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§1 January 29, 2015

Same setup as Math 145: all grading is homework. This is a class on large cardinals and
their inner models.

§1.1 Motivation from Arithmetic

Recall from section one that we had

Theorem 1.1 (Gödel)

Assume PA is consistent. Then there exists a ϕ in the language of PA such that PA
cannot prove either ϕ or ¬ϕ.

Remark 1.2. This is really Rosser’s result; Gödel’s original formulation was slightly
weaker.

Theorem 1.3 (Gödel)

Assume PA is consistent. Then PA cannot prove Con(PA).

Fortunately, we can add in “missing sentences”.

§1.2 Motivation from Set Theory

The situation is much more problematic in set theory.

1. (Cardinal arithmetic) The first question we ask is CH, 2ℵ0 = ℵ1.

2. (Infinite combinatorics) Suslin’s Hypothesis: Trying to weaken Cantor’s characteri-
zation from R, replacing separability with the Suslin condition.

3. (Descriptive set theory) PM: All projective sets are Lebesgue-measurable.

Here a “projective set” is a set you take from Rn and taking a closed set, projecting it,
complementing it, projecting it, complementing it. . .

Assuming ZFC is consistent, it cannot prove or refute any of these sentences. (Actually,
the last statement requires replacing ZFC with ZFC plus the existence of a strongly
inaccessible cardinal.)

We want to find new axioms that settle these independent questions.

§1.3 Large Cardinals

Recall the von Neuman universe. Everything we do in most math classes lives in at most
Vω+2.

In ZFC we can keep going higher than this, all the way up to Vκ, where κ = ℵκ is the
first fixed beth point. But what we can’t reach is a strongly inaccessible cardinal. Recall
the following definition.

Definition 1.4. κ is strongly inaccessible if κ is regular and for all κ < κ, then 2κ < κ.

It’s a fact that if κ is strongly inaccessible, then Vκ � ZFC. Gödel’s incompleteness
theorem prohibits ZFC from establishing its own consistency, so ZFC cannot actually
prove the existence of a strongly inaccessible cardinal.

4



Evan Chen (Spring 2015) 1 January 29, 2015

Remark 1.5. In V = L, weakly inaccessible and strongly inaccessible are the same thing
(because the generalized continuum hypothesis is true). So ZFC actually can’t even show
the existence of a weakly inaccessible cardinal.

We now give the following informal definition.

Definition 1.6. A small large cardinal is a large cardinal consistent with V = L.

Examples include inaccessible, inaccessible limits of inaccessibles, Mahlos, weakly
compact, indescribables, . . . . We can do this using “reflection principles”, deferred to
reading.

In this course, we will start with “large” large cardinals – the ones which are not
compatible with V 6= L, but at least still compatible with the Axiom of Choice. In
particular, we will start with measurables. So our list will read

• measurables,

• strong

• Woodin

• super-compact

• extendable

• huge

• rank to rank

• I0

But past that there are “very large” cardinals which are not even consistent with AC.

• Reinhardt

• Super-Reindhardt

• Berkeley

There’s reasons to think up to Woodin, stuff is consistent. It’s a little dicier up to I0,
but it’s still reasonable. But there are reasons to believe the very large cardinals are not
consistent.

§1.4 Large cardinal axioms “close off independence”

Theorem 1.7 (Martin, Steel, Woodin)

Assume there are infinitely many Woodin cardinals. Then PM holds.

In fact, forcing turns out to not be strong enough: given a proper class of Woodin
cardinals, one cannot use forcing to establish any second-order arithmetic statements.

However,

Fact 1.8. The current large cardinal axioms do not resolve CH or SH.

Here CH is third-order arithmetic.
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§1.5 Inner Models of Large Cardinal Axioms

We have a very nice inner model L. It satisfies AC, CH, ¬ SH, and so on and so forth.
It’s almost as clear as the natural numbers: you ask a question about it, you can get the
answer.

It turns out we can get L-like analogs to get measurable, strong, and Woodin cardinals.
But we want a “ultimate L” which can contain all of these cardinals: this will let us
eliminate independence altogether.

§1.6 One Natural Inner Model: The Constructible Universe

Theorem 1.9 (L-Dichotomoy Theorem)

Exactly one of the two holds:

(1) For all singular cardinals γ,

(a) γ is singular in L

(b) (γ+)V = (γ+)L.

So in this case we say L is close to V .

(2) All uncountable cardinals are inaccessible in L. In this case way say L is far
from V .

There is a “switch”, namely a real number 0], with the property that

• 0] exists then L is far from V

• 0] doesn’t exist then L is close to V .

It turns out that the existence of measurable cardinals then 0] exists.

§1.7 Another Natural Inner Model: HOD

Definition 1.10. A set x is ordinal-definable if x is definable in V from ordinal
parameters.

The motivation for this is that most notions of definability let you consider the least
ordinal not defined in this way. (For example: “the least natural number not definable in
less than 1000 words”). It turns out that ordinal-definability does not suffer from this
weakness.

Fact 1.11. OD is ordinal-definable.

Now we define a notion of hereditary ordinal-definability.

Definition 1.12. x is hereditary ordinal-definable if its transitive closure is ordinal
definability.

Theorem 1.13 (Gödel)

HOD proves ZFC.

What are the differences?
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1. L is built up from below. HOD is built up from above.

2. L is incompatible with large large cardinals, but HOD is compatible.

We’ll have to use a notion we can’t fully define in the following theorem.

Theorem 1.14 (HOD Dichotomy Theorem, Woodin)

Assume that δ is an extendible cardinals. Then exactly one of the following holds

1. For all singular cardinals γ > δ,

(a) γ is singular in HOD.

(b) (γ+)V = (γ+)HOD.

2. All cardinals greater than δ are ω-strongly measurable in HOD.

This leads us to the following hopes.

• (HOD Hypothesis) There is a proper class of cardinals which are not ω-strongly
inaccessible in HOD (hence we’re in the first case of the HOD dichotomy).

• (HOD Conjecture) ZFC proves the HOD Hypothesis. (Also called the “silly
conjecture”.)
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§2 February 3, 2015

We’re going to try to do measurable cardinals today and Thursday; this may go a little
fast.

§2.1 Filters

Definition 2.1. A filter F on a set A is a set F ⊆ P(A) such that

(i) A ∈ F and ∅ /∈ F .

(ii) ∀X,Y ∈ F , X ∩ Y ∈ F ; meaning we have closure under intersection.

(iii) If X ⊂ Y ⊂ A, X ∈ F =⇒ Y ∈ F . In other words we require that the filter is
“upwards closed”.

Filters give you sense of “closeness”.

Definition 2.2. Let F be a filter on A. Then

(i) F is an ultrafilter if for each X, either X ∈ F or A \X ∈ F .

(ii) F is principle if its generated by Y ; i.e. is of the form F = {X | X ⊇ Y }.

Remark 2.3. The “right” way to think of an ultrafilter is that it is maximal under
inclusion. In particular, we can extend every filter F to an ultrafilter of A by considering
the poset of filters of A under inclusion and using Zorn’s lemma.

Example 2.4

Consider F the subsets of ω with finite complements (i.e. cofinite sets). Then F is
a filter, but is not principle nor an ultrafilter.

We’ll use U and V for ultrafilters.
Easy lemma:

Lemma 2.5

Suppose U is an ultrafilter on A. The following are equivalent.

(i) U is principle.

(ii) {a} ∈ U for some a.

(iii) U is generated by {a}.

Proof. The content is to show (i) =⇒ (ii) as the other implications are easy. Suppose U
is generated by Y and pick a ∈ Y . Since U is an ultrafilter, either {a} ∈ U or A\{a} ∈ U .
The second case can’t happen since we can just note that

Y ∩ (A \ {a})

needs to be in U , but U was generated by Y and the above set does not contain a ∈ Y .
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Example 2.6

Consider F the subsets of ω generated by {17}. This is principle (by definition).
You can also check that it’s an ultrafilter.

Proposition 2.7

Any ultrafilter on a finite set is principle.

Proof. This turns out to be the same as Arrow’s Impossibility Theorem. Let X be a set
of voters. Call a subset S ⊆ X decisive if only the votes of S matter. This is clearly a
filter. The “irrelevance of independent alternatives” is the intersection condition.

§2.2 κ-complete Filters

The following definition is a central notion.

Definition 2.8. Suppose F is a filter and κ is a cardinal. Then we say F is κ-complete
if for all γ < κ we have

(Xα)α<γ ∈ F =⇒
⋂
α

Xα ∈ F.

In other words, the intersection of strictly fewer than κ sets in F must also lie in F .

Then a filter is by definition 2-complete. By induction, we are closed under intersections
of n sets; hence every filter is ℵ0 complete.

Example 2.9

Let A = ω and F be the cofinite sets. Like all filters, F is ℵ0 complete. But it is not
ℵ1 complete, because we can let

Xn = ω \ {n}

and the countable intersection of the Xn’s is ∅ /∈ F .

Definition 2.10. A filter F is countably complete if it is ℵ1-complete: closure under
countable intersections.

Definition 2.11. A cardinal κ > ω is a measurable cardinal if there’s a non-principle
κ-complete ultrafilter on κ.

Remark 2.12. This is a Σ1 definition.

Proposition 2.13

There is a non-principle ℵ0-complete ultrafilter on ω.

Proof. Apply Zorn’s Lemma to the filter of cofinite sets to get an ultrafilter U . Then U
contains all cofinite sets. Thus U can’t contain any finite sets at all!

This is highly nonconstrucitve, which is to be expected because we’re using the Axiom of
Choice via Zorn’s lemma!

9



Evan Chen (Spring 2015) 2 February 3, 2015

Proposition 2.14

If κ is measurable it is strongly inaccessible.

Proof. Exercise. (This is why we require κ > ω.)

Later we’ll give a new, more natural definition of “measurable” (currently we have a
combinatorial definition). Existence of measurable cardinals implies V 6= L, and so we
will work towards building an L-like model containing measurables.

§2.3 Completeness

Definition 2.15. Suppose F is a nonprinciple ultrafilter on A. The completeness of
F is the least cardinal κ such that there exists (Xα)κ in the filter such that⋂

Xα /∈ F.

In other words, it’s the least κ for which things break down. We write κ = comp(F ).
(If F is nonprinciple we let comp(F ) =∞.)

Remark 2.16. Since F is nonprinciple, we have⋂
F = ∅ /∈ F.

Thus this is a good definition.

Exercise 2.17. Show that in fact comp(F ) ≤ |A|.

Proof. I think you just take cofinite sets? TODO check this.

Standard lemma.

Lemma 2.18 (Functions Induce Filters)

Suppose F is a filter on A and f : A→ B. Let

G = {X ∈ P(B) | fpre(X) ∈ F} .

Then

(i) G is a filter.

(ii) If F is an ultrafilter then so is G.

(iii) More strongly, comp(F ) ≤ comp(G).

(iv) If F is an ultrafilter, then G is principal if and only if fpre({b}) ∈ F for b ∈ B.

Proof. Just do it (unwind definitions).

The first substantive theorem is:

10
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Theorem 2.19

The following are equivalent.

(i) There exists a measurable cardinal.

(ii) There exists a countably complete non-principal ultrafilter.

Proof. If κ is measurable then there exists a κ complete non-principal ultrafilter with
κ > ω. So (i) =⇒ (ii) is tautological and we need only prove the converse.

Let U be a ℵ1-complete non-principal ultrafilter on A and set κ = comp(U). By the
exercise κ = comp(U) ≤ |A|. Now we wish to specify a function f : A→ κ.

By definition, we can take

{Xα : 0 < α < κ} ⊆ U

such that
A′

def
=

⋂
0<α<κ

Xα /∈ U.

Then A−A′ /∈ U . We define f : A→ κ by

a 7→

{
least γ with a /∈ Xγ a ∈ A−A′

0 a ∈ A′.

By the lemma this function induces an ultrafilter V on κ, with comp(V ) ≥ comp(U) = κ.
But V is a filter on κ and comp(V ) ≤ |κ| = κ as well. So it suffices to prove V is
nonprinciple, i.e. that fpre(γ) /∈ F for every γ. But

• If γ = 0 we get fpre(0) = A′ /∈ U .

• If γ 6= 0 we get fpre(γ), which by definition is by definition disjoint from Xγ . Hence
it can’t be in the filter (filters can’t contain disjoint sets since their intersection
would then be empty).

Here, we used the “countable completeness” to guarantee that κ > ω (since κ = ω
would be useless).

§2.4 Normal Ultrafilters

Definition 2.20. An ultrafilter U on an infinite cardinal κ is normal if for each
f : κ→ κ, if

{α < κ | f(α) < α} ∈ U

then
∃β ∈ κ : {α ∈ κ | f(α) = β} ∈ U.

Definition 2.21. Suppose κ is an infinite regular cardinal. Let {Xα}α<κ be a sequence
of subsets of κ. Then we define the diagonal intersection by

4
α<κ

Xα =
⋃
α

([0, α] ∩Xα) .
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Example 2.22

Let Xα = κ \ α for each α. Then ⋂
α<κ

Xα = κ

yet
4
α<κ

Xα = κ.

Somehow this is less strict than a normal intersection.

Exercise 2.23. Let U be an ultrafilter on an infinite κ. Then U is normal if and only if
its closed under diagonal intersection.

Proof. Short. Do it yourself.

Proposition 2.24

Let U be a normal ultrafliter on an infinite κ. The following are equivalent.

(1) U is κ-complete and non-principle.

(2) U is uniform, meaning every X ∈ U has |X| = κ.

(3) U is weakly uniform, meaning U contains all the tails: for every γ < κ we
have γ \ κ ∈ U .

Theorem 2.25 (Scott)

If κ is a measurable cardinal then there is uniform normal ultrafilter on κ.

Hence we will generally assume our ultrafilters our normal, since normal ultrafilters are
nice.

Later we’ll give a geometric characterization of measurability.
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§3 February 5, 2015

Continuing the chapter on measurable cardinals. . .
The key definition we introduced last time was the notion of a normal ultrafilter: the

idea is that if f : κ→ κ “presses down” on a measure one set (i.e. an element of U), then
it’s actually constant on that measure one set.

§3.1 Scott’s Lemma

Lemma 3.1 (Scott)

If κ is a measurable cardinal, then there exists a normal uniform ultralfiter on κ.

Proof. Say a subset of κ is big if it’s a subset of U .
Since κ is measurable there exists a κ-complete non-principal ultrafilter U on κ.
We claim that there exists a function f : κ→ κ such that

(i) For each β < κ, the set {α < κ | f(α) = β} is not in U . In other words f is not
constant on any big set.

(ii) For each g : κ→ κ, if {α < κ | g(α) < f(α)} ∈ U then there exists β < κ such that
{α < κ | g(α) = β} ∈ U . In other words, if g < f on a big set then g is constant
on a big set.

Note that (i) is satisfied by the identity function for f . So if U was normal, we’d be done.
The claim is essentially saying that we have “normal with respect to f”.

Proof of Claim. Assume for contradiction no such function f exists. Start with f0 = id.
As (2) must fail for f0, we can find f1 such that f1 < f on a big set but is not constant
on any big set. Hence f1 satisfies condition (1), so condition (2) must fail for f1. This
lets us construct a sequence f0, f1, f2, . . . . . . .

Define
Xn = {α < κ | fn+1(α) < fn(α} ∈ U.

Since U is countably complete (it’s κ-complete!) it follows that⋂
Xn ∈ U.

But no element can lie in all these Xn since that would give

f0(α∗) > f1(α∗) > . . .

an infinite descending chain of ordinals. This is impossible, and the claim is proved. �

So now we have a function f which plays the role of the identity. Set

V = {X ⊆ κ | fpre(X) ∈ U} .

Then V is a κ-complete non-principle ultrafilter on κ (by some exercises), and thus it is
uniform. So we only need to show V is normal.

Suppose g : κ→ κ is such that

S
def
= {α < κ | g(α) < α} ∈ V.

13
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We want to show that g is constant on some set of V . But f applied to it is in U :

f“(S) = {α < κ | g(f(α)) < f(α)} .

Then g ◦ f presses below f on a U -big set. By the definition of f , we find that g ◦ f is
constant on a U -big set, i.e.

{α < κ | g(f(α)) = β} ∈ U

It follows that
{α < κ | g(α) = β} ∈ V

as needed.

pushing down

Missing

figure

§3.2 Ultrapowers

Our next goal is to show that κ is measurable if there’s an elementary embedding of V
into an M such that κ is the first guy moved. We will have agreement VM

κ+1 = Vκ+1. To
be precise. . .

§3.3 Set Models

We focus on models of the form M = (M,E), where E ⊆ M ×M . Suppose we have
such a model M and U is an ultrafliter on some set A.

Let’s look at the functions A→M . Consider f, g : A→M .

Definition 3.2. We say
f ∼U,M g

if
{a ∈ A | f(a) = g(a)} ∈ U.

This is the same “big set” intuition: if f and g agree on a U -big set, then we consider
them the same. Of course, this is an equivalence relation (since U is a filter). So we can
consider (A→M)/U to be the set of these equivalence classes.

Now we can define a membership relation EU,M on equivalence classes [f ] and [g].
We’ll say [f ] EU,M [g] to mean

{a ∈ A | f [a] E g(a)} ∈ U.

Definition 3.3. Suppose M = (M,E) is a set model and U is an ultrafilter on A. The
ultrapower of M with respect to U is the model with points (A→ M)/U and EU,M .
That is,

ΠU (M ) = ((A→M)/U,EU,M ) .

14
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§3.4  Loś’s Theorem

We’ll now drop subscripts.

Theorem 3.4 ( Loś)

Suppose M = (M,E) is a set model U is an ultrafilter of A. Then for each formula
φ(x1, . . . , xn) and each f1, . . . , fn ∈ A→M we have

ΠU (M ) � φ [[f1], . . . , [fn]]

if and only if
{a ∈ A |M � φ[f1(a), . . . , fn(a)]} ∈ U.

This is the key!

Proof. By induction on formula complexity. The atomic base cases [f1] = [f2] and
[f2] EU,M [f1] are immediate by definition.

Hence it suffices to verify for ∧, ¬, ∃. For ∧, we essentially use the fact that in any
filter U , (X1 ∈ U) ∧ (X2 ∈ U) ⇐⇒ (X1 ∩X2 ∈ U). (Just chase definitions). ¬ is the
same, but we use the “ultra” part of ultrafilter: exactly one of X and U \X is in U (for
every X).

The interesting case is ∃, and requires AC. Unwinding,

∃x0ψ : ΠUM � (∃x0)ψ[x0, [f1], . . . , [fn]]

⇐⇒ (∃f0 : A→M) : ΠU (M ) � ψ [[f0], . . . , [fn]]

⇐⇒ (∃f0 : A→M) {a ∈ A |M � ψ[f0(a), . . . , fn(a)]} ∈ U
AC⇐⇒{a ∈ A | (∃b ∈M)M � ψ[b, f1(a), . . . , fn(a)]} ∈ U
⇐⇒ {a ∈ A |M � ∃x0ψ[x0, f1(a), . . . , fn(a)]} ∈ U

Here Axiom of Choice is used to show that if b ∈ M exists for each a, then we can
generate the function sending each a to each b.

Definition 3.5. Suppose M = (M,E) and N = (N,F ) are set models. Then j : M →
N is an elementary embedding if for all φ[x1, . . . , xn] in LST and a1, . . . , an ∈M , we
have M � φ[a1, . . . , an] if and only if N � φ[j(a1), . . . , j(an)].

In particular M and N have the same sentences.

Corollary 3.6 ( Loś)

Suppose M = (M,E) is a set model and U is an ultrafilter on A. There is an
elementary embedding of M into ΠUM via the map

iU,M : M → (A→M)/U

given by m 7→ [cm], where cm : A→M is the constant function sending each a ∈ A
to m ∈M .

Proof. By  Loś, for ΠUM � φ[i(a1), . . . , i(an)] (where a1, . . . , an ∈M , sorry) is equivalent
to

{x ∈ A |M � φ[a1, . . . , an]} ∈ U.
But the left-hand side is either ∅ or A, and it’s A exactly when M � φ[a1, . . . , an].

15
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§4 February 12, 2015

Darn snow.

§4.1 Mostowski Collapse of ΠU(M)

Recall last time we had ΠU (M) constructed. We want to take the Mostowski collapse of
ΠU (M) so that it’s membership relation is the real ∈. To do so we need to show that
ΠUM is well founded.

Lemma 4.1

Suppose M = (M,E) is a well-founded set model and U is a countably complete
ultrafilter. Then ΠUM is well-founded.

Proof. Suppose not. Let 〈[Fn] : n ∈ ω〉 be a sequence of functions such that

[fn+1] EU,M [fn]

for all n. This means that

Xn
def
= {x ∈ A : fn+1(x) E fn(x)} ∈ U

is “big” (it’s in U) for each n. But U is countably complete, meaning ∅ 6=
⋂
Xn ∈ U .

