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§1 February 6, 2015

This is the sixth lecture.
At the end of last class we asked the question.

Question 1.1. What are the maximal ideals of C[x1, . . . , xn]?

Here’s one of them: (x1 − a1, x2 − a2, . . . , xn − an), where ai ∈ C. We’re interest in
finding all of the maximal ideals, but we won’t be able to answer it completely until
later.

§1.1 Facts about ideals

Today we’ll be discussing the relation between ideals and ring homomorphisms. It’s easy
to verify that for f : R → S, then ker f is an ideal, and more generally for that I ⊆ S
the ideal f−1(I) is an ideal. (The kernel is the special case where S = (0).)

The reverse is also true: Given I ⊆ R an ideal, we have a natural map R→ R/I with
kernel I.

More importantly, here is the so-called “mandatory exercise” from Vakil.

Proposition 1.2

Consider the natural projection π : R→ R/I. Ideals J ⊆ R/I correspond exactly to
ideals K ⊆ R with K ⊇ I through the projection map π.

It’s not true in general that ideals map to ideals under a ring homomorphism. For
example, consider the inclusion Z ↪→ Z[x]. The image of the ideal 2Z ⊆ Z is 2Z ⊆ Z[x],
which is not an ideal since it fails to absorb multiplication by x.

§1.2 C-algebras

Definition 1.3. We say R is a C-algebra if it contains C as a subring. In particular,
every C-algebra can be viewed as a C-vector space.

Definition 1.4. Let R be a C-algebra. A C-subalgebra generated by J for some set
J ⊆ R is the intersection of all algebras containing J . Then R is finitely generated if
it’s generated by a finite set J .

Example 1.5

The algebra C[x] is finitely generated as a C-algebra, even though it’s infinite-
dimensional as a C-vector space. Similarly, C[x1, . . . , xn] is a finitely generated
C-algebra, but C[x1, x2, . . . ] is not finitely generated.

Definition 1.6. A map of C-algebras φ : R→ S is a ring homomorphism which is also
linear over C (and in particular fixes C).

Example 1.7

The map C[x]→ C[x] by 1 7→ 1, x 7→ x2 is a homomorphism.
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Example 1.8

A non-example is C[x] → C[x] by complex conjugation. (Although it is a map of
R-algebras!)

§1.3 Hilbert Basis Theorem

In previous lectures we defined V({Fi}i∈I); we didn’t require in this case that I be finite
or even countable. Actually, we will show that we ever only need finitely many such I’s.
For this, we require the following.

Definition 1.9. A ring R is Noetherian if all its ideals are finitely generated.

On homework we’ll show this is equivalent to the ascending chain condition: there
does not exist a strictly ascending chain of ideals

I1 ( I2 ( . . . .

Theorem 1.10 (Hilbert Basis Theorem)

If R is Noetherian then R[x] is Noetherian.

By induction, R[x1, . . . , xn] is Noetherian. And of course C is Noetherian (there are only
two ideals!). But C[x1, x2, . . . ] is not Noetherian, because

(x1) ( (x1, x2) ( . . . .

Proof. Take I ⊆ R[X]. We wish to show I is finitely generated, so we’re going to start
throwing in elements of I. We can’t quite do this randomly, but here’s what we do: let f1

be a nonzero polynomial of minimal degree in I. Then look at I − (f1). If it’s nonempty,
we can pick f2 in it of minimal degree, and f3 ∈ I − (f1, f2) and so on.

Let me explain why I’m picking the minimal degree. Suppose somehow that fN /∈
(f1, f2, . . . , fN−1) for a really big N . Then that means that

fN − a1f1 − a2f2 + · · · − aN−1fN−1

can’t be in the ideal either, for any a1, a2, · · · ∈ R[x]. If we look at the minimal fN , then
that means even with all the firepower of the fi’s, we can’t even kill the leading term of
fN . That seems like it shouldn’t be possible for big enough N , and this is the motivation
for the proof.

Let aj ∈ R be the leading coefficient of fj . We’re going to use these to blow up an

aNx
deg fN

for big N . Look at the ascending chain

(a1) ⊆ (a1, a2) ⊆ . . .

which eventually stabilizes. Hence aN ∈ (a1, . . . , aN1) for some big N , meaning

aN = u1a1 + u2a2 + · · ·+ uN−1aN−1.

Then look at
fN −

∑
j=1

ujfjx
deg fN+1−deg fj .

(The xblah is just there to shift it so that all our ai line up). By all our discussion this is
a polynomial with degree strictly less than deg fN , contradiction.

6



Evan Chen (Spring 2015) 1 February 6, 2015

§1.4 Viewing varieties as ideals

Note that if an affine algebraic variety V is a zero locus of {fi}i∈I , then in fact it’s a zero
locus of the entire ideal ({fi}i∈I).

So it’s better to think about V(ideal) than V(set), because this way we have the same
name for the vanishing set. So we can think of affine algebraic varieties by ideals.

In particular, by the Hilbert Basis Theorem, all the ideals are finitely generated. So in
Noetherian situations, all our varieties are finitely generated.

§1.5 Flavors of Ideals

We’re going to cover various types of ideals and then later see what these correspond to
geometrically.

We already know what a maximal ideal is (ideal maximal under inclusion).

Definition 1.11. An ideal I ⊆ R is prime if ab ∈ I if and only if a ∈ I or b ∈ I.

Example 1.12 (Prime Ideals)

(5) ⊆ Z is prime. The ideal (6) ⊆ Z is not prime. Similarly, (x) ∈ C[x] is a radical
ideal.

Definition 1.13. I ⊆ R is radical if I =
√
I, where the radical

√
I of I is defined by

√
I

def
= {a ∈ R | an ∈ I for some n > 0}

Example 1.14

The ideal (5) ⊆ Z is radical; in general prime ideals are radical. We have
√

(12) = (6),
and in general this corresponds to the number-theoretic notion of a radical (the
product of distinct primes). So (12) is not radical, but (6) is radical.

Proposition 1.15

Prime ideals are radical. Any ideal of the form
√
I is also radical.

Remark 1.16. (0) is prime exactly when R is an integral domain, and (0) is maximal
exactly when R is a field.
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§2 February 11, 2015

Today we will try to make precise the connection between affine algebraic varieties
between ideals of C[x1, . . . , xn] and the affine algebraic varieties. In the best of worlds,
we would have a bijection between ideals and affine algebraic varieties. Unfortunately,
the answer is not so simple.

§2.1 A Small Remark from Evan o’Dorney (in response to homework)

Note: an isomorphism of algebraic varieties is not merely a structure-preserving bijection;
the inverse must be a morphism too. Both the forwards and backwards maps must
actually be morphisms. Hence for example the map A1 → A2 by t 7→ (t2, t3) is not an
isomorphism, even though it is a bijection, because the inverse is not a map of affine
algebraic varieties: there is no polynomial f such that f(t2, t3).

Actually, if you draw the curve
{

(t2, t3) | t ∈ k
}

you get a curve with a singularity.

§2.2 Obtaining Ideals From Varieties

To understand our hypothetical bijection we first ought to decide how to obtain an ideal
from a variety. First, if V is the common zero set of {fi}i∈A, then we can consider
I = (fi)i∈A and note that f ∈ I =⇒ f(x) = 0.

A second thing we could do is define the annihilator of V

I(V ) = {f ∈ C[x1, . . . , xn] | f(x) = 0 ∀x ∈ V } .

This begs the question: does I equal I(V )? Obviously I ⊆ I(V ). We’ll delay the answer
to this until later, and consider the other direction.

§2.3 Obtaining Varieties from Ideal

Given an ideal I ∈ C[x1, . . . , xn] we can define

V(I) = {x ∈ Cn | f(x) = 0 ∀f ∈ I} .

Now we ask: is it true that I(V(I)) = I and V(I(V )) = V ? One direction can be done
quickly.

Proposition 2.1

V(I(V )) = V .

Proof. V ⊆ V(I(V )) is tautological. For the other direction, x ∈ V(I(V )) =⇒ f(x) =
0 ∀f ∈ I(V ). We defined V = V((fi)i∈I) so everything is clear.

Unfortunately, it’s not true that I(V(I)) = I.

§2.4 Maximal Ideals

Note that larger ideals correspond to smaller varieties. So this motivates looking at
maximal ideals, because those should correspond to the smallest (and hopefully easiest
to understand) varieties.

Specifically, in a variety V a point (a1, . . . , an) can be considered as a maximal ideal
(x1 − a1, x2 − a2, . . . , xn − an). So this leads us naturally to the following question: are
all maximal ideals of this form? The answer is affirmative.
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Theorem 2.2 (Maximal Ideals)

All maximal ideals of C[x1, . . . , xn] are of the form (x1 − a1, . . . , xn − an).

Theorem 2.3 (Weak Nullstellensatz)

Let I ( C[x1, . . . , xn] be a proper ideal. Then the variety V(I) 6= ∅.

We’ll proof (or at least sketch the proof) of the weak nullstellensatz next lecture. In the
meantime, however, we will prove that these two theorems are equivalent. (Both these
theorems are true over any algebraically closed field, as usual.)

MI Implies WN. Start with I ( R. Then I is contained inside a maximal ideal M =
(x1 − a1, . . . , xn − an), and that M has a common vanishing point.

The point of this is just that V reverses containments.

WN Implies MI. Let M be a maximal ideal. By WN, there is a point p = (a1, . . . , an) ∈
V(M). Hence M is the set of all polynomials vanishing at p. But the set of polynomials
vanishing at p is I = (x− a1, . . . , x− an). Hence M ⊆ I, and by maximality M = I.

So points in Cn correspond exactly with maximal ideals!

§2.5 Hilbert’s Nullstellensatz

Theorem 2.4 (Hilbert’s Nullstellanzatz)

In fact, I(V(I)) =
√
I.

Example 2.5

Let I = (x2014). Then I(V(I)) = (x), which was to be expected (the zeros of x2014

are the same as the zeros of x).

As a result, the actual bijection is that there is bijection between affine algebraic varieties
and radical ideals.

WN Implies Nullstellensatz. You can check easily that

I(V(I)) ⊆
√
I.

Hence the tricky part is to check that if f ∈ I(V(I)), id est f(x) = 0 for all x ∈ V(I),
then f ∈

√
I.

Take a set of generators f1, . . . , fm, in the original ring C[x1, . . . , xn]; we may assume
it’s finite by the Hilbert Basis Theorem.

We’re going to do a trick now: consider S = C[x1, . . . , xn, xn+1] instead. Consider the
ideal I ′ ⊆ S in the bigger ring generated by {f1, . . . , fm} and the polynomial xn+1f − 1.
The point of the last guy is that its zero locus does not touch our copy xn+1 = 0 of An
nor any point in the “projection” of f through An+1 (one can think of this as V(I) in the
smaller ring direct multiplied with C). Thus V(I ′) = ∅, and by the weak nullstellensatz
we in fact have I ′ = C[x1, . . . , xn+1]. So

1 = g1f1 + · · ·+ gmfm + gm+1 (xn+1f − 1) .
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Now the hack: replace every instance of xn+1 by 1
f , and then clear all denominators.

Thus for some large enough integer N we can get

fN = fN (g1f1 + · · ·+ gmfm)

which eliminates any fractional powers of f in the right-hand side. It follows that
fN ∈ I.

This hack has a name: the Rabinowitsch trick.
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§3 February 13, 2015

Recall that last time we showed WN and MI were equivalent, and that WN =⇒
Hilbert Nullstellensatz. Now we will prove the weak nullstellensatz, thus completing the
correspondence.

§3.1 Prime ideals

Before doing so, let’s complete the chart: we know that points of An correspond to
the maximal ideals while varieties correspond to radical ideals. Finally, we claim the
following.

Proposition 3.1

Prime ideals correspond to the irreducible varieties.

