n ' (V ⊗n)∨.

Proposition 18.1

The spaces above coincide, meaning that

Λnsub(V ∨) '
(
Λnquot(V )

)∨
.

This will allow us to deduce equality of dimensions, because there is a non-canonical
isomorphism between Λnquot(V )∨ and Λnquot(V ), so the dimensions match up.

Let us illustrate the case for n = 2 first. We wish to show that

(V ∨)⊗2 ⊇ Λ2
sub(V ∨) =

(
V ⊗2bad

)⊥ ⊆ (V ⊗2)∨.

We can do this explicitly by writing e1, . . . , en a basis for V and e∨1 , . . . , e∨n a basis of
V ∨. Then the elements of (V ∨)⊗2 are linear combinations of

∑
i,j aije

∨
i ⊗ e∨j . Now

V ⊗2bad = Span (ei ⊗ ei, ei ⊗ ej + ej ⊗ ei) .

and we’re interested in which A =
∑

i,j aije
∨
i ⊗ e∨j which kill all those guys in V ⊗2bad; this

is equivalent to killing the elements above that span V ⊗2bad. Compute

A(ei ⊗ ei) = aii

and
A (ei ⊗ ej + ej ⊗ ei) = aij + aji

so the criteria for membership in (V ⊗2bad)⊥ is simply aii = 0 and aij = −aji, coinciding
with Λ2

sub(V ).
Let’s prove the proposition now for the general case. First, we need a couple lem-

mas.

Lemma 18.2

Let Wi be subspaces of W . Consider
∑

iWi = {
∑

iwi | wi ∈Wi}. Then(∑
Wi

)⊥
⊆W∨

is equal to
⋂
W⊥i .

Proof. This is just saying that to annihilate
∑

iWi is equivalent to annihilating each
individual Wi.

Observe that we used this lemma above already, when we only consider ei ⊗ ei and
ei ⊗ ej + ej ⊗ ei.
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Lemma 18.3

Let W1 ⊆W2, and U a finite-dimensional subspace. Then the spaces

(W1 ⊗ U)⊥ ⊆ (W2 ⊗ U)∨

W⊥1 ⊗ U∨ ⊆W∨2 ⊗ U∨

are isomorphic. (Notice that (W2 ⊗ U)∨ 'W∨2 ⊗ U∨.)

Proof. Take a basis of U .

Proof of Proposition. We need only show that(
V ⊗i ⊗ V ⊗2bad ⊗ V

n−i−2)⊥ =
(
V ∨
)⊗i ⊗ Λ2

sub(V ∨)⊗
(
V ∨
)⊗(n−2−i)

.

but the lemma tells us that the left-hand side is equal to

(V ∨)⊗i ⊗ (V ⊗2bad)⊥ ⊗ (V ∨)⊗(n−2−i).

Handling the middle term is just the n = 2 case.

§18.3 Wedging Wedges

What follows is preparation for differential forms, three months from now.

Lemma 18.4

There us a unique map ∧ : Λn1(V ) ⊗ Λn−2(V ) → Λn1+n2(V ) which makes the
following diagram commute.

Λn1(V )⊗ Λn−2(V )
∧
- Λn1+n2(V )

V ⊗n1
1 ⊗ V ⊗n

6

'
- V ⊗(n1+n2)

6

So we’re thinking about the Λquot interpretation of Λ.

Proof. The proof of uniqueness is immediate from the fact that V ⊗n1⊗V ⊗n2 → Λn1(V )⊗
Λn2(V ) is surjective.

Now for existence. The obvious proof is to just define ∧ on basis elements by

(ei1 ∧ · · · ∧ ein) ∧ (ej1 ∧ · · · ∧ ejm) 7→ (ei1 ∧ · · · ∧ ein ∧ ej1 ∧ · · · ∧ ejm)

and check the diagram commutes on the basis, which is clear. But Gaitsgory says that
this proof sucks because it defines things on basis elements.

A second proof of existence is as follows.
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Lemma 18.5

Consider short exact sequences of R-modules

0→ I1 →M1 → N1 → 0

0→ I2 →M2 → N2 → 0

and consider the map

Ψ : (I1 ⊗M2)⊕ (M1 ⊗ I2)→M1 ⊗M2

using the inclusions I1⊗M2 →M1⊗M2 and M1⊗ I2 →M1⊗M2. Then the kernel
of the map M1 ⊗M2 → N1 ⊗N2 is contained in the image of Ψ.

Proof. Homework. �

Now we can apply the lemma on short exact sequences

0→ V ⊗n1
bad → V ⊗n1 → Λnquot(V )→ 0

0→ V ⊗n2
bad → V ⊗n2 → Λnquot(V )→ 0

By the lemma, we can write

Λn1
quot(V )⊗ Λn2

quot(V ) = coker
(
V n1
bad ⊗ V

⊗n2 ⊕ V ⊗n1
1 ⊗ V n2

bad → V ⊗n1 ⊗ V ⊗n2
)
.

Lemma 18.6

The diagram

Λn1(V )⊗ Λn2(V ) - Λn1+n2(V )

Λn2(V )⊗ Λn1(V )

swap · (−1)n1n2

?
- Λn2+n1(V )

'

?

Here swap is just a standard isomorphism v ⊗ w 7→ w ⊗ v.

By convention, we now define Λ0(W ) = k and Λ1(W ) = W .

Lemma 18.7

Consider the map
n⊕
k=0

Λk(V1)⊗ Λn−k(V2)→ Λn(V )

by sending each Λk(V )⊗ Λn−k(V ) to Λn(V ) using the wedge. Then this map is an
isomorphism.

Proof. Basis bash.
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§19 November 4, 2014

Representation Theory.
In this lecture, G is a fixed group, and k is a fixed field.

§19.1 Representations

Definition 19.1. A representation of G is a pair

ρ = (V, ψ)

where V is a finite dimensional vector space over k, and ψ : G→ Autk(V ) is an action of
G on V .

Hence ψ(g) is an automorphism of V , and g · v = ψ(g)(v) is the associated action.

Definition 19.2. A homomorphism of representations ρi = (Vi, ψi) for i = 1, 2 is a map
T : V1 → V2 such that

ψ2(g) ◦ T = T ◦ ψ1(g)

holds for all g ∈ G.

Example 19.3

If V = W⊗n, and G = Sn, then Sn acts by permutation on W . So the (W⊗n, Sn y
W⊗n) is a representation.

Example 19.4

If V = kn, then Sn acts on V by permutation the basis elements.

Another simple example is the zero representation.

Example 19.5

The trivial representation, denoted triv, is the representation V = k and the
trivial action on G (i.e. G takes every automorphism to itself). In other words,
triv = (k, 1Act).

§19.2 Group Actions, and Sub-Representations

Suppose Gy X.

Definition 19.6. For a set X, we define a vector space

Fun(X) : {maps X → k} .

We let Func(X) be the subset of Fun(X) consisting of those maps with finite support,
meaning only finitely many inputs give nonzero outputs. It is spanned by basis elements
δ∗.
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Then we can define an action Gy Fun(X) by

(g · f)(x) = f(g−1 · x).

One can check this works. Thus we can also view Fun(X) as a representation of G.
In what follows we will abuse notation and also let Fun(X) denote the corresponding
representation.

Remark 19.7. All representations with V = k are in bijection with HomGrp(G,Autk(k)) =
HomGrp(G, k∗) where k∗ is the nonzero elements of k.