But any x ∈
⋂
Xn, whence fn+1(x) E fn(x) which is a contradiction.

Lemma 4.2

Suppose M = (M,E) is a well-founded set model that satisfies Extensionality. Then
there is a unique isomorphism

π : (M,E) ∼= (N,∈).

Proof. Take the Mostowski collapse.

§4.2 Ultrapowers as Transitive Models

In the case of interest, we’ll have E =∈, giving models M = (M,∈), where U will be
countably complete. In this case we get

πU,M : ΠUM ∼= (N,∈).

So we have a commutative diagram as follows.

(M,∈) ⊂
ιU,M

- ΠUM

(N,∈)
def
= Ult(M,∈)

U,M

?

jU,M
-

This means that for any M (M,∈) which is well-founded we can get an embedding into the
ultrapower Ult(M,U). We’ll denote [f ]M,U ∈ Ult(M,U) the image of [f ]M,U ∈ ΠUM .

16
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By  Loś, we have that

Ult(M,U) � φ[[f1], . . . , [fn]] ⇐⇒ {x ∈ A : M � φ[f1(x), . . . , fn(x)]} ∈ U.

One can show that if κ is measurable, U is an ultrafilter on it, and λ > κ then the
cardinals less than κ are preserved under the map Vλ → Ult(Vλ, U), but κ goes upwards.

§4.3 Ultrapowers of Class Models

For us, classes are definable classes with parameters. Keep in mind that for a class C,
x ∈ C really means “x satisfies the definition of C”. For example, x ∈ On means “x is an
ordinal”.

Let M = (M,E) be a class model, meaning M is a class given by φM and E is a
class given by φE . We want to use our ultrafilter U to carve M into equivalence classes.
We cannot just write

[f ]U,M = {g : A→M | g ∼U,M f}

because then the [f ]U,M would be a class, which would make ΠUM into a class of classes.
The way around this is to use a so-called “Scott’s trick” to replace this with a set. So

we want to put

[f ]U,M = {g : A→M | g ∼U,M f ∧ g has minimal rank} .

You can show this is a set. So now we let ΠUM be the class of these sets.
Everything is definable.
Thus we have  Loś in the following form.

Theorem 4.3 ( Loś)

Suppose M = (M,∈) is a class model and U is an ultrafilter. Let φ be a fixed
formula in the language of set theory. Then for any f1, . . . , fn : A→M ,

ΠU (M ) � φ [[f1], . . . , [fn]]

if and only if
{a ∈ A |M � φ[f1(a), . . . , fn(a)]} ∈ U.

The subtle distinction is classes versus sets. Here there is a different statement of the
theorem for every φ.

§4.4 Set-Like Models

Assume M is well-founded. Hence if U is countably complete then ΠUM is an well-
founded. We want to take the Mostowski collapse of this.

Exercise 4.4. Define E by (α, β) ∈ E if and only if

• α < β and α and β are even ordinals,

• α < β and α and β are odd ordinals,

• α is even and β is odd.

Show that the model (On, E) has no transitive collapse.

17
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The issue is that (On, E) has order type On + On. As written above, (M,∈) is not
set-like.

Definition 4.5. A class-model M = (M,E) is set-like if ∀x ∈ M , the class y ∈
M ∧ y E x is a set.

This is the condition required to carry out the Mostowski collapse.

Lemma 4.6

Suppose M = (M,E) is a well-founded class model which is both extensional and
set-like. Then there exists a unique isomorphism

Π : (M,E)→ (N,∈)

where N is also a class.

§4.5 Central Results

Exercise 4.7. Suppose U is a principle ultrafilter on a set A. Then

Ult(V,U) = V

and the map jU : V → V is the identity.

Proof. Suppose U is generated by a. Then all the truth in Ult(V,U) is determined by a:
you can “replace” every f as f(a). Even more explicitly

[f ] ∈ [g] ⇐⇒ {x ∈ A | f(x) ∈ g(x)} ⇐⇒ f(a) ∈ g(a)

and so nothing happens.

Lemma 4.8

Suppose U is a countably complete ultrafilter on a set A. Let κ denote the complete-
ness of U and

jU : V → Ult(V,U)

be the associated embedding. Then

(i) jU is the identity when restricted to Vκ.

(ii) jU (κ) > κ.

Proof. First, we claim the following.

Claim 4.9. jU restricted to κ is the identity.

Proof of Claim. Induction on α < κ. Assume that for all γ < α we have jU (γ) = γ. We
want to show that [cα]U = α, where cα is the constant function returning α.

If γ ∈ α, then γ = [cγ ] ∈ [cα] (since we had an elementary embedding). This shows
that α ⊆ [cα]U .

Now suppose [f ] ∈ [cα]. Then by  Loś, this holds if and only if

{x ∈ A | f(x) ∈ cα(x) = α} ∈ U.
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By κ-completeness, of U , there must be exist a γ < α such that

{x ∈ A | f(x) = γ} ∈ U.

For if not,
⋂
γ{x ∈ A | f(x) 6= γ} ∈ U is a measure one set, which is impossible. Hence

[f ] = [cγ ] = γ ∈ α. �

Now we can finish the main proof of the claim by induction on α < κ. If α is a limit,
then it’s clear. Now suppose jU is the identity restricted to Vα and we want to get Vα+1.
Let x ⊆ Vα; we wish to check jU (x) = x. For any y ∈ x, our induction hypothesis says
jU (y) = y ∈ jU (x), id est x ⊆ jU (x).

So we want to show jU (x) ⊆ x. It’s enough to prove jU (x) ⊆ Vα, since then we can
repeat the inductive hypothesis.

According to the claim, jU (x) ⊆ (VjU (α))
Ult(V,U) = V

Ult(V,U)
α , which equals Vα by the

induction hypothesis.
Thus we are left to show [cκ] = jU (κ) > κ. We seek f which will be above all the [cα]

for α < κ and yet less than [cκ]. We already know there’s a sequence 〈Xα | α < κ〉 of
sets in U whose intersection

⋂
Xα is not in U . Hence we let f : A→ κ by

f(a) =

{
least γ : a /∈ Xγ a /∈

⋂
Xγ

0 otherwise.

Then f is nonzero on a measure one set.
For α < κ, α = [cα] < [f ]. Then {a ∈ A | f(α) ≤ α)} is certainly in U by κ-

completeness. On the other hand [f ] < [cκ] by construction.
Hence there’s a strict inequality

sup
α<κ

[cα] < [f ] < [cκ]

so jU (κ) 6= κ.

Later we are going to show that there exists an elementary embedding with this
property if and only if κ is measurable, giving us a geometric notion of “measurable
cardinal”.
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Today we’ll finish up measurable, showing that the geometric embedding is equivalent to
the combinatorial one. We’ll then show some properties of measurables; in particular,
the existence of a measurable implies V 6= L.

Last time we had an embedding

jU : V → Ult(V,U)

which was the identity restricted to Vκ but with jU (κ) > κ.

§5.1 Properties of the embedding

Theorem 5.1

Suppose U is a countably complete nonprincipal ultrafilter on a set A, and let κ be
its completeness. Let

jU : V → Ult(V,U)

be the associated embedding. Then

(i) V
Ult(V,U)
κ+1 = Vκ+1

(ii) Each sequence Ult(V,U) of length κ is in the set Ult(V,U).

(iii) Given A = κ, the restriction of jU to κ+ is not in Ult(V,U). Hence we don’t
preserve κ+ sequences.

(iv) U /∈ Ult(V,U). In particular, since U ⊆ Vκ+2, we have Vκ+2 ( Ult(V,U).

Proof. (i) We already know V
Ult(V,U)
κ = Vκ. Since Ult(V,U) ⊆ V , we know

V
Ult(V,U)
κ+1 ⊆ Vκ+1,

and so it remains to show the reverse inclusion.

Fix x ∈ Vκ+1; that is, x ⊆ Vκ. Since jU is an elementary embedding Thus jU (x) ⊆
V

Ult(V,U)
jU (κ) . Also, for any y ∈ x, we have jU (y) ∈ jU (x). Hence x = jU (x) ∩ Vκ. So

the geometric picture is that we’re “inflating” x: there are “new elements” being
added on.

(ii) Consider a κ sequence
〈[fα] : α < κ〉 .

We seek [g] ∈ Ult(V,U) such that the first κ terms are the sequence above. Let f
be such that [f ] = κ.

Suppose (for wishful thinking) that g did exist. Then

[g]|[f ] = 〈[fα] : α < [f ]〉

reads (according to  Loś)

U 3
{
a ∈ A | V � g(a)|f(a) = 〈fα(a) | α < f(a)〉

}
.

So we’ll define it this way. We define g : A→ (κ→ V ) matching each a ∈ A to the
κ-sequence

〈fa(α) : α < κ〉 .
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For α < κ, the αth term of [g] is

[g](α) = [g]([cα]) = [fα]

where the last equivalence holds since

Ult(V,U) � [gα]([cα]) = [fα] ⇐⇒ U 3 {a ∈ A | (g(a))(α) = fα(a)} = A.

(iii) We want to show jU restricted to κ+ is an element of Ult(V,U), given A = κ. We
claim that

jU (κ+) = sup ju“(κ+).

Assume not, so we have an inequality of ordinals sup ju“(κ+) < jU (κ+). Let [f ]
and [cκ+ ] denote the left and right-hand sides. So f(α) < κ+ for most α (“most”
in the sense of U). Hence by  Loś there exists a β < κ+ such that ran(f) ∩ κ+ ( β.
So [f ] < [cβ] by  Loś which is a contradiction.

(iv) Assume for contradiction that U ∈ Ult(V,U). We will show that (iii) fails.

First, consider P(κ× κ) ∈ Ult(V,U). By coding, the κ-sequences of κ+ are all in
Ult(V,U).

Now for α < κ+, we have

jU (α) = [cα] = {[f ] | f : κ→ α} .

since [f ] ∈ [cα] if and only if f(ξ) < α for most ξ ∈ κ. Putting it all together,
we can compute jU“(κ+) (and hence jU restricted to κ+) from the κ-sequences of
κ+ and the ultrafilter U (since that’s all we need to do this computation). This
contradicts (iii).

The ultrapower are nice because they “agree with V ”. Here there’s two notions of
agreement: you can say “agreeing up to rank” (here, Vκ is preserved) or you can say they
agree on κ-sequences. (Here κ is inaccessible, so there’s a bijection κ↔ Vκ and hence
preserving κ sequences is enough to preserves all of Vκ.) The point of the theorem above
is to show that in both cases, somehow κ is the “best possible”.

We could demand even more agreement, and the two notions would lead us up different
chains of large cardinals.

§5.2 Geometry and combinatorial views coincide

Theorem 5.2 (Scott, Keisler)

Suppose κ is an ordinal. Then the following are equivalent.

(1) κ is measurable.

(2) There is an elementary embedding j : V →M such that M is transitive and κ
is the critical point of j (meaning κ is the smallest ordinal not preserved by j),

(3) There is an elementary embedding j : Vκ+1 → N such that N is a transitive
set with critical point κ.
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Proof. (1) =⇒ (2): done already.
(2) =⇒ (3): use j restricted to Vκ+1; let N = M ∩ Vj(κ)+1.
(3) =⇒ (1): Let U = {x ⊆ κ | κ ∈ jU (x)} be a filter on κ; one can think of κ as the

“seed” that generates U . First, let’s check this is a ultrafilter on κ.

• κ ∈ jU (κ).

• ∅ /∈ U since κ /∈ ∅.

• x, y ∈ U =⇒ x ∩ y ∈ U because j(x ∩ y) = jU (x) ∩ jU (y).

• x ∈ U and x ⊆ y implies y ∈ U , since jU (y) ⊇ jU (x) 3 κ.

• For any α ∈ κ we have κ /∈ {α} = jU ({α}). So U is nonprincipal.

Next we want to show that for any γ < κ, U is closed under γ intersections. Compute

jU

(⋂
〈xα | α < γ〉

)
= jU

(⋂
〈xα | α < γ〉

)
=
⋂
jU (〈xα | α < γ〉)

=
⋂
〈j(xα) | α < γ〉

3 κ

where we have used the fact that jU (γ) = γ.

Exercise 5.3. Show that U as above is normal (i.e. closed under diagonal intersections.)

Theorem 5.4

Suppose κ is a measurable cardinal. Then

(a) κ is inaccessible, in fact the κth inaccessible in V .

(b) κ is Mahlo, in fact the κth Mahlo cardinal in V .

Proof of Inaccessibility Properties. Let j : V → M be such that M is transitive. First,
to show κ is inaccessible, we need to show it’s regular and a strong limit.

Note that if f : γ → κ is cofinal (for γ < κ) then j ◦ f : j(γ)→ j(κ) is actually f just
because j preserves small numbers:

j(f)(ξ) = (j(f))(j(ξ)) = (j(f))(ξ) = j(f(ξ)) = f(ξ)

which is impossible since j(f) = f can’t be cofinal in the map γ = j(γ)→ j(κ) > κ.
We also want to show that for γ < κ we have 2γ < κ. Assume on the contrary 2γ ≥ κ,

so there is a surjection f : P(γ) � κ. But P(γ) ⊆ Vκ. Thus j(f) is now a function
j(P(γ)) = P(γ)� j(κ). Indeed j(f) = f again.

Hence κ is strongly inaccessible.
Now to show κ is in fact the κth strongly inaccessible. The point is that

M � “κ is strongly inaccessible”

since Vκ+1 ⊆M and hence M agrees with V . (Here κ is the real thing, not j(κ).)
So M thinks that both κ and j(κ) are strongly inaccessible, and hence κ < j(κ).

Observe for every α = j(α) ∈M with α < κ, the model M satisfies the sentence “there’s
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a strongly inaccessible between j(α) and j(κ)” (namely κ). Hence V satisfies the sentence
“there’s a strongly inaccessible between α and κ”. And since κ is regular we reach the
conclusion.

So the point is to use j and diagram chasing.

Now recall that an inaccessible cardinal κ is Mahlo if

{κ < κ | κ is inaccessible}

is stationary: every club of κ intersects it. (Stationary sets are HUGE.)

Proof of Mahlo Properties. First we prove κ is Mahlo. Let C be any club in κ. Then
j(C) is a club in j(κ) (this is not the same as j“(C)!) Now j(C)∩κ is cofinal in κ. Hence
κ ∈ J(C)!

Hence M satisfies the sentence “j(C) has a strongly inaccessible in it”; hence so does
C. For the proof that it’s the κth one, repeat the proof of inaccessible.

So measurable cardinals transcend Mahlo and inaccessibles not just by being special
cases, but having TONS of such cardinals below them. Measurable cardinals “tower over”
inaccessibles as such.
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Exercise 6.1. Suppose U is a κ-complete non-principal ultrafilter on κ. Then

(2κ)V ≤ (2κ)Ult(V,U) < jU (κ) <
(
(2κ)+

)V
.

Exercise 6.2. If for all α < λ, we have

|κ→ α|+ ≤ λ

then
jU (λ) = sup

α
jU“α.

In addition, if the cofinality of λ doesn’t equal κ then

jU (λ) = λ.

§6.1 The Constructible Universe

Theorem 6.3 (Scott)

Suppose κ is a measurable cardinal. Then V 6= L.

Proof. Assume V = L. Let κ be the least measurable cardinal. Let U be a κ-complete
non-principal ultrafilter on κ. Let

jU : V → Ult(V,U)

be the associated embedding (so j has critical point κ). Then

V = L = Ult(V,U).

(Since L is the smallest inner model of ZFC.)
In L = Ult(V,U), we have

Ult(V,U) � “jU (κ) is the least measurable′′

which is impossible.

Assume a measurable cardinal κ exists. Since L has the same ordinals as V , κ ∈ L.
This might seem absurd given what we’ve said above. But the point is that V �
“κ is measurable′′ yet L � “κ isn’t measurable′′.

You can convolute this as the following riddle if you’re bored.

“There is a measurable cardinal in L, which is not a measurable cardinal in
L”.

Remark 6.4. Σ2 statements are absolute to L; that is, for φ ∈ Σ2 if V � φ then L � φ.
Follows by Löwenheim-Skolem Theorem that “there is a countable transitive model M
such that M thinks ZFC and there exists a measurable cardinal”.

This is a Σ2 statement, true in V . So it’s true in L.

So L doesn’t have large cardinals but it does have countable transitive models which
do have these large cardinals. You can create these tiny fossils. This leads to a big
philosophical debate about whether V = L.
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§6.2 Exercises

Exercise 6.5. Suppose U is a κ-complete non-principal ultrafilter on κ. Then U is
normal if and only if [id]U = κ.

The idea is that [cκ] = j(κ) > κ. If U is normal then any function pressed down on by
id becomes something less than κ.

Some other exercises are given. Here’s one in particular.

Exercise 6.6. Suppose U is a κ-complete non-principal ultrafilter on κ. Let f : κ→ V .
Then

(jU (f))(κ) = [f ].

In that sense κ is a “seed”. It follows that

Ult(V,U) = HullUlt(V,U) (im(jU ) ∪ {κ}) .

§6.3 Seed Theorem

Hence we’ve represented Ult(V,U) by both [f ] and jU (f)(κ).

Theorem 6.7

Suppose j : V → M is a nontrivial elementary embedding with critical point κ,
where M is a transitive model. Define

U = {X ⊆ κ | κ ∈ j(X)} .

Then the ultrapower ΠU (V ) is well-founded and has a Mostoswki collapse Ult(V,U).
Moreover, the map

kU : Ult(V,U)→M by [f ]U 7→ j(f)(κ)

gives rise to a commutative diagram of elementary embeddings

V
j
- M

Ult(V,U)

jU

?

kU

-

Proof. Let ĵU : V → ΠU (V ) (well, “V ” in the latter guy) by

x 7→ [cx]x.

Consider
z = {j(f)κ | f : κ→ V } .

Let k̂U : ΠUV → z by
[f ] 7→ j(f)(κ).
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We claim that k̂U is an isomorphism πUV ∼= z. For f, g : κ→ V ,

[f ]U = [g]U ⇐⇒ {α ∈ κ | f(α) = g)α)} ∈ U
⇐⇒ κ ∈ j({α ∈ κ | f(α) = g(α)})
⇐⇒ κ ∈ {α ∈ j(κ) | j(f(α)) = j(g(α))})
⇐⇒ j(f)(κ) = j(g)(κ)

Similarly, membership works out, et cetera.
Hence Z sits inside M , isomorphic to Ult(V,U). (It follows that Ult(V,U) is well-

founded, but we already knew that.)
Let jU , kU be the transitive collapses of ĵU and k̂U , ie.e. produce a diagram

V
j

- M

ΠU (V )

k̂U

-
ĵ
U

-

Ult(V,U)

??

k U

-
j
U

-

Next we check that the diagram commutes.

kU (jU (x)) = kU ([cx]U )

= j(cx)(κ)

= cj(x)(κ)

= j(x)

So we have a commutative diagram, j and jU being elementary embedding. Sadly this
is not enough to imply kU is an elementary embedding, so now we check it explicitly.

We first claim that Z is an elementary substructure of M . For this we use the
Tarski-Vaught test. Assume

M � ∃yφ[y, j(f1)(κ), . . . , j(fn)(κ)],

id est
{x ∈ κ | V � ∃yφ[y, f1(x), . . . , fn(x)]} ∈ U.

We seek a j(g)(κ) such that

M � φ[j(g)(κ), j(f1)(κ), . . . , j(fn)(κ)]..

So we just select g : κ→ V by a choice function. (This is essentially the same proof as
 Loś.)

Thus we have

Ult(V,U) � φ [[f1], . . . , [f − n]]

⇐⇒ Z � φ[j(f1)(κ), . . . , j(fn)(κ)]

⇐⇒ M � φ[j(f1)(κ), . . . , j(fn)(κ)]
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§6.4 The Inner Model L[U ]

By Scott’s Theorem there are no measurable cardinals in L. This is unfortunate, because
L has nice structures.

• It has condensation, giving GCH, �, . . .

• Fine structure.

We call a model “L-like” if it has condensation (giving GCH and �). Se we want an
L-like model which does have measurable cardinals. It’d also be cool if it was canonical.

There’s a notion of “relative constructibility”.

Definition 6.8. Suppose A is a set or class. We consider the language of set theory
with a distinguished constant Ȧ. We define

L0[A] = ∅
Lα+1[A] = Def(Lα[A],∈, Ȧ)

Lλ[A] =
⋃
α<λ

Lα[A]

L[A] =
⋃
α∈On

Lα[A].

In other words we allow ourself to use A as a constant; we’re allowed to query whether
an element is in A in our LST sentences (but we can’t actually grab on to it). Definability
really is over Lα[A].

Example 6.9

Note that if A ⊆ L such that A ∩ x ∈ L ∀x ∈ L (we say “A is amenable to L”) then
L[A] = L; the introduction of A doesn’t let you define anything new.

Example 6.10

Moreover, if A ⊆ ω is a real number such that A /∈ L, then L[A] ) L. In this case,
Ln[A] = Ln for any natural number n and hence Lω[A] = Lω, but at the ω + 1st
level we obtain the real number A.