Proof. Let V be irreducible. We wish to show I(V ) is prime.
Take any f, g ∈ C[x1, . . . , xn] such that fg ∈ I(V ). We wish to show either f ∈ I(V ) or

g ∈ I(V ). But we have V ⊆ V(f) ∪ V(g)., so by irreducibility we may assume V = V(f),
whence f ∈ I(V ) as required.

Conversely, suppose I(V ) is prime; we’ll show V is irreducible. Suppose for contradic-
tion that V = V1 ∪ V2 is a nontrivial decomposition. Hence Vi = V ∩Ai for some affine
algebraic variety Ai in An. Hence V ( A1 and V ( A2. Thus ∃f ∈ I(A1), g ∈ I(A2), so
that neither f nor g are in I(V ). Now Fg ∈ I(A1 ∪A2) ⊆ I(V ).

Inclusion-reversal is pretty dizzying.
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§4 February 18, 2015

Today we will show the weak nullestellensatz, thus completing the proof of the full Hilbert
nullestellensatz.

§4.1 A Coordinate-Change Lemma

Lemma 4.1

Given g ∈ C[x1, . . . , xn], there exists a change of coordinates

(x1, . . . , xn)→ (x1 + λxn, . . . , xn−1 + λn−1xn, xn) .

such that g is monic in xn (thought of as a polynomial in C[x1, . . . , xn−1][xn]).

For example, the polynomial g(x1, x2) = x3
1 + x1x

4
2 + x5

2 + x1x
3
2. is monic in x2 (the

leading term is x5
2), but the polynomial g(x1, x2) = x3

1 + x1x
4
2 + x5

1 + x1x
3
2. is not monic

in x2 (the leading term is x1x
4
2), but we can look instead at

g(x1 + λ1x2, x2).

The “leading x2 term” will be λ5
1 + λ1 (contributed by the second and fourth). Note that

there’s no xi’s left: we just use the fact that C is algebraically closed to exhibit a root
of t5 + t = 1. The proof if the general case is the same (the point is that the maximal
degree terms are xdi ).

§4.2 Proof of Weak Nullstellensatz

The proof goes by induction on n.
For the case n = 1, C[x] is a principle ideal domain (just by Euclid or whatever) and

so any ideal is of the form I = (f). Assume I is not the zero ideal. As I is a proper ideal,
we know f is nonconstant, and so we can find a root at which it vanishes.

Now for the inductive step (when n > 1). Take any nonconstant g ∈ I with degree e.
By the lemma, we can assume WLOG that g is monic in xn. Hence we may write

g(x1, . . . , xn) = xen +

e−1∑
k=1

gk(x1, . . . , xn−1)xkn.

(We won’t use this g until later, but it’s important to emphasize that g doesn’t depend
at all on anything we define below.)

We construct the following two auxilary ideals. We construct I ′ ( C[x1, . . . , xn−1] of
polynomials in I which don’t have any xn terms (here I ′ is proper since 1 /∈ I ′). It has a
vanishing point (a1, . . . , an−1). Next, define the ideal

J = {f(a1, . . . , an−1, xn) | f ∈ I} ⊆ C[xn]

(you can easily check directly it’s an ideal).

Claim 4.2. J is also proper.

Note that a1, . . . , an depends only on I.

12
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Proof that J is proper. If not, suppose

1 = f(a1, . . . , an−1, xn)

for some f ∈ I. Write
f = f0 + f1xn + · · ·+ fdx

d
n

with f0, . . . , fd ∈ C[x1, . . . , xn−1]. we find that f1(a1, . . . , an−1) = · · · = fd(a1, . . . , an−1) =
0 and f0(a1, . . . , an−1) = 1.

View f and g as polyonmials in xn with coefficients in C[x1, . . . , xn−1] We consider
the resultant R of f and g, which lives inside the coefficients R ∈ C[x1, . . . , xn−1]. The
resultant (in determinant form) has the property that it’s a linear combination of f and
g, meaning R ∈ I, and hence R ∈ I ′. Explicitly, if d = 3 and e = 2 the resultant is

R = det


f0 f1 f2 f3 0
0 f0 f1 f2 f3

e0 e1 1 0 0
0 e0 e1 1 0
0 0 e0 e1 1


The first e rows are dedicated to f , the next d are dedicated to g, so the resultant is a
(d+ e)× (d+ e) square matrix. I’ll let you guess what the general form is :D (Note that
e2 = 1 by construction). �

Since J ( C[xn] is proper, and hence J = (h) for some nontrivial h. Pick an such that
h(an) = 0. Then for all f ∈ I we have

f(a1, . . . , an) = 0

as desired (note that this ai really is independent of f).

§4.3 Correspondence

Recall that we had correspondences

• Points correspond to maximal ideals.

• Irreducible varieties correspond to prime ideals.

• Affine algebraic varieties correspond to radical ideals.

Also, we know somehow that V1 corresponds to I1 and V 2 corresponds to I2, then V1∩V2

corresponds to I1 + I2 and V1 ∪ Vp corresponds to I1 + I2.
This correspondence isn’t perfect, though.

Example 4.3

Let C = V(y−x2) be the parabola and L = V(y). Then C ∩L is just the point (0, 0).
But (y − x2) + (y) = (y, x2), which indeed has vanishing set of just the origin, but
that’s not the ideal we would normally have named: we normally would call it (y, x).

Somehow the fact that we got (y, x2) instead of (y, x) is significant. The ideal
(y, x2) remembers the fact that we have a “double zero” on the x-axis.

13



Evan Chen (Spring 2015) 4 February 18, 2015

So something corresponds to the non-radical ideals. That “something” is schemes.
To be precise about what’s true and isn’t true: here are the true statements.

V(I) ∩ V(J) = V(I + J)

V(I) ∪ V(J) = V(IJ) = V(I ∩ J)

I(V1 ∩ V2) =
√
I(V1) + I(V2)

I(V1 ∪ V2) =
√
I(V1) ∪ I(V2) =

√
I(V1) ∩ I(V2) = I(V1) ∩ I(V2).

14



Evan Chen (Spring 2015) 5 February 20, 2015

§5 February 20, 2015

In life, we like to understand objects by understanding the maps on or to them. To this
end, we want to examine the morphisms on a variety V . The notion of a coordinate ring
does this.

§5.1 Coordinate Ring

We restrict our attention to algebraic (polynomial) functions on a variety V . For example,
a valid function is (a, b, c) 7→ a, which we call “x” Similarly we have a canonical projection
y and z, and we can create polynomials by combining them.

Definition 5.1. The coordinate ring C[V ] of a variety V is the ring of polynomial
functions on V .

This is not merely C[x1, . . . , xn]. For example, note that in A3, the variety V =
V(x2 + y2− z2) has functions x2 + y2 and z2, which are the same. What is naturally true
is that

Proposition 5.2

Given a variety V ⊆ An, which vanishes on I = I(V), we have a canonical isomor-
phism

C[V ] ∼= C[x1, . . . , xn]/I.

Proof. There’s a natural surjection

C[x1, . . . , xn] � C[V ]

with kernel I.

Thus properties of I(V ) correspond to properties of C[V ].

§5.2 Pullback

Suppose we have a morphism V
F−→W . Then we can get a map of the coordinate rings

F ] according to

C[W ]
F ]

−→ C[V ]

g 7→ g ◦ F

We can draw the diagram more explicitly:

W
F
- C

V

g

6

F
] (g

)

-

This can be thought of as a contravariant functor.

V C[V ]

-

W

F

?
C[W ]

F ]
6

15



Evan Chen (Spring 2015) 5 February 20, 2015

Example 5.3

Let V = A3 F−→ A2 = W by (x, y, z) 7→ (x2y, x− z). Then the pullback is a map

C[W ] ∼= C[u, v]
F ]

−→ C[x, y, z] ∼= C[V ]

u 7→ x2y

v 7→ x− z

Remark 5.4. The pullback of a map generalizes the notion of the dual map T∨ : W∨ →
V ∨ of a map T : V →W of finite vector spaces.

§5.3 Which rings are coordinate rings?

We now ask: which rings are the coordinate ring of some ideal? There are some obvious
requirements.

• Such rings must be C-algebras, of course.

• Such a ring must be finitely generated.

• Such a ring must be reduced.

It turns out that these conditions are sufficient!

Theorem 5.5

Every finitely generated reduced C-algebra is the coordinate ring of some complex
affine variety.

Proof. Let R be this map. Because it’s finitely generated by some ri, there is some map

C[x1, . . . , xn] � R

via xi 7→ ri. Let I be the kernel of this map. Since R is reduced, I is radical. Then
R ∼= C[V ], where V = V(I).

§5.4 The equivalence of algebra and geometry

Now the main theorem is the following.

Theorem 5.6

Let R
σ−→ S be a map of finitely generated reduced C-algebras. Then there exists

unique affine varieties V and W (up to isomorphism) and a map F between them so
that the diagram

R
σ
- S

C[W ]

∼=

?

6

F ]
- C[V ]

∼=

?

6

commutes.

16
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Rephrasing in terms of category theory,

Theorem 5.7 (The Equivalence of Algebra and Geometry)

The pullback is a contravariant functor which induces an (opposite) equivalence of
the following two categories:

• The category of affine algebraic varieties.

• The category of finitely generated C-algebras.

17
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§6.1 Recap

To summarize the results from last time:

• Every finitely generated reduced C-algebra is isomorphic to the coordinate ring of
some affine algebraic variety.

• If F : V →W is a morphism of affine algebraic varieties, then we have a pullback
map

F ] : C[W ]→ C[V ]

between the coordinate rings.

• If σ : R→ S is a homomorphism of finitely generated C-algebras then there exists
a unique morphism F (up to isomorphism) of the corresponding affine algebraic
varieties such that σ is the pullback of F . This gives an equivalence of categories
between affine complex varieties and finitely generated reduced C-algebras.

§6.2 Isomorphism of Affine Algebraic Varieties

For categorical reasons, isomorphisms of rings correspond to isomorphisms of varieties.

Example 6.1 (An Isomorphism)

Consider the isomorphism of affine algebraic varieties

A1 F−→ V(y − x2) ⊆ Å2

which maps a line into a parabola (via t 7→ (t, t2)). It induces a map of coordinate
rings

C[t]
F ]

← C[x, y]/(y − x2).

by sending t←[ x and t2 ←[ y.

Example 6.2 (A Non-Isomorphism)

Consider the isomorphism of affine algebraic varieties

A1 F−→ V(y2 − x3) ⊆ Å2

through the map t 7→ (t2, t3). You can think of this as a curve with a cusp and the
line x = 1, mapped by projection through the origin. But this is not an isomorphism
(there’s a “singularity” at the origin).

You can see this reflected in the corresponding map of rings. It is given by

C[t]← C[x, y]/(y2 − x3)

via
t2 ←[ x and t3 ←[ y.

This is not an isomorphism because it fails to be surjective; it misses t ∈ C[t]!

18
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§6.3 (Digression) Spectrum of a Ring

We won’t touch much on this (for now), but just briefly. . .
In our previous examples C[x1, . . . , xn] we can think of the points as just the maximal

ideals. More generally, given any ring R we can think about a “space” where the points
are the maximal ideals of R, and the elements of R as the “functions”. Hence the points
are

max SpecR = {m ⊆ R | m maximal}
We can even define the Zariski topology on max SpecR: a set Z is closed if Z is the set
of all maximal ideals containing an ideal I. And given f ∈ R, m ∈ max SpecR, we can
think of f(m) as [f ] (mod m).

This is unfortunately far from perfect: a morphism R→ S of rings does not necessarily
preserve maximal ideals. For example, look at the map Z ↪→ Q. The zero ideals in Z are
far from maximal, but they are maximal in Q. In particular, the pullback of the maximal
ideal (0) ⊆ Q is the non-maximal ideal (0) ⊆ Z.

This motivates us instead to consider

SpecR = {p ⊆ R | p prime}

and so on.