Definition 19.8. We say ρ′ is a subrepresentation of ρ if V ′ is realized as a subspace
of V compatible with the G-action.

Example 19.9

Func(X) is a subrepresentation of Fun(X).

Lemma 19.10

If f has finite support, then so does gf .

Remark 19.11. Earlier we remarked that Sn acts on V = kn, which gives rise to a
representation of G. We can view this as the special case Fun({1, . . . , n}).

§19.3 Invariant Subspaces

Definition 19.12. Let ρ = (V,G→ Aut(V )). We define the invariant space

ρG = {v | g · v = v ∀g ∈ G} .

Lemma 19.13

ρG ' HomG(triv, ρ).

Proof. Recall triv = (k, 1Act). Let ρ = (V, ψ). We identify Hom(k, V ) with V by sending
each v ∈ V to the map a 7→ a · v. Observe that HomG(triv, ρ) ⊆ Hom(k, V ) ' V .

For a fixed a ∈ k, the corresponding element of Hom(k, V ) is a→ a · v. We want to
check g(av) = av, which is precisely ρG.

§19.4 Covariant subspace

Definition 19.14. Let ρ = (G,ψ). Define the covariant subspace is

ρG = V/Span(g · v − v)

i.e. it is the quotient of the map v → ρG.

Definition 19.15. Define the dual representation of a map ρ = (V, ψ) by ρ∨ =

(V ∨, ψ′) where ψ′(g)
def
= (ψ(g−1))∨.
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Lemma 19.16

(ρG)∨ ' (ρ∨)G.

This is motivated by noting that on the homework, we already had G = Sn, ρ = V ⊗n,
ρG = Symn

sub(V ) and ρG = Symn
quot(V ).

Proof. We have (ρ∨)G ⊆ V ∨ and (ρG)∨ = Hom(ρG, k) ⊆ Hom(V, k) = V ∨. We wish to
check that

(ψ(g−1))∨(ξ) = ξ ∀g

For all v ∈ V , we have 〈
(ψ(g−1))∨(ξ), v

〉
= 〈ξ, v〉 .

By definition, we get
〈
ξ, (ψ(g−1))(v)

〉
= 〈ξ, v〉. So

〈
ξ, ψ(g−1) · v − v

〉
= 0 for all v ∈ V ,

g ∈ G.

§19.5 Quotient spaces and their representations

Let H ≤ G, X = G/H.

Lemma 19.17

HomG(Func(G/H), ρ) ' ρH .

Proof. Consider a map T : Func(G/H) → V . We will map δ1 7→ T (δ1) ∈ V . Here δ1
is the function on G/H which sends 1 to 1 ∈ k and everything else to 0 ∈ k. Letting
v = T (δ1), we can check that

h · δ1 = δh = δ1.

Hence v ∈ ρH .
Conversely, suppose v ∈ ρH . Then v ∈ V , h · v = v. We select the function T sending

T (δg) = g · v. You can verify this is well-defined. Proving that it’s a two-sided inverse is
homework.

Lemma 19.18

HomG(ρ,Fun(G/H)) ' (ρH)∨.

Proof. Homework.

§19.6 Tensor product of representations

Definition 19.19. Let ρ1 = (V1, ψ1) and ρ2 = (V2, ψ2) be representations of G1 and G2,
respectively. We define ρ1 � ρ2 a representation of G1 ×G2 by

ρ1 � ρ2 = (V1 ⊗ V2, ψ1 ⊗ ψ2) .

Here (ψ1⊗ψ2)(g1, g2)(v1⊗v2) = ψ(g1)(v1)⊗ψ2(g2)(v2). In other words, (g1, g2)·(v1⊗v2) =
(g1 · v1)⊗ (g2 · v2).
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Definition 19.20. We define the tensor representation product of two representa-
tions ρ1, ρ2 of G as follows. It is the restriction of ρ1 � ρ2 over G×G to the diagonal G.
We denote this by ρ1 ⊗ ρ2.

Equivalently, ρ1⊗ρ2 = (V1⊗V2, •) is a representation ofG where g·(v1⊗v2) = g·v1⊗g·v2.

Now here comes the construction of which the mortality rate is 70%. We use a double
underline (!?).

Definition 19.21. We define a representation of G1 ×G2 by

Hom(ρ1, ρ2) =
(
Hom(V1, V2), (g1, g2) · T = g2 · T ◦ g−11

)
.

In other words, the action by (g1, g2) sends T to ψ(g2) ◦ T ◦ ψ(g1).

Definition 19.22. If ρ1 and ρ2 are representations of G, then we define the internal
Hom by

Hom(ρ1, ρ2) =
(
Hom(V1, V2), g · T = g−1 · T ◦ g

)
.

In other words, the action sends g to T 7→ ψ2(g
−1) ◦ T ◦ ψ1(g).

The following construction has a 70% mortality rate.

Lemma 19.23

We have
HomG(ρ1, ρ2) = (Hom(ρ1, ρ2))

G .

Proof. Both sides live inside Hom(V1, V2). A given T : V1 → V2 lives on the left-hand
side if and only if ψ2(g) ◦ T = T ◦ ψ1(g) for every g. It lives in the right-hand side if and
only if ψ2(g

−1) ◦ T ◦ ψ1(g) holds for every g.
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Protip: a representation is a functor from the category corresponding to a group to
vector spaces over k. Then Hom represents natural transformations, and we have an
isomorphism

ρ∨1 ⊗ ρ2 → Hom(ρ1, ρ2).

§20.1 Representations become modules

Definition 20.1. Let k[G] be the set Func(G) endowed with a ring structure as follows.
Addition is done canonically, and multiplication is done by noting Func(G) = Span(δg :
g ∈ G) and

δg1 · δg2 = δg1g2 .

Lemma 20.2

Representations of G correspond to k[G] modules.

Hence it what follows we will consider modules and representations interchangably.

§20.2 Subrepresentations

Definition 20.3. If ρ = (V, ψ) is a representation, a subrepresentation is a represen-
tation ρ′ = (V ′, ψ|V ′), where V ′ is a subspace of V . Notice that for this definition to
make sense we require that V ′ is invariant under ψ; in other words, V ′ is G-invariant.
We write ρ′ ≤ ρ to mean ρ′ is a subrepresentation of ρ.

Definition 20.4. We say ρ is irreducible if it has no nontrivial subrepresentations.

Example 20.5

Let G = S3, and let ρ act on k3. Then V ′ = Span (〈1, 1, 1〉) gives a canonical
subrepresentation.

Lemma 20.6

A representation ρ is irreducible if and only if for all nonzero v ∈ V , Span({g · v |
g ∈ G}) = V .

Proof. The set Span ({g · v | g ∈ G}) is G-invariant. Meow.

Example 20.7

As above, take ρ with V = k3 and G = S3. Let

V ′ = {(a, b, c) | a+ b+ c = 0} .

One can check that this gives a nontrivial subrepresentation by showing that Span(g ·
v) = V , except in characteristic 3.
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§20.3 Schur’s Lemma

Definition 20.8. A module is irreducible if and only if it has no nontrivial submodules.

The following guy is REALLY important.

Theorem 20.9 (Schur’s Lemma)

Suppose k is algebraically closed, and let R be a k-algebra. Let M be an irreducible R-
module which is finite dimensional as a k-vector space. Let T be an R-endomorphism
of M . Then T is multiplication by some λ ∈ k.

Proof. There exists an eigenvalue λ ∈ k such that 0 6= Mλ = {m ∈M | Tm = λm}.
Then Mλ is a submodule so Mλ = M .