Example 6.11

If A ⊆ On encodes V , then L[A] = V .

So whether L[A] is desirable depends entirely on the set A. Next time, we’re going to
take A = U a normal uniform ultrafilter on a measurable cardinal κ. We’ll then see that

• L[U ] � “κ is measurable”.

• L[U ] � “κ is the only measurable”.

• L[U ] � GCH.

• L[U ] is “canonical” in some sense.

L[U ] is going to be basically L above κ, but stranger underneath it.
Later in the class we’ll do the same thing with a supercompact cardinal, and then

something magical is going to happen.
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§7 February 24, 2015

We’re going to deal with L[A] where U is an ultrafilter.

§7.1 Black boxes

Theorem 7.1

There is a Π2 sentence “V = L[A]” in the Language of Set Theory with distinguished
constant Ȧ such that for any transitive class M and any set or class A,

〈M,∈, A ∩M〉 � “V = L[A]”

if and only if either M = L[A] or M = Lλ[A] for some uncountable limit ordinal λ.

Theorem 7.2

There is a Σ1 function
“x <L[A] y

′′

in LST ∪ {Ȧ} such that for any set or class A in 〈L[A],∈, A ∩ L[A]〉 the relation
defines a well-ordering of the universe such that for any uncountable λ,

(<LA)〈Lλ[A],∈,A∩Lλ[A]〉 = (<LA |Lλ[A])
〈Lλ[A],∈,A∩Lλ[A]〉

No idea what this means.

§7.2 Measurable Cardinals

Exercise 7.3. Suppose U is a normal uniform ultrafilter on κ. Then

L[U ] � “U ∩ L[U ] is a normal uniform ultrafilter on κ”.

Even if U /∈ L[U ] we have that

U ∩ L[U ] ∈ L[U ] and L[U ∩ L[U ]] = L[U ]

so we may as well assume that U ∈ L[U ].

Definition 7.4. 〈L[U ],∈, U〉 is a κ-model if

〈L[U ],∈, U〉 � “U is a normal uniform ultrafilter on κ”.

If κ is a measurable cardinal; then there is a κ-model.

Exercise 7.5. Show the converse fails.

§7.3 Analyzing L[U ]

To analyze L[U ] and show that it is L-like we will need two new techniques,

• Iterated ultrapowers, and

• Comparison.

For now, let’s see how far we can go with old techniques.
In what follows we abbreviate 〈L[U ],∈, U〉 to just L[U ].
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Theorem 7.6 (Solavay)

Suppose L[U ] is a κ-model. Then

(a) L[U ] � (∀λ ≥ κ)(2λ = λ+). In other words we have GCH above κ.

(b) L[U ] � “κ is the only measurable”.

Proof. First we prove GCH holds above κ. Fix λ ≥ κ and x ∈ P(λ)∩L[U ]. Consider ξ a
limit ordinal such that

x, U, λ ∈ Lξ[U ]

i.e. we have all the ingredients.
Consider

〈H,∈, U ∩H〉 ≺ 〈Lξ[U ], ξ, U ∩ Lξ[U ]〉

such that λ ∪ {x, U} ⊆ H, and |H| = λ. Let

π : 〈H,∈, U ∩H〉 →
〈
H,∈, U ∩H

〉
be the Mostowski collapse. Since ∀y ∈ P (λ)(π(y) = y), π“(U ∩H) = U ∩H. Also, since

Lξ[U ] � “V = L[U ]′′ (from elementarity), we obtain H = Lξ[U ]. Moreover,
∣∣∣Lξ[U ]

∣∣∣ = λ,

so P(λ) ∩ L[U ] ⊆ Lλ+ [U ].
For the second part, work in L[U ]. Assume for contradiction that there is another

measurable cardinal λ and let U ′ be a normal uniform ultrafilter on λ. Let

jU ′ : L[U ]→ Ult(L[U ], U ′).

Since U ′ /∈ Ult(L[U ], U ′), it suffices to show that Ult(L[U ], U ′) = L[U ], so this will give
the needed contradiction.

We now consider two cases. Suppose λ > κ. Then Ult(L[U ], U ′) = L[jU ′(U)]. But
jU ′(U) = U , contradiction.

On the other hand, suppose λ < κ. Let M be the ultrapower Ult(L[U ], U ′). We claim

jU ′(U) = U ∩M

which suffices since then M = L[jU ′(U)] = L[U ∩M ] = L[U ]. (Recall that l[U ] is the
smallest inner model M such that U ∩M ∈M .)

We will prove j(U) ⊆ U , which implies the conclusion. Suppose [f ]U ′ ∈ j(U); we wish
to show [f ] ∈ U . But jU ′(U) = [cU ]U ′ . Consider f : λ→ U . Since λ < κ, we have⋂

ξ<λ

f(ξ) ∈ U.

We will show [f ] ∈ U ∩M by exhibiting an object y ∈ U ∩M such that y ⊆ [f ]. Actually,

jU ′

( ⋂
xi<λ

f(ξ)

)
=
[
c⋂ ξ<λf(ξ)

]
⊆ [f ].

so we may set y = jU ′
(⋂

xi<λ f(ξ)
)
; hence it remains only to show y ∈ U ∩M .

Let
I = {ξ < λ | ξ > λ and ξ inaccessible} .
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As |I| = κ, we have I ∈ U and jU“(I) = I. Hence

j“(I) ∩

⋂
ξ<λ

f(ξ)

 = I ∩

⋂
ξ<λ

f(ξ)


which is an intersection of two U -big sets, and hence is in U .

Summary: let U be a normal uniform ultrafilter on κ. Then

L[U ] � “κ is measurable with ultrafilter U”.

Moreover, L[U ] satisfies GCH above κ, and finally thinks that κ is the only inaccessible
cardinal.

§7.4 Iterated Ultrapowers

Proceed generally:

(i) Models of ZFC not power set.

(ii) Don’t assume U is actually in the model.

Definition 7.7. We say M is fully amenable to M if for all x ∈M , x ∩ U ∈M .

Definition 7.8. We say M is κ-amenable if for all x ∈M , if |x|M = κ then x∩U ∈M .

Definition 7.9. Suppose M is a transitive ∈-model of ZFC− PowerSet. Then U is an
M-ultrafilter on κ if

(i) 〈M,∈, U〉 � “U is a normal uniform ultrafilter on κ”.

(ii) 〈M,∈, U〉 is κ-amenable, id est

∀(f : κ→M) ∈M : {ξ < κ | f(ξ) ∈ U} ∈ U.

Another definition:

Definition 7.10. Suppose M is a transitive ∈-model of ZFC− PowerSet. Then U is an
M -ultrafilter on κ if

(i) U is a non-principal ultrafilter and a subset of P(κ) ∩M .

(ii) If η < κ, the sequence 〈xξ | ξ < η〉 is in M , and each xη is in U , then
⋂
〈xξ | ξ < η〉

is in U .

(iii) If the sequence 〈xξ | ξ < κ〉 is in M , then so is 〈ξ | xξ ∈ U〉.

For the ultrapower construction, we can proceed as before using f, g ∈ (κ→M) ∩M ;
the only change is the “∩M” since we have models M rather than the whole universe M .

What about ȦU? We have

[f ] EU AU ⇐⇒ {ξ < κ | f(ξ) ∈ U} ∈ U.

Note that 〈M,∈, U〉 can determine this since M is κ-amenable.
Hence from  Loś from LST ∪ {Ȧ} using AC and Collection.
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κ-completeness in this context does not guarantee that

〈(κ→M) ∩M/U,EU , AU 〉

is well-founded (since κ could be countable!), but when it is well-founded we write

Ult(M,U)

for the transitive collapse, whose elements are [f ] = π([f ]).

Exercise 7.11. For any such M , prove that

j : 〈M,∈, U〉 → Ult(M,U) =
〈
M ′,∈, U ′

〉
is cofinal. Show that

(1) |M | = |M ′|.

(2) ∀x ∈ Vκ ∩M , j(x) = x.

(3) Vκ ∩M = Vκ ∩M ′.

(4) Vκ+1 ∩M = Vκ+1 ∩M ′.

(5) U /∈M ′.

31



Evan Chen (Spring 2015) 8 February 26, 2015
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Let M be a transitive ∈-model of

ZFC− PowerSet

and let U be an M -ultrafilter on κ. We defined the ultrapower of (M,U). If it’s well
founded, then we can take the Mostowski collapse

j : (M,U)→ (M ′, U ′)

where M ′ is transitive and j is an elementary embedding.
We have that

• j is cofinal,

• j is the identity when restricted to VM
κ .

• (Vκ+1)M = (Vκ+1)M
′
.

• U /∈M ′.

We also know that U ′ is an M ′-ultrafilter (exercise), meaning that it’s κ-amenable to M ′

and M ′ thinks U ′ is a normal uniform ultrafilter over j(κ).

§8.1 Iterated Ultrapowers

Let M0 = M and M1 = M ′ now. We can do the same procedure on the ultrapower
(M1, U1), then a map j12 : (M1, U1)→ (M2, U2) and so on, giving us (Mn, Un).

many triangles

Missing

figure

Then we can take the direct limit at limit stages.

Exercise 8.1. Specifically, suppose λ is a limit ordinal and

(〈(Mα, Uα) : α < λ〉 , 〈jα,β : α < β < λ〉)

is a directed system of elementary embeddings where each Uα is an Mα ultrafilter of
some κα.

Suppose further that the direct limit is well-founded and take the Mostowski collapse
(Mλ, Uλ) and let

jα,λ(Mα, Uα)→ (Mλ, Uλ)

be the induced embeddings for each α < λ.
Then Uλ is an Mλ-ultrafilter over kλ = jαλ(κα) for each α.
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§8.2 Maximal iterability

So we want some condition which guarantees well-foundedness, because then we can keep
iterating.

Definition 8.2. Let τ be the first ordinal stage (if it exists) where well-founedness fails.
Otherwise let τ = On, in which we say (M0, U0) is iterable. More generally, if λ ∈ τ we
declare that (M0, U0) is λ-iterable.

Foreshadowing: We will be interested in (M0, U0) which are (ω1 + 1) iterable.

Lemma 8.3

Suppose U0 is a M0-ultrafilter on κ0 and let

〈Mα, Uα, κα, jα,β : α ≤ β < τ〉

be the iteration of (M0, U0). Suppose α < β < τ . Then

(1) The critical point of jα,β is κα, and jα,β(κα) = κβ.

(2) jα,β is the identity when restricted to Vκα ∩Mα and

Vκα+1 ∩Mα = Vκα+1 ∩Mβ.

(3) If λ is a limit ordinal then
κλ = sup

ξ<λ
κξ.

(4) If M0 is a set then in fact

|Mα| = |M0| · |α| .

Proof. (1) follows by elementarity.
(2) follows by an earlier exercise.
For (3), consider ξ < κλ; we seek κβ > ξ. Then ξ < κλ, η < λ be such that

ξ = jη,λ(ξ).

In (Mη, Uη) we have κη > ξ. Thus, since κη is the critical point we obtain ξ = ξ, hence
κη > ξ.

The last part follows from the fact that sizes are not increased at any successor stage
by a preceding exercise. Thus

|Mα| ≤ |M0| · |α| .

Moreover,
|M | ≤ |Mα|

and
{κα : α < α} ⊆Mα

which establishes the other inequality.

Exercise 8.4. Show that for α+ 1 ∈ τ and x ∈ P(κα)∩Mα, we have x ∈ Uα if and only
if κα ∈ jα,α+1(x).
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§8.3 Determining Uα

Lemma 8.5

Let M , τ , etc. be as above. Suppose λ ∈ τ is a limit ordinal. Then for x ∈ P(κλ)∩Mλ,
we have x ∈ Uλ if and only if there exists α < λ so that 〈κγ : α < γ < λ〉 is a subset
of x.

Proof. Fix any γ < λ is such that

x = jγ,λ(x)

for some x ∈ P(κγ) ∩Mα.
We have

x ∈ Uγ ⇐⇒ κγ ∈ jγ,γ+1(x)

according to the exercise. This is true if and only if κγ ∈ x, since the critical point of
jγ+1,λ exceeds κλ.

Thus
x ∈ Uλ ⇐⇒ x ∈ Uγ ⇐⇒ κγ ∈ x.

Lemma 8.6 (Seed Lemma)

Let M , τ , etc. be as above. For each α ∈ τ and x ∈Mα there exists a nonnegative
integer n and critical points

κξ1 < · · · < κξn

(where ξ1 < · · · < ξn < α) and f : [κ0]n →M a function in M such that

x = j0,α(f) (κξ1 , . . . , κξn) .

Proof. By induction on α. Suppose true for α and α+ 1 ∈ τ . Fix x ∈Mα+1. Suppose
Uα is an Mα ultrafilter over κα we have

x = jα,α+1(g)(κα)

for some g : κα →Mα, g ∈Mα (exercise).
Now if α = 0 we are done. If α > 0 then by the inductive hypothesis we have

g : [κ0]n →M0

in M0 and
ξ1 < · · · < ξn < α

such that g = j0,α(g)(κξ1 , . . . , κξn). So we seek an f : [κ0]n+1 →M0 in M0 such that

x = j0,α+1(f)(κξ1 , . . . , κξn , κα).

Thus we have

x = (jα,α+1(g)) (κα)

= (jα,α+1(j0,α(g)(κξ1 , . . . , κξn))) (κα)

= (jα,α+1(j0,α(g))) (jα,α1(κξ1 , . . . , κξn)) (κα)

= (jα,α+1(j0,α(g))) (κξ1 , . . . , κξn) (κα)
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since the κi are all less than κα, and hence are preserved. So we want to find f such that
this equals

(j0,α+1(f)) (κξ1 , . . . , κξn , κα) .

Define f from g as follows:

(γ1, . . . , γn+1) 7→ (g(γ1, . . . , γn)) (γn+1).

This works.
Now for the limit case we fix x ∈Mλ, and α < λ and x ∈Mα such that

x = jα,λ(x).

By the inductive hypothesis,

x = j0,α(f) (κξ1 , . . . , κξn)

but the critical point of jα,λ is κα > κξn > · · · > κξ1 so jα,λ(κξ) = κξ. Thus x =
j0,λ(f)(κξ1 , . . . , κξn).

This looks hard but it’s just like notation.

§8.4 Comments

Recall that
Ult(V,U) = HullUlt(V,U) (ran(ju) ∪ {κ})

when U is a non-principal ultrafilter on κ. Contrast this with our new information: (for
α ∈ τ that)

Mα = HullMα (ran(j0,α) ∪ {κξ : ξ < α}) .

What we’re going to do next is to figure out at which stages we have fixed points of
some j0,α. We also need to set conditions for iterability. Then we’ll go from this local
context back to L[U ].

35



Evan Chen (Spring 2015) 9 March 3, 2015

§9 March 3, 2015

§9.1 A Corollary

Corollary 9.1

Let M = (M0, U0), τ et cetera be as in the previous lecture. Then

(1) Suppose γ ∈ (On)M and α ∈ τ . Then

j0,α(γ) < (|(κ0 → γ) ∩M | · |α|)+ .

(2) Suppose ν is a cardinal such that

|(κ→ κ) ∩M | < ν ∈ τ.

Then κν
def
= j0,ν(κ0) in fact equals ν.

(3) Suppose θ is a radical such that M thinks

• ZFC− PowerSet,

• For all θ < θ, there is a set of functions κ0 → θ.

• θ is a strong limit and cof(θ) > α.

Assume α < min(θ, τ). Then

j0,α(θ) = θ.

Proof. For the first part, let γ > κ0. Then j0,α takes κ0 to κα and γ 7→ j0,α(γ). Consider
κα < η < j0,α(γ). By the Seed Lemma η has the form

η = j0,α(f)(κξ1 , . . . , κξn).

for some f : [κ0]n → M0 in M0. By using η ∈ j0,α(γ) and applying  Loś or whatever,
you can assume in fact f : [κ0]n → γ. Thus the number of η is at most the number of
functions times the number of seeds, id est

|(κ0 → γ) ∩M | · |αn| = |(κ0 → γ) ∩M | · |α| .

This gives the bound on j0,α(γ).
In the second part, let

ν ≤ κν ≤ sup ({κα | α < ν}) .
Using the above lemma we can bound this by ν, giving κν = ν.

Finally, for the third part, it suffices to show that if η < j0,α(θ) then η < θ. Each
η < j0,α(θ) has the form

j0,α(f)(κξ1 , . . . , κξn)

where f : [κ0]n → θ and f ∈M0. Since cofM0(θ) > α, there exists an ordinal θ < θ such
that in fact f : [κ0]n → θ. Thus

η < j0,α(θ) <
(∣∣(κ0 → θ) ∩M0

∣∣ |α|)+ ≤ θ
where we use the fact that θ is a strong limit for the last inequality, as

κθ0 = 2θ < θ.
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§9.2 Iterability

Now we want to actually guarantee that these Mα is iterable.
Let U = U0 be an M = M0-ultrafilter on κ = κ0. Let

〈Mα, Uα, κα, jα,β | α ≤ β < τ〉

be the iteration of (M0, U0, κ0). We want a sufficient condition on (M,U) for iterability;
i.e. we want τ = On.

Definition 9.2. We say U is weakly countably complete in V if for any sequence
{Xn : n < ω} ⊆ U , we have ⋂

n<ω

Xn 6= ω.

(Before we wanted the intersection to actually be in U .) This is not immediate from
M � “U is κ-complete”, but this is not immediate: the Xn sequence comes from V , and
need not be in M = M0.

We’re interested in ω1 iterability.

Theorem 9.3

Let M = M0, U = U0, τ and so on be as above.

(1) Suppose that U is weakly countably complete the universe of sets.

(?) Suppose (N,V ) is countable (here V is an ultrafilter, not the constructible
universe) such that

(a) V is an N -ultrafilter on ν,

(b) There exists an elementary embedding

σ : (N,V )→ (M,U).

Then (N,V ) is ω1-iterable.

(2) If (M,U) satisfies (?) then (M,U) is iterable.

Proof. The proof uses the so-called “realizability”. Let

〈Nα, Vα, να, jα,β | α ≤ β < τ〉

be the iteration of (N0, ν0) = (N, ν). We want to show τ ≥ ω1 (and hence τ > ω1). The
point is to get an elementary embedding of each (Nα, να) into (M,U).

(M,U)

(N, ν)

σ0 = σ

6

- (N1, ν1) -

�

σ
1

. . .

We proceed by transfinite induction. Consider the uncollapsed ultrapower〈
(να → Nα) ∩Nα/Vα, EVα , ȦVα

〉
.
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We seek σ̃α from this into 〈M,∈ U〉 so that the diagram

(M,U)

(Nα, Vα)

σα

6

jα,α+1

- (Nα+1, Vα+1)

�

σ
α+1

commutes. Do some computation with  Loś, using weakly countably complete. The map
is

[f ] 7→ σα(f)(ηα)

for some
ηα ∈

⋂
{σα(x) | x ∈ Vα ∩Nα}

which is possible since there are only countably many sets of the form σα(x) for x ∈ Nα.
The limit case is immediate using properties of direct limits.
For the second part, suppose (M,U) has the property and for contradiction (M,U)

is not iterable. Let α be the point so that (Mα, Uα) is ill-founded. There’s an infinite
descending sequence of Mα; cutting off M appropriately, it suffices to consider the case
where M is a set.

Let
I = 〈Mα, Uα, κα, jα,β | α ≤ β < τ〉

witness the iterability of (M,E). Hence τ < On.
Let γ be sufficiently large so that M , U , I are all in Vγ , and

Vγ � “I is an iteration of (M,U) of length τ witnessing the non-iterability of (M,U).”

Let H ≺ Vγ be such that |H| = ω and M,U, I ∈ H (by reflection).
Take a hull. Blah.
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A small change: we now assume

M � ZFC \ PowerSet + “Vκ+1 exists”.

But we actually assume U ∈M now. Moreover, M � “U is a normal uniform ultrafilter on κ”.

§10.1 Iterability continued

We let M , τ , κ have the same meanings as last time.

Corollary 10.1

The following are equivalent.

(1) (M,U) is iterable.

(2) (M,U) is ω1-iterable.

(3) There is an (Mα, Uα) such that Uα is weakly countably complete in V .

(4) (M,U) has feature (?)

(5) If there is an elementary embedding π : (N,V ) → (M,U) then (N,V ) is
iterable.

Proof. (1) =⇒ (2) is tautological.
(2) =⇒ (3): We have (M,U) is ω1 + 1 iterable. Consider (Mω1 , Uω1). Suppose
{Xn : n ∈ ω} ∈ Uω1 . We have that for each n ∈ ω there is an αn such that

{κγ | αn < γ < ω1} ⊆ Xn.

Let α = supn∈ω αn.

{κγ | α < γ < ω1} ⊆
⋂
Xn.

Thus
⋂
n∈ωXn is nonempty.