§6.4 Complex Projective Space

It turns out we can get many more examples of varieties by looking at CPn instead
of by looking at Cn. This requires me to tell you what CPn is. It turns out to be a
“compacification” of Cn.

(As usual, in what follows all of our geometric pictures will really be RPn: we again
treat C as a straight line.)

Here’s the definition: CPn can be thought of as the set of all lines through the origin
in Cn+1.

Example 6.3 (CP1)

Consider the bundle of lines through the origin in C2, and project it onto the line
x = 1. Thus CP1 can be thought of as the complex line, plus a point at infinity.

The unit circle might have been a decent approximation, but it suffered from the issue
that every line hits two points on the unit circle.

Example 6.4 (CP1)

Consider the bundle of lines through the origin in C2, and project it onto the line
x = 1. This is an “almost-bijection”; we have a “point at infinity” caused by the
line x = 0 in C2.

Thus CP1 can be thought of as the complex line, plus a point at infinity.

Example 6.5 (CP2)

In an analogous way, we can project CP2 onto the plane x = 1, which misses only a
copy of CP1 (the lines through the origin contained in the yz-plane).

Hence
CP2 = C2 ∪ CP1 = C2 ∪ C ∪ {∞}.
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In general, we have

CPn = Cn ∪ CPn−1 = Cn
⋃

Cn−1 ∪ . . . {∞}.

§6.5 Manifold

In this section we only consider n = 2 for simplicity of notation. We can think of the
space

CP2 def
= {p = (x0, x1, x2) | p 6= 0} / ((x0, x1, x2) ∼ (λx0, λx1, λx2)) .

So the point is that we consider a chart U0 ' C2, where U0 is the set of points with
nonzero x-coordinate. Similarly, we can define a chart U1 for the points with nonzero
y-coordinate, and so on. These three charts cover CP2.

Now we want to make CP2 into a complex manifold. You can check that the transition
functions are all holomorphic.

§6.6 Projective Varieties

Anyways, the point of all this is that we want to think about projective varieties (those
that live in CPn) in addition to our affine varieties (living in Cn).

In Cn we could consider polynomial functions. Now we want to consider what functions
we might put on CPn, whose points have homogeneous coordinates

[x0 : x1 : · · · : xn] .

This leads us to the following definition:

Definition 6.6. A polynomial F ∈ C[x0, . . . , xn] is homogeneous if all terms have the
same degree.

By taking m+ 1 of these functions, this gives us a good notion of a function from CPn
to CPm. Note also that given a polynomial f ∈ C[x1, . . . , xn], we can get a homogeneous
polynomial f̃ ∈ C[x0, x1, . . . , xn] by throwing in x0’s (for example, x2

1 + x3
2 → x0x

2
1 + x3

2).
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Today we want to define projective varieties in a way similar to the way we defined
algebraic varieties.

§7.1 Functions on a Projective Variety

Consider CP2 = {[x0 : x1 : x2]}. We wish to consider zero loci in CP2, just like we did in
affine space, and hence obtain a notion of a projective variety.

But this isn’t so easy: for example, the function “x0” is not a well-defined function on
points in CP2 because [x0 : x1 : x2] = [5x0 : 5x1 : 5x2]! So we’d love to consider these
“pseudo-functions” that still have zero loci. These are just the homogeneous polynomials.

Definition 7.1. A function F ∈ C[x0, . . . , xn] is called homogeneous if all terms have
the same degree d. Equivalently,

F (λx0, . . . , λxn) = λdF (x0, . . . , xn).

The homogeneous condition is really necessary. For example, to require “x0 − 1 = 0”
makes no sense, since the points (1 : 1 : 1) and (2015 : 2015 : 2015) are the same.

It’s trivial to verify that homogeneous polynomials do exactly what we want: hence
we can do the following.

Definition 7.2. A projective algebraic variety in CP2 is the common zero locus of
an arbitrary collection of homogeneous polynomials in n+ 1 variables.

Example 7.3

Let’s try to picture the variety

V(x2 + y2 − z2) ⊆ CP2

which consists of the points [x : y : z] such that x2 + y2 = z2. If we take the Ui
charts defined last time, we obtain the following:

• When x = 1, we get a hyperbola V(1 + y2 − z2).

• When y = 1, we get a hyperbola V(1 + x2 − z2).

• When z = 1, we get a circle V(x2 + y2 − 1).

Example 7.4

A second way to do this is picture the double cone

V(x2 + y2 − z2) ⊆ A3.

This cone has the property that if a point p is on it, then the entire line through the
origin and p is in it. So you can think of the corresponding variety in CP2 as the set
of lines which make up the double cone.
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§7.2 Projective Analogues of Affine Results

Definition 7.5. Given V ⊆ CPn we can consider

I(V ) = {F ∈ C[x1, . . . , xn] | F (p) = 0 ∀p ∈ V } .

This is a homogeneous ideal of V .

Proposition 7.6

I(V ) is radical and finitely generated.

Proof. Check it.

Theorem 7.7 (Homogeneous Nullestellensatz)

There is a natural bijection between projective varieties in CPn and the radical ideas
of C[x1, . . . , xn] with homogeneous generators except for the ideal (x0, . . . , xn).

Unfortunately, because elements C[x0, . . . , xn] cannot be thought of as functions on a
projective variety, we can’t define the coordinate ring in the same way.

Nonetheless, we still can put the Zariski topology on CPn; the closed sets will be the
projective subvarieties. (We can also take a Euclidean topology via our charts.) Naturally,
we induce a topology on every subvariety of Pn as well.

§7.3 Transforming affine varieties to projective ones

Projective varieties are nice because they are compact under the Euclidean topology
(and hence in the Zariski topology as well, since the Zariski topology is coarser than the
Euclidean topology).

Definition 7.8. Let V be an affine algebraic variety

V ⊆ An ⊆ CPn.

Then the projective closure V is the closure of V (as a set) in CPn (with respect to
either the Zariski or Euclidean topology; the answers turn out to be the same).

Note that we’re embedding An (which has n coordinates) in CPn (which has n + 1
coordinates).

Example 7.9

Consider the set V = V(y − x2) ⊆ A2 ⊆ CP2, where A2 is thought of as the z = 1
chart in CP2. The lines through the origin passing through points [t : t2 : 1] the
closure contains those lines plus one more: the point [0 : 1 : 0] corresponding to the
y-axis.

The closure V is more correctly thought of as

V = V(zy − x2) ⊆ CP2.

That is we homogenize each of the polynomials.
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In general, given I ⊆ C[x1, . . . , xn] cutting out an affine variety in An, we can construct
the ideal Ĩ ⊆ C[x0, . . . , xn] formed by homogenizing each of the polynomials in I. Then
V(Ĩ) ⊆ CPn is the closure of V(I) ⊆ Cn.

Note that you really need to homogenize all the polynomial in the ideal; just homoge-
nizing the generators is not sufficient.

Example 7.10 (A Warning: The Twisted Cubic)

Consider the ideal
V(y − x2, z − xy) ⊆ A3

which can be parametrized as the twisted cubic

TC =
{

(t, t2, t3) | t ∈ C
}

One can check that I = (y − x2, z − xy) is in fact a radical ideal. But the variety

W = V(wy − x2, wz − xy) ⊆ CP3

is not what we want: it still has tuples (1, t, t2, t3) but in addition contains the line
w = x = 0: W contains an entirely new component.
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Last time we defined the projective space CPn and consider projective closures V of
varieties V .

§8.1 Ideals of Projective Closures: A Cautionary Tale

Theorem 8.1

Let V ⊆ Ån ⊆ CPn be an affine algebraic variety. Let I = I(V ), and let Ĩ be the
homogenization of I. Then Ĩ is the ideal which cuts out V ⊆ CPn.

Recall that

• The homogenization f̃ of a polynomial f is done adding on factors of an extra
variable x0 to each term of f so that it becomes homogeneous. For example the
homogenization of x3

1 + x2
2x

5
3 is x4

0x
3
1 + x2

2x
5
3.

• Recall that the homogenization of an ideal is the homogenization of every polynomial
in I.

Example 8.2 (Cautionary Example: Twisted Cubic)

Again consider the twisted cubic. In CP3 we can consider its projective closure (in
Uw) as cut out by

J = (xz − y2, wy − x2, wz − xy).

If we fix w = 1 then we recover the ideal

I = (xz − y2, y − x2, z − xy) = (y − x2, z − xy).

But it’s not the case that J = (wy−x2, wz−xy). Indeed, J only contains w(xz−y2)
but not the function xz − y2; as a result, V(J) ⊆ CPn cuts out the twisted cubic as
well as the line w = x = 0.

§8.2 Proof of Theorem

Lemma 8.3 (On Homework)

Let I be an ideal. Then

(a) Ĩ is an ideal.

(b) Assume I is radical. Then Ĩ is radical.

Now we prove the theorem.

Proof. Set U0 to be the x0 = 1 plane in which we embed the original V .
First we show V ⊆ V(Ĩ). Let G ∈ Ĩ; we wish to show G vanishes on V . WLOG G is

homogeneous. It suffices to show that V ⊆ V (G) (where V (G) is the vanishing set of G),
since V (G) is closed in CPn and it will follow that v ⊆ V (G). But V = V ∩ U0, and G
restricted to U0 must vanish along V for tautological reasons.
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Let’s now prove V (Ĩ) ⊆ V . It’s equivalent to show Ĩ ⊇ I(V ) by the nullstellensatz. So
we want to show ifG vanishes on V (in particular, it’s homogeneous) then it’s in Ĩ. But ifG
vanishes on V then it certainly vanishes on V ∩U0 = V , so g(x1, . . . , xn) = G(1, x1, . . . , xn);
hence g ∈ I. We would be done if g̃ = G, but this is not exactly right, since if
G = x3

0x1 + x0x1x
2
2 then g̃ = x2

0x1 + x1x
2
2. What is true that G = xr0g̃; but g̃ ∈ Ĩ and

multiples of g̃ should be in Ĩ; hence G ∈ Ĩ.

§8.3 Morphisms of projective varieties

Let V ⊆ CPn, W ⊆ CPm and V
F−→ W a map of sets. We say it is a morphism of

projective varieties if

for every point p ∈ V , there exists a (Zariski) neighborhood Up 3 p in V
and some homogeneous polynomials F0, . . . , Fm ∈ C[x0, . . . , xn] such that the
restriction to this neighborhood Up is given by

q 7→ [F0(q) : · · · : Fm(q)] .

For this definition to make any sense, degF0 = degF1 = · · · = degFm; otherwise scaling
q would mess up the coordinates. (It’s okay if some polynomials are zero as long as the
others are of the same degree.) Also, the polynomials should never be all zero at the
same point. (This can be fixed – if all Fi simultaneously vanish on the points T ⊆ Up
then T is closed so we can look at Up \ T instead.)

This should look familiar if you have experience with manifolds: just like a manifold
should “look locally” like Euclidean space, a projective varieties should “look locally” like
affine space and a map of projective varieties should “look locally” like an affine map.

§8.4 Examples of projective maps

Example 8.4

Consider the map CP1 → CP2 by

[s : t] 7→ [s2 : st : t2].

This is well-defined since it’s homogeneous and doesn’t hit the “point” [0 : 0 : 0] for
any point in CP1 (since [0 : 0] /∈ CP1).

Note that the points in the range all land in the locus xz − y2 = 0. So in fact we
can think of this as a map to a curve C:

CP1 → C = V(y2 − xz) ⊆ CP2.

In fact, this is an isomorphism.

In the above example, we’re taking Up = CP1 for every p.
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§9.1 Examples of Morphisms

Last time we discussed morphisms of projective varieties. Recall that a map F : V →W
is a morphism is for every point p ∈ V , there’s a (Zariski) neighborhood Up 3 p such that
F is locally a polynomial map.