Corollary 20.10

If k is algebraically closed then ρ is irreducible over a finite dimensional vector space,
then EndG(ρ) = k.

Example 20.11

This can fail in the case of non-algebraically closed fields. Let k = R, G = Z3, and
let ρ be a representation on the vector space V = R2 where G acts on v ∈ V by

rotating by 120◦. By interpreting this as complex by multiplication e
2πi
3 we see

that the R2-linear maps which commute with ρ are just multiplication by another
complex number. In other words,

EndG(ρ, ρ) ' C.

Corollary 20.12

Let R be a commutative k-algebra, where k is algebraically closed. Then any
irreducible R-module M is a one-dimensional over k and is given by the set of maps
f which obey the following commutative diagram.

R
f
- k

k

6

id

-

An example is R = k[t]. In this case f is evaluation.

Proof. Because R is commutative, every r ∈ R leads to an endomorphism of M by the
left action of M . Hence by Schur’s lemma each r corresponds to some χ(r) ∈ k in which
this left action is multiplication by χ(r). In other words, each m 7→ r ·m can be written
as m 7→ χ(r)m for some χ(r) ∈ k.
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Corollary 20.13

Let G be commutative. Then any irreducible G-representation which is finite
dimensional as a vector space is of the form

ρ = (k, χ : G→ k∗).

Proof. Immediate from previous corollary.

§20.4 Splittings

Theorem 20.14 (Maschke’s Theorem)

Let k be a field whose characteristic does not divide |G|. Then any finite dimensional
representation is a direct sum of irreducibles.

Example 20.15

A counterexample if the characteristic condition is violated is G = Z2 and char k = 2.

The next example uses the following lemma.

Lemma 20.16

Let ρ be irreducible, and let π be another representation.

(a) If π → ρ is nonzero, then it is surjective.

(b) If ρ→ π is nonzero, then it is injective.

Example 20.17

Suppose ρ is a representation of Z2 over the vector field k2 and with G being the
permutation on two elements. This gives a short exact sequence

0→ triv→ ρ→ triv→ 0.

But we claim ρ does not decompose. Assume for contradiction that ρ = ρ1 ⊕ ρ2
(sufficient since ρ is two-dimensional).

Assume ρ1 → triv is non-zero. We find that ρ→ triv is an isomorphism. So the
short exact sequence splits, and there exists v ∈ k2 which is G-invariant which maps
non-trivially to triv. But for v to be G-invariant it must be of the form (a, a).

Now we actually write the following.

Theorem 20.18

If char k - |G|, then any short exact sequence of G-representations splits.

Proof. We have a surjection ρ→ ρ′ and wish to construct a left inverse. . . .
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Proof that Theorem 20.18 implies Theorem 20.14. Assume ρ is not irreducible. Let 0 6=
ρ1 ( ρ. Then we have a short exact sequence

0→ ρ1 → ρ→ ρ2 → 0.

Hence ρ = ρ1 ⊕ ρ2. Now induct downwards on the ρ1 and ρ2.

Now we introduce the following theorem.

Theorem 20.19

If char k does not divide |G|, then for any G-representation π the composed map

πG → V → πG

is an isomorphism.

Proof. We want an inverse map. We do

v 7→
∑
g∈G

g · v

where v is any representative of v ∈ πG. You can check using summation formulas that
this in facts gives us what we want:

V

˜̃
AvG - V

πG

proj

?? ÃvG- πG

incl

∪

6

This is not actually an inverse because it turns out to be multiplication by |G|, but if
|G| 6= 0 then we can divide by |G|. In other words, the desired map is in fact

v 7→ 1

|G|
∑
g∈G

g · v

Done.

Also, nice pizza.

§20.5 Table of Representations

God there is so much notation. Remember that G ↪→ G×G by g 7→ (g, g−1).
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Representation Group Space Action

ρ V G G→ Aut(V )
ρ∨ V ∨ G (g · ξ)(v) = ξ(g−1 ·ρ v)
Fun(X) G Fun(X) (g · f)(x) = f(g−1 · x)
Func(X) G Func(X) (g · f)(x) = f(g−1 · x)

Reg(G) G×G Fun(G, k) ((g1, g2) · f)(x) = f(g2xg
−1
1 )

f Reg(G) G×G f Fun(G, k) ((g1, g2) · f)(x) = f(g2xg
−1
1 )

trivG G k g · a = a

ResGH(ρ) H V h · v = h ·ρ v
IndGH(ρ) G f : G→ V with (g · f)(x) = f(g−1 · x)

f(g · h) = h−1 ·ρ f(g)
ρ1 � ρ2 G1 ×G2 V1 ⊗ V2 (g1, g2) · (v1 ⊗ v2)

= (g1 ·ρ1 v1)⊗ (g2 ·ρ2 v2)
ρ1 ⊕ ρ2 G V1 ⊕ V2 g · (v1 + v2) = (g ·ρ1 v1) + (g ·ρ2 v2)
ρ1 ⊗ ρ2 G V1 ⊗ V2 g · (v1 ⊗ v2) = (g ·ρ1 v1)⊗ (g ·ρ2 v2)
Hom(ρ1, ρ2) G1 ×G2 Hom(V1, V2) (g1, g2) · T = g2 · T ◦ g−11

Hom(ρ1, ρ2) G Hom(V1, V2) g · T = g−1 · T ◦ g

§20.6 Induced and Restricted Representations

The above table presented IndGH(ρ) and ResGH(ρ), which I haven’t actually defined yet.
We didn’t cover this during the lecture, so I’ll do that here.

Given a representation ρ of H, the representation IndGH(ρ) is a representation of G.
It consists of functions f : G → V (which should be thought of as “vectors” whose
components are indexed by G), with the property that

f (gh) = h−1 ·ρ f(g) ∀g ∈ G, h ∈ H.

This condition means that the datum of f is equivalent to specifying f on each coset gH;
in other words, as a vector space the set of functions is isomorphic to V ⊕G/H . (Again,
the “vector” interpretation is the right way to think of this.) The action then translates
the components of the vector:

(g · f)(x) = f(g−1x).

This gives a way of inducing any representation of H to one of G, through augmenting
the vector space by a factor of G/H.

Conversely, ResGH(π) is more tautological: given a G-representation π, we simply forget
the action of G \H, giving an H-representation. In other words, we restrict the action
from G to H.
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I went to sleep instead of attending this lecture. Thanks again to Wyatt for the notes.

§21.1 Review

There were two important theorems:

• Schur’s Lemma: If ρ is irreducible, on a finite dimensional vector space, and k is
algebraically closed, then k

∼−→ EndG(ρ).

• Maschke’s Theorem: If G is finite and char k - |G|, then any representation may be
written as a direct sum of irreducible representations.

Recall also the following two definitions.

Definition 21.1. The matrix coefficient map of a representation ρ is denoted MCρ :
V ⊗ V ∨ → Fun(G, k) and is defined by sending v ⊗ ξ to g 7→ ξ(g ·ρ v).

Definition 21.2. The character of a representation ρ is the trace of the matrix induced
when g acts on V . In symbols, chπ(g) = Tr(Tg), where Tg : V → V by v 7→ v ·ρ g, and
hence chπ : G→ k.

The next piece of notation is from a PSet problem, which we will invoke later on.