(3) =⇒ (4): By the theorem from last time, we know (Mα, Uα) is iterable. Since
(Mα, Uα) is an iterate of (M,U), we get (M,U) is iterable.

(4) =⇒ (5): (N,V ) inherits feature (?) since it can be embedded in (M,U).
(5) =⇒ (1): Take the identity embedding (M,U) → (M,U); hence (M,U) is

iterable.

Corollary 10.2

Suppose N is a transitive ∈-model of ZFC. Assume

(a) ω1 ⊆ N .

(b) N thinks U is an M -ultrafilter on κ (where M may be a proper class in N).

Then N thinks (M,U) is iterable if and only if V thinks (M,U) is iterable.
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Proof. Because iterability is equivalent to ω1-iterability, the condition ω1 ⊆ N is sufficient.
Indeed, for α ∈ OnN , we have

(Mα, Uα)N = (Mα, Uα)V .

Hence V � “(M,U) iterable” =⇒ N � “(M,U) iterable” is immediate.
For the other direction, given the above point and ωV1 ⊆ N we have (M,U) is ω1-iterable.

So V � “(M,U) is iterable”.

§10.2 The Coarse Analysis of L[U ]

Recall that
〈L[U ],∈ U〉

is a κ-model if and only if

〈L[U ],∈ U〉 � “U is a normal ultrafilter on κ”.

Here we are now assuming U ∈ L[U ].

Definition 10.3. We say 〈M,∈, U〉 is a premouse at κ (plural premice) if

(1) M is a transitive ∈-model

(2) M � “ZFC \ PowerSet + ∃Vκ+1”.

(3) M thinks U is a normal ultrafilter on κ.

(4) M thinks V = L[U ].

It follows that a pre-mouse has form L[U ] or Lλ[U ] for some limit ordinal λ > κ ≥ ω.
(A transitive ∈-model satisfying V = L[U ] is of the form Lλ as we verified last semester.)

Definition 10.4. A mouse is an iterable premouse.

Lemma 10.5

Suppose 〈Lλ[U ],∈, U〉 is a premouse. such that ω1 ⊆ λ. Then it is a mouse.

Proof. By previous proof.

§10.3 Club filters

Definition 10.6. For ν > ω a regular cardinal, we define

Cν = {x ⊆ ν | ∃club C in ν, C ⊆ x} .

This is the club filter of ν. It’s a filter and is ν-complete (check this).

Now for a surprising result.
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Lemma 10.7

Suppose 〈M,∈ U〉 is a premouse at κ which is (ν + 1)-iterable, where ν is a regular
uncountable cardinal. Assume ν exceeds the number of functions κ→ κ in M . Then

〈Mν ,∈, Uν〉 = 〈Lα[Cν ],∈, Cν ∩ Lα[Cν ]〉 .

In other words, we take this potentially small 〈M,∈, U〉, and go up to a large ν, the Uν
are just club filters. Now it’s not true that club filters are in general ultrafilters in V ,
but evidently the model thinks ν is measurable nonetheless.

Proof. By an earlier fixed point result, we have

j0,ν(κ) = κν = ν.

By an earlier lemma, Uν ⊆ Cν ∩Mν . But Uν is an ultrafilter on P(ν) ∩Mν , so the
inclusion is sharp.

Even more surprising is the corollary.

Corollary 10.8

Suppose there is a κ-model. Then for all sufficiently large regular cardinals ν > κ,

〈Lν [Cν ],∈, Cν ∩ L[Cν ]〉

is a ν-model.

Note that κ doesn’t even have to be truly measurable. But if it is, then we discover that
for sufficiently large ν, building relative to the club filters gives us a ton of such models.

Definition 10.9. Suppose 〈M,∈, U〉 is a premouse at κ and 〈M ′,∈, U ′〉 is a premouse
at κ′. Then we write

〈M,∈, U〉 E
〈
M ′,∈, U ′

〉
to mean that

(1) κ = κ′

(2) U = U ′ ∩M

(3) M = Lα[U ′] for some α ≤ (On)M .

§10.4 Comparison

Theorem 10.10 (Comparison)

Suppose 〈M,∈, U〉 is a mouse at κ and 〈M ′,∈, U ′〉 is a mouse at κ′. Let ν be a
regular cardinal such that

ν > max
{
|(κ→ κ) ∩M | ,

∣∣(κ′ → κ′) ∩M ′
∣∣} .

Then either

〈Mν ,∈, Uν〉 E
〈
M ′ν ,∈, U ′ν

〉
or

〈
M ′ν ,∈, U ′ν

〉
E 〈Mν ,∈, Uν〉 .
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Proof. Immediate by the lemma.

This is the pre-cursor of the mice hierarchy: after you let mice run (iterate) for a long
time, then you can sort them linearly.

When we get up to Woodin cardinals, mice become less simple: we have a branching
phenomenon.

§10.5 Generalized Continuum Hypothesis Holds in L[U ]

Let’s prove GCH (“let’s do something”).

Theorem 10.11

Suppose
〈L[U ],∈, U〉

is a κ-model. Then
〈L[U ],3, U〉 � GCH.

Proof. We have by condensation that λ > κ implied 2λ = λ+. Transitive collapse of hulls
⊆ κ fall back into the 〈Lα[U ] : α ∈ On〉 hierarchy.

Now suppose Lγ [U ] thinks ZFC \ PowerSet and Vκ+1 exists. Also, assume U ∈ Lγ [U ].
Let

〈H,∈, U ∩H〉 ≺ 〈Lγ [U ],∈, U〉

be an elementary substructure such that U ∈ H. The model satisfies V = L[U ]. Hence
the transitive collapse of H is of the form Lγ [U ].

Thus Lγ [U ] is a mouse (by the corollary).

Claim 10.12. Assume V = L[U ]. For each λ < κ, and x ⊆ λ, there is a mouse Lγ [U ]
such that

(1) x ∈ Lγ [U ]

(2) The critical point of U exceeds γ

(3)
∣∣Lγ [U ]

∣∣ = λ.

Proof. Exercise. �

Fix a cardinal λ < κ. Our goal is to show that for each subset of λ (working in
V = L[U ]) ∣∣{y ⊆ λ | y <L[U ] x

}∣∣ < λ+.

It follows that L[U ] satisfies 2λ = λ+.
This follows from the following claim.

Claim 10.13. Assume V = L[U ], and let M1 = Lγ1 [U1] and M2 = Lγ2 [U2] be mice.

Suppose the critical points of U1 and U2 exceed γ. Then either <M1 restricted to P(λ)M
1

is an initial segment of <M2 restricted to P(λ)M
2

or vice-versa.

Proof. Since M1 and M2 are iterable, comparison gives a map

ji0,θ : M i →M i
θ
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for i = 1, 2. WLOG, M1
θ E M2

θ now. The point is that the critical points exceed λ:
nothing less than λ is moved.

That is,

<M1 |
M1

P(λ) E<M1 |
M1
θ

P(λ)

<M2 |
M2

P(λ) E<M2 |
M2
θ

P(λ)

<M1 |
M1
θ

P(λ) E<M2 |
M2
θ

P(λ)

where E means “initial segment of”. �

Now use the fact that
∣∣Lγ [U ]

∣∣ = λ to bound the size of the ordering.
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§11 March 12, 2015

§11.1 Finishing L[U ]

Recall that in L there is a ∆1
2 well-ordering of P(ω).

Theorem 11.1

Suppose 〈L[U ],∈, U〉 is a κ-model. Then L[U ] � “R has a ∆1
3 well-ordering”.

Proof. The main point λ = ω in the previous claim.
We remark that x <L[U ] y if there exists a countable premouse M (∃) such that

(1) M � “x <M y”.

(2) For all α < ω1 (∀), M is α-iterable (a Π2 condition I think? Need to check.).

The point is to iterate out the mice until they agree. The complexity is ∃∀.

Exercise 11.2. Suppose 〈L[U1],∈, Ui〉 is a κ1-model and 〈L[U2],∈, U2〉 is a κ2-model.
Show that P(ω)∩L[U1] = P(ω)∩L[U2] and the orderings <L[U1] and <L [U2] agree when
restricted to P(ω).

Summary:

• All κ-models satisfy GCH.

• All have a ∆1
3 well-ordering of the reals.

• All have the same reals!

Lemma 11.3

Suppose 〈L[U ],∈, U〉 is a κ-model and let Γ ⊆ On. Let

γ > sup Γ

be a limit ordinal. Assume also that |Γ| ≥ (κ+)L[U ]. Then

HullLγ [U ](κ ∪ γ)

contains all subsets of κ in L[U ], id est contains P(κ) ∩ L[U ] as a subset.

Proof. Note that the Mostowski collapse of the hull is of the form Lγ [U ] for some γ, and
we have

γ ≥ |Γ| ≥ (κ+)L[U ].

Let π be this collapse. By construction, π−1 is the identity restricted to κ.
Let x ⊆ P(γ) in the collapse, and let x′ be so that π(x′) = x. One can see that

π−1(x) ∩ κ = x, but the issue is that the hull need not contain κ as a point.
So ∀x ∈ P(κ) ∩ L[U ] there exists a Skolem term t such that

x = t〈Lγ [U ],∈,U〉 (ξ1, . . . , ξn, ν1, . . . , νm)

where ξ1, . . . , ξn ∈ κ and ν1, . . . , νn ∈ γ.
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§11.2 Kunen’s Results

Theorem 11.4 (Kunen)

Suppose 〈L[U ],∈, U〉 and 〈L[U ′],∈, U ′〉 is a κ-model. Then U = U ′ and L[U ] = L[U ′].

All this is assuming the measures are in the model. (Meaning U ∈ L[U ] and U ′ ∈ L[U ′].)

Proof. By Comparison, and the fact that L[U ] and L[U ′] are proper class models, there
is a common iterate (because proper class models don’t get taller, our theorem that one
iterate is an initial segment of the other gives an equality). So we have set-size iterations

L[U ]
j−→ L[W ]

and

L[U ′]
j′−→ L[W ].

By the corollary, {
θ > κ | θ = |θ| = j(θ) = j′(θ)

}
is a proper class. Let γ be a subset of the above and γ is a limit ordinal and γ > sup Γ.
Assume, assume |Γ| = (κ+)V .

Given x ∈ U we wish to show x ∈ U ′ (symmetry will do the other direction). By the
lemma there is a Skolem term t such that

x = t〈Lγ [U ],∈,U〉 (ξ1, . . . , ξn, ν1, . . . , νm) .

Set
x′ = t〈Lγ [U ′],∈,U ′〉 (ξ1, . . . , ξn, ν1, . . . , νm) .

Since the elements of κ ∪ γ are fixed by both j and j′, we have

j(x) = tLj(γ)[j(U)] (j(ξ1), . . . , j(ξn), j(ν1), . . . , j(νm))

= tLγ [W ](ξ1, . . . , ξn, ν1, . . . , νm).

Moreover, j′(x′) gives the same result. Now, x = j(x) ∩ κ and x′ = j′(x′) ∩ κ. Also
j′(x′) ∈W , meaning x′ ∈ U ′. Thus x = x′.

Hence, there is only one κ model!

Theorem 11.5 (Kunen)

Now suppose M = 〈L[U ],∈, U〉 is the κ-model and M ′ = 〈L[U ′],∈, U ′〉 is the
κ′-model. Given κ < κ′, the model M ′ is an iterate of M .

Proof. Let
〈L[Uα], Uα, κα, jα,β | α < β〉

be the iteration of M . We claim that for some β we have κ′ = κβ , which is sufficient by
the previous theorem.

Suppose not. The sequence of critical points is unbounded, so for some β we have

κβ < κ′ < κβ+1.
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By Comparison, we have maps

L[U ]
j=j0,δ−−−−→ L[W ]

and

L[U ′]
j′=j′0,δ−−−−→ L[W ]

where δ is the length of the iteration. Again

F =
{
θ | θ = |θ| = j(θ) = j′(θ)

}
is a proper class. Let Γ ∪ {γ} ⊆ F , γ a limit ordinal exceeding sup γ and |Γ| = κ+

β in the
sense of V .

We claim κ′ is in the range of j′, which produces the desired contradiction. By the
“seed” result from earlier we know

κ′ = (jβ,β+1f)(κβ)

for some f : κβ → κβ with f ∈ L[U ]. But f can be written via a Skolem term t with

f = t〈Lγ [Uβ ],∈,Uβ〉 (ξ1, . . . , ξn, ν1, . . . , νm)

where ξi ∈ κ and νi ∈ Γ. The ξi get fixed because they’re below the critical point, and
the νi get fixed because they are supposed to be fixed points in the entire sequence (by
virtue of being in Γ).

Hence we can get a Skolem term t′ which applies κβ:

κ′ = t′〈Lγ [Uβ+1],∈,Uβ+1〉 (ξ1, . . . , ξn, κβ, ν1, . . . , νm)

jβ+1,δ(κ)′ = κ′ = t′〈Lγ [W ],∈,W 〉 (ξ1, . . . , ξn, κβ, ν1, . . . , νm)

= j′
(
t′〈Lγ [U ′],∈,U ′〉 (ξ1, . . . , ξn, κβ, ν1, . . . , νm)

)
.

Since the critical point of j′ is κ′ > κβ , we again see that all ordinals κβ , ξi, νi are fixed.
So κ′ is in the range of j′, which is a contradiction
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Today we will discuss extenders, which are glorified versions of measurables.

§12.1 Motivating Extenders

Recall that κ is measurable if there exists an elementary embedding j : V → M with
critical point κ. This definition has some nice properties (for example, you can tell that
κ is strongly inaccessible) but has the following two issues.

1. It’s not a formula for LST, since V is big.

2. It doesn’t help with combinatorics.

To get around this we obtained an ultrafilter

U = {A ⊆ κ | κ ∈ j(A)} .

This gives us j : V → Ult(V,U).

Definition 12.1. A α-strong cardinal is κ for there exists j : V → M such that
j(κ) > α and M contains all of Vα.

Definition 12.2. A λ-supercompact cardinal is κ for there exists j : V → M such
that j(κ) > λ and M is closed under λ sequences.

We saw that ultrapowers can’t do this. Specifically,

• If U is an ultrafilter on κ then U /∈ Ult(V,U).

• If U is an ultrafilter on κ and jU is the canonical map, the restriction jU to κ+ is
not in M .

So we want to try and get around this problem with extenders.
Recall that if U is derived from j : V →M , we get an embedding k : Ult(V,U)→M

by [f ] 7→ j(f)(κ). Moreover the range of k is HullM (j“V ∪ {κ}). The diagram is

V
j
- M

Ult(V,U)

k

6
i

-

Suppose we want i to approximate j : V →M . Take some hull H containing j“V and
all of λ in M . Then we can take its transitive collapse to get N ; let k be the inverse of
this ultrapower. Moreover, k has critical point exceeding λ because all of λ is in the hull.
Now we get a diagram

V
j
- M

N

k

6
i

-

where we set i = j ◦ k−1. Thus i approximates j well.
It remain to show how to view N as an ultrapower.
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§12.2 Derived Extenders

Fix some λ whose agreement we want to force. Let j : V → M be an elementary
embedding, and let N be the (transitive collapse) of some hull in M which contains all
of λ.

For any α we define
Eα = {A ⊆ κα : α ∈ j(A)} .

Here
κα

def
= min {β : j(β) ≥ α} .

This is a κ-complete ultrafilter and so we can construct Ult(V,Eα). That gives us

V
j
- M

Ult(V,Eα)

iα

?

kα
-

-

N

k

6

The fact that we can take kα is a consequence of α < λ, so the image of the diagonal
embedding Ult(V,Eα)→M is included in the stuff before we take the transitive collapse
k−1.

We’re going to try to realize N as the direct limit of all the Ult(V,Eα). But to do this
we need that Ult(V,Eα) and Ult(V,Eβ) to embed into a larger system Ult(V,E{α,β}). So
we can define this via

E{α,β} =
{
A ∈ [κα,β]2 : {α, β} ∈ j(A)

}
.

Then there’s a natural embedding from Ult(V,Eβ) by [f ]Eβ 7→ [f∗], where f∗({x, y}) =
f(y). Similarly, for Eα.

Thus we keep going and we want to define Ult(V,Ea) for any finite subset a of our λ.
It’s a directed system viz

V - Ult(V,Ea)

Ult(V,Eb)
?

- Ult(V,Ec)
?

Here’s how we define it. IF a ⊆ c and let x be a |c|-sized subset of the ordinals. Let xca
be so that

(x, xca,∈) ∼= (a, c,∈)

meaning x sits inside xca the same way c sits inside a. The ultrapower Ult(V,Ea) consists
of functions

(
κα
|a|
)
→ V , so we define

fa,c :

(
κc
|c|

)
→ V

by fa,c(x) = f(xca), and hence we get a map Ult(V,Ea)→ Ult(V,Ec) by f 7→ fa,c.
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Thus we have a directed system of Ult(V,Ea), and we can take the direct limit to get
N ′ so that we have something like

V
j
- M

Ult(V,Eb)
?

N

k

6

Ult(V,Ec)
?

k∗c
- N ′

∪

6

κ ∗
b

-

Since these all map into N our map factors through the direct limit N ′ Since N was
supposed to be a hull, we get N = N ′, as we wanted.

§12.3 Explicitly Presentation of Derived Extenders

If j : V →M , the (κ, λ)-extender derived from j is the sequence

〈Ea : a finite subset of λ〉 .

Then the direct limit is

Ult(V,E) =

{
[f, a] | f :

(
κa
|a|

)
→ V and a ⊆ λ finite

}
.

Moreover, two [f, a] and [g, b] are equal if their image in some higher Ult(V,Ec) coincide.
Finally, there’s a canonical embedding jE : V → Ult(V,E) into the ultrapower by

simply
jE(x) = [cx,∅]

where cx is the constant function which returns x everywhere.
Observe that if we take j = jE now, we get E back.

§12.4 Defining Extenders Without Referencing Embeddings

We now seek to give a definition of the extender which doesn’t refer to the embedding
j : V →M , but such that 〈Ea〉 is an extender under the new definition if and only if it’s
the derived extender for some j : V →M .

Here’s the definition.

Definition 12.3. A sequence

E = 〈Ea : a ⊆ λ finite〉

is a (κ, λ)-extender if the following holds.

(1) (Ea are ultrafilters) For each a ⊆ λ finite, let κa be the smallest cardinal such that(
κa
|a|
)

is in Ea.
1 Then Ea is a κ-complete ultrafilter on

(
κa
|a|
)
.

1 Not critical, but we need to cut off Ea somewhere, so we just cut it off by κa.
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(2) (Compatibility; the Ea form a directed system) If a ⊆ b and X ∈ Ea, then the lifted
set Xb

a is in Eb This makes the embedding Ult(V,Ea)→ Ult(V,Eb) an elementary
embedding, since then by  Loś we have

Ult(V,Ea) � φ([f ]) ⇐⇒ {x : φ(f(x))} ∈ Ea
⇐⇒ {x∗ : φ(fa,b(x

∗))} ∈ Eb
⇐⇒ Ult(V,Eb) � φ([fa,b]).

(3) (Normality, guarantees that E is the extender of jE) We now know we can take
a direct limit since we’ve got a directed system. The next condition is that if for
some a, f and an index i we have{

x ∈
(
κa
|a|

)
: f(x) < xi

}
∈ Ea

then there is some β < ai such that if a′ = a ∪ {β}, then{
x ∈

(
ka′

|a′|

)
: fa,a′(x) = xa

′
β

}
∈ Ea′ .

(4) We need one more condition to guarantee that Ult(V,E) is well-founded.

Remark 12.4. We can see how (3) is true for a derived extender as follows. The
condition holds, by definition, exactly when

a ∈ j
({

x ∈
(
κa
|a|

)
: f(x) < xi

})
=

{
x ∈

(
j(κa)

|a|

)
: j(f)(x) < xi

}
and thus j(f)(a) < ai. Letting β = j(f)(a) does the trick.

You might notice that this looks a lot like the “pressing down” condition.

Now we check that these definitions are equivalent.

Theorem 12.5

Given the conditions above, we may form Ult(V,E), and moreover the sequence E
is the extender of the canonical map jE : V → Ult(V,E).

Proof. We can form Ult(V,E) because of conditions (1) and (2). We want to see that

x ∈ Ea ⇐⇒ a ∈ jE(X).

As in the case of ultrapowers,2 it suffices to show that [id, a] ∈ Ult(V,E) is actually equal
to a. Indeed,

a ∈ jE(x) ⇐⇒ [id, a] ∈ jE(x)

⇐⇒ Ea∪{∅} 3
{
y ∈

(
κa
|a|

)
: id(y) ∈ cx(∅)

}
= x.

So let’s now show [id, a] = a.

2This is analogous to showing that x ∈ U ⇐⇒ κ ∈ j(x), where we checked that [id] ∈ j(x), and then
observing this means Uj 3 {y : id(y) ∈ x} = y.
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Claim 12.6. Let ∪ be the union function. Then [∪, {α}] = α for α < λ.