For example, the map CP1 → CP2 by [s : t] 7→ [s2 : st : t2].

Example 9.1 (A Multi-Chart Example)

Let C = V(xz − y2). We have a map CP1 → C by again [s : t] 7→ [s2 : st : t2].
Now we construct a map C → CP1 by

[x : y : z] 7→

{
[x : y] x 6= 0

[y : z] z 6= 0.

For this to be a well-defined map, we’d need for a point x, z 6= 0 to have [x : y] = [y : z].
This obviously not true for CP2 in general but is true by definition for the points on
C. (Note that “x 6= 0” and “y 6= 0” are Zariski neighborhoods.)

§9.2 Isomorphisms of Projective Varieties

Definition 9.2. A morphism F : V →W of projective varieties is an isomorphism if
it there is an inverse morphism G : W → V (meaning F ◦G = idW and G ◦ F = idV ).

Example 9.3

We claim the above maps given an isomorphism from CP1 to C. We have

CP1 → C → CP1

by

[s : t] 7→ [s2 : st : t2] 7→

{
[s2 : st] if s 6= 0

[st : t2] if t 6= 0
= [s : t].

The other direction C → CP1 → C is

[x : y : z] 7→

{
[x : y] if x 6= 0

[y : z] if z 6= 0
7→

{
[x2 : xy : y2] if x 6= 0

[y2 : yz : z2] if x 6= 0
= [x : y : z]

using y2 = xz in both cases.

Recall that in affine varieties, isomorphisms of varieties induce varieties of coordinate
rings. However, this is NOT true in projective space. The above isomorphism CP1 ∼= C
is in fact a counterexample.

Indeed, the coordinate ring of CP1 is C[s, t] and the coordinate ring of C is C[x, y, z]/(xz−
y2). But as C-algebras we have

C[s, t] 6∼= C[x, y, z]/(xz − y2).
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Indeed, the left-hand side is the coordinate ring of A2 and the right-hand side is the
coordinate ring of the double cone xz − y2 = 0 in A3. And you wouldn’t expect these to
be isomorphic!

The point is that coordinate rings correspond to functions on an affine variety. Coordi-
nate rings of projective varieties are best thought of as the functions on the corresponding
affine cone.

§9.3 Projective Equivalence

Let’s focus on a stricter set of morphisms of projective varieties. Suppose we want to
specify a map

CP1 → CP1

by
[s : t] 7→ [F0(s, t) : F0(s, t)].

If we want this morphism to be invertible, then we better have degF0 = degF1 = 1. So
we can this as

[s : t] 7→ [as+ bt : cs+ dt]

which has a nice matrix representation by[
a b
c d

] [
s
t

]
.

So inverting this map is as easy as inverting a matrix.
It turns out these are the only automorphisms of CP1. Hence we might think that

the automorphism group of CP1 is GL2(C). But in fact, there is some redundancy. For
example the maps T and 2015T are the same map. So we must mod out by the center of
GL2(C), a copy of C∗. We call this the projective general linear group and put

Aut(CP1) = PGL2(C).

Remark 9.4. In complex analysis, the corresponds to the fact that the only biholomor-
phic maps C→ C are the Möbius transformations

[s : 1] 7→
[
as+ b

cs+ d
: 1

]
.

See http://en.wikipedia.org/wiki/M%C3%B6bius_transformation#Projective_matrix_representations.

In fact, it turns out these are the only automorphisms of CPn in general; that is,

Aut(CPn) = PGLn(C).

In particular, the automorphisms of CPn can be defined globally ; we don’t need to use
charts to describe them.

We can extend this to any map of varieties.

Definition 9.5. Two projective varieties V , W of CPn are projectively equivalent if
there exists an isomorphism of CPn sending one to the other.

Example 9.6

The varieties V(x) and V(y) inside CP2 are projectively equivalent under the map

[x : y : z] 7→ [y : x : z] .
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§9.4 Quasi-projective varieties

We want to start thinking about projectively equivalent varieties as the same variety.
More specifically, up until now we’ve been thinking of varieties as sets which live inside
some ambient space like An or CPn. We want to start thinking of these varieties as
intrinsic objects, the same way we think of a torus as just a torus, not “a torus in R3”.

For now, let’s define a quasi-projective variety is a locally closed subset of CPn – that
means it is the intersection of a closed and open set in the Zariski topology

• For example, each projective variety V is the intersection of V (which is closed)
and the entire space CPn (which is open).

• Each affine variety is also quasi-projective. The variety itself V is closed (when
we embed An ⊆ CPn in the “x0 = 1” plane). But in CPn, the plane x0 = 1 really
means x0 6= 0 (by scaling), and so the old U0 chart is open.
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Recall that a quasi-projective variety is a locally (Zariski) closed subset of CPn.

§10.1 Morphisms (and Examples) of Quasi-Projective Varieties

Remark 10.1. Since the Zariski closed subsets are projective varieties, we can think of
a quasi-projective variety as follows: take some projective variety and throw away
some points.

Definition 10.2. Let V ⊆ CPn, W ⊆ CPm be (quasi-projective) varieties. A map
F : V →W is a morphism of quasi-projective varieties if for all p ∈ V , there exists
homogeneous polynomials F0, . . . , Fm such that for some neighborhood Up 3 p, the map
U → CPm by

q 7→ [F0(q) : · · · : Fm(q)]

is well-defined and agrees with F .

Isomorphism is done in the obvious way.
Note: In what follows, we will begin shortening “quasi-projective variety” to just

“variety”.
Recall that projective varieties and affine varieties are varieties, as well as open subsets

of projective/affine varieties as well.

§10.2 Affine quasi-projective varieties

Example 10.3

We’ve already seen CP1 minus a point, it’s A1. So let’s now consider

U = CP1 \ {0,∞} ∼= A1 \ {0}

is an example of a quasi-projective variety. However, we claim it’s isomorphic to the
hyperbola variety in A2 given by

V = V(xy − 1).

What we’ve done is just project a hyperbola onto the x-axis:

picture of hyperbola

Missing

figure

Here’s the actual map. Clearly the map G : V → W can just be written by (x, y) ∈
A2 7→ (x) ∈ A1. The inverse map is less obvious because we can’t have 1

t ; we would like
to write (t) 7→ (t, 1

t ) but this is of course not valid.
We embed V ⊆ CP2 by V = V(xy − z2) ⊆ CP2, and intersect it with the chart

Uz ⊆ CP2, i.e.
Uz ∩ V = V [x : y : 1]↔ (x, y).
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Similarly, we identify U ⊆ A1 ⊆ CP1 by t↔ [t : 1]. So we can then write

CP1 F̃−→ CP2 [a : b] 7→ [a2 : b2 : ab].

On A1 ⊆ CP1, this is just

[t : 1] 7→ [t2 : 1 : t] =

[
t :

1

t
: 1

]
which is what we wanted. This gives us maps mutually inverse maps F and G, as needed.

Thus, we found that our attempt at an variety is in fact just a previous affine variety.
Since we’re trying to think about quasi-projective varieties as intrinsic objects, we thus
have to say

Definition 10.4. A quasi-projective variety is affine if it is isomorphic to some affine
algebraic variety in An.

Example 10.5

A2 \{0} is a quasi-projective variety not isomorphic to any projective or affine variety.

Roughly, the idea is that the functions on the space look different than those on projective
or affine varieties.

§10.3 Rings of functions

Since we’re shortening “quasi-projective variety” to just “variety”, we now say “affine
variety” to mean “affine quasi-projective variety”, and use “(Zariski) closed subset of An”
for the old meaning. Sorry!

We want to think of rings of functions now.

Definition 10.6. For W an affine variety, then the coordinate ring C[W ] is defined to
be the coordinate ring of any closed subset of An isomorphic to W .

On homework we’ll check that this is well-defined.

Example 10.7

Let U = A1 \ {0}. Then C[U ] ∼= C[x, y]/(xy − 1), which one can also write this as
C[x, 1

x ]. The fact that this coordinate ring cannot be expressed as C[t]/I for some I
reflects the fact that U cannot be isomorphic to an affine variety in one dimension.

§10.4 Complements of hypersurfaces

We now want to show that quasi-projective varieties can be thought of as results from
fusing1 together multiple affine varieties. hat is, we want a basis of open affine sets for
any quasi-projective varieties.

Lemma 10.8

The complement of any hypersurface in a closed subset of An is affine.

1I hate glue.
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This generalizes the case we did earlier, where we consider the complement of the origin
in A1, giving U = A1 \ {0} which is affine.

Note that a hypersurface is a locus cut out by one equation. That’s why the lemma
doesn’t imply A2 \ {0} is affine, because {0} is cut out by two equations in A1.

Proof of Lemma. Suppose W is Zariski-closed in An, and

V = V(f) ⊆ An

is some hypersurface. Then W ∩V ⊆W is also Zariski-closed. So the set in consideration
is

W \ (W ∩ V(f))

and we want to show it’s affine.
We do the same trick by going up a single dimension. Let W is cut out by F1, . . . , Fr.

We will show there are isomorphisms

An ⊇ U ←→ V
def
= V(F1, . . . , Fr, zf − 1) ⊆ An+1.

The map G : V → U should just be projection, while the map U → V should colloquially
be

(x1, . . . , xn) 7→
(
x1, . . . , xn,

1

f

)
and again we have the same trick of passing into projective varieties to make the latter
into a polynomial map.

Let’s look at the details. Let’s recall that

U = W \ V(f) = V(F1, . . . , Fr) \ V(f)

and
V = V(F1, . . . , Fr, zf − 1).

First, we want the map

G : V → U by (x1, . . . , xn, z) 7→ (x1, . . . , xn).

This indeed maps into V by tautology, and moreover it does not land in V(f) because of
the zf − 1 = 0 constraint. Similarly, we may write

F : U → V by (x1, . . . , xn) 7→
(
x1, . . . , xn,

1

f(x1, . . . , xn)

)
.

Clearly this maps into V (that’s how the last term is contrived), The only difficulty now
is to show that this can indeed be recast as a polynomial map. The idea is to re-cast
this as (x1, . . . , xn) 7→ (x1, . . . , xn, z); the point is that when restricted to V , the map

1
f(x1,...,xn) = z is indeed a polynomial.
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We begin by finishing the proof of the lemma from last time, thus establishing that
complements of hypersurfaces in a Zariski closed subset of An are affine (quasi-projective)
varieties.

§11.1 Quasi-projective varieties are covered by locally affine sets.

Let U be such a complement (so that U is a quasi-projective variety) and V the corre-
sponding Zariski-closed set. (This is just the situation in the proof of the lemma.) By
definition, we have

C[U ]
def
= C[v] = C[x1, . . . , xn, z]/ (F1, . . . , Fr, zf − 1)

∼= C[W ][z]/(zf − 1)

= C[W ][1/f ].

Let V ⊆ CPn be a quasi-projective variety. We have n charts U0, U1, . . . of CPn which
look like affine space, given by Ui = {(x0, . . . , xn) | xi 6= 0}.

Let Vi = V ∩ Ui. Then Vi is some open set, and so we can write

An ⊇ V(f1, . . . , fs) \ V(g1, . . . , gt)

for some fi and gi (closed sets are differences of open sets). Thus Vi is covered by

V(f1, . . . , fs) \ V(gi) i = 1, . . . , t.

Then because the Ui cover CPn, we obtain that

Every quasi-projective is covered by a bunch of open affine sets in the
Zariski topology.

This is the same way that a manifold is a bunch of copies of Euclidean space. But
surprisingly, for quasi-projective varieties the pieces might be in different dimensions.

In fact, you can show that one can get a basis, rather than just an open cover.

§11.2 Regular Functions

Now we want to have a notion of a function on a quasi-projective variety.

Definition 11.1. Let U be open and V an affine quasi-projective variety, with U ⊆ V .
We say f : U → C is regular at p ∈ U if there exists g, h ∈ C[V ] such that f = g/h in
some neighborhood of p (in particular h 6= 0 on this neighborhood).