Definition 21.3. Let V be a finite-dimensional vector space. Then the canonical map
V ⊗ V ∨ → End(V ) by v ⊗ ξ 7→ (w 7→ ξ(w) · v) is an isomorphism. Therefore there exists
an element uV ∈ V ⊗ V ∨ which is the pre-image of idV ∈ End(V ).

§21.2 Homework Solutions

First, we give solutions to Problems 7 and 9 on the previous PSet.

PSet 10, Problem 7

Let ψ : k[G]→ Hom(V, V ) be the map for which the isomorphism

HomG×G(fReg(G),Hom(π, π)) ' HomG(π1, π2)

sends ψ to idV . Show that ψ corresponds to the action of k[G] on V .

Unravelling the proof of Proposition 8.2.3 and Proposition 6.1.4 in the Math 123 Notes,
we see that ψ is given by

ψ(δg) = TidV (δg) = TidV (δ
(1,g)

) = (1, g) · idV ∈ (Hom(π, π))G.

The endomorphism (1, g) · idV sends each v to idV (g ·v ·1−1) = g ·v, which is the precisely
the action of δg on V .

PSet 10, Problem 9
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Show that MCπ(uV ) = chπ for any representation π.

First, we claim that the diagram

V ⊗ V ∨ �
'
- End(V )

V ⊗ V ∨

T ⊗ idV ∨

6

�
'
- End(V )

S 7→ T ◦ S
6

commutes. Indeed, we just compute

T (w)⊗ ξ
'
- v 7→ ξ(v)T (w)

w ⊗ ξ

T ⊗ idV ∨

6

'
- v 7→ ξ(v) · w

S 7→ T ◦ S
6

Now we consider the commutative diagram

k

V ⊗ V ∨

ev

6

�
'
- End(V )

�

Tr

V ⊗ V ∨

T ⊗ idV ∨

6

�
'
- End(V )

S 7→ T ◦ S
6

and take the special case Tg, which gives

ev(Tg ⊗ idV ∨)(uV ) = Tr(Tg)

(Tg ⊗ idV ∨)uV

ev

6

'
- Tg

�

Tr

uV

Tg ⊗ idV ∨

6

'
- idV

S 7→ Tg ◦ S
6

But by definition, ev ◦ (Tg ⊗ idV ∨) = MCπ, so we’re done.

§21.3 A Theorem on Characters

The main result of today’s lecture will be the following theorem.
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Theorem 21.4

Let ρ1 and ρ2 be irreducible representations of G which have underlying vector
spaces V1 and V2. Then

∑
g∈G

chρ1(g)chρ2(g−1) =

{
0 if ρ1 6' ρ2
|G|dim(End(ρ)) if ρ1 = ρ2 = ρ.

Here by an integer n we mean 1 + · · ·+ 1︸ ︷︷ ︸
n times

. In the words of Gaitsgory,

“We can compare apples to oranges by taking the apples orange times.”

The proof proceeds in two phases. First we will explicitly compute the sum
∑

g∈G chπ(g),
Secondly, we will show that the sum can be rewritten as

∑
g∈G chρ1⊗ρ∨2 (g) by passing

through the matrix coefficient map; using the sum, this will solve the problem.

§21.4 The Sum of the Characters

It turns out we can explicitly compute the sum of the characters.

Theorem 21.5

Let π be any finite dimensional representation. Then∑
g∈G

chπ(g) = |G|dimπG.

This in fact a special case of a more general theorem. First, recall the averaging function.

Definition 21.6. For a representation ρ of G, we have an associated averaging function
AvgG : V → V by

AvgρG(v)
def
=
∑
g

g ·ρ v.

Theorem 21.7

Let π be any finite dimensional representation over V . Let S : V → V be an
endomorphism. Then ∑

g∈G
MCπ(S)(g) = Tr (S ◦AvgπG) .

Here S ∈ V ⊗ V ∨ is such that S 7→ S under the isomorphism V ⊗ V ∨ ' End(V ).

Proof. Tautological since MCπ(S)(g) = Tr(S ◦ g) by definition.

Now to deduce the original theorem, we now pick S = idV , so that S = uV . Then by
PSet 10, Problem 9, we get chπ(g) = MCπ(uV )(g). Therefore, the problem is solved once
we can prove the following lemma.
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Lemma 21.8

We have
Tr (AvgπG) = |G| · dimπG.

for every finite-dimensional representation π of G.

Proof. Basis bash. A non-basis proof is on the homework.

§21.5 Re-Writing the Sum

First, we produce a lemma that allows us to eliminate the inverse signs.

Lemma 21.9

For all representations ρ, we have

chρ(g
−1) = chρ∨(g).

Proof. Consider the following commutative diagram.

V ∨ ⊗ V �
'
- V ⊗ V ∨ �

'
- (V ∨)∨ ⊗ V ∨

End(V )

eval

? T 7→ T∨
- End(V ∨)

eval

?

k
�

TrTr

-

The fact that the outer diagram commutes implies that the inner diagram commutes.
Now g acts by g−1 in End(V ∨), implying the conclusion.

Next, we show that MC maps can be “combined”.

Proposition 21.10

Let π1 and π2 be representations with underlying vector spaces V1 and V2. The
following diagram commutes.

(V1 ⊗ V ∨1 )⊗ (V2 ⊗ V ∨2 )
MCπ1 ⊗MCπ2- Fun(G)⊗ Fun(G)

(V1 ⊗ V2)⊗ (V1 ⊗ V2)∨

'

?

6

MCπ1⊗π2 - Fun(G)

mult

?

Proof. Tautological.
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Now we can prove the main theorem. We have∑
g∈G

chρ1(g)chρ2(g−1) =
∑
g∈G

chρ1(g)chρ∨2 (g)

=
∑
g∈G

MCρ1(uV1)(g)MCρ∨2
(uV ∨2 )(g)

=
∑
g∈G

MCρ1⊗ρ∨2 (uV1 ⊗ uV ∨2 )(g)

=
∑
g∈G

chρ1⊗ρ∨2 (g)

Now applying our summation earlier,

= |G|dim
(
ρ1 ⊗ ρ∨2

)G
= |G| · dim (Hom(ρ2, ρ1))

G

= |G| · dim (HomG(ρ2, ρ1)) .

Now if ρ1 ' ρ2, then HomG(ρ2, ρ1) = End(ρ). Otherwise, HomG(ρ2, ρ1) has dimension
zero because it consists of a single element which is the zero map; note that ρ2 and ρ1
were assumed to be irreducible.

§21.6 Some things we were asked to read about

Proposition 6.1.7 in the Math 123 Notes reads as follows.

Proposition 21.11

There is a canonical isomorphism

HomG(π,Fun(G/H, k)) ' HomH(π, trivH).

Proof. The image of T : π → Fun(G/H, k) is the map ξT : V → k by

v 7→ T (v)(1) ∈ k.

A special case is the following.

Proposition 21.12

There is an isomorphism

HomG×G (ρ� π,Reg(G)) ' HomG(ρ⊗ π, trivG).

We can use this in combination with the following proposition.

Proposition 21.13

There is an isomorphism

HomG(ρ⊗ π, trivG) ' HomG(ρ, π∨).
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Proof. Recall that

Hom(V1 ⊗ V2, k) ' Hom(V1, V
∨
2 ) =⇒ Hom(π1 ⊗ π2, trivG) ' Hom(π1, π

∨
2 ).

Taking the G invariants gives

HomG(π1 ⊗ π2, trivG) ' HomG(π1, π
∨
2 ).
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§22 November 13, 2014

In what follows, assume all representations are finite-dimensional. We will let G be a
finite group and k an algebraically closed field. Assume char k does not divide |G|.