The ∪ is just to combat type mismatch; ∪{x} = x. That’s just because Eα, in all
strictness, should be E{α}.

Proof. We use normality here. Proceed by transfinite induction; assume it holds for
β < α. If [f, α] ∈ [∪, {α}], then by definition with a′ = a ∪ {α} this is

Ea′ 3
{
x ∈

(
κa′

|a′|

)
| fa,a′(x) ∈ ∪xa′{a} = xa

′
a

}
.

Now we apply the normality condition to get that for some β < (a′)a
′
a = α, if we let

b = a ∪ {α, β} we have

Eb 3
{
x ∈

(
κb
|b|

)
| fa,b(x) = xbβ

}
.

If we set a′′ = a ∪ {β} then by compatibility this is equivalent to

Ea′′ 3
{
x ∈

(
κa′′

|a′′|

)
| fa,a′′(x) = xa

′′
β

}
.

which amounts to saying [f, a] = [∪, {β}]. By the inductive hypothesis, [f, a] = β < α.
So all elements of [∪, {α}] are ordinals less than α. �

Now we show that [id, a] = a for any finite subset a ⊆ λ. Suppose that [f, b] ∈ [id, a]
meaning

Ea∪b 3
{
x ∈

(
κa∪b
|a ∪ b|

)
| fb,a∪b(x) ∈ ida,a∪bx = xa∪ba

}
.

As xa∪ba is a finite set, by Infinite Pigeonhole there’s some fixed “index” α ∈ a such that
we may replace xa∪ba with xa∪b{α} and thus obtain

Ea∪b 3
{
x ∈

(
κa∪b
|a ∪ b|

)
| fb,a∪b(x) ∈ ∪xa∪b{α}

}
.

(The “∪” is the stupid type mismatch again.) This is equivalent to

[f, b] = [∪, {α}] = α ∈ a.

as desired.
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§13 March 26, 2015

§13.1 Notions of Strength

There are two ways of securing strength: agreement by rank (meaning Vκ matches), and
closure.

To repeat what was said earlier. . .

Definition 13.1. We say κ is γ-strong if there exists a j : V →M with critical point
κ (where M is a transitive class), such that j(κ) > γ and VM

γ = Vγ .

Thus if κ is measurable then it’s (κ + 1)-strong. Note that this only concerns the
behavior of sets with lower rank.

Definition 13.2. We say κ is λ-supercompact if there exists j : V →M with critical
point γ such that j(κ) > λ and such that M is closed under γ-sequences (meaning any
function γ →M is also in M).

Note that this implies λ-supercompact implies λ-strong for large enough λ. This is a
global property not restricted to the lower ranks of M .

Definition 13.3. We say κ is strong if its γ-strong for all γ. We say κ is supercompact
if its λ-strong for all λ.

In all of this, we’re trying to get M to approximate V well.

§13.2 Extenders and Reflection

The point of extenders is to get more agreement than just a single ultrapower Ult(V,U);
if κ is a measurable cardinal then we have rank agreement up to κ + 1 but not κ + 2,
and closure up to κ but not κ+. (So a measurable cardinal is (κ + 1)-strong but not
(κ+ 2)-strong, and κ-supercompact but not κ+-supercompact.)

Last time we started with any j : V →M (say γ-strong or λ-supercompact) and we
derived a (κ, λ)-extender E. Conversely, given such an extender we can form jE : V →
Ult(V,E).

Now, we’d like to put conditions on E which give us strong levels of agreement. This
has the nice property that it’s first order (one doesn’t need to worry about “proper
classes”, since extenders are a set-sized object). It also shows various reflection properties.
For example, if κ is (κ+ 2)-strong then there’s an ultrafilter U living in Vκ+2; hence M
can see it too and M � “κ is measurable”. Thus M � “∃α < j(κ) measurable”; then V
thinks this as well and we can keep reflecting like we did before. The key is that our
set-sized object U witnessing κ is measurable actually lives inside the model M because
of (κ+ 2)-strength.

§13.3 Review of Last Time

Suppose E is a (κ, λ)-extender.

Definition 13.4. For α < λ define

prα :

(
κ{α}

1

)
→ κ{α}

by {ξ} 7→ ξ.
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So this is the same “∪” typehack as earlier. Recall that κ{alpha} is the first cardinal
getting shot above α.

Last time we showed that for all α < λ, we have α = [{α},prα] and for all finite subsets
a ⊆ λ, we have a = [a, id]. Thus we showed that

If E is a (κ, λ)-extender then E is the (κ, λ)-extender derived from jE : V →
Ult(V,E).

This gives us a commutative diagram

V
j

- M

Ult(V,E)

kE

-
j
E

-

where kE : [a, f ] 7→ j(f)(a).

Fact 13.5. jE(f)(a) = [a, f ].

Let’s compile these facts.

Lemma 13.6

Let j, M , etc. be as above. Then

(1) kE : Ult(V,E)→M is an elementary embedding.

(2) kE ◦ jE = j.

(3) kE is the identity on any finite subset of λ.

(4) If γ is such that j(γ) ≤ λ then jE and j agree on all ordinals not exceeding γ.

Thus the critical point of κE is somewhere above λ.

Theorem 13.7 (Agreement)

Let j, M , E, κ, λ, etc. be as above. Let γ ≤ λ (here λ is a limit ordinal) be such
that ∣∣VM

γ

∣∣M ≤ λ.
Then

(1) V
Ult(V,E)
γ = Vγ . This is γ-strength.

(2) kE is the identity when restricted to V
Ult(V,E)
γ .

So we just need to pick λ large enough to capture large amounts of agreement. For

example, if we wish to capture (γ + 2)-strength we just pick λ so that λ >
∣∣VM
κ+2

∣∣M .

Proof. Let ν =
∣∣∣V Ult(V,E)
γ

∣∣∣Ult(V,E)
, so by hypothesis,

ν ≤ kE(ν) =
∣∣VM
γ

∣∣M ≤ λ.
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We claim that ν = kE(ν) now. If not, then ν < kE(ν), so ν < λ. But by the lemma, kE
ought to be the identity on the singleton {ν}, which is a contradiction.

Let
〈Xξ : ξ < ν〉

be an enumeration of V
Ult(V,E)
γ in Ult(V,E). Then

kE (〈Xξ : ξ < ν〉) = 〈kE(Xξ) : ξ < ν〉

is an enumeration of VM
γ in M , id est the map kE is surjective. Since kE is elementary,

this implies that kE , when restricted to V
Ult(V,E)
γ , induces an isomorphism〈

V Ult(V,E)
γ ,∈

〉
∼=
〈
VM
γ ,∈

〉
in the sense that, say ξ1 ∈ ξ2 ⇐⇒ kE(ξ1) ∈ kE(ξ2).

Thus this map must be the identity as both these guys are transitive. (In general,
there are no nontrivial automorphisms of transitive well-founded models.)

Theorem 13.8 (Closure)

Let E be a (κ, λ)-extender and let jE : V → Ult(V,E) be the associated embedding.
Assume that γ is such that

(1) The γ-sequences of λ are contained in Ult(V,E); id est E is γ-complete, and

(2) jE“γ ∈ Ult(V,E) holds.

Then Ult(V,E) is γ-supercompact: all γ-sequences of Ult(V,E) are in Ult(V,E).

Proof. Omitted. (It’s not especially nice.)

§13.4 Extender Formulations

Definition 13.9. Let E = 〈Ea : a ⊆ λ finite〉 be a (κ, λ)-extender.

• The critical point of E is defined as κ.

• The length of E is defined as λ.

• The support of E is supκa across all such a.

• The strength of E is the largest γ such that Vγ is contained inside Ult(V,E)

• The closure of E is the smallest |γ| such that Ult(V,E) is not closed under
γ-sequences.
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Theorem 13.10 (Extenders Witness γ-Strength)

Let γ > κ. The following are equivalent.

(1) κ is a γ-strong cardinal.

(2) There exists an extender E such that

(a) The critical point of E is κ.

(b) jE(κ) > γ.

(c) The strength of E exceeds γ.

Proof. (2) =⇒ (1) is immediate.
Conversely, suppose j : V →M witnesses that κ is γ-strong, meaning that

(a) the critical point of j is κ,

(b) j(κ) > γ, and

(c) VM
γ = Vγ .

We need to exhibit a (κ, λ)-extender E derived from j. The question is: which λ should

we pick? We just take λ > max
{
γ, |Vγ |M

}
.

The conditions (a), (b), (c) are Σ2. Hence asserting strength (requiring another ∀ to
express α-strength for all α) is Π3.

Theorem 13.11 (Extenders Witness λ-Closure)

Let λ > κ. The following are equivalent.

(1) κ is a λ-supercompact cardinal.

(2) There exists an extender E such that

(a) The critical point of E is κ.

(b) jE(κ) > λ.

(c) The closure of E exceeds λ.

Proof. Note that we unfortunately will be talking about (κ, λ′)-extenders since we’ve
re-used the symbol λ.

We take λ′ > λ such that λ′ = |Vλ′ | (arbitrarily large λ′ with this property exist) and
so that the cofinality of λ′ exceeds λ. Then we let E be the (κ, j(λ′))-extender derived
from j.

By Agreement, we have

V
Ult(V,E)
j(λ′) = VM

j(λ′).

Thus
jE“(λ) ∈ VM

j(λ)+1 ⊆ Ult(V,E).

To see that the λ-sequences of j(λ′) are all in Ult(V,E), we use the condition on
cofinality. Note that if f : λ→ j(γ′) is such a sequence, then f ∈M since M is closed
under λ-sequences. We need to get these into Ult(V,E).
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Claim 13.12. The cofinality of j(λ′) in the sense of M exceeds λ.

Proof. cof(λ′) > λ, so cof(j(λ′))M = j(cof(λ′)) > j(λ) ≥ λ. �

Thus f is bounded, implying f ∈ VM
γ for some γ < j(λ′). Hence f ∈ VM

γ , which agrees
with Ult(V,E) by Agreement.

Again, supercompacts are Π3.

§13.5 A Word on Superstrong Cardinals

Strong cardinals seem to be as powerful as you can get: given any γ, there is an embedding
jγ : V →M with critical point κ which agrees up to γ. It turns out you can’t have full
agreement; it’s not possible that V = M .

But in all of these cases, the agreement is less than jγ(κ). The image of the critical
point is always hovering above the level of agreement. What if we made these coincide?

Definition 13.13. We say κ is superstrong if there exists j : V → M with critical
point κ such that

VM
j(κ) = Vj(κ).

(Note that superstrong need not be strong. Oops.)
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§14 March 31, 2015

Today we discuss large cardinal beyond Choice.

§14.1 Motivation

Recall that if κ is measurable as witnessed by U , then we have rank agreement up to κ+1
but not κ+ 2 (since U /∈ Ult(V,U)), and closure up to κ but not κ+ (since j restricted to
κ+ is not in Ult(V,U)). Thus we introduced the notion of γ-strong and λ-supercompact.

What happens if we demand full agreement (and thus full closure, since full agreement
is equivalent to full closure?). In his 1967 dissertation Reinhardt proposed the axiom

∃j : V → V j 6= id.

Definition 14.1. Work in ZF with an additional predicate j (called ZFj). Then κ is a
Reinhardt cardinal if ∃j : V → V such that j 6= id and the critical point of j is κ.

Remark 14.2. Although I didn’t say it earlier: it’s true in general that non-trivial
embeddings have a critical point. See e.g. http://en.wikipedia.org/wiki/Critical_
point_(set_theory).

With reflection properties we see that j cannot be captured by set-size properties,
because then you could generate a contradiction. Finally, to talk about j : V → V being
an “elementary embedding” we should instead say it’s a Σ1 embedding.

§14.2 Kunen’s Inconsistency Theorem

Now we have the following theorem.

Theorem 14.3 (Kunen’s Inconsistency Theorem)

Assume Choice. Then there are no Reinhardt cardinals.

Proof (Woodin). Assume for contradiction that j : V → V ,then j 6= id, and let κ be its
critical point. We will use the following (black-box) lemma.

Lemma 14.4 (Solovay)

Suppose κ > ω is a regular cardinal and S ⊆ κ is stationary (meaning it intersects
all clubs of κ). Then there exists a partition 〈Sα : α < κ〉 of S into stationary sets.

We will break the lemma assuming a Reinhardt cardinal exists. (Needless to say, the
lemma uses AC; in fact Woodin has said this lemma is the “purest manifestation of AC”.)

Let κ0 be the critical point of j and inductively define κn+1 = j(κn) for each n ∈ ω.
Set

λ = sup
n∈ω

κn.

By construction,
j(λ) = j(sup {κn}) = sup {j(κn)} = λ.

Moreover, j(λ+) = j(λ)+ = λ+.
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Now define
Sλ

+

ω =
{
α < λ+ | cof(α) = ω

}
.

Observe that it’s fixed by j, since

j
(
Sλ

+

ω

)
=
{
α < j(λ+) | cof(α) = j(ω)

}
=
{
α < λ+ | cof(α) = ω

}
= Sλ

+

ω .

By the lemma, we can partition the above set into 〈Sα〉. Let〈
Tα : α < λ+

〉
= j

(〈
Sα : α < λ+

〉)
.

So the Tα is also a partition of Sλ
+

ω into stationary sets. We see that we have

j(Sα) = Tj(α).

In particular, for α < κ (or just any fixed point) we get Tα = j(Sα). Thus Tλ = j(Sλ).
However, Tκ is not of the form j(Sα).

Now define an ω-club in a regular κ > ω to be a subset which is unbounded and
contains all ω-limits (this is weaker than a being club). Then set

F λ
+

j =
{
α < λ+ | j(α) = α

}
.

We claim this is a ω-club. It’s unbounded because sup’s are fixed points (the same way
we started). It’s trivially closed under ω limits.

Observe that Tκ0 is a stationary subset. It hits every club. Thus it hits the closure of
F λ

+

j at some point η, which has cofinality ω. Then η belongs to F λ
+

j itself (and not just

its closure), since F λ
+

j is an ω-club. Now

η = j(η) ∈ j(Sα0) = Tj(α0).

But η ∈ Tκ0 , meaning κ0 = jα(0), which is impossible.

Hence the ultimate axiom of full agreement is way too strong.
Stronger forms of the theorem are as follows.

Theorem 14.5 (Kunen’s Inconsistency Theorem)

Assume Choice. Let j : V → M be a nontrivial elementary embedding. Let λ be
the supremum of the critical sequence (as defined in the proof above). Then

(a) If M = V , then j does not preserve Vλ+2.

(b) P(λ) is not contained in M .

In the notion of super-strength defined at the end of the last lecture, (a) says we can’t
have (ω + 1)-superstrength.
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§14.3 Very Large Cardinals

It is an open question whether ZFj + ∃Reinhardt is consistent. Perhaps it is and it is
the start of a hierarchy of large cardinals beyond Choice. Putting our doubts aside. . .

Assume we have a Reinhardt cardinal. . .

Definition 14.6. A cardinal κ is super-Reinhardt if for every ordinal γ, there exists
j : V → V with critical point κ such that j(κ) > γ.

Let’s try to rank reflect a Reinhadt cardinal, that is, to get γ < κ such that

(Vγ , Vγ+1) � ZF2 + ∃Reinhardt

then we can pick such γ < κ, as κ is super Reinhardt, and we can reflect that property.
Thus suffices to find any γ such that

(a) γ is inaccessible (implying the ZF2), and

(b) j(γ) = γ (thus j|Vγ witnesses the existence of a Reinhardt cardinal).

Observe that in general, κ1 is inaccessible. Since we can make κ1 as high as we like;
hence there are arbitrarily high accessible above λ. So, we let γ be the first inaccessible
above γ. As λ is fixed, it follows that

j(γ) = γ

since γ can be defined as “largest inaccessible above λ”. This γ works, with j as the
original j restricted to Vγ .

Let’s explicitly do the reflection back down. Pick a ĵ with critical point κ such that
ĵ(κ) > γ. Then Vĵ(κ) thinks that there exists a good γ as above thus so does Vκ.

Hence super-Reinhardt rank-reflects Reinhardt cardinals. (Trivially, every super-
Reinhardt is Reinhardt.)

Question 14.7. Is it true that every super-Reinhardt cardinal has a Reinhardt cardinal
below it?

§14.4 Berkeley cardinals

Definition 14.8. A proto-Berkeley cardinal is a cardinal δ such that if M 3 δ is a
transitive set, then there is an elementary embedding j : M →M with critical point less
than δ.

A Berkeley cardinal implies the consistency of a Reinhardt cardinal.
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§15 April 2, 2015

We’ll now discuss cardinals between the supercompact and the cardinal beyond Choice.
This includes the huge cardinals and I0 cardinals.

In particular, we’re going to use extenders to show that larger large cardinals reflect
smaller large cardinals. This means that the large cardinals actually line up into a
well-ordering.

§15.1 Relativization

First, we’re going to relativize the ultrapower construction.
Suppose M is a transitive class and E ∈M an extender such that M thinks E is an

extender. Then we can form
Ult(M,E)

in exactly the same way we formed

Ult(V,E)

except this time we use f :
(
κa
|a|
)
→M such that f ∈M .

Now we want to ask: how do the above two ultrapowers compare?

Theorem 15.1

Suppose E is a (κ, λ)-extender and M is a transitive class of ZFC, with E ∈ M .
Then

(1) M thinks E is an extender.

(2) If γ ≥ κ is such that V V
γ+1 = VM

γ+1, then jME and jVE agree up to γ+ and

V
Ult(M,E)
jE(γ+1) = V

Ult(V,E)
jE(γ+1) .

V ....................................
γ + 1

- M

Ult(V,E)

jE

?
....................
jE(γ) + 1

- Ult(M,E)

jME

?

Proof. For (1), the point is that for any κa in the support ofE, we have Vκa+1 ⊆ M
and hence Ea ⊆ M . Since the finite subsets of λ are in M , we find that M has all
the information of E inside it. (Here we use absoluteness of well-foundedness for the
well-founded condition of extenders.)

For (2), this follows since M and V have the same functions f :
(
κa
|a|
)
→ γ+ and

g :
(
κa
|a|
)
→ Vγ+1; indeed such functions can be coded by elements of Vγ+1 = (Vγ+1)M .

(Since κa is regular, its functions are bounded, so we can replace f with γ+, yada yada. . . ).
So the coding in Vγ+1 gives us (2).
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So we actually get

V ...................................
λ

- M

Ult(V,E)

jE

?
..................
sup jE“λ

- Ult(M,E)

jME

?

but not necessarily up to jE(λ).

§15.2 Reflection

Theorem 15.2

Suppose κ is (κ+ 2)-strong. Then we may obtain a nonprincipal uniform ultrafilter
on κ with

{κ < κ | κ measurable} ∈ U.

This is kind of absurd (there are LOTS of measurables, in fact there are measure one
many).

Indeed, consider an embedding j : V → M with critical point κ with agreement up
to Vκ+2. Hence κ is measurable and there’s a measure U on it, derived from j. So M
thinks κ is measurable too; but it also thinks j(κ) is measurable. Since M thinks there’s
a measurable below j(κ), so does V ; and keep reflecting. . .

Proof. Let U be the derived ultrafilter; we claim it works. SetA = {κ < κ | κ measurable}.
Thus A ∈ U if and only if κ ∈ j(A). But

A = {κ < j(κ) | κ measurable} .

Hence clearly κ ∈ A. QED.

OK, so suppose κ is (κ+ 3)-strong. Is κ a limit of κ’s which are (κ+ 2)-strong? The
issue is whether Vκ+3 ⊆M is enough to ensure that M thinks that κ is (κ+ 2)-strong.

The extender
E = 〈Ea | A ⊆ λ finite〉

will work as long as it has length at least |Vκ+2|M . We’d have to squeeze this entire E
into the ultrapower. Since |Vκ+2|M < |Vκ+2|+, we would need that instead.

To summarize

• If κ is (κ+ 2)-strongs it is a limit of measurables.

• If κ is |Vκ+2|+-strong it is a limit of κ’s which are κ+ 2 strong.

Gabe seems to think that by encoding a total order of |Vκ+2|+ can actually get replaced
by κ+ 3. . . Let’s get back on that.
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§15.3 More Reflections

Let’s black box the following.

Lemma 15.3

The following are equivalent.

(a) γ is a strong limit.

(b) γ = |Vγ |

(c) Vγ = Hull(γ)

(d) Vγ ≺Σ1 , Vγ agrees with V on Σ1 sentences.

Proof. Omitted.

Lemma 15.4

Suppose κ is strong. Then

(1) Assuming GCH below κ, GCH holds everywhere.

(2) Vκ is a Σ2 substructure of V

Proof. (1) is immediate as follows: to get GCH up to γ embed κ up to j(κ) > γ via
V → V .

For (2), using the preceding lemma and GCH we have Vκ ≺Σ1 V . Σ2 statements have
the form ∃λ (Vλ � φ[~a]). Suppose such a statement is true in V . Since κ is strong, we
can get an elementary embedding we can throw V → V and then κ above VM

λ and then
reflect back to V .