We say f is regular on U if it is regular at each of its points.

Definition 11.2. Let OV (U) denote the set of all regular functions on U .

Note that if V ⊆ An is a Zariski-closed set and f, g ∈ C[V ] then f/g is regular on the

affine variety W
def
= V \ V(g). In fact, as we saw earlier

C[W ] ∼= C[V ][
1

g
] ∼= C[V ][z]/(zg − 1).

So f/g can be identified with the polynomial zf on W .
The point is that rational functions should be thought of as polynomials on sufficiently

small affine spaces.
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Example 11.3 (Examples of Regular Functions)

Here are the examples.

(a) The function f : A2 → C by f(x, y) = (x+ y)2 + 2x5 is regular.

(b) The function f : A2 \ V(x)→ C by (x, y) 7→ y/x is a regular function.

Another example is a function CP1 \ {[0 : 1]} → C by [x : y] 7→ y/x. This can
be thought of as identifying U0 to A1.

(c) (Projection from a point in A2) Pick a point p ∈ A2 and a line ` not containing
p. Then for any q 6= p we can let f(q) be the intersection of the line through p
and q with ` (unless the lines are not parallel). This gives a function

A2 \ `′ → ` ∼= C

where `′ is the line through p parallel to `.

Remark 11.4. Note that if V ⊆ An is Zariski-closed, then C[V ] ⊆ OV (V ). But it turns
out this inclusion is equality.
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§12.1 Basis of Open Affine Sets

Last time we saw that a quasi-projective variety V has a cover by open affine sets. We
claim that this gives

Theorem 12.1

The open affine sets form a basis of the Zariski topology of any quasi-projective
variety V has a basis of open affine sets.

Proof. It suffices to show that any open cover {Uα} of V has a refinement (topology
lemma).

Note that each Uα is itself a quasi-projective variety, so each Uα has a cover by open
affines. This is the desired refinement.

§12.2 Regular Functions Continued

Recall that for an affine quasi-projective variety V , for an open set U ⊆ V we had the
ring of functions OV (U).

We now prove the following result.

Theorem 12.2

Let V be an irreducible closed subset of An. Then

C[V ] = OV (V ).

In other words, if g : V → C is regular on V then g is the restriction of some
polynomial map in C[x1, . . . , xn].

(This actually holds even if V is reducible.)

Proof. Clearly OV (V ) ⊇ C[V ], so it suffices to show the reverse inclusion. Let g : V → C
be regular, meaning for any p ∈ V there is a neighborhood Up 3 p such that g = hp/kp
on Up (and kp(q) 6= 0 for each q ∈ Up).

We can replace each Up with a smaller open affine set. Actually, we can even assume
Up is of the form V \ V(Fp) where Fp is some polynomial.

Since the Zariski topology is compact, we can take a finite subcover

U1, . . . , Ut

so that each Ut = V \ V(Ft). On each Ui, we have g = hi/ki, where ki doesn’t vanish on
Ui.

But on Ui ∩ Uj the representations of g must be equal, id est

hi
ki

=
hj
kj

which is enough to imply this equality on all of V , since Ui ∩ Uj is dense in V . (Here
we’ve used the fact that V is irreducible.)

34



Evan Chen (Spring 2015) 12 March 9, 2015

Now look at the ideal
I = (k1, k2, . . . , kt) .

Because of the covering, the ki does not vanish on any point of V . By Hilbert’s
Nullstellensatz this implies

I = C[x1, . . . , xn]/V(I).

Thus we have C[x1, . . . , xn]/V(I) 3 1 =
∑
`jkj . Over V we then identically have that

g = 1 · g =

t∑
j=1

`jkj
hi
ki

=
∑

`jhj ∈ C[V ].

§12.3 Regular functions on quasi-projective varieties

Definition 12.3. Let U ⊆ V be a Zariski-open subset of the quasi-projective variety V .
A function f : U → C is regular at p ∈ U if there exists an open affine set U ′ on which
f is regular at p.

As before f is regular on U if it’s regular at each point of U . The set of such functions
we again denote by OV (U).

Some remarks.

Remark 12.4. OV (U) has the structure of a ring, since it’s a set of functions U → C
and one can check that point-wise sum/product of two functions works. In fact, this ring
even has a copy of C in it (consider constant functions), meaning OV (U) is a C-algebra.

Remark 12.5. If f ∈ OV (U), and W ⊆ U is open. Then the restriction of f to W
happens to be in OV (W ). This induces a natural ring homomorphism

OV (U)→ OV (W ).

Remark 12.6. Suppose f1, f2 are regular functions on U1 ⊆ V1 and U2 ⊆ V2. If f1 = f2

on U1 ∩ U2, then there is a unique function f on U1 ∪ U2 which restricts to fi on Ui, and
f is regular.

You can do this for as many sets are you like (even infinitely many).

More generally, a structure like this is called a sheaf. You can do this very generally:
a variety is a topological space X with a sheaf of functions on it.

One more property (unrelated to sheaves): given a morphism F : V → W of quasi-
projective varieties and an open set U ⊆W , we have a function

OW (U)→ OV (f−1(U))

by f 7→ f ◦ F .

§12.4 Recasting morphism

Finally, one last definition.

Definition 12.7. A amp φ : V →W of quasi-projective varieties is a morphism if for
all p ∈ V , there exists a neighborhood U 3 p and a neighborhood U ′ 3 φ(p) which are
both affine such that

• φ(U) ⊆ U ′, and

• φ restricted to U agrees with an affine map.

This is finally a totally coordinate-free definition. And now we can start giving tons of
examples. . .
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§13.1 Veronese Maps

(Pronounced “veh-roh-NAY-zee”.)
The Veronese map is the first example of a “nontrivial” map. Here’s the definition.

Definition 13.1. Consider any positive integers n and d. The dth Veronese mapping
of CPn, denoted

Pn νd−→ Pm

is given by

[x0 : x1 : · · · : xn] 7→
[
xd0 : xd−1

0 x1 : . . .
]

where the right-hand side consists of all the monomials of degree d;2 hence m =
(
d+n
d

)
− 1

(the −1 comes from the fact that Pm has m+ 1 coordinates.)

Example 13.2

The map ν2 : CP1 → CP2 is given by

[s : t] 7→ [s2 : st : t2]

and has image given by V(xz − y2); in fact this is an isomorphism.

Example 13.3

The map ν3 : CP1 → CP3 is given by

[s : t] 7→ [s3 : s2t : st2 : t3].

This is the “twisted cubic” (or projective closure thereof), and an isomorphism onto
its image. Writing [x : y : z : w] for the coordinates of CP3 the ideal is

(xw − yz, z2 − yw, y2 − xz).

In fact, the Veronese maps are always isomorphisms onto the images! In other
words,

Theorem 13.4

A Veronese map νd : CPn → CPm is an embedding. In other words, the image of νd
is a closed subvariety of CPm and νd gives an isomorphism from CPn to CPm.

Proof. Let W be the image of νd in CPm. Then one can verify that W is cut out by the
ideal {

zI − zJ − zKzL | I, J,K,L ∈ {0, 1, . . . }n+1, I + J = K + L
}

where if I = (i0, i1, . . . , in) (of course i0 + i1 + · · ·+ in = d), then zI is the coordinate of
CPm corresponding to xi00 . . . x

in
n .

2Stars and bars, anyone?
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Now we wish to exhibit an inverse

CPn Φd←−W.

First, we cover W by the following n+ 1 open affines For 0 ≤ i ≤ n we consider the open
affine Wi ⊆W where the coordinate indexed by xdi is not zero. (This is a much smaller
portion of the m+ 1 covers from the standard cover; this is fine because W is images of
points in CPn and so any point in the image had better have a nonzero monomial.)

Now we define CPn Φd←−Wi ⊆W on these charts by sending[
xd−1
i x0 : xd−1

i x1 : . . . . : xd−1
i xn

]
←[
[
xd0 : · · · : xdn

]
which you should think of as just “projection” onto the n coordinates specified; upon
reducing this of course equals [x0 : x1 : · · · : xn], but we write the form above to emphasize
that this is in fact a map.

This is well defined as a map on Wi since xd−1
i xi = xdi 6= 0. Also, one can check that

for any Ui and Wj , since it’s trivial to check that[
xd−1
i x0 : xd−1

i x1 : . . . . : xd−1
i xn

]
=
[
xd−1
j x0 : xd−1

j x1 : . . . . : xd−1
j xn

]
provided xi, xj 6= 0.

Finally, we can see that this map is clearly an inverse by the way we contrived it
(suffices to check it for the standard charts Ui of CPn and the charts Wi of W ).

§13.2 Ring of regular functions on projective spaces

Definition 13.5. For a quasi-projective variety V , by “ring of regular functions on V ”
we just mean OV (V ).

Let V be an affine quasi-projective variety. We already showed last time that OV (V ) =
C[V ] in this case. Today we will want to compute OV (V ) for V a projective variety. On
the homework, we checked that for V = CPn, we have OV (V ) consists of only constant
functions. We will show that this holds more generally.

Theorem 13.6

Let V be an irreducible projective variety. Then OV (V ) = C.

Proof. By hypothesis, V is Zariski closed in CPn. Suppose φ is regular on V , so we can
take the standard charts Ui of CPn and notice that Ui ∩ V is Zariski closed in An. Hence⋃n
i=0 Ui ∩ V covers V .
Evidently for each i we now have

φ|UI∩V ∈ OUi∩V (Ui ∩ V ) = C[Ui ∩ V ]

since Ui ∩ V is affine, so the restriction of Φ to Ui ∩ V can be thought of as

Fi ∈ C[x0, . . . , xi−1, xi+1, . . . xn.

Let F̃i is the homogenization of Fi, and consider

F ′i
def
=

F̃i

xdi
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where d = degFi. For example, if F0 = x2
1 + x3

2x1 then F̃0 = x2
0x

2
1 + x1x

3
2 and F ′0 =(

x1
x0

)2
+
x32x1
x40

. Consequently, F agrees with F ′i on the chart Ui, even under scaling. Hence

we have Φ = F ′0 = F ′1 = . . . .
By adjusting, we may put

φ =
G0

xN0
= · · · = Gn

xNn

where Gi is some multiple of F ′i (the point is to make the denominators all the same
degree).

We claim that φ satisfies a polynomial equation now. Consider any polynomial g ∈ C[V ],
(where C[V ] we mean C[x0, . . . , xn] modded out by the homogeneous ideal generated by
I(V )). Assuming deg g ≥ nN + 2015, we have φ · g ∈ C[V ], because each term in φ · g
must be divisible by some xNi .
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§14.1 More on Veronese Maps

Note to self: ν2 : CP1 → CP2 and ν3 : CP1 → CP3 are good “example maps”. The
example ν2 can be written as

[s : t] 7→
[
s2 : st : t2

]
(or any permutation) which has image V(xz − y2). As for ν3, given by

[s : t] 7→
[
s3 : s2t : st2 : t3

]
,

the image is V(yz − xw, y2 − xz,wy − z2) (here the coordinates in CP3 are x, y, z, w in
that order).

In general, a Veronese map νd : CPn → CPm has some image cut out by polynomials
zIzJ = zKzL and is an embedding (i.e. CPn is isomorphic to its image in CPm).

Definition 14.1. In the case n = 1, the image of CP1 νd−→ CPd is called the rational
normal curve of degree d.

In the special case above the set of vanishing guys can be thought of as the determinants
of 2× 2 minors of the matrix(

z0,d z1,d−1 . . . zd−1,1

z1,d−1 z2,d−2 . . . zd,0

)
.

Varieties cut out by such minors are called determinental varieties.

§14.2 Functions

We saw that if V is an irreducible projective variety, then OV (V ) = C.
From this we get the following corollary.