§22.1 Irreducibles

Definition 22.1. Let IrredRepr(G) denote the set of isomorphism classes of irreducible
representations. For every α ∈ IrredRepr(G), we can take a representative ρα.

First, we prove the following sub-lemma.

Lemma 22.2

Let N be a vector space. Then

HomG(ρα, ρβ ⊗N) '

{
0 if α 6= β

N if α = β.

Proof. If the assertion holds for N1 and N2, then it holds for N1⊕N2. Thus it suffices to
show that the result holds for N = k. The first assertion is just that there is no nontrivial
isomorphisms between distinct irreducibles. The second assertion is Schur’s lemma.

The subsequent lemma basically exactly the multiplicities which appear in Maschke’s
Theorem.

Lemma 22.3

For any representation π, we have

π '
⊕
α

ρα ⊗HomG(ρα, π).

Proof. By Maschke, π '
⊕

α ρ
nα
α . Since ρnαα ' ρα ⊗ knα , we may thus write

π =
⊕
β

ρβ ⊗Mβ

for some Mβ. We wish to show Mα = HomG(ρα, π). We have

Hom(ρα, π) '
⊕
β

HomG(ρα, ρβ ⊗Mβ).

Applying the sublemma now gives the conclusion.

For this lecture, we will frequently be using the trick that ρn ' ρ⊗ kn.

Definition 22.4. The component ρα⊗HomG(ρα, π) is called the α-isotypic component
of π.
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§22.2 Products of irreducibles

Proposition 22.5

We have the following.

(1) If ρ1 ∈ IrredRepr(G1) and ρ2 ∈ IrredRepr(G2), then ρ1�ρ2 ∈ IrredRepr(G1×
G2).

(2) If ρ1 6' ρ′1, then ρ1 � ρ2 6' ρ′1 � ρ′2.

(3) Any irreducible representation is isomorphic to some element of the form given
in (1).

First, we prove (3). Let V be the vector space which underlies ρ. First, we interpret
ρ as a G1 representation ρ1. Then by Maschke’s Theorem, we may write ρ1 as a direct
sum of the irreducibles

ρ1 '
⊕
α

ρ1α ⊗HomG1(ρ1α, ρ
1).

Now we can put the G2 representation structure on HomG1(ρ1α, ρ
2) by

(g2 · f)(g) = g2 ·ρ (f(g)).

It is easy to check that this is indeed a G2 representation. Thus it makes sense to talk
about the G1 ×G2 representation⊕

α

ρ1α �HomG1(ρ1α, ρ
1).

We claim that the isomorphism for ρ1 as a G1 representation now lifts to an isomorphism
of ρ representation. That is, we claim that

ρ '
⊕
α

ρ1α �HomG1(ρ1α, ρ
1)

by the same isomorphism as for ρ1. To see this, we only have to check that the
isomorphism v ⊗ ξ 7→ ξ(v) commutes with the action of g2 ∈ G2. But this is obvious,
since g2 · (v ⊗ ξ) = v ⊗ (g2 · ξ) 7→ g2 · ξ(v).

Thus the isomorphism holds. But now we note that since ρ1α is irreducible, exactly one
α contributes the direct sum above, since in all other cases we have HomG1(ρ1α, ρ

1) = 0.
Thus we derive the required decomposition of ρ.

We leave (2) as an easy exercise.
Next we establish (1). Suppose ρ1 � ρ2 has a nontrivial subrepresentation of the form

ρ′1 � ρ
′
2. Viewing as G1 representation, we find that ρ′1 is a nontrivial subrepresentation

of ρ1, and similarly for ρ2. But ρ1 is irreducible, hence ρ′1 ' ρ1. Similarly ρ′2 ' ρ2. So in
fact ρ′1 � ρ

′
2 ' ρ1 � ρ2. Hence we conclude ρ1 � ρ2 is irreducible.

§22.3 Regular representation decomposes

Let us consider Reg(G) as a representation of G×G.
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Theorem 22.6

The map ⊕
α

ρ∨α � ρα → Reg(G)

by applying MCρα to each component is an isomorphism.

This theorem has the following nice consequence.

Corollary 22.7

There are only finitely many non-isomorphic irreducible. In fact,

|G| =
∑

α∈IrredRepr(G)

|dim ρα|2 .

Proof. Just look at the dimensions in the isomorphism.

Proof of Theorem. We have that Reg(G) is the sum of irreducibles

Reg(G) =
⊕
α,β

(ρα � ρβ)⊗HomG×G (ρα � ρβ,Reg(G)) .

Now we will compute this homomorphism. But we have

HomG×G (ρα � ρβ,Reg(G)) ' HomG(ρα ⊗ ρβ, trivG) ' HomG(ρα, ρ
∨
β ).

by the stuff in the last section of the November 11 lecture. Now by irreducibility, this
sum is only interesting when HomG(ρα, ρ

∨
β ) 6= 0, so for every α we are only interested in

the unique β such that ρα ' ρ∨β . Thus we deduce

Reg(G) =
⊕
α

(
ρ∨α � ρα

)
⊗HomG(ρα, ρα)

and of course HomG(ρα, ρα) = k. All that’s left to check is that when we unwind the
map

ρ∨α � ρα → Reg(G)

we get MCρα ; this is like homework.

§22.4 Function invariants

Consider the space(
ResG×GG Reg(G)

)G
=
{
f ∈ Fun(G) | f(g1gg

−1
1 ) = f(g)

}
.

where Res is the restriction of the action to G.

Theorem 22.8

The collection chρα forms a basis of
(

ResG×GG Reg(G)
)G

.
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Proof. We have the isomorphism⊕
α

ResG×GG

(
ρ∨α ⊗ ρα

) '−→ ResG×GG Reg(G).

Now (ρ∨α ⊗ ρα)G ' (Hom(ρα, ρα))G ' HomG(ρα, ρα) = k (since the ρα is irreducible).
Note we have a 0 6= uα ∈ ρ∨α ⊗ ρα in this one-dimensional space. Now chρα = MCρα(uρα);
so our isomorphism with MCρα sends these uα to chρα .

Corollary 22.9

As a group, the number of conjugacy classes of G is |IrredRepr(G)|.

Proof. The dimension of Fun(G)G is equal to the size of the basis chρα as α varies. On
the other hand by the definition of Fun(G)G it is also equal to the number of conjugacy
classes.

§22.5 A Concrete Example

Example 22.10

Let us take the group G = S3, with six elements. Because its conjugancy classes are
id, (•)(• •) and (• • •), there should be exactly three irreducible representations.
The irreducible representations are as follows.

• trivG on k, where σ · 1 = 1.

• sign on k, where σ · 1 = sign(σ).

• Take the two-dimensional subspace {(a, b, c) | a+ b+ c = 0} of k3. Then S3
acts on this.

This gives 3! = 12 + 12 + 22.

Upon seeing 6, we get the following exchange.

“The largest number we’ve seen in this class” – James Tao
“I take this as a personal insult” – Gaitsgory

Example 22.11

Let us take the group G = S4 now. There are five conjugacy classes. These are
irreducible.

• triv again on k.

• refl0, which is permutation on {(a, b, c, d) | a+b+c+d = 0}, a three-dimensional
space.

• sign, again on k.

• refl0⊗ sign on k3. Note you have to show refl0 6= refl0⊗ sign; this occurs in S3!