Theorem 15.5

There need not be an inaccessible above a strong cardinal.

Proof. Assume κ is strong and κ′ > κ is the least inaccessible. Take Vκ′ . We claim that
Vκ′ � “κ strong”. To show this we need to check that for all γ there exists an extender
E ∈ Vκ′ with critical point κ such that jE(κ) > γ with strength at least γ.

Fix γ; let j : V → M give an extender E of length
∣∣VM
γ

∣∣M . Inaccessibility shows
E ∈ Vκ′ .

Indeed, “there are arbitrarily large measurables” is Π3.
What if it’s super-strong?

Theorem 15.6

Suppose κ is superstrong. Then there are inaccessible above κ.
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Lemma 15.7

The following are equivalent.

(1) κ is superstrong.

(2) There is an extender E such that the critical point of E is κ and the strength
of E is at least jE(κ).

Proof. (2) =⇒ (1) is immediate by definition.
For (1) =⇒ (2), suppose j : V → M witnesses superstrength. Let E be the

(κ, j(κ))-extender derived from j.
By Agreement,

∀η < j(κ) : V Ult(V,E)
η = VM

η .

Thus V
Ult(V,E)
j(κ) = VM

j(κ).

V
j

- M

Ult(V,E)

kE

-
j
E

-

Upon showing jE(κ) = j(κ) we are done. Since j(κ) = kE(jE(κ)) ≥ jE(κ). We cannot
have jE(κ) < j(κ) since otherwise kE would be the identity on it (kE is the identity up
to j(κ)) and chasing the diagram gives a contradiction.

Lemma 15.8

The statement “κ is superstrong” is Σ2.

Proof. It expands as

∃γ∃λ∃E ((κ < λ < γ) ∧ (E is a (κ, λ)-extender) ∧ (γ = |Vγ |) ∧ (E ∈ Vγ) ∧ . . . ) .

Lemma 15.9

Suppose κ is superstrong. Then for some γ < κ such that

Vγ � ZFC + ∃ strong.

Proof. Exercise.

But you can’t guarantee that there’s a real strong cardinal above a superstrong.

• Since superstrong is Σ2 if there exists a strong cardinal above then there exists one
below.

• If κ is the least superstrong cardinal then there are no strong cardinals below κ.
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§16 April 7, 2015

Supercompact cardinals today.

§16.1 Motivation

So far we have two formulations,

• elementary embeddings, and

• extenders.

Today we give more useful formulations for inner model theory:

• Normal fine ultrafilters on Pκλ (we’ll explain in a moment).

• Magidor extenders.

Here is some motivation. Recall that the existence of measurable implies V 6= L, and
we have an “L-like model L[U ]”. If there exist two measurables, then V 6= L[U ]. The
pattern continues in inner model theory.

More generally, suppose Φ is a large cardinal axiom. One builds an “L-like” model LΦ

which can satisfy Φ. One can consider the axiom

V = LΦ.

Examples of success in inner model theory include constructions for the following Φ’s:

• There is a proper class of measurables.

• There is a strong cardinal.

• There is a Woodin cardinal.

• Current record: There is a Woodin cardinal which is a limit of Woodin cardinals.

The issue is that Φ2 is a stronger large cardinal axiom than Φ1, then

Φ2 =⇒ V 6= LΦ1 .

In fact Φ2 “humiliates” LΦ1 in much the same sense that measurables “humiliate” L. In
some sense, if there is a measuarble, then L is some tiny fraction of V . So we build L[U ],
but if there’s another measurable then L[U ] is tiny.

So the phenomenon we observe is that every candidate axiom “V = LΦ1” gets shot
down by a stronger large cardinal axiom V = LΦ2 . It made it seem like large cardinals
would be a long march; while we could understand large cardinals, we weren’t making
progress on V .

Remarkably , recent results of Woodin suggest that if we can get an “L-like model” for
one supercomact then there is an “overflow” and all the various types of large cardinals
manifest.
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§16.2 Ultrafilters on Supercompacts

We will look at models that are analogous to L[U ], only now U is a “supercompactness
measure”, on Pκ(λ) (for κ a λ-supercompact).

Recall that κ is λ-supercompact if there is an elementary embedding j : V →M with
critical point κ such that j(κ) > λ and M is closed under λ-sequences.

Definition 16.1. Let κ ≤ λ be cardinals. Then

Pκ(λ)
def
= {X ⊆ λ | |X| < κ} .

Before we just considered measures on κ; now we’re bumping up to consider “small
subsets of λ”.

Definition 16.2. Suppose U is an ultrafilter on Pκ(λ) (hence U ⊆ Pκ(λ) and has the
usual properties). We say U is fine if ∀α < λ,

{x ∈ Pκ(λ) | α ∈ x} ∈ U.

We say U is normal if for all f : Pκ(λ)→ λ such that

{x ∈ Pκ(λ) | f(x) ∈ x} ∈ U

(meaning for most x, f sends x into itself; f “presses down”; hence f is not like sup)
then f is constant on a measure one set, meaning there is an α < λ such that

{x ∈ Pκ(λ)f(x) = α} ∈ U.

We are going to see that the ultrafilters derived from supercompacts satisfy these key
properties.

Theorem 16.3

Suppose κ ≤ λ are cardinals. Then κ is λ-supercompact if an only if there’s a
κ-complete normal fine ultrafilter on Pκλ.

The problem with our old ultrafilters is that we can’t get κ+ closure. Supercompacts let
us do this by bumping up the space.

Remark 16.4. “The right way to think about large cardinals is not by the measures
and other concrete objects, but in terms of the closure the embeddings have. We’re
picking up first-order “shrapnel” from the embedding, and seeing if we can reconstruct
the embedding from the data.”

Proof of ( =⇒ ). Assume κ is λ-supercompact and j : V →M be the witness. We derive
the measure

U = {X ⊆ Pκ(λ) | j“λ ∈ j(X)}

Because of our closure condition, we have j“λ is in M , and

|j“λ| = λ < j(κ).

Moreover, j“(κ) ⊆ j(λ) is clear (draw a picture). In other words, j is shooting X’s. . . each
X ∈ Pκ(λ) to a j(X) ∈ Pj(κ)(j(λ).
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Remark 16.5. Compare this to the prior work with U = {x ⊆ κ | κ ∈ j(x)} for measur-
able cardinals. The embedding j is stretching our sets, so to decide whether x was big,
we wanted to see whether j stretched it above the κ; in particular, κ is big.

Exactly as before, we find that U is κ-complete ultrafilter on Pκ(λ).
Next, let’s check U is fine. Observe that

{x ∈ Pκ(λ) | α ∈ x} ∈ U

if and only if

j“λ ∈ j ({x ∈ Pκλ | α ∈ x}) = {x ∈ Pjκ(jλ) | jα ∈ x} .

So we just want jα ∈ j“λ for every α < λ, which is duh.
Finally, let’s check U is normal. Fix f : Pκ(λ)→ λ such that

{x ∈ Pκ(λ) | f(x) ∈ x} ∈ U

namely
j“λ ∈ j(that) = {x ∈ Pjκ(jλ) | (jf)x ∈ x}

thus we are given
(jf)(j“λ) ∈ j“λ.

The thing we want is for some α < λ,

{x ∈ Pκλ | fx = α} ∈ U

id est
j“λ ∈ j(that) = {x ∈ Pjκ(jλ) | (jf)x = j(α)}

which is just All in all, we need to verify

(jf)(j“λ) ∈ j“λ =⇒ (jf)(j“λ) = j(α).

This is really tautological.

“Who knew to extract something like that? Answer: Reinhardt and Solovay.”

Proof of (⇐). Suppose U is a κ-complete normal fine ultrafilter on κ(λ) and let

jU : V → Ult(V,U)

be the ultrapower embedding. We have to show jU (κ) > λ, the critical point is κ, and
Ult(V,U) is closed under λ-sequences.

This is again an analogue to what we did with normal measures. The point is

Claim 16.6. In the ultrapower construction, jU“λ = [id]U .

In the ultrapower construction, this mirrors κ = [id].

Proof. First, we show jU“λ ⊆ [id]U . Suppose [cα]U = jUα ∈ jU“λ. By definition,
[cα]U ∈ [idU ] exactly when

U 3 {x ∈ Pκ(λ) | cα(x) ∈ id(x)} = {x ∈ Pκ(λ) | α ∈ x}

which is true since U is fine.
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Now, we show [id]U ⊆ j“(λ). Suppose f ∈ [idU ], f : Pκ(λ), is in [id]U , which means

U 3 {X ⊆ Pκ(λ) | f(X) ∈ id(X) = X} .

By normality, this means for some α we have

U 3 {X ⊆ Pκ(λ) | f(X) = α} .

which reeds [f ] ∈ [cα]U = jU (α). �

First, we check jU (κ) > λ. We have

λ = ordertype(jU“λ) = ordertype([id]) < [cκ] = jU (κ)

where the inequality follows by noting

ordertype(idX) < cκX = κ

holds measure one often (because it holds for all X ∈ Pκλ). Here we’re using that order
type is definable and then  Loś.

Next, to show that crt(jU ) = κ, we observe first that jUα = α for all α by κ-
completeness. Moreover, jU (κ) > λ > κ by the previous condition. Done.

Finally, we wish to get closure for Ult(V,U) under λ-sequences. Suppose we have a
sequence

〈[fα]U : α < λ〉 .

Let g : Pκ(λ)→ V by
x 7→ 〈fα(x) : α < λ〉 .

Hence, for α < λ we have
[g](jU (α)) = [g](cα) = fα

since by  Loś, this holds if and only if

{x ∈ Pκ(λ) | (gx)(cαx) = fα(x)} ∈ U

but now cαx = α, so the x which are in here are all of Pκ(λ). So we have [g] ∈ Ult(V,U)
and

jU“λ = [id] = Ult(V,U)

so
〈[fα] : α < λ〉 = 〈[g](jUα) : jUα ∈ jU“λ〉 ∈ Ult(V,U).

Corollary 16.7

The following are equivalent.

(1) κ is supercompact.

(2) For all λ there is a κ-complete normal fine ultrafilter Uλ on Pκ(λ).
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§16.3 Next time

Next time we will show a different formulation of supercompact, due to Magidor:

A cardinal κ is supercompact if and only if for every λ > κ we can exhibit an
elementary embedding

j : Vλ → Vλ

such that λ < κ and
j(crt(j)) = κ.

This gives a lot of reflection across κ, governed by elementary embeddings.
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§17 April 9, 2015

Extra class is Friday, at 2 Arrow Street. Meet at room 414 at 2:15PM.
(Class starts by making an amendment to the section last time, repairing the proof of

λ-closure.)
As a corollary, by pushing to extenders (i.e. all λ ≥ κ). . .

Theorem 17.1

Suppose κ is a cardinal. The following are equivalent.

(1) For all λ ≥ κ, there exists a κ-complete normal fine ultrafilter on Pκ(λ).

(2) For all λ ≥ κ, there’s an extender E such that crt(E) = κ, jE(κ) > λ, and E
has closure ≥ λ.

By the closure theorem, supports of E in (2) above get arbitrarily large. But inner
models of supercompacts and extenders with longer and longer supports are harder
to manage. So we would like a formulation with bounded supports (below κ). (The
extenders are still, but. . . )

§17.1 Magidor’s Formulation

Theorem 17.2 (Magidor)

The following are equivalent.

(1) κ is supercompact.

(2) For all λ ≥ κ, there is an elementary embedding

j : Vλ → Vλ

for some λ < κ, such that
j(crt(j)) = κ.

This gives a lot of Reflection.

Proof of ⇒. Suppose κ is supercompact, and select λ ≥ κ. Let

j : V →M

witness that κ is |Vλ|-supercompact (huge!). Thus M is closed under |Vλ|-sequences.
In particular, the restriction of j to Vλ is in M (which is why we needed so much

closure). So M thinks

”There exists a λ′ < j(κ) and elementary embedding

̃ : Vλ′ → Vj(λ)

such that ̃(crt(j̃)) = j(κ)”.

as witnessed by λ′ = λ, and ̃ = j|Vλ . By elementarity, V now thinks
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There exists a λ < κ and
̃ : Vλ → Vλ

such that ̃(crt(̃)) = κ.

That’s what we want. If this isn’t clear, draw a picture.

Proof of ⇐. Fix λ > κ. By assumption, we may take

j : Vλ+2015 → Vλ+2015

be an elementary embedding such that λ+ 2015 < κ and

j(crt(j)) = κ.

The “+2015” gives us some space.
Let κ = crt(j). We want to pull out a κ-complete normal fine ultrafilter on Pκ(λ).

We will do this in the shrunk universe Vλ+2015 and then use j to shoot it up.
Observe that

PPκ(λ) ∈ Vλ+2015

and
U =

{
X ⊆ Pκ(λ) | j“λ ∈ j(X)

}
is a κ-complete normal fine ultrafilter on Pκ(λ).. (The argument from before goes through
because “+2015”.) Then

U
def
= j(U)

is a j(κ) = κ-complete normal fine ultrafilter on Pjκ(jλ) = Pκ(λ).

There is an extender formulation of this.

Theorem 17.3 (Magidor)

The following are equivalent.

(1) κ is supercompact.

(2) For λ ≥ κ there is an extender E such that the support of E is bounded by κ,
the strength of E exceeds λ, and

jE(crt(E)) = κ.

Proof. The proof of (2) =⇒ (1) is the same as before; generate the measure downstairs
and shoot it above.

Suppose κ is supercompact. Assume WLOG that λ = |Vλ|.
Sinec κ is supercompact, we can take j : V → M such that crt(j) = κ, j(κ) > λ,

and M has |Vλ+1|-closure (huge)! Let E be the (κ, jλ)-extender derived from j. The
supports of these E is ≤ λ+ 1 ≤ j(κ).

Well we have
VM

support(E)+1 = V V
support(E)+1

and since support(E) ≤ λ+ 1, our closure gives us the entire extender E is in M .
Now we use the Agreement theorem on extenders (Theorem 13.7). Hence M thinks E

is a (κ, j(λ))-extender. Thus
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• jME agrees with jE on λ+.

• V
Ult(M,E)
jE(λ)+1 = V

Ult(V,E)
jE(λ)+1 .

But
jλ = j(|Vλ|) =

∣∣VM
jλ

∣∣M .

This means
V

Ult(V,E)
j(λ) = VM

jλ .

Putting everything together, we have

V
Ult(M,E)
jEλ

= VM
jEλ

.

Thus M thinks

“There is an extender E such that support(E) < j(κ) with strength ≥ j(λ)
and jE(crt(jE)) = j(κ)”.

Applying elementarity, V thinks exactly what we want it to think mwahahaha.

§17.2 One Last Remark on Extenders

Seed representation for extenders.

Theorem 17.4

Suppose j : V → M witnesses that κ is λ-supercompact, and U is the derived
measure on Pκλ. Let

kU : Ult(V,U)→M by [f ] 7→ (jf)(j“λ).

Then kU is an elementary embedding and the diagram

V
j

- M

Ult(V,U)
kU

-

jU -

commutes. Moreover, kU |γ is the identity, where

γ =
(
|P(Pκλ)|+

)Ult(V,U)
.

§17.3 Conclusions

Hence we’ve seen there are a ton of ways to formulate supercompact. We will in the
future focus on two formulations:

(1) Normal fine κ-complete ultrafilters on Pκλ

(2) Magidor’s extenders.

The question is

We have L[U ] for U witnessing κ measurable. Is there an analog for super-
compacts?
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Next chapter: weak extender models for supercompactness. We’ll introduce two notions
for this, using normal fine ultrafilters then Magidor’s extenders, in that order.

Some motivation for all this: let κ be measurable with ultrafilter U . Form L[U ]. Then

(1) (Concentration) κ ∩ L[U ] ∈ U (since in fact κ ∩ L[U ] = κ; so this is trivial).

(2) (Inheritance) U ∩ L[U ] ∈ L[U ].

So L[U ] thinks κ is a measurable cardinal as witnessed by by the measure U ∩ L[U ].
Thus the witness in L[U ] is inherited for V .

We try to get an analog now:

Definition 17.5. Suppose N is an inner model of ZFC containing the ordinals. Then
N is a weak extender model for the supercompactness of κ if ∀λ ≥ κ there is a
κ-complete normal fine ultrafilter U on Pκλ such that

(1) (Concentration) Pκλ ∩N ∈ U .

(2) (Inheritance) U ∩N ∈ N .

Note that concentration is no longer trivial.
Recall that L[U ] has exactly one measurable in it, so if V has more than one measurable

then L[U ] is completely mistaken about the nature of V . But weak extender models will
not have this issue: Solovay’s Theorem will tell us that any such model is “close to V ”.
In particular, N = V works as well; but we want N to be “L-like”. So we search through
these type of models for ones that are L-like.
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Make-up class.

§18.1 Solovay’s Theorem

Theorem 18.1 (Solovay)

Suppose U is a normal fine κ-complete ultrafilter on Pκ(λ) and λ > κ is regular.
Then there exists X ∈ U such that the sup function

sup : Pκ(λ)→ λ by σ 7→ supσ

is one-to-one on X. Moreover, X is independent of U .

In other words, there are many (in the sense of U) sets with different sup’s.

Proof. Just like the proof of Kunen’s Theorem.
Let 〈Sα | α < λ〉 be a partition of

Sλω
def
= {α < λ | cof α = ω}

into stationary sets.
For β < λ such that ω < cof(β) < κ, set

σβ = {α < β | Sα ∩ β stationary in β} .

We leave σβ undefined otherwise.

Claim 18.2. For β with ω < cof β < κ, we have σβ ∈ Pκλ.

Proof. Notice that
〈Sα ∩ β : α ∈ σβ〉

is a partition of β into stationary sets (since the Sα are a partition). If |σβ| ≥ κ, we get a
contradiction as we’ve partitioned β into ≥ κ many sets. Yet there is a club C in β such
that ordtypeC = cof β, which is impossible since each stationary Sα ∩ β would have to
hit C at a different point. (The assumption cof β > ω lets us make sense of clubs in the
first place.) �

Now we can set
X = {σβ ∈ Pκ(λ) | supσβ = β} .

Clearly sup is injective on X, and moreover X does not depend on U since it was defined
only on the partition.

So it remains to see X is in U . Let jU : V → Ult(V,U) be the ultrapower embedding,
Set

〈Tα : α < jU (λ)〉 = jU (〈Sα : α < λ〉).

(Note that the former sequence is much longer than the latter.) We will show that jU“λ, a
λ-sequence contained inside the ultrapower, is in fact definable from (i) 〈Tα : α < jU (λ)〉
and (ii) λ∗

def
= sup jU“λ.

We have by the usual definition that

jU“λ ∈ jU (x).
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We can compute

jU (x) =
{
σβ ∈ PjU (κ)(jUλ) | Ult(V,U) � “supσβ = β”

}
where

σβ = {α < β | Tα ∩ β stationary in β} .

Thus we are done if we can show in the ultrapower that

Claim 18.3.
jU“λ = σλ∗ .

(Certainly jU“λ ∈ PjU (κ)jU (λ) since λ < jU (κ).)

Proof. First, we want to show jU (α) ∈ σλ∗ for any α < λ, meaning that

TjU (α) ∩ λ∗ = jα(Sα) ∩ λ∗

is stationary in λ∗. Suppose C ∈ Ult(V,U) be club in λ∗. Let

D = {α < λ | jU (α) ∈ C} ⊆ V.

Since jU“λ is an ω-club, so is the set D (in V ). Thus there exists ξ such that ξ ∈ D ∩Sα,
meaning

jU (ξ) ∈ C ∩ SjU (α) = TjU (α)

and thus jU (α) ∈ σλ∗ .
Conversely, we wish to show that σ∗λ ⊆ jU“λ. Suppose α ∈ σλ∗ , which means

Ult(V,U) � “Tα ∩ λ is stationary in λ∗”.

We wish to show α = jU (α) for some α. But jU“λ is an ω-club in Ult(V,U) (we’re just
repeating the proof downstairs from before, but now upstairs). So ∃ξ < λ such that

jU (ξ) ∈ Tα ∩ jU“λ.

Now,
〈jU“Sα ∩ λ∗ : α < λ〉

is a partition of jU“λ. Let α < λ be such that

jU (ξ) ∈ jU“Sα ∩ λ∗.

Hence
jU (ξ) ∈ jU“Sα ⊆ jU (Sα) = TjU (α)

and α = jU (α). �

This completes the proof of the theorem.

From this we can extract the following.
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Theorem 18.4

Suppose κ is a λ-supercompact. Suppose j : V →M is the associated embedding.
Suppose ν ≤ λ is a regular cardinal, and set

ν∗
def
= sup j“ν.

Let 〈Sα : α < ν〉 be a partition of Sνω as before, and let 〈Tα : α < j(ν)〉 be the j-image
of the sequence. Then

j“ν = {α < νκ | Tα ∩ ν∗ stationary in ν∗} .