Corollary 14.2

If V is an irreducible projective variety which is isomorphic to an affine variety, then
V consists of a single point.

Proof. One one hand, OV (V ) = C. On the other hand, OV (V ) = C[V ]. From this we
deduce the conclusion.
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§15.1 Review of Projective Closures

Last time we talked about the projective closure of a variety. Given V ⊆ An, we embedded
in Ṽ ⊆ CPn by embedding V in CPn in a chart U0 and taking the closure of the image.
We proved the theorem that if V = V(I) then Ṽ = V(Ĩ), where Ĩ is the homogenization
of I.

Proposition 15.1

Ṽ ∩ U0 is still canonically isomorphic to V .

Certainly V ⊆ Ṽ ∩ U0. Now suppose p ∈ Ṽ ∩ U0 is a projective point, meaning that for
every f ∈ I we have

f̃ (1, x1, . . . , xn) = 0.

De-homogenizing, this implies f(x1, . . . , xn) = 0 for each f , as desired.
Here’s another question: how do we compute Ĩ? Let I = (f1, . . . , fr) and J =

(f̃1, . . . , f̃n). We’ve already seen that Ĩ 6= J in general. However, here’s a situation where
it works.

Theorem 15.2

Let I = (f1, . . . , fr) and J = (f̃1, . . . , f̃n). Assume V = V(I) is nonempty. If V(J) is
irreducible, then it equals Ṽ .

This is a sort of analog to the homework problem where we showed that if an affine
variety V is irreducible, so is the projective closure Ṽ .

The canonical example is that if I = (y−x2, z−x3) (twisted cubic), its homogenization
contains a line at infinity not visible in U0. This motivates our proof.

Proof. Let W = V(J). We will show that if W is not Ṽ , then it is reducible.
We claim that

W = Ṽ ∪ (W \ U0) .

This is not difficult; moreover since U0 is Zariski open, W \U0 = W ∩ (CPn \U0), so this
is in fact a variety. By irreducibility of W , either

W = Ṽ

and we are done, or
W = W \ U0 =⇒ W ∩ U0 = ∅

which implies V is empty.

Finally, let’s recall the following homework problem.

Proposition 15.3

If V and W are isomorphic affine varieties, then Ṽ ∼= W̃ .
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Our hope is that a map f : V → W can be extended to a map f̃ : Ṽ → W̃ .
Unfortunately, this is not true. Take a map

V(y − x3)→ A1 (x, x3) 7→ x.

We would have to extend this to a map

V(yz2 − x3) 7→ CP1 [x : y : z] 7→ [x : z].

(You can check that (yz2−x3) is prime.) Unfortunately, on the chart y = 1 this attempts
to be an isomorphism V(z2 − x3)→ CP1 which is not defined at (0 : 1 : 0). This is the
counterexample from the very beginning of the course.

In fact, even the x-projection A2 → A1 works. This just shows in general that projective
closure is not functorial.

§15.2 Enumerative Geometry

We work now exclusively in projective space.
Let’s start with the simplest question.

Question 15.4. How many lines in the plane CP2 are there through two points?

As “we learned in kindergarten”, the answer is 1. Let’s work out the details briefly, and
then generalize to harder questions from there. A line in CP2 corresponds to a vanishing
set

V(α0x0 + α1x1 + α2x2) ⊆ CP2

for some constants α0, α1, α2. Meanwhile we can consider two points

p1 = [a0 : a1 : a2]

p2 = [b0 : b1 : b2]

So we just want

0 = α0a0 + α1a1 + α2a2

0 = α0b0 + α1b1 + α2b2.

This is just a standard linear algebra problem. You get up to scaling exactly one solution
except in some degenerate cases; this works as long as p1 6= p2.

Indeed, the space of all lines in CP2 as above is itself a space: it corresponds exactly
to a point in CP2. That is, to the line α0x0 + α1x1 + α2x2 we can associate the point
[α0 : α1 : α2]. Then the condition “passes through p1” corresponds to a line. It’s all
duality, you see. . .

We now move to considering conics. A conic is given by

V(α0x
2
0 + α1x0x1 + α2x0x2 + α3x

2
1 + α4x1x2 + α5x

2
2).

So the parameter space is CP5. Thus in exactly the same way, five general points
determine a conic.
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§16.1 Glimpses of Enumerative Geometry

Last time we showed that there is one conic through five points in general position.
You can ask marginally more interesting questions, like

How many degenerate conics pass through four points p1, p2, p3, p4?

The set of degenerate conics D is a codimension one space in CP5. So instead of

5⋂
i=1

Vpi

being a point like last time, we have

D ∩
4⋂
i=1

Vpi

which is D intersect a line. For dimension reasons we certainly expect it to be finite, but
it’s not at all clear what the cardinality should be.

Unfortunately, the particular problem for conics is trivial just because a degenerate
conic consists of two lines.

Proposition 16.1

There are exactly three degenerate conics through four points in general position.

Proof. A degenerate conic is two lines, so we’re just pairing off four points into two lines.
There are 1

2

(
4
2

)
= 3 ways to do this.

But very hard problems if we go to higher dimension curves: given a degree d curve in
CP2, we can consider the number of singular curves passing through

(
d+2

2

)
− 1 points in

general position, or even the number of curves with k singular points. The varieties in
the parameter space of these singular d-curves is called a Severi variety.

The first nontrivial such question is the following:

How many singular cubics in CP2 pass through eight points in general position?

The general problem is very, very hard.
In general, given a k-dimensional Zariski closed set, we define the degree of V is the

number of points in the intersection of V with an (N − k)-dimensional linear space. So
all the above can be rephrased as finding the degree of the Severi varieties.

Remark 16.2. It turns out that that the image of νd : CPn → CPm is in fact degree
d. For example, the twisted cubic (the image of ν3 : CP1 → CP3) has degree 3 (since a
plane tends to hit it at three points) and the image of the parabola is (predictably) 2.

§16.2 Segre Map

This is another classical example of a projective embedding. The Segre map (pronounced
SEG-ray) is a map of sets

sn,m : CPn × CPm ↪→ CPN
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by
[x0, . . . , xn] , [y0, . . . , ym] 7→ [x0y0 : x0y1 : . . . xnym] .

Here N = (n+ 1)(m+ 1)− 1. Again, we’ll let zij denote the coordinate xiyj .
(This is a map of sets because we haven’t put a variety structure on CPn × CPm. We

will later.)
Let’s focus specifically on the n = m = 1 case. It’s cut out by

CP1 × CP1 ↪→ CP3

by
[u : v], [s, t] 7→ [us : ut : vs : vt].

Here are some properties of this map.

• We’re going to find out in a moment that this is an embedding, so we expect the
image S ' CP1 → CP1 to be a two-dimensional surface.

It is in fact true that a codimension one affine variety is in fact cut out by single
equation, id est is of the form V(f). And you can see the equation pretty readily:

S = V (z00z11 − z01z10) .

• If we consider a line in the domain, then its image is a plane. For example, if we
fix a c we get

[c : 1] , [s : t] 7→ [cs : ct : s : t] . =
[
c
s

t
: c :

s

t
: 1
]
.

As Evan o’Dorney remarks: the image is cut out by the equations z00 = cz10 and
z01 = cz11; hence the image is the intersection of two planes, id est a line. Thus
the image of a line is actually a line.

This should be surprising, being isomorphic to CP1 is way different than actually
being a straight line!

Even trickier, if we let C vary we find that S is covered by lines. And similarly, S
is covered by lines going in the other direction.

• Finally, if you interpret CP1 as a circle (ignoring the fact that C has dimension
one. . . ) then CP1 × CP1 looks like a torus.
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§17.1 Segre maps continued

Denote by Σm,n the image of the Segre map

CPn → CPm
sn,m−−−→ CP(m+1)(n+1)−1.

Last time we saw that Σ1,1 is a quadric hypersurface in CP3. We now show (in the
notation of last time) the following proposition.

Proposition 17.1

We have
Σ1,1 = V(z00z11 − z01z10).

as subsets of CP3.

Proof. Easy but annoying. Just an algebra exercise to show that ab = cd if and only if
a = wx, b = yz, c = xy, d = wz for some w, x, y, z. (For the nontrivial direction you
casework on coordinates being zero.)

You can picture (the real part of) Σ1,1 as follows:

Take two metal circle rings, hold one directly above the other, and tie strings
between corresponding points on the circle. Twist a little.

§17.2 Topology of CPm × CPn

In this way, we have a map of sets

CPm × CPn � Σm,n ⊆ CP(m+1)(n+1)−1.

Thus

Definition 17.2. We endow CPn × CPm with the structure of a projective variety
through the Segre map Σn,m.

Remark 17.3. A second way to define this is to consider functions on CP1 × CP1 as
bihomogeneous polynomials: given pairs [u : v] and [x : y] of points we wish to
obtain polynomials which are homogeneous in each pair, say

u2y + 2uvx− uvy.

Remark 17.4. Asking what the Zariski topology of a space is equivalent to asking for
the closed sets, id est asking for its functions.

§17.3 Projection

We can project from Σ1,1 onto its coordinates as follows.

[a00 : a01 : a10 : a11]

[a00 : a10] = [a01 : a11]
��

π1

[a10 : a11] = [a00 : a01]

π
2

--

according to which one doesn’t give a bunch of zeros.
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§17.4 General Equations Cutting Out Σn,m

So this concludes our examination of Σ1,1 in great detail. The general case is exactly the
same: consider

CPn × CPm
sn,m−−−→ CPN .

Theorem 17.5

As a set, Σn,m = V(I), where I is the ideal generated by the 2 × 2 minors of the
matrix  z00 . . . z0n

...
. . .

...
zm0 . . . zmn

 .

Proof. Essentially the same as the proof for Σ1,1.
Let’s write out the details for once. Obviously V(I) ⊆ Σm,n. Take a ∈ V(I). Let

apq 6= 0 be a nonzero entry in a point

a =

 a00 . . . a0q . . . a0m

ap0 . . . apq . . . aqm
an0 . . . anq . . . anm

 ∈ V(I)

and WLOG apq = 1. (Here we’re writing the points in matrix form for convenience). Now
let P ⊆ CPn be the point corresponding to the column containing apq and Q ⊆ CPm the
point corresponding to the row containing apq. We claim Σm,n(P,Q) = a. Compute

Σm,n(P,Q) =

 a0q
...
anq

 · ( ap0 . . . apm
)
.

Hence the (i, j)th coordinate is

aiqapj
V(I)
= aijapq = aij

Thus Σm,n(P,Q) = a as desired.
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We now know that Σn,m is a projective variety.
Finally, we verify that

Proposition 18.1

As sets, Sm,n is a bijection between CPn × CPm.

Proof. All we have to do is check that it’s injective, which is obvious.

§18.1 Grassmanians

Definition 18.2. The Grassmanian Gr(k, n) as a set is the set of k-planes in Cn
through the origin.. (Variety structure to be given later.)

Example 18.3 (Trivial Grassmanians)

Gr(n, n) has exactly one element; there is only one n-plane in Cn at all! Similarly,
Gr(0, n) consists of the points passing through the origin of Cn; hence Gr(0, n) is
also isomorphic to a point.

It is true that

Proposition 18.4

Gr(k, n) ' Gr(n− k, n).

Proof. Orthogonal complements. We won’t do much with this in this class, since orthog-
onal thing aren’t too geometric.

Example 18.5 (k = 1 gives Projective Space)

We have
Gr(1, n) ∼= CPn−1

because it consists of the lines in Cn.

Let’s move on to more Grassmanians. Since Gr(2, 3) ' Gr(1, 3), the next simplest
thing we can think of is Gr(2, 4).

Remark 18.6. (Evan o’Dorney): Because we’re in the complex numbers, the line
orthogonal to a plane can in fact lie in the plane. “You can think about that.”