• The last 2-dimensional representation is not so easy to describe.

Indeed, 24 = 12 + 12 + 22 + 32 + 32.
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§23 November 18, 2014

Today we are covering S5. This will yield the number 5! = 120 � 6, making James
happy.

§23.1 Review

In this lecture, k is a field, G is a finite group and char k does not divide |G|. Hence we
have both Schur’s Lemma and Maschke’s Theorem.

Using the irreducible decomposition, we have the following corollaries. We have the
following two corollaries.

Corollary 23.1

Let ρ be a representation. If dim End(ρ) = 1, then ρ is irreducible.

Corollary 23.2

We have dim HomG(ρ1, ρ2) = dim HomG(ρ2, ρ1).

We will focus on the group Fun(G/H) today. Recall also the following results.

• HomG(π,Fun(G/H)) ' HomH(ResGH(π), trivH).

• HomG(Fun(G/H), π) ' HomH(trivH ,ResGH(π)).

Here ResGH is the restriction.
We remind the reader that refl0 as an Sn representation is the action of Sn on
{(a1, a2, . . . , an) | a1 + · · ·+ an = 0} ∈ kn by permuting the bases.

We also need the following definition from the PSet.

Definition 23.3. A character χ is a homomorphism G→ k∗.

§23.2 The symmetric group on five elements

Recall that the conjugacy classes of permutations Sn correspond to “cycle types”, i.e.
partitions of n. This gives the children’s game.

5 = 5

= 4 + 1

= 3 + 2

= 3 + 1 + 1

= 2 + 2 + 1

= 2 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + 1.

“Whenever I see Young diagrams I always think of New York City” – Gaitsgory
“Yes – on the left is Empire State building, on the right is the Cambridge
building code. . . and that’s the Green Building at MIT”.
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In fact, we will see that there is a bijection between the Young diagrams and irreducible
representations. This is a very special feature of Sn and does not generalize to other
groups.

Definition 23.4. Let χ be a character of G, and ρ be any representation. Then we
define

ρχ
def
= ρ⊗ kχ

where kχ is the representation of χ on k with the following action: g acts via multiplication
by χ(g).

Notice that ρ is irreducible if and only if ρχ is irreducible, because the latter is just
multiplication by a constant. In fact, we have the following.

Proposition 23.5

For any representations ρ1, ρ2 and χ we have HomG(ρ1, ρ
χ
2 ) ' Hom(ρχ

−1

1 , ρ2).

Proof. Obvious.

Now we’ll be a troll and guess representations.

trivS5 ↔ 5

refl0 ↔ 4 + 1

↔ 3 + 2

↔ 3 + 1 + 1

↔ 2 + 2 + 1

reflsign
0 ↔ 2 + 1 + 1 + 1

sign↔ 1 + 1 + 1 + 1 + 1.

We’ll explain in half an hour what the actual recipe is.
Now there is something to prove: we want to show refl0 6= reflsign

0 .

Proposition 23.6

HomS5

(
refl0, reflsign

0

)
= 0. In particular, refl0 6= reflsign

0 .

Proof. We may interpret refl0 as Fun({1, 2, 3, 4, 5}) ' Fun(S5/S4). Explicitly, we’ll
identify S4 as the subgroup of S5 which fixes the point 5. So

HomS5

(
refl0, reflsign

0

)
' HomS4

(
trivS4 , reflsign

)
.

Now we claim that there are no nontrivial maps k → k5. (Here reflsign was an S5
representation, but we’ve restricted it to an S4 representation.) We claim there are no
nontrivial maps. Consider such a map where the image of 1 ∈ k is (a, b, c, d, e). By taking,
say (2 3) ∈ S4 we get −(a, c, b, d, e) = (a, b, c, d, e) =⇒ a = 0, and one can similarly
show all the coordinates are zero.

Question: where does this break down if we have S3 in place of S5?

More generally, we establish the following result.
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Lemma 23.7

Let X be a set acted on by G. Then for any character χ,

HomG (trivG,Fun(X)χ)

is isomorphic to

⊕
orbit O

{
k if χ restricted to StabG(x) is trivial for a representative x ∈ O
0 otherwise.

Example 23.8

We earlier computed HomS4(trivS4 , reflsign) = 0. This follows from the lemma as
follows. S4 acts on {1, 2, 3, 4, 5} with two orbits.

• In the orbit of 1, 2, 3, 4 we have StabS4(1) = S4, and sign |S4 6= 1.

• In the orbit of 5 we have StabS4(1) = S3, and sign |S3 6= 1.

Now we prove the lemma.

Proof. We have HomG(trivG,Fun(X)χ) = (Fun(X)χ)G.
It suffices to consider the case of a single orbit, since X =

⊔
OO, Fun(X) =

⊕
O Fun(O)

and Fun(X)χ =
⊕
O Fun(O)χ.

If f ∈ Fun(X) is invariant as an element of Fun(X)χ, we have then we need

f(x) = (g · f)(x) = f(g−1 · x)χ(g)

equivalent to
f(g−1 · x) = χ(g−1) · f(x).

Thus we require g1x = g2x =⇒ χ(g−11 ) = χ(g−12 ) =⇒ χ(h) = 1, where g1 = g2h. Now
h ∈ StabG(x).

§23.3 Representations of S5/(S3 × S2) – finding the irreducible

Note that S5/(S3×S2) has order 10. Consider the 10-dimensional space Fun(S5/(S3×S2)).
Applying the above lemma, we have

dim HomS4 (triv,Fun(S5/(S3 × S2))) = 1

where the character is trivial (and S5/(S3 × S2) has one orbit).
Now we are going to prove that

dim HomS4 (refl,Fun(S5/(S3 × S2))) .

Lemma 23.9

Let H1 and H2 be orbits of G. Then H1-orbits on G/H2 are in bijection with H2

orbits G/H1. In fact both are in bijection with H1 ×H2 orbits on G via the action
(h1, h2) · g = h1gh

−1
2 .
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As an example, S3 × S2 on orbits S5 are in bijection with S3 orbits on S5/S2 ' {1, 2, 3}.
At this point we have refl0 and triv as irreducible subrepresentations of Fun(S5/(S2 ×

S3)). Thus we have
Fun(S5/(S2 × S3)) = triv ⊕ refl0 ⊕ . . .

We claim that the last guy in ellipses is a single irreducible guy. Since dim End(ρ) is
equal to the number of irreducible components of ρ, it suffices to show the following.

Claim 23.10. dim End (Fun(S5/S3 × S2)) = 3.

Proof. We have

HomS5 (Fun(S5/S3 × S2),Fun(S5/S3 × S2)) ' HomS3×S2 (triv,Fun(S5/(S3 × S2))) .

So we want to show the above has dimension 3. Applying the above, it’s equivalent
to finding the number of orbits of S3 × S2 on S5/(S3 × S2). This is a combinatorics
problem.

§23.4 Secret of the Young Diagrams

So that means we have a five-dimensional irreducible ρ with

Fun(S5/(S3 × S2)) ' triv ⊕ refl0 ⊕ ρ.

We now want to show that ρsign 6' ρ. We will show that

HomS5

(
Fun(S5/(S2 × S3)),Fun(S5/(S2 × S3))sign

)
= 0.