For Solovay’s Lemma, we applied this with λ regular, which gave the extra fact that
X ∈ U if and only if jU“λ ∈ jU (X) (we took X to be the j“ν computed downstairs).

§18.2 Weak Extender Models

Suppose N is an inner model of ZFC. Recall that N is a weak extender model for the
supercompactness of κ if ∀λ ≥ κ there is a κ-complete normal fine ultrafilter U on Pκλ
such that

(1) (Concentration) Pκλ ∩N ∈ U .

(2) (Inheritance) U ∩N ∈ N .

Lemma 18.5

Suppose N is an inner model of ZFC. Suppose that ∀λ ≥ κ there is a κ-complete
normal fine ultrafilter on U such that Pκλ satisfying Concentration (Pκλ ∩N ∈ U).
Then N has the κ-cover property, meaning that if τ ⊆ N has size < κ, then in
fact there is a set τ ′ ∈ N which is in N , size less than κ, such that τ ⊆ τ ′.

The proof of this will be straightforward; this gives a “closeness by covering” situation.
If N also satisfies inheritance (hence is a weak extender model), we will see that N

correctly computes singular cardinals in V above κ.
Later on we’ll see a third condition which means we’re very close: given a large cardinal

κ, if κ+ ε is in V then κ is in N .

75



Evan Chen (Spring 2015) 19 April 14, 2015

§19 April 14, 2015

Suppose N is a transitive inner model of ZFC containing the ordinals. Recall that N
is a weak extender model for the supercompactness of κ if ∀λ ≥ κ there is a κ-complete
normal fine ultrafilter U on Pκλ such that

(1) (Concentration) Pκλ ∩N ∈ U .

(2) (Inheritance) U ∩N ∈ N .

Recall also that N has the κ-cover property, meaning that if τ ⊆ N has size < κ, then
in fact there is a set τ ′ ∈ N which is in N , size less than κ, such that τ ⊆ τ ′.

§19.1 The κ-covering property

If N = L[U ], then concentration is immediate, as

κ ∩ L[U ] = κ ∈ U.

For U ⊆ Pκ(λ) this is not trivial, as we’re about to see. We prove the lemma from last
time:

Lemma 19.1

Suppose N is an inner model of ZFC and κ is such that for all λ ≥ κ, there is a
normal fine ultrafilter on Pκλ such that Pκλ ∩N ∈ U . Then N has the κ-covering
property.

Thus N is close to V in the sense that it is really fat.

Proof. By coding, it suffices to verify the result for τ ⊆ On. Let λ > sup τ , so τ ⊆ λ; hen
let U be the filter on Pκλ specified in the condition.

Since U is fine, we have that for each α < λ,

Aα
def
= {σ ∈ Pκλ | α ∈ σ} ∈ U.

Thus by completeness,

Aτ
def
=
⋂
α∈τ

Aα = {σ ∈ Pκλ | τ ⊆ σ} ∈ U.

Also, Pκτ ∩N ∈ U . Thus, as U is an ultrafilter,

U 3 Aτ ∩ (Pκλ ∩N)

is nonempty. Then any τ ′ in this set works, since it extends τ , has size less than κ, and
is in N .

§19.2 Amenability / Inheritance

Now we include the second condition that U ∩N ∈ N .
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Lemma 19.2

Suppose N is a weak extender model for κ, and λ ≥ κ is a regular cardinal in N .
Then

cof λ = |λ|

as computed in V .

Proof. This is where the Solovay lemma gets used, but it gets used in N .
Let U be a κ-complete normal fine ultrafilter satisfying Concentration and Inheritance,

so Pκλ ∩N ∈ U and U ∩N ∈ U . So we can now apply Solovay’s Theorem inside N , to
obtain X ∈ U ∩N such that

sup : Pκλ ∈ λ by σ 7→ sup γ

is injective on X.
Note that cof(λ) ≥ κ as computed in V , because the lemma implies that for all σ ∈ Pκλ,

there is a covering τ .
Let C ⊆ λ be a club, ordtype(C) = cof(λ). Let

XC = {σ ∈ X | supσ ∈ C} .

We claim that XC ∈ U . Indeed, this occurs if and only if jU“λ ∈ jU (XC), which is true
if and only if

jU“λ ∈ {σ ∈ jU (X) | supσ ∈ jU (C)} .

which must be true since jU“C ⊆ jU (C), and jU (C) is a club. Then sup jU“λ = sup jU“C,
and so the supremum is in jU (C).

Now,
|XC | ≤ κ · |C| = κ · cof(λ) = cof(λ)

(since cof(λ) ≥ κ). But by fine-ness of U , we have⋃
XC = λ.

Thus
κ ≤ |λ| ≤ |XC | · κ = cof(λ) · κ.

By the rules of cardinal arithmetic, |λ| = cof(λ).

Corollary 19.3

Let N , κ, etc. be as above and suppose γ > κ is a singular cardinal in V . Then

(1) γ is singular in N , and,

(2) γ+ is correctly computed in N , meaning (γ+)N = γ+.

Thus N is close to V in a cardinal computation sense.

Proof. Assume towards contradiction that γ is regular in N . Then

γ < cof(γ) = |γ| = γ
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where the first inequality follows since γ is singular, and the second equality occurs since
γ is a cardinal in V .

For the second part, assume for contradiction that

(γ+)N < (γ+)V .

Let λ be the result computed in N , so λ is a regular cardinal in N (since it’s a successor).
So by the lemma,

cofV (λ) = |λ|V = γ.

But |λ| = γ, meaning cof(λ) < γ, which is a contradiction.

§19.3 Summary

Weak extender models are “close to V ” above κ. This leads to the expectation that if N
is a generalization of L[U ] for small cardinals, then N should contain all large cardinals,
since as we saw earlier missing large cardinals obliterate lower models.

We will soon prove

Theorem 19.4 (Universality)

Suppose N is a weak extender model for the supercompactness of κ. Let γ > κ be
such that

j : N ∩ Vγ+1 → N ∩ Vj(γ)+1

is an elementary embedding with crt(j) ≥ κ. Then j ∈ N .

Corollary 19.5

Suppose N is a weak extender model for the supercompactness of κ. Then there is
no j : N → N with crt(j) ≥ κ.

Then we will focus on HOD. They are quite different; you can change HOD by forcing,
but not L. One can code arbitrary sets. . .

“Suppose you had an infinite Social Security Number. . . ”

Thus everything is definable from ordinals.
We can have any large cardinal in HOD that we like. In fact,

Lemma 19.6

Suppose X is ordinal-definable. Then L[X] ⊆ HOD.

Proof. X is ordinal-definable, so Y
def
= X ∩HOD ∈ HOD, so L[X] = L[Y ] is in HOD.

Corollary 19.7

Suppose U is a κ-complete normal uniform ultrafilter on κ. Then L[U ] ⊆ HOD.

Thus the model we built before is in HOD.

78



Evan Chen (Spring 2015) 19 April 14, 2015

Proof. Let U = U ∩ L[U ]. Then U is ordinal definable, since for any W a κ-complete
normal uniform ultrafilter we have

W ∩ L[W ] = U ∩ L[U ].

Thus U = U ∩ L[U ] is ordinal definale. Hence L[U ] = L[U ] ⊆ HOD.

This leads to the expectation that (assuming large cardinals) there is a weak extender
model N for κ such that N ⊆ HOD. So now we want to see if HOD itself is close to V ,
which will lead to the HOD Dichotomoy Theorem.
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§20.1 Lemma

Lemma 20.1

Suppose N is a proper class model of ZFC and U is a κ-complete normal fine
ultrafilter on Pκλ, where

λ = |N ∩ Vλ|N

which satisfies Pκλ ∩N ∈ U and U ∩N ∈ N . Then if

jU : V → Ult(V,U)

is the ultrapower embedding, we have

jU (N ∩ Vκ) ∩ Vλ = N ∩ Vλ.

Hence the ultrapower in V is somehow preserving the entire big chunk N ∩ Vκ

Proof. First we check jU (N ∩ Vκ) ∩ Vλ ⊇ N ∩ Vλ. Recall that X ∈ U if and only if
jU“λ ∈ jU (X). So, since

Pκ(λ) ∩N ∈ U

we have
jU“λ ∈ jU (Pκ(λ) ∩N) ⊆ jU (N).

It follows that jU“(N ∩ Vλ) ∈ jU (N), since we’re given a bijection

(e : λ→ N ∩ Vλ) ∈ N

thus giving
jU“(N ∩ Vλ) = jU (e)“(jU“λ) ∈ jU (N).

(Fix x ∈ N ∩ Vλ, and let α < λ be such that e(α) = x, then jU (x) = jU (e(α)) =
jU (e)jU (α).)

But N ∩ Vλ is the transitive collapse of jU“(N ∩ Vλ), thus

N ∩ Vλ = TransCollapse(jU (e)“(jU“λ)).

Hence N ∩ Vλ ⊆ jU (N). Hence N ∩ Vλ ⊆ jU (N ∩ Vκ) ∩ Vλ.
For the other direction we have to show jU (N ∩ Vκ) ∩ Vλ ⊆ N ∩ Vλ. Using

N ∩ Vλ = TransCollapse(jU (e)“(jU“λ))

it suffices to show that

jU (N ∩ Vκ) ∩ Vλ = TransCollapse(jU (e)“(jU“λ)).

(At this point there’s a brief interjection about the typography of “. Apparently some
people who don’t know LATEX do ZFC in their code.)

Let

X =
{
σ ∈ Pκλ | e“(σ) ≺ N ∩ Vλ and TransCollapse(e“σ) = N ∩ Vordtype(σ)

}
.
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Notice that

jU (X) =
{
σ ∈ PjU (κ)(jU (λ)) | (jU (e))“(σ) ≺ jU (N) ∩ Vλ

and TransCollapse(jU (e)“σ) = N ∩ Vordtype(σ)

}
.

If jU“λ ∈ jU (X) then

TransCollapse((jU (e))“(jU“λ)) = jU (N) ∩ Vλ = jU (N ∩ Vκ) ∩ Vλ.

So it suffices to show
jU“λ ∈ jU (X)

or equivalently
X ∈ U.

Let X = X ∩N ; we need to show X ∈ U . Since U = U ∩N is a κ-complete normal fine
ultrafilter on Pκλ ∩N . Thus we have

jU : N → Ult(N,U).

Notice that

(1) (jU (e))“(jU“λ) ≺ jU (N) ∩ VjUλ.

(2) The transitive collapse of (jU (e))“(jU“λ) is N ∩ Vλ = N ∩ Vordtype(jU“λ).

(3) Ult(N,U) ∩ Vλ = N ∩ Vλ.

In other words, jU“λ ∈ jU (X ∩N).
The point is that since the internal ultrapower weak extender model doesn’t “overshoot”

we have
TransCollapse(jU (e)“(jU“λ)) = jU (N) ∩ Vλ = Ult(N,U) ∩ Vλ.

Thus X ∩N ∈ U , and so X ∈ U .

§20.2 Magidor Formulations

We now prove a souped-up version of Magidor’s result.

Theorem 20.2

Let N be a proper class model of ZFC. The following are equivalent.

(1) N is a weak extender model for the supercompactness of κ.

(2) ∀λ > κ∀a ∈ Vλ∃κ < λ < κ∃a ∈ Vλ∃j : Vλ+1 → Vλ+1 such that crt(j) = κ,
j(κ) = κ, j(a) = a and jU (N ∩ Vλ) = N ∩ Vλ, and j � (N ∩ Vλ+1) ∈ N .

Picture of things living below other things. ∗ should all be
below κ on the left.

Missing

figure

81



Evan Chen (Spring 2015) 20 April 16, 2015

Proof that (2) =⇒ (1). First, assume the second. Fix γ > κ such that γ = |Vγ |. Apply

(2) (ignoring a) to λ
def
= γ + ω to get κ < λ < κ and j : Vλ+1 → Vλ+1 with the requested

properties.
Since γ is definable in Vλ+1, we may let γ have the same definition in Vλ+1, so

j(γ) = γ.

Also, we have j“γ ∈ Vλ+1.
Now we consider the measure generated downstairs. Let

U =
{
X ∈ Pκλ | j“γ ∈ j(X)

}
and let U = j(U) As before, we have that U is a κ-complete normal fine ultrafilter on
Pκ(λ) and so, by elementarity, U is a κ-complete normal fine ultrafilter on Pκλ. But
now, using the additional properties

(a) j(N ∩ Vλ) = N ∩ Vλ, and

(b) j � (N ∩ Vλ+1) ∈ N .

we want to get

(a’) Pκγ ∩ n ∈ U .

(b’) U ∩N ∈ N .

For (a’), we just need

Claim 20.3. Pκ(γ) ∩N ∈ U .

Proof. By (a), j(N ∩ Vλ) = N ∩ Vλ. So for all a ∈ Vλ, we have

j(a ∩N) = j(a) ∩ j(N) = j(a) ∩N.

In particular, since Pκ(γ) ∈ Vλ, we have that

j(Pκ(γ) ∩N) = Pκγ ∩N.

By (b),
j“γ ∈ N.

Thus
j“γ ∈ Pκ(γ) ∩N = j(Pκ(γ) ∩N)

and so, by the definition of U , we have

Pκ(γ) ∩N ∈ U. �

It follows that
Pκ(γ) ∩N = j (Pκ(γ) ∩N) ∈ j(U) = U

which gives (a’).
For (b’), we have from (b) that j � (N ∩ Vλ + 1) ∈ N . Thus

j(U ∩N) ∈ N.

So
j(U ∩N) = j(U) ∩ j(N) = U ∩N.
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Proof that (1) =⇒ (2). Assume N is a weak extender model. We seek κ < λ < κ and
a ∈ Vλ, j : Vλ+1 → Vλ+1, with the desired properties. Let γ > λ be such that γ = |Vγ |,
and use the lemma to get that for suitable λ′′ � γ we have

jU : V → Ult(V,U).

Thus we have the four properties

(a) jU (κ) > λ.

(b) Ult(V,U) is closed under |Vγ + 1| sequences.

(c) jU (N ∩ Vκ) ∩ Vλ = N ∩ Vλ.

(d) jU“λ ∈ jU (N).

Consider
jU � (Vλ+1) : Vλ+1 → V

Ult(V,U)
jU (λ)+1 .

Yet Vλ+1 = V
Ult(V,U)
λ+1 by our closure. So we have for some fixed λ and a ∈ Vλ:

Ult(V,U) � “∃κ̃, λ̃, ã∃k : Vλ̃+1 → VjU (λ)+1 such that:

κ̃, λ̃ < jU (κ) crt(κ) = κ̃, k(κ̃) = jU (κ), k(ã) = jU (a).

Also, k(jU (N) ∩ Vλ) = jU (N) ∩ Vj(λ), and k � (jU (N) ∩ Vλ+1) ∈ jU (N). ”

Indeed, k = jU � (Vλ+1) is the witness. So pulling back through by jU , elementarity gives

Ult(V,U) � “∃κ̃, λ̃, ã∃k : Vλ̃+1 → Vλ+1 such that:

κ̃, λ̃ < jU (κ) crt(κ) = κ̃, k(κ̃) = κ, k(ã) = a.

Also, k(N ∩ Vλ) = N ∩ Vλ, and k � (N ∩ Vλ+1) ∈ N . ”

The whole basic idea is that we can get embeddings as high as you want, and so we
can get the ultrapower to pick the big initial segment of its own piece. So the ultrapower
has all the nice properties that we want. Then we use j−1

U to get the ditto properties
downstairs.
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§21 April 21, 2015

Today we’re gong to finish the main results on weak extender models and then move on
towards the HOD dichotomy.

§21.1 A Weird Theorem – Universality

Theorem 21.1 (Universality)

Suppose N is a weak extender model for the supercompactness of κ. Let γ be a
cardinal in N and

j : H(γ+)N →M

is an elementary embedding with crt(j) ≥ κ, and M ⊆ N . Then j ∈ N .

Here H(−) is a Skolem hull; hence j(γ+)N is pretty big. This is kind of surprising, since
γ can be anything.

It follows from this theorem we can’t get N → N nontrivial, since otherwise we can
iterate such a j and get a λ; now j : Vλ+2 → Vλ+2, but N can see j, contradicting Kunen.
More later.

Proof. Fix γ > λ large enough so that λ = |Vλ|, and j ∈ Vλ. By the Magidor-like
reformulation,

∃κ, γ, λ,  ∈ Vλ, π : Vλ+1 → Vλ+1

such that crt(π) = κ, π(κ) = κ, π(γ) = γ, π() = j, and

(1) π(N ∩ Vλ) = N ∩ Vλ.

(2) π � (N ∩ Vλ+1) ∈ N .

(Thus we’ve reflected γ, j, γ, κ down.) So we have that

 : H(γ+)N →M

such that M ⊆ N .
To show j ∈ N it suffices to show  ∈ N since π � (N ∩ Vλ+1) ∈ N , an j = π(), so

from  the model N can exhibit j. The key point is that

π � (H(γ+)N ) ∈ N

since the bigger restriction π � (N ∩ Vγ+!) ∈ N . Thus

π � (H(γ+)N ) ∈ H(γ+)N .

We want to compute
 : H(γ+)N →M

in N . Let’s try and see what happens: Fix an a ∈ H(γ+)N , and b ∈M . Since stuff lives
in Vλ+1, we have b = (a) This is true fi and only if

π(b) = (π())(π(a)) = pi(b) = j(π(a))
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since π is in the hull. But for both b and a are in the hull, so the right-hand side is

j(π(a)) = j
(
(π � ((Hγ+)N ))(j(a))

)
= j

π � ((Hγ+)N )︸ ︷︷ ︸
∈H(γ+)N


︸ ︷︷ ︸

∈N

(a)

In other words, all the stuff we want is actually in N . Specifically, both the left and right
hand side of

π(b) = j(π(a))

are in N .
Hence  ∈ N .

§21.2 Corollaries of Universality

Two special cases are the following.

Theorem 21.2

Suppose N is a weak extender model for the supercompactness of κ. Suppose γ is a
cardinal of N and

j : H(γ+)N → H(j(γ)+)N

is an elementary embedding with crt(j) ≥ κ. Then j ∈ N .

Hence moving big enough pieces guarantees j ∈ N .

Theorem 21.3

Suppose N is a weak extender model for the supercompactness of κ. Suppose γ is
an ordinal and

j : N ∩ Vγ+1 → N ∩ Vj(γ)

is an elementary embedding with crt(j) ≥ κ. Then j ∈ N .

Proof. For γ ≥ ω, we have
Vγ+1 ∼ H

(
|Vγ |+

)
in the sense that an elementary embedding on one translates to an elementary embedding
on the other.

Corollary 21.4

Suppose N is a weak extender model for the supercompactness of κ. Then there
does not exist a nontrivial elementary embedding j : N → N with crt(j) ≥ κ.

Proof. Suppose for contradiction such j exists. Let λ = supn κn be the supremum of the
critical sequence defined by κ0 = κ, and κn+1 = j(κn). So, by the theorem,

j ∈ N.
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So
N � ∃j : Vλ+2 → Vλ+2, j 6= id.

This contradicts Kunen’s Theorem.

The upshot of the Universality Theorem is that we can use it to show (assuming large
cardinal axioms in V ) that “all” large cardinals are absorbed by N .

Compare L[U ] for measurable cardinals κ with measure U with N a weak extender
model. .

• Both satisfy concentration and amenability/inheritance. They both get their witness
from measures in V in the most natural way.

• But in the measurable case, we saw that L[U ] can only have one measuarble. It
was built to inherit the measurable and succeeded, but nothing.

• Yet N can have everything! What’s happening is that the interaction between the
two embeddings j and π is doing the great absorption. The issue with this model
N is that it isn’t L-like; we don’t understand it well the same way we understand
L.

So first, we have to decide whether N is in HOD, since if not there’s no way we have it
close to L. (Note for example that L[U ] is in HOD an hence satisfies GCH.)

Then, we’d like to ask if N satisfies GCH. And so on. . . eventually we want fine
structure.

§21.3 HOD Dichotomy Overview

We want to get N ⊆ HOD. Actually, there’s a conjecture that N = HOD works!
Recall Jensen’s covering lemma. If 0] doesn’t exist, then L is close to V . Otherwise, L

is far from V , and every uncountable cardinal is inaccessible, Mahlo, . . . .
Now we’re interested in whether there’s a dichotomy theorem for HOD in the same way.

And in fact there is. Assume there’s an extendible. If HOD] doesn’t exist, then HOD is
close to V in that it computes successors of singular cardinals correctly. Otherwise, it is
far from V , and all sufficiently large cardinals are measurable. The HOD conjecture says
we’re in the good half of the dichotomy and HOD is close to V .

Note the Ultimate L conjecture implies the HOD conjecture.

§21.4 HOD Dichotomy

Definition 21.5. Suppose κ > ω is a regular carinal. Then κ is ω-strongly measurable
in HOD if there exists λ < κ such that

(1) (2λ)HOD < κ.