Example 18.7

Consider Gr(2, 4). It is the space of 2-planes in CP4. We can mod out by scaling
against CP4, since the planes are “nice”.

So in addition the description of planes in CP4, we can imagine Gr(2, 4) as the set
of lines in CP3; when thought of this way we write

G(1, 3).
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In general, for n, k ≥ 1 we can put

Gr(n, k) ' G(n− 1, k − 1)

by the same interpretation above.
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Today we want to construct Gr(k, n) and consider it as an algebraic variety.

§19.1 Representation of Grassmanians as Matrices

Interpret Gr(2, 4) as the set of 2-planes. Any basis can represent a 2-plane, so we can
think of elements of Gr(2, 4) as pairs of linearly independent vectors in C4. Thus we can
write it as (

a1 a2 a3 a4

b1 b2 b3 b4

)
.

Of course, each plane has many names. So we want to mod out by GLk(C), the possible
automorphisms of the plane: thus we can think of

Gr(2, 4) ∼= {2× 4 matrices of full rank} /action of GLk(C).

Thus in general, we may set

Gr(k, n) = {k × n matrices of full rank} /GLk(C).

§19.2 Dimension of the Grassmanian

Proposition 19.1

The dimension of Gr(k, n) is k(n− k).

Proof. Since the set of full rank k× n matrices has dimension kn, while dim GLk(C) has
dimension k2, the dimension is

kn− k2 = k(n− k).

Note that this matches the duality Gr(n− k, n) ∼= Gr(k, n).

§19.3 Embedding Grassmanian into Projective Space

We can embed a Grassmanian

Gr(n, k) ↪→ CP(nk)−1

as follows  a11 . . . a1n
...

. . .
...

ak1 . . . akn

 7→ [. . . ,∆i1,...,ik , . . . ] .

We need to check this is well-defined on the quotient; that is for T ∈ GLk(C) and M
a k × n, we want M and TM to get sent to the same point. But in fact the T just
multiplies all the coordinates by detT for linear algebra reasons.

This map is called the Plücker embedding. It happens to be injective, though we
won’t prove it.
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§19.4 Grassmanian is a Variety

Now we want to show that the image is a variety. We could write out the equations
which cut it out, but this is very complicated. Instead, it turns out we can invoke the
following result.

Theorem 19.2 (Chow’s Theorem)

Every compact complex submanifold of CPn is a projective variety. Moreover,
meromorphic functions between such submanifolds are in fact morphisms of varieties.

We won’t show this is compact either. . . but the point is that the right picture is that
it’s a compact submanifold.

Moduli spaces (beyond the scope of this class) provide a third way of not having to
write out polynomials.
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§20.1 Grassmanian is a Complex Manifold

We have our usual setup
Gr(k, n) ↪→ CPn.

We’ll demonstrate that Gr(k, n) has a chart U by

∆i1,...,ik 6= 0.

Suppose Λ ∈ Gr(k, n) satisfies this property, meaning its first k columns of the associated
matrix M form an invertible matrix G. Then

G−1M =

 1 . . . 0 a′1,k+1 . . . a1,n

...
. . .

...
...

. . .
...

0 . . . 1 a′k,k+1 . . . ak,n

 .

Hence every element of U has a canonical representative given by the last n− k columns.
Thus U ⊆ CPN is isomorphic to Ck(n−k).

§20.2 Degree of a Variety

Definition 20.1. Let V ⊆ CPn be a projective subvariety. Then the degree of V is
the maximum (finite) number of intersect points with a linear subspace (of the correct
dimension).

The parenthetical remark is just that we expect a dimension k subvariety of CPn to
intersect a dimension n− k subvariety in a nonzero but finitely many points.

Adult algebraic geometers use multiplicity counting rather than “maximum finite
number”.

Theorem 20.2

Let F be an irreducible homogeneous polynomial of degree d. Then V(F ) ⊆ CPn
has degree d.

Proof. Straightforward. Polynomial bash to reduce it to the fact that a general degree d
polynomial in one variable has exactly d roots.

Another remark is made about schemes keeping track of multiplicity.

§20.3 Degree is not preserved under isomorphism!

Astonishingly, degree is not preserved! Just consider

ν2 : CP1 → CP2

which maps a line to a “parabola”. Now CP1 has degree one while CP2 has degree two!
More generally,

νd : CP1 → CPd

maps degree one varieties to degree d varieties. (Proof next time.)
We do have a little preservation.
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Proposition 20.3

Degrees of varieties are invariant under automorphisms of CPn.

Proof. Linear subspaces get sent to linear subspaces under automorphisms of CPn (since
these are just linear transformations by definition).
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Last time we defined the degree, which is not intrinsic to the variety and rather reflects
how a variety sits inside CPn. In particular, we saw that if V ⊆ CPn is an (irreducible
reduced) hypersurface, then deg V is the degree of the associated polynomial.

§21.1 Degree of the Veronese Map

We will now show that ν3 : CP1 → CP3, by

[s : t] 7→ [s3 : s2t : st2 : t3].

has degree 3. In other words, we want to count the number of points of intersection of
C ∩H, where C is the twisted cubic (image of ν3) and H is a (dimension two) hyperplane.

Label the coordinates of CP3 by [x : y : z : w]. Let’s take a very convenient plane H
by x = 0 to begin with. Solving, x = s3 = 0 =⇒ s = 0 and hence there’s only a single
point [0 : 0 : 0 : 1]. Hence deg V ≥ 1. But as you might guess, we can probably get more
than that. (In real algebraic geometry, we fortunately have multiplicity and [0 : 0 : 0 : 1]
would somehow get counted three times).

We might try y = 0, but there are only points [1 : 0 : 0 : 0] and [0 : 0 : 0 : 1].
OK, now let’s try x = w. Then we have s3 = t3 and hence s, t cannot be zero. So the

possible values of s : t are the three cube roots of unity, which gives us three points of
intersection.

Show rigorously that ≤ 3 points happen is possible, but not much fun; again multiplicity
takes care of everything if we had it. For our purposes we just note that a hyperplane
amounts to

As3 +Bs2t+ Cst2 +Dt3 = 0

and for any choice of constants A, B, C, D not all zero there are at most three possible
values of s : t. (One has a sense that we are pulling back the plane in CPn into CP1,
where we can bring to bear our single-variable polynomials.)

In any case the obvious generalization holds with the same proof.

Theorem 21.1 (Degree of Veronese Maps)

The image of the Veronese map νd : CP1 → CPd has degree d.

§21.2 Complete Intersections and Degrees

It’s worth nothing that this is a counterexample to a hopeful conjecture: the image C of
ν3 is cut out by three quadrics (degree two surfaces), but 23 6= 3.

Remark 21.2. If we take just two of the quadrics Q1, Q2, cutting out C and then in
fact the intersection Q1 ∩Q2 is C plus a line, which has degree 3 + 1 = 4. This works
about as expected (22 = 4). But something weird happens when we intersect with Q3:
we have Q1 ∩ Q2 ∩ Q3 = C. So intersection of Q3 just threw away the extra line. In
particular, intersecting with Q3 doesn’t even change the dimension.

In fact, C is weird in the sense that it is cut out by three equations cut out a dimension
one surface in CP3. This is in some sense the reason why 23 does not correctly compute
the degree of V .

For nicer situations (like Q1 ∩Q2 above).
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Remark 21.3. V is called a complete intersection if the codimension of V equals
the minimal number of generators in the ideal I(V ).

This gives us our generalization of V(F ).

Theorem 21.4

If V is a complete intersection and F1, . . . , Fr are a minimal set of generators for
I(V ), then

deg V = degF1 . . . degFr.

Proof omitted, but this is just to give some intuition for why these things behave the
way that they do. We also won’t actually use the theorem either, because we still don’t
actually have a rigorous handle on dimension either.

The Veronese curve C is really the first example of a surface which is not a complete
intersection.

§21.3 Curves in Projective Plane

Higher dimensions are difficult, but let us do one thing in CP2.

Theorem 21.5 (Bezout)

If C and D are (distinct irreducible) curves in CP2 of degree c and d, then C ∩D
has at most cd points of intersection, and exactly cd points with multiplicity.

The “irreducible” condition is to avoid infinity by accident: for example, if C = V(y2−x2)
and D = V(y − x).

Higher dimension analogs in fact hold.

Remark 21.6. After “dimension” and “degree”, we can think of something called a
Hilbert function, which is a polynomial encoding both dimension and degree. (This
again depends on embeddings.)

§21.4 How do you tell apart curves?

In some sense, there are two types of ways to study curves: curves as embedded objects,
and curves as isomorphism of classes.

If we have two curves, we might first start by looking at the so-called genus to try
and distinguish them. (Genus makes sense here: one-dimensional complex curves are
two-dimensional surfaces.) If that didn’t work, maybe we would count singularities. But
if it turns out, say, they’re both smooth, then it’s really hard.

One possible way is using the so-called line bundles. Another way is perhaps using
maps.

Remark 21.7. Genus is an example of a moduli space, the analog of a parameter space
for isomorphism classes.

For example, there is only one more isomorphism class for genus zero. For genus one,
we get a moduli space of CP1, which can be handled in some ways. For example, elliptic
curves have a computable j-invariant which in fact determines the isomorphism class
of elliptic curves completely. But in genus two and higher, the situation is just very
complicated. . .
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§22.1 Tangent Space of Affine Spaces

Let V = V(f1, . . . , fn) be a variety and p ∈ V a point. We want to consider the tangent
space to V at the point p, which is the union of all the lines which intersect V with
multiplicity greater than one. This can be defined in one variable, as follows. Without
loss of generality, call p the origin. Since a line through the origin can be parametrized as

` =
{

(tx1, . . . , txn) | t ∈ A1
}

we can substitute this into each of the Fi, and look at Fi(tx1, . . . , txn) for each i. Then
it’s tangent if t is a double root for every i.

Example 22.1

At the origin, the parabola V(y − x2) has tangent space V(y), the x-axis.

The main theorem is the following.

Theorem 22.2

Let V = V(F1, . . . , Fn) and p a point in it. Denote

Gi(~x) = (dFi)p(~x− p)

for each i, where (dFi) is the total derivative. Then TpV = V(G1, . . . , Gn); in
particular TpV is linear.

Moreover, TpV does not depend on the choice of generators.

Remark 22.3. This is especially easy when p = 0, since (dFi)p is just the linear part of
dFi.

Here we want to regard dFi as a formal operation, since the Fi are all polynomials.

Proof. Just use the formal properties of the derivatives to deduce the first part.
Now we just want to show that this doesn’t depend on the choice of generators If F̃1,

. . . , F̃m is another set of generators, then we can put

F̃i =

n∑
j=1

HijFj

for i = 1 . . . ,m. Taking the total derivative at p = 0, and using the product rule gives

(dF̃i)p =
n∑
j=1

Hij(p)(dFj)p + Fj(p)(dHij)p =
n∑
j=1

Hij(p)(dFj)p.

Thus V({F̃i}) ⊃ V({Fi}); reverse inclusion follows by symmetry.
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Example 22.4

Let us find the tangent space to the parabola V(y − x2) at a point (a, a2). Set
u = x− a and v = y − a2, so the parabola becomes

y − x2 = (v + a2)− (u+ a)2 = v − u2 − 2au.

Taking the linear part to get

V(v − 2au) = V(y − a2 − 2a(x− a)) = V(y − 2ax+ a2).

§22.2 Tangent Spaces in Projective Space

Let V ⊆ CPn be a projective variety. One could take an affine chart, compute the tangent
space of that chart, and then take the closure.

Alternatively, take the affine cone Ṽ ∈ An+1. Take the tangent space of p of Ṽ . It is
some plane passing through the origin, and thus gives rise to a tangent space in CPn by
reversing the cone operation.

§22.3 Tangent Spaces Determine Singular Points

It turns out to be true that

Theorem 22.5

If V is a variety, then
dimTpV ≥ dimV.