This will imply that trivsign 6= triv, reflsign
0 6= refl0 and also ρsign 6= ρ. You can check this;

it’s getting skipped in lecture for time.
Now we have six of the seven representations.

trivS5 ↔ 5

refl0 ↔ 4 + 1

ρ↔ 3 + 2

π ↔ 3 + 1 + 1

ρsign ↔ 2 + 2 + 1

reflsign
0 ↔ 2 + 1 + 1 + 1

sign↔ 1 + 1 + 1 + 1 + 1.

We have one last mysterious representation π. Because the sum of the squares of the
dimensions is 5! = 120, so (dimπ)2 = 120− 2(12 + 42 + 52) = 120− 2 · 42 = 36.

Where should we look for π? Answer: S5/(S3 × S1 × S1). Now it should be clear what
the Young diagrams are doing.

Now let’s begin dissecting Fun(S5/S3). Note that |S5/S3| = 20. Then

• Because there is only one orbit of S5/S3, triv appears only once.

• We will compute Hom(refl,Fun(S5/S3)) now. We have

HomS5 (refl,Fun(S5/S3)) = HomS5 (Fun(S5/S4),Fun(S5/S3))

= HomS4 (triv,Fun(S5/S3)) .
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Check combinatorially there are three orbits. Because refl = triv⊕ refl0, that means
there are two orbits.

So we thus far have
Fun(S5/S3) = triv ⊕ refl⊕20 ⊕ . . .

There is dimension 11 left.

• We’ll show ρ appears exactly once now by computing

Hom (Fun(S5/(S2 × S3)),Fun(S5/S3))

and showing it has dimension 4; since we already know Fun(S5/(S2 × S3)) =
triv ⊕ refl0 ⊕ ρ this will be enough. We apply the same trick:

HomS2×S3 (triv,Fun(S5/S3))

has four orbits. Hence ρ appears exactly once.

• Hence we have missing dimension 6 is

Fun(S5/S3) = triv ⊕ refl⊕20 ⊕ ρ⊕ . . .

and we want to show the remaining part is irreducible. We could verify that
dim Hom(Fun(S5/S3),Fun(S5/S3)) = 12 +22 +12 +12, but we could also just verify
that sign does not appear in here.

§23.5 The General Theorem

In the next lecture we discuss the general theorem.
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§24 November 20, 2014

In this lecture, fix n > 2 an integer and let k be a field such that char k does not divide
n! = |Sn|. The field k need not be algebraically closed.

First, recall some definitions on partitions.

Definition 24.1. For a partition p = n1 ≥ · · · ≥ nk of n = n1 + · · ·+ nk we define

Sp = Sn1 × · · · × Snk

and
πp

def
= Fun(Sn/Sp).

By abuse of notation we will also refer to the corresponding representation as πp.

Definition 24.2. We write p ≥ q for the majorization condition (think Muirhead). Note
that this is not a total order; not all pairs are comparable.

Definition 24.3. We define the dual partition p∨ by flipping the Young digram (see the
October 2 lecture).

The goal of today’s lecture will be to classify all partitions of the symmetric group
Sn.

Theorem 24.4

There exists a bijection between Young diagrams and irreducible representations of
Sn by p 7→ ρp with the following property. For any p consider the decomposition

πp =
⊕
q

ρ
⊕nq
q .

Then np = 1, and nq = 0 for any q 6≥ p.

Note that we aren’t claiming anything about the value of nq for q > p.

§24.1 Reducing to some Theorem with Hom’s

Consider the following theorem.

Theorem 24.5

We have the following two assertions.

(a) If q 6≥ p, then
HomSn

(
πp, π

sign
q

)
= 0.

(b) We have

HomSn

(
πp, π

sign
p∨

)
∼ k.

i.e. the homomorphism space has dimension 1.

We will use Theorem 24.5 to prove Theorem 24.4 To do this we must actually exhibit
the ρp first.
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Definition 24.6. Up to scaling there is a unique nonzero homomorphism

T ∈ HomSn

(
πp, π

sign
p∨

)
.

We set ρp = im(T ) ⊆ πsignp∨ .

Remark 24.7. Note that ρp is in fact irreducible, since it’s the image of a T in a
one-dimensional Hom (consider the irreducible decomposition.)

Proof that Theorem 24.5 implies Theorem 24.4. The proof proceeds in several steps.

Claim. We have ρp 6= ρq for any p 6= q.

Proof. Assume ρp = ρq; we will prove p = q. It suffices to prove that

HomSn

(
πp, π

sign
q∨

)
6= 0.

We have a sequence
πp � ρp ' ρq ↪→ ρsignq∨ .

Hence Hom(ρp, ρ
sign
q∨ ) 6= 0. By (a) of Theorem 24.5, we obtain p ≥ q. Similarly, q ≥ p. So

p = q. �

Claim. All irreducible representations of Sn are of the form ρp.

Proof. We have exhibited a distinct irreducible representation for every partition. But
the number of partitions of n equals the number of conjugacy classes of Sn. �

Thus Theorem 24.4 follows: The assertion np = 1 follows from (b) of Theorem 24.5,
since ρq was defined as the image of the unique (up to scaling) map πq → πq∨ .

§24.2 Reducing to a Combinatorial Theorem

Now we will deduce Theorem 24.5 from the following theorem.
It may be helpful to view the space Sp as the Young tableau p with its cells labelled

by 1, 2, . . . , n. The equivalence classes then result from shuffling the entries in any row.
In particular, the canonical choice is to sort the guy in ascending order.

Theorem 24.8

We have the following two assertions.

(a) If q 6≥ p, then for every g ∈ Sn there exists a transposition (i j) ∈ Sp and
h ∈ Sq∨ such that

(i j) · g = g · h.

(b) If p = q there exists a unique orbit O ∈ Sn/Sq∨ (in fact the orbit containing
the identity) such that

(i) Sp acts simply on O (meaning that for any x, y ∈ O there is in fact exactly
one g ∈ Sp with g · x = y)

(ii) For all g ∈ Sn and g /∈ O, there exists a transposition (i j) ∈ Sp and
h ∈ Sq∨ such that

(i j) · g = gh.
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Proof that Theorem 24.8 implies Theorem 24.5. We begin by establishing (a). First, we
can compute

HomSn(πp, π
sign
q∨ ) ' HomSn

(
Fun(Sn/Sp), π

sign
q∨

)
' HomSp

(
triv, πsignq∨

)
'
(
πsignq∨

)Sp

=
(
Fun(Sn/Sq∨)sign

)Sp
.

Consider an f in this set. Then for every g,

f(g) = (i j) · f(g)

= sign(i j) · f
(
(i j)−1 · g

)
= −f ((i j) · g)

= −f(g · h)

= −f(g)

so f ≡ 0.
For (b) of Theorem 24.5, let O be the orbit for (b). For g such that g /∈ O, f(g) = 0

by the same argument as in (a). Let x ∈ O now, take f ∈ HomSn(πp, π
sign
p ). Then

f(x) = g−1 · f(x) = sign(g−1) · f(g · x)

Thus f(g · x) = sign(g) · f(x). So f is uniquely determined, which implies that the vector
space is one-dimensional.

§24.3 Doing Combinatorics

Now let’s prove the combinatorial result.
Note: the reader is urged to draw Young diagrams for p and q and figure out what the

hell is happening. The rows correspond to the ni we are modding out by.

Definition 24.9. We say that g ∈ Sn is “good” if there exists (i j) ∈ Sp such that

(i j) · g = g · h

for some h ∈ Sq∨ .

Set X = {1, 2, . . . , n}. We denote

q∨ :
⊔
i

X ′i = X ′ ∼ X

and
p :
⊔
j

X ′′j ' X.