(2) There is no partition of

(Sκω)V = {α < κ | cof(α) = ω}

in HOD of length λ into stationary sets (in V ).

It’s important that the stationary condition is in V , since HOD has Choice and without
it it’s trivial. But V could have tons of club sets that HOD doesn’t see. Indeed,

(Sκω)V ∈ HOD
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but it’s possible that
(Sκω)V = (Sκω)HOD.

In fact, HOD can see which subsets of κ in it are stationary using the definition in V .
In other words, HOD is built using definability in V which could be quite different from

definability in HOD. (Indeed, how are you going to get a definable partition? There’s a
reason we used Choice...)

Let’s prove a lemma that tells us why these conditions are here.

Lemma 21.6

Suppose κ is an ω strongly measurable on HOD. Then

HOD � “κ is measurable”.

Proof. We claim that there exists a stationary set (in the sense of V ) S ⊆ (Sκω)V such
that S ∈ HOD and there is no partition in HOD of S into stationary (in V ) sets.

Let’s see this claim is sufficient. Let F be the club filter restricted to S, that is

F = {X ⊆ S | ∃club C : C ∩ S ⊆ X} .

(We have aeedd the extra condition “⊆ S”.) Let F = F ∩HOD. Since F and HOD are
ordinal definable, so is F , but its elements are in HOD. Thus F ∈ HOD. Also,

HOD � “F is a κ-complete filter on P(S)”

because the club filter is κ-complete. (To see this: if we have κ many sets, they contain a
club in V , so by κ-completeness they intersect in V , and we can push this back to HOD.
Note that we keep having to switch between V and HOD, since the intersections live in
HOD but the certificates live in V .)

But
HOD � “F is a κ-complete non-principal ultrafilter on P(S)”

by the claim.
Briefly: you show this by repeatedly splitting. Starting with a stationary set S, we

can split it. Keep splitting. We get a tree. Eventually we have 2ω branches. Since 2ω is
small, at least one branch has to be stationary, or we could put together all these guys
to show S wasn’t stationary to begin with it. Keep splitting. Go all the way up to λ.

We can construct this tree, because HOD can scan whether things are stationary, and
it can also well-order all the stationary sets (Choice) to pick things. Then when we get
to the λth level, we break the condition that one can’t do a λ partition.

On Thursday we’ll talk about the HOD dichotomy, and then on the last class on
Tuesday, we’ll stand back and talk about the two futures.
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§22 April 23, 2015

HOD has been found to be useful in that it is an inner model that can
accommodate essentially all known large cardinals.

We finish the proof from last time, and then discuss the HOD dichotomy.

§22.1 Completion of Proof

Our goal is to show:

Suppose κ is an ω strongly measurable on HOD. Then

HOD � “κ is measurable”.

As we said last time, it suffices to show the following lemma.

Claim 22.1. There exists a stationary set S ⊆ Sκω in HOD such that it is not possible
to write a disjoint union S = S0 ∪ S1 of stationary sets such that S0 and S1 are also in
HOD.

Proof. Assume the claim fails. Since κ is ω-strongly measurable there exists λ < κ. such
that

(1) (2λ)HOD < κ.

(2) There is no partition of

(Sκω)V = {α < κ | cof(α) = ω}

in HOD of length λ into stationary sets (in V ).

We will contradiction (2).
We build a binary branching tree T of height λ + 1, viewed as a function ≤ λ → 2,

and a sequence
〈St | t ∈ T 〉

such that the following conditions hold.

1. S〈〉 = (Sκω)V . (Here 〈〉 is the empty sequence.)

2. We then want

(a) St is a stationary subset of (Sκω)V (in V ).

(b) t+ 〈0〉 and t+ 〈1〉 are in T .

(c) St is the disjoint of St+〈0〉 and St∪〈1〉.

(d) At the limit stages (meaning dom(t) is a limit ordinal), we have

St =
⋂{

St�(α) | α ∈ dom(t)
}
.

3. We finally require that for all limit ordinals β ≤ λ and for all t : β → 2 not in T ,
then

(∀α ≤ β : t � (α) ∈ T ) =⇒
⋂
α<β

St�(α) isn’t stationary.

In other words, if you’re at a limit stage and you’re not in the tree, the reason is
that the intersection along the way wasn’t stationary.
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Notice that

(A) (Sκω)V ∈ HOD.

(B) We have {
S ⊆ (Sκω)V | S ∈ HOD stationary in V

}
∈ HOD.

(C) There’s a well-ordering of the above set in HOD.

Here’s how we build the tree now. At the successor stage, by the (failure of the) claim,
we can conjure a splitting; then take the minimal guy via the well-ordering. (At every
stage we want to keep the tree in HOD!)

At the limit stage, we use the fact that the tree isn’t too large. Suppose β ≤ λ is a
limit stage. Assume we have T ∩ (<β2) and〈

St | t ∈ T ∩ <β2
〉
.

By (3) we have that modulo a non-stationary set, (Sκω)V equals⋃{⋂{
St�(α) | α ≤ β

}
| t is a β-branch of T ∩ <β2, t ∈ HOD

}
.

The club filter is κ-complete and
∣∣2β∣∣HOD

< κ so for some β-branches t of T ∩<β2 the set⋂{
St�(α) : α ≤ β

}
is stationary. Keep all the stationary ones, and put

St =
⋂{

St�(α) : α ≤ β
}
.

We keep going until we get T a tree of height λ+ 1 in HOD. Let t be a λ+ 1 branch of
T , so St is a disjoint union ⋃{

St�(α) \ St�(α+1)

}
except for a non-stationary set. This gives a partition in HOD of (Sκω)V into stationary
sets in V . Contradiction.

§22.2 The HOD Dichotomy

Recall Jensen covering theorem.

Theorem 22.2 (The L Dichotomy Theorem, Jensen)

Exactly one of the following holds.

(1) For all singular cardinals γ,

(a) L � “γ is singular”.

(b) (γ+)L = γ+.

Colloquially, “L is close to V .”

(2) Every uncountable cardinal is inaccessible in L. Colloquially, “L is far from
V .”
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It is a pretty nasty proof, done in cases based on 0].
Surprisingly, the corresponding claim for HOD has a much less difficult proof, and

does not require cases (there is no “missing cardinal”).

Definition 22.3. A cardinal κ is extendible if for all α > κ there exists an elementary
embedding

j : Vα + 1→ Vj(α)+1

such that crt(j) = κ and j(κ) > α.

This is stronger than supercompact.

Theorem 22.4 (HOD Dichotomy Theorem)

Let κ be an extendible cardinal. Then exactly one of the following holds.

(1) HOD correctly computes singular cardinals and their successors.

(2) All regular cardinals greater than κ are ω-strongly measurable in HOD.

Woodin firmly believes (1). I’m hoping (2) is true, because I just like disaster.

This is quite remarkable. Solovay said this was a remarkable theorem.

Actually, Solovay probably said “this is a remarkable theorem if it’s true”.
(Apparently he is very careful.)

Proof. Assume (2) is false. The strategy for this proof is really very simple: We will show
that HOD is a weak extender model for the supercompactness of κ, which will directly
give (1) by an earlier theorem.

In the L Dichotomy, we’re hoping V = L because then we could go home. If
0] exists (which it does) (cough cough). . .

Assume the existence of γ0 > κ which is regular and not ω-strongly measurable in
HOD.

Claim 22.5. There is a proper class of regular γ which are not ω-strongly measurable
in HOD.

Proof. Fix λ0 > γ0 such that Vλ0 is a Σ2 substructure of V and moreover

λ0 = |Vλ0 | .

Thus
(HOD)Vλ0 = HOD ∩ Vλ0 .

(We always have ⊆ but if we can pull the Σ2 definition down.)
Fix α > λ0. We produce a regular cardinal above α which is not ω-strongly measurable

in HOD. We know there exists an elementary embedding

j : Vα+1 → Vj(α)+1

such that crt(j) = κ and j(κ) > α.
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We claim that j(γ0) is not ω-strongly measurable in HOD. We have

∀λ < ω0

(
(2λ)HOD < γ =⇒ ∃ partition 〈Sα : α < λ〉 ∈ HOD

)
(∗γ0)

where the partition is of (Sγ0ω )V into stationary sets in V . Since (HOD)Vλ = HOD ∩ Vλ0
and λ0 > γ0 is such that λ0 = |Vλ0 |,

Hence (∗γ0) holds relative to (HOD)Vλ0 , id est

Vλ0 � (∗γ0)

we obtain
Vj(λ0) � (∗j(γ0)). �

Remark 22.6. I think it’s not necessarily the case that (HOD)Vj(λ0) = HOD ∩ Vj(λ0).

Thus, we have a large number of ω-strongly measurable cardinals just from the
mere existence of one. Now we want to show HOD is a weak extender model for the
supercompactness of κ; thus we want to get measures.

Fix λ > κ now. We have to show that there exists a κ-complete normal fine ultrafilter
U on Pκλ such that

(1) (Concentration) Pκλ ∩HOD ∈ U .

(2) (Inheritance) U ∩HOD ∈ HOD.

Since λ was arbitrary, this will give us what we want.
Fix λ0 > λ such that λ0 = |Vλ0 |. By the claim we can find a regular γ0 > (2λ0)HOD

which is not ω-strongly measurable in HOD. We are going to use γ0 to get our partition.
Since 2γ0 < γ0, we have (2γ0)HOD < γ0, and so there exists a partition

〈Sα : α < λ0〉 ∈ HOD.

Choose λ1 > γ0 such that λ1 = |Vλ1 | and Vλ1 ≺Σ2 V , so

(HOD)Vλ1 = HOD ∩ Vλ1 .

Thus it picks up the sequence:

〈Sα : α < λ0〉 ∈ (HOD)Vλ1 .

Since κ is extendible, we can embed

j : Vλ1+1 → Vj(λ1)+1

such that crt(j) = κ and j(κ) > λ1.
Let

〈Tα : α < j(λ0)〉 = j(〈Sα : α < λ0〉).

By elementarity of j, this sequence is a partition of j
(
(Sλ0ω )V

)
=
(
S
j(λ0)
ω

)V
into stationary

(in V ) sets. Moreover, it is in (HOD)Vj(λ0) ⊆ HOD ∩ Vj(λ) (might not be equality here,
but we don’t care).

In summary, we have the following ordinals:

κ < λ < λ0 < γ0 < λ1
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in V , and on the j-side
λ1 < j(γ0).

Since j(γ0) > γ0 is regular, we know

j(γ0) > sup j“γ0.

we will use
〈Tα : α < j(λ0)〉 ∈ (HOD)Vj(λ1) ⊆ HOD

to compute j“λ0.
Let

Z = {α < j(λ0) | Tα stationarily reflects to sup j“γ0} .

Claim 22.7. Z = j“λ0.

Proof. To see Z ⊇ j“λ0, fix α < λ0 with j(α) ∈ j“λ0. Let C ⊆ sup “γ0 be a club. We
need to hit the club with Tj(α).

Let
D = {α < γ0 | j(α) ∈ C} .

The set D is certainly unbounded, though it need not be a club. However, its closure D
is a club! Moreover, cutting it back to

D ∩ (Sγ0ω )V = D ∩ (Sγ0ω )V

since j is continuous at those points.
But Sα ⊆ (Sγ0ω )V is stationary in V . Thus ∃β such that

β ∈ Sα ∩D = Sα ∩D

thus
j(β) ∈ j(Sα) ∩ C = Tj(α) ∩ C.

So Tj(α) stationarily reflects to sup j“γ0, giving the first direction.
For the other way, fix α ∈ Z. Thus Tα ∩ sup j“γ0 is stationary, meaning it hits every

club. In particular, it hits the club

C = j“γ0 ∩ sup j“γ0.

Thus there exists β ∈ Tα ∩ C. The point is that

C ∩ j(Sγ0ω ) = j“(Sγ0ω )V

thus β ∈ j“(Sγ0ω )V . Choose β ∈ (Sγ0ω )V such that β = j(β) so j(β) ∈ Tα. Choose the
α < λ0 such that β ∈ Sα (since the S∗ are a partition). Then j(β) ∈ j(Sα) = Tj(α). But

j(β) ∈ Tα. Thus the T∗ are a partition meaning α = j(α). This completes the proof. �

In summary, j“λ0 ∈ HOD.
We have

λ0 = |Vλ0 |

so
λ0 = |HOD ∩ Vλ0 |

HOD .

Now fix a bijection π : λ0 → HOD ∩ Vλ0 (so that π ∈ HOD).
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We have
j“(HOD ∩ Vλ0) = j(π)“(j“λ0).

Since both j(π) and j“λ0 ∈ HOD, we obtain the above is in HOD: that is,

j“(HOD ∩ Vλ0) ∈ HOD.

Let U be the κ-complete normal fine ultrafilter on Pκ(λ) given by

X ∈ U ⇐⇒ j“λ ∈ j(X).

This is definable in HOD using the previous thing. This gives

(1) Pκλ ∩HOD ∈ U (just check that the seed is in there) and

(2) U ∩HOD ∈ HOD, which happens since we defined it in HOD. (All HOD needs to
see U ∩HOD is to have the embedding, which it does.)

Thus HOD is a weak extender model for the supercompactness of κ.
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§23 April 28, 2015

§23.1 HOD Dichotomy

We stated the HOD Dichotomy Theorem. Perhaps worth mentioning is that

Corollary 23.1

Suppose κ is an extendible cardinal. Then there exists a measurable cardinal in
HOD.

Proof. Look at the two cases of the HOD Dichotomy Theorem, and recall we can actually
strengthen (1) to read “HOD is a weak extender model for the supercompactness of κ”.
Thus κ is a measurable in HOD.

In the second case, of the HOD Dichotomy, well. . . not much to prove!

HOD Hypothesis (once called the Silly Hypothesis): There is a proper class of cardinals
κ such that κ is not strongly measurable in HOD. This is equivalent to the good case of
the HOD Dichotomy.

The HOD Conjecture states that HOD Hypothesis is provable in ZFC.

§23.2 Which side of the dichotomy are we on?

Well, the first thing we could worry about is whether there’s even an extendible cardinal
to begin with. It could be that extendibles are inconsistent with ZFC – but that seems
highly unlikely. So let’s put this aside, and assume large cardinal axioms for granted.

The other thing we might worry about is independence. For example, Continuum
Hypothesis is independent of not only ZFC but all the large cardinal axioms we are
aware of. So we might also worry that the HOD hypothesis is as intractable as CH.
However,

Theorem 23.2 (Woodin)

Assume that there is a proper class of extendible cardinals. Then V satisfies the
HOD Hypothesis if and only for every boolean algebra B, V B � HOD.

In other words, the HOD Hypothesis is immune to forcing. This is strong evidence that
the HOD Conjecture might be true; why else would forcing fail to break it?

“I hope I did say that all the theorems which are not attributed are due to
Woodin.”

§23.3 Equivalent Formulations of the HOD Hypothesis

To better understand which side of the dicohtomy we are in, we now give several equivalent
formulations of the HOD Hypothesis.
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Theorem 23.3

Assume κ is an extendible cardinal. The following are equivalent.

(1) HOD is a weak extender model for the supercompactness of κ.

(2) There exists N ⊆ HOD which is a weak extender model for the supercompact-
ness of κ.

(3) The HOD Hypothesis.

(4) For all singular cardinals γ > κ,

(a) HOD � “γ singular

(b) (γ+)HOD = γ+.

(5) There exists one cardinal γ > κ satisfying

(γ+)HOD = γ+.

(6) There’s a regular cardinal γ ≥ κ such that γ is not ω-strongly measuarble in
HOD.

This comes out of the proof: our proof was (6) =⇒ (1) and (1) =⇒ (4). Also (4) =⇒
(6), giving an equivalence. Moreover (1) =⇒ (2) =⇒ (4) is easy.

Clearly, (4) =⇒ (3) =⇒ (6). For (5), we have (4) =⇒ (5) and (5) =⇒ (6).
The one of interest is (2).

§23.4 Magidor Formulation

Another concern: perhaps the expectation of (2) is problematic because of Concentration.
This is alleviated by the following result.

Theorem 23.4

The following are equivalent.

(1) N is weak extender model for the supercompactness of κ.

(2) N is a proper class model of ZFC and

∀λ > κ∃extender E

which witnesses the Magidor formulation:

(a) jE(crt(E)) = κ.

(b) The support of E is less than κ.

(c) The length of E exceeds the strength λ.

(d) E ∩N ∈ N .

§23.5 The Ultimate L

Things that put you in the “close to V ” half are this existence of weak extender models
inside HOD. An axiom Woodin introduced will show this.
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Definition 23.5. A set of reals A ⊆ R is universally Baire if for all topological spaces
Ω and for all continuous function

π : Ω→ R

the premiage of A under π has the property of Baire.

Here the property of Baire means that there is an open set U such that A4U is
meager, where 4 is the symmetric difference, and a meager set is the union of countably
many nowhere dense sets.

Let
Γ∞ = {A ⊆ R | A universally Baire} .

Theorem 23.6

Assume there is a proper class of Woodin cardinals. Then

(1) The Γ∞ sets have the regularity properties (are “nice”).

(2) Nice closure: for any A ∈ Γ∞, the set

P(R) ∩ L(A,R) ⊆ Γ∞

has L(A,R) � AD, the Axiom of Determinacy (?).

Definition 23.7. We define an ordinal

θL(A,R) = sup {α ∈ On | ∃(π : R� α) ∈ L(A,R)} .

Also, let

θ
L(A,R)
0 = sup {α ∈ On | ∃(π : R� α) is On-definable in L(A,R)} .

Assume ZFC and the existence of a proper class of Woodin cardinals. Let A ∈ Γ∞.
Then

HODL(A,R)

is a fine structural model (i.e. is very L-like). Moreover, it satisfies ZFC and thinks
ΘL(A,R) is a Woodin cardinal.

Moreover, HODL(A,R) restricted to Θ
L(A,R)
0 is a Mitchell-Steel model. Without the

restriction, HODL(A,R) is not such a model, but a strategic extender model.
Best result so far.

Theorem 23.8

Assume there is a Woodin limit of Woodin cardinals. Then ∃A ∈ Γ∞ such that

HODL(A,R) � (θL(A,R))

thinks there exists a strong cardinal which is a limit of Woodin cardinals.

Also, the model

MA
def
= HODL(A,R) � (ΘL(A,R))
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is comparable, in the sense that either MA = MB, or one is a substructure of the other.
(Assuming ZFC and proper class of Woodin carinals.)

motivation: for each α we let Mα denote the intersection of all transitive models N of
ZFC such that (On)N = α. (We let Mα = ∅ if no such N exist.)

§23.6 Ultimate L

Definition 23.9. Assume ZFC and a proper class of Woodin cardinals. We say Γ ≺ Γα

if

(a) Γ ⊆ Γ∞ and Γ = P(R) ∩ L(Γ,R).

(b) L(Γ,R) � ¬ADR.

Definition 23.10. (V = Ult L)

(1) There is a proper class of Woodin cardinals

(2) There is a proper class of strong cardinals.

(3) For all φ ∈ Σ4 if V � φ then ∃Γ ≺ Γ∞ such that

HODL(Γ,R) � (ΘL(Γ,R))  φ.

The Ultimate L Conjecture in ZFC says that, given κ is extendible, there exists N
such that

(1) N is a weak extender model for the supercompactness of κ.

(2) N ⊆ HOD.

(3) N � “V = Ultimate L”.

If the Ultimate L Conjecture is true and there is an extendible cardinal, then HOD
hypothesis holds. Moreover,

Theorem 23.11

Assume V equals ultimate L. Then

(1) Continuum Hypothesis holds.

(2) V = HOD.

(3) The Ω conjecture

§23.7 Chaos

The hierarchy of large cardinals beyond Choice started at a super Reinhardt cardi-
nal.
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Theorem 23.12

(ZF) Suppose κ is a super-Reinhardt cardinal. Then there is a definable, homogeneous
class forcing PAC such that if G is a V -generic in this poset, then

(1) V [G] � ZFC

(2) V [G] � κextendible

(3) V [G] � ∀singular γ > κ:(γ+)HOD < γ+

(4) V [G] thinks every regular cardinal γ ≥ κ is ω-strongly measurable in HOD.

(5) V [G] thinks there exists j : HOD→ HOD such that j 6= id.

(6) V [G] thinks that ∀λ∃j : HOD→ HOD such that crt(j) = κ and j(κ) > λ.

So some people really hope that the super Reinhardt cardinal is not compatible with ZF!
Summary: in the “Pattern” future,

• HOD Conjecture

• Ultimate L Conjecture

• Ω Conjecture

• Super-Reinhardt and friends are inconsistent

• Inner model theory for supercomapact

In the other future, large cardinals beyond Choice rule, and we obtain

• ¬ HOD Conjecture

• ¬ Ultimate L Conjecture

• ¬ Ω Conjecture

• Super-Reinhardt and friends are consistent with ZF

• No inner model theory for supercomapact
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