(The Xi and Xj ’s are rows.) Finally, note that g ∈ Sn is an automorphism of X. Hence
we induce a map for each g:

Φg : X ′ ' X g−→ X ' X ′′.

We say that Φg is “good” if for all i, the elements of X ′i get sent to elements in distinct
columns.
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Claim 24.10. g is good if and only if Φg is good.

Proof. Look at the picture. (Draw it now!)

Definition 24.11. We say that Φ : X ′ → X ′′ is “superb” if Φ is good and we have: for
all i (index rows q∨) and every x′ ∈ X ′, Φ(x′) is such that all elements underneath Φ(x′)
in the Young tableau for p are of the form Φ(y′) where y′ ∈ X ′j for some j < i.

Lemma 24.12

For any good map Φ, there exists a unique h′′ ∈ Sp such that

Φs = h′′ ◦ Φ

is “superb”.

Intuition: what this proof is doing is repeatedly pressing left and down in the game 2048.
(Thanks James Tao.) So any good map can be made superb, since extra factors of h′′ are
irrelevant for the existence of guys in h ∈ Sq∨ .

Proof. We proceed inductively on i. Suppose Φs has been defined on X ′1, . . . , X
′
i−1.

Consider x ∈ X ′i and define the transposition σx which puts Φ(x) in the lowest possible
position in the column of Φ(x) that isn’t occupied by Φ(y′) for y′ ∈ X ′j where j < i.

Define Φs on X ′i by ∏
x∈X′i

σx

 ◦ Φ.

(The order does not matter in the product.) So we have superb-ified Φ on rows 1, . . . , i.

Now we can prove (a) of Theorem 24.8.

Claim 24.13. If there exists a good g, then p ≤ q. (In fact, by the lemma there is a
superb g.)

Proof. It suffices to show that if there exists a good Φ from X ′ to X ′′ then p∨ ≥ q∨,
which implies p ≤ q.

WLOG our Φ is superb. Then draw the picture and use Pigeonhole.

We also wish to prove (b) now. It amounts to the following.

Claim 24.14. Set p = q. The identity is a good (in fact superb) map, and it is unique
in the sense that if Φ is good then

Φ = h′′ ◦ id ◦ h′

fro some h′′ ∈ Sp and h′ ∈ Sq∨ .

Here id ◦ h′ is just hat it means to be in the orbit Sn/Sq∨ .

Proof. WLOG assume Φ is superb (again by the lemma). Then it suffices to show that
Φ = id ◦ h′, but since p = q, we see X ′ and X ′′ have the same shape; hence the rows map
bijectively and so the only changes from the identity are permutations along each row.
So the product of all there permutations (per row) in some element of Sq∨ , and we just
declare it to be h′.
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§25 December 2, 2014

Today is the last official lecture. On Thursday, we will have an unofficial category theory
class.

Proposition 25.1

(ρp)
sign ' ρp∨ .

Proof. We have
Fun(Sn/Sp)� ρp ↪→ Fun(Sn/Sp∨)sign

so
Fun(Sn/Sp)

sign � ρsignp ↪→ Fun(Sn/Sp∨).

On the other hand
Fun(Sn/Sp∨)� ρp∨ ↪→ Fun(Sn/Sp).
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§26 December 4, 2014

Bonus lecture on category theory.
I am reading the notes http://www.maths.ed.ac.uk/~tl/msci/ in my spare time,

which I like a lot.

§26.1 Categories

Definition 26.1. A category C consists of the following information.

• A set of objects Obj(C) and a set of morphisms HomC(c1, c2) for every c1, c2 ∈
Obj(C).

• Moreover, for any c1, c2, c3 we have an associative operation ◦, called composition,
which sends

HomC(c1, c2)×HomC(c2, c3)→ HomC(c1, c3).

• For every c ∈ Obj(C), there is a map idc ∈ Obj(C) such that for any f ∈ HomC(c, c
′)

and g ∈ HomC a(c′, c), we have idc ◦ f = f and g ◦ idc = g.

Examples of categories are the following.

1. A category whose objects are sets and whose morphisms are the maps of sets.

2. Groups, rings, finite abelian groups, etc, with the morphisms between homorphisms.

3. Vector spaces, with morphisms being linear maps.

4. Given a set X, we can construct a category C whose objects are the elements of X,
and the only maps are the identity maps 1X .

A more important example is the following.

Example 26.2

Consider a category with only one object ∗, and let M = HomC(∗, ∗). Then the
axioms on the homomorphisms are equivalent to specifying the structure of a monoid.
So the datum of a monoid is equivalent to the datum of a one-object category.

§26.2 Functors

Categories are not useful unless they can talk to each other. This is done by something
called a functor.

Definition 26.3. A functor F is a map between two categories F : C1 → C2 which
induces a map F : Obj(C1) → Obj(C2) and HomC1(c′1, c

′′
1) → HomC2(F (c′2), F (c′′2)). It

must

(i) send idc to idF (c) for each c, and

(ii) preserve composition.

Examples of functors include the following.

1. An identity functor from C to itself.
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2. A map from the category of abelian groups to the category of groups by embedding.

3. A forgetful functor Gp→ Set sending a group G to its underlying set G, and a
homomorphisms to the corresponding map of sets.

4. There is a functor Gp→ Ring by G 7→ k[G].

5. For a group H, there is a functor Gp→ Gp by G 7→ G×H and φ 7→ φ× idH .

6. There is a functor Set→ Ab (abelian groups) by

S 7→ ZS .

7. Given rings R1 and R2 and a homomorphism φ there is a functor for R2-modules
to R1-modules by viewing each R2 module M as an R1 module.

8. In above, there is also a functor from R1 modules to R2 modules by

M 7→ R2 ⊗R1 M.

Now here’s another example that came up in class.

Example 26.4 (Yoneda Functor)

Fix a category C and one of its objects c. A functor hc : C → Set is defined by

c′ 7→ HomC(c, c
′).

Then we also need to add a structure

HomC(c
′, c′′)→ HomSet

(
HomC(c, c

′),HomC(c, c
′′)
)

and we can do so by composition.

Exercise. Why does this not work if we use c′ 7→ HomC(c
′, c)?

§26.3 Natural Transformations

Functors are not useful unless they can talk to each other. This is done by something
called a natural transformation.

Definition 26.5. Let F,G : C1 → C2. A natural transformation T consists of map
Tc1 ∈ HomC2 (F (c1), G(c1)) for each c1 ∈ C1 such that the following diagram commutes
for any choice of a morphism φ : c′1 → c′′1 in C:

F (c′1)
F (ϕ)
- F (C ′′1 )

G(c′1)

Tc′1

? F (ϕ)
- G(C ′′1 ).

Tc′′1

?

This gives the following.
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Theorem 26.6 (Yoneda Lemma)

Let C be an arbitrary category, and let c′, c′′ ∈ Obj(C). Consider the set of all
natural transformations hc

′
to hc

′′
. Then this set is isomorphic to HomC(c

′′, c′).

Proof. The following diagram commutes for each c1, c2 ∈ C and f : c1 → c2.

Hom(c′, c1)
Tc1- Hom(c′′, c1)

Hom(c′, c2)

hc
′
(f)

? Tc2- Hom(c′′, c2)

hc
′′
(f)

?

Now our map is T 7→ Tc′(idc′) in one direction. For the other direction, φ ∈ HomC(c
′′, c′)

is sent to the − ◦ φ.
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