Thus for p ∈ V , if dimTpV = dimV then we say p is smooth; otherwise p is singular.
Thus intuitively the dimension of the tangent space usually equals dimV and the singular
points are the “special” points.
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We’re doing an abridged version of Chapter 8 in Smith. Highlights include Riemann-Roch.

§23.1 Vector Bundles and Line Bundles

Definition 23.1. A vector bundle of rank n consists of the following.

1. Varieties E (the total space) and X (the base space),

2. A projection map π : E → X, and

3. An open cover Ui of X such that

π−1(Ui) ' Ui × Cn.

It is required that the diagram

π−1(Ui) �
φi - Ui × Cn

Ui
� pπ -

commutes; the φi is called a local trivialization. Moreover, we require that the
isomorphisms are linearly compatible, in the sense that on Ui ∩ Uj , the map

(Ui ∩ Uj)× Cn
φj◦φ−1

i−−−−→ (Ui ∩ Uj)× Cn

by
(x, v) 7→ (x, φj ◦ φ−1

i (v))

is a linear map of Cn for each fixed x.
We call it a line bundle if it has rank 1.

Line bundles are useful since (a) we have tangent bundles to curves, and (b) they
describe maps to projective space (?). So you can understand curves well if you understand
the line bundles well.

By abuse of notation, we will abbreviate the vector bundle to E
π−→ X or E.

Picture: you have a variety X, and a copy of Cn floating above each point of p ∈ X.
We denote this copy by Ep, and treat it as a vector space.

§23.2 Sections

Definition 23.2. If we have a diagram

E
π−→ X

σ−→ E

which composes to the identity, then σ is called a global section.

Picture: σ takes each point p ∈ X to a point σ(p) ∈ Ep.

Example 23.3

The zero section is the section sending each p ∈ X to the origin of Ep.
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Local versions:

Definition 23.4. Let E
π−→ X is a vector bundle and U ⊆ X is open, then a section of

E over U is a morphism σ such that

π−1(U)
π−→ U

σ−→ π−1(U)

is the identity. We denote this by E(U).

Picture: σ takes each point p ∈ U to a point σ(p) ∈ Ep.
This gives us a sheaf E . . . and the set of global sections is exactly E(X). This is also

denoted H0(X, E) or Γ(X, E).
Observe that H0(X, E) is an OX(X) module (more generally I guess, E(U) is OX(U)

module). Given two sections σ1 and σ2, the sum is σ1 + σ2. And given a regular function
f ∈ OX(U), we can take f · σ to literally be f(p) · σ(p).

§23.3 The Trivial Bundle

Example 23.5 (Trivial Bundle)

Given any integer n, we literally take E = X × Cn

X × Cn π−→ X

and the projection is (p, v) 7→ p. This is called the trivial bundle.

For this we just have to take the open cover {X}. There’s no compatibility condition to
check, since there’s only one isomorphism.

When n = 1, we get the trivial line bundle

E = X × C π−→ X.

Note that a section σ : U → U × C amounts to specifying p 7→ (p, σ(p)). In other words,
a section of the trivial line bundle amounts to a regular function. Therefore it follows
that

E ' OX
quite literally. In fact,

E(U) ' OX(U).

Thus, even the trivial bundle is important!

§23.4 The Tautological Bundle

The tautological line bundle B is the line bundle on CPn defined as follows. We
consider CPn as the set of lines through the origin of An+1. Then for each p ∈ CPn, we
want Bp to be the line corresponding to p.

More specifically, set

B = {(x, `) | x ∈ `} ⊆ Cn+1 × CPn

and you can check this is an algebraic variety. Then we get a projection map onto the
first coordinate

B
π−→ CPn.
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(And you can do this with Grassmanians.)
Let’s work out the details of this as a cover with open sets. For simplicity, work with

n = 1. Take the usual cover of CP1 with affine charts U0, U1. So we want to specify the
isomorphism

π−1(U0)→ C× U0.

Here U0 is the set of lines in C2 through the origin other than the y-axis. So π−1(U0)
consists of pairs (p, `), where p ∈ ` and ` is not the y-axis. Then the projection is just

(p, `) 7→ (x-coord of p, `) .

§23.5 Tangent Bundle

There is an obvious map TX → X by mapping TpX 7→ p. In particular, if X is a curve,
then TX is a line bundle. (Even in higher dimensional space! Tangent spaces of curves in
CP100 still are lines. In fact, the tangent space is intrinsic.)

Given E → X a vector bundle, we can construct a dual bundle E∨ → X, or ΛrE → X,
say. We often consider T∨X the contangent bundle (of rank n), and we can consider
the canonical line bundle ΛnT∨X .

Note that if X was a curve, n = 1 and we’re already good.
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§24 April 24, 2015

Last time we defined vector bundles and focused on line bundles. In particular, we had
the trivial line bundle and the tautological line bundle.

§24.1 More on the Tautological Bundle

Recall that the tautological bundle is defined as

B = {(X, `) | x ∈ `} ⊆ Cn+1 × CPn.

Then a global section σ : CPn → B amounts to picking a point on each line of CP1. In
particular, we can interpret σ as a map CPn → Cn+1, and we can think of it as

(σ0(p), . . . , σn(p))

where σ0, . . . , σn : CPn → C. But that means each σi is constant! (Projective space has
a bland ring of functions. . . ) Thus σ is constant, i.e. there is a fixed p ∈ Cn+1 such that

σ(`) = (p, `) ∀`.

For this to be in B, we require p = 0. Thus the only global section σ is the zero section.

§24.2 Dual Bundle

We now take the dual bundle to B, called H, the hyperplane bundle. We define it as

H = {(f, `) | f linear functional on `} ⊆ (Cn+1)∨ × CPn.

(The fact you can do this embedding is not obvious.) Taking e0, . . . , en as the C-basis for
Cn+1, we have that (Cn+1)∨ has basis e∨i . Thus the vector space of global sections of H
is an n+ 1 dimensional space. We denote the sheaf of sections of H by

OCPn(1).

§24.3 Why Line Bundles?

Suppose we want to map X → CP1. Take a line bundle L
π−→ X and pick two sections

s0, s1 ∈ Γ(X,L). Then one map we could consider is

X → CP1 by p 7→ [s0(p) : s1(p)].

To check this is well-defined, we need that it’s independent of the choice of trivialization
(the isomorphism), and the s0 and s1 don’t both vanish at the same point. For the second
point, one has to just pick s0 and s1 carefully.

The first point works in general. Specifically, a trivialization around U 3 p is an
isomorphism

U
si−→ π−1(U) ' U × C

by

p
si−→ si(p)

φ−→ (p, s̃i(p)).

So the map “should” be written as p 7→ [s̃0(p) : s̃1(p)], and we need that this is independent
of the choice of φ and U .

This follows from the compatibility condition on the definition of a line bundle. Specifi-
cally, suppose we have U ′, φ′; then on U ∩ U ′ we have that

φ ◦ φ−1 = λ linear.

Thus s̃i(x) = λ(x) · s̃′i(x).
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Example 24.1

Let X = CPn, and take the bundle H → CPn. Let’s pick s0 = e∨0 and s1 = e∨1 . This
generates a map

p 7→
[
e∨0 (p) : e∨1 (p)

]
that is

[x0 : · · · : xn] 7→ [x0 : x1] .

Unfortunately, this breaks on the locus x0 = x1 = 0.

Example 24.2

If we do the same thing with CPn → CPn and the n+ 1 sections e∨0 , . . . , e∨n then we
get the identity map.

Example 24.3

If we do the same thing with CPn → CPn−1 and the n sections e∨0 , . . . , e∨n−1 then
we get the map

[x0 : x1 : · · · : xn] 7→ [x0 : · · · : xn−1] .

So this is defined on U0∪· · ·∪Un−1 which is CPn minus the single point [0 : · · · : 0 : 1].
So this is projection from a point.

So we’re seeing that as we add more and more sections, the maps becomes “more and
more defined”. Also, observe that n = 1 linearly independent global sections is nothing
more than an automorphism of CPn.

§24.4 Maps ' Line Bundles

Moral: if we have X and a line bundle with some nonzero sections, we can get a map to
CPn by picking n+ 1 sections. It turns out this goes the other way, too! Given a map

X
f−→ CPn

we take the line bundle H on CPn (the tautological bundle has no nonzero sections, so
it’s unlikely to do any good) and we define the pullback f∗H. This gives

f∗H H

X

?? f
- CPn

??

Then f is the map
p 7→ [s0(p) : · · · : sn(p)]

where si = f∗e∨i .
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§25 April 27, 2015

Today we’re going to do the Riemann-Roch Theorem.

§25.1 Divisors and Degree

Let L → X be a line bundle, and L the sheaf of sections of L. Let s 6= 0 be a global
section. Then s intersects the zero section at some subset of X, and is a divisor of L.

Example 25.1

Let C be an irreducible curve and L→ C a line bundle. (In what follows, all varieties
are irreducible.) Then any divisor associated to L is a finite set of points, since it’s
the intersection of two (dimension one) curves.

In this case we define the degree of L to be the number of points in D for any divisor
D associated to L (counted with multiplicity). This doesn’t depend on the choice of D
(which we won’t prove).

In fact, this also coincides with the degree we already defined as follows. Since we have
a line bundle, we can extract a map from C to projective space; in that case, the degree
corresponds to the image of C in this projective space with a hyperplane (represented by
the section), which literally is (when counted with multiplicity) the degree.

§25.2 Tensor Product of Line Bundles

One last operation (again we’re thinking L as the sheaf of sections rather than the total
space).

Let L1 and L2 be two line bundles, and define a sheaf L1 ⊗ L2 as follows:

(L1 ⊗ L2)(U)
def
= L1(U)⊗ L2(U).

(This is not really a tensor product, but let’s sweep that down. . . ).

§25.3 The Riemann-Roch Theorem

Theorem 25.2 (Riemann-Roch Theorem)

Let C be an (irreducible) curve and L→ C a line bundle with sheaf of sections L.
Then

dim
(
H0(C,L)

)
− dim

(
H0(C,L∨ ⊗ ω)

)
= degL+ (1− g)

where g is the genus of C.

We’re interested in dim(H0(C,L)), since that will tell us the maps from C to projective
space. The second term dim

(
H0(C,L∨ ⊗ ω)

)
is a “correction” term; often we hope its

zero. The term degL is in practice easy to compute.
The genus is a standard property of curves (analogous to dimension). Recall that we’re

over C, so “curves” aren’t actually one-dimensional and it makes sense to to talk about
the genus.
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§25.4 Example: Bundles Over H

Let H be the hyperplane bundle over CP1, so that the global sections of the resulting
sheaf H correspond to the linear functionals. Hence H⊗H has global sections which are
bilinear functions.

Observe that dimH0(CP1,H) = 2, corresponding to the linear functionals. Observe
that dimH0(CP1,H⊗H) = 3, corresponding to the quadratic functionals on CP1. More
generally,

dimH0
(
CP1,H⊗n

)
= n+ 1

with basis xn0 , xn−1
0 x1, . . . , xn1 .

Now, our motivation for studying line bundles in the first place was that line bundles
induced maps into projective space. In particular, we expect that if we pick n+ 1 linearly
independent sections from H⊗n, we should get some map from CP1 into CPn. It doesn’t
really matter which one we pick since they’re all related by an automorphism of CPn, so
we may as well pick xn0 , . . . , x

n
1 and hence in this way we recover

CP1 νn−→ CPn

the Veronese map of degree n. In particular, H⊗n has degree n.
In fact, it turns out that B, H and their tensors are all the line bundles over CP1. (B

and H are duals, so they eat each other. In fact they’re usually denoted O(−1) and
O(1).)

You might see vaguely where this is going. . . we want B⊗−n to have degree −n. And
somehow you want negative degree guys to have no global sections.

§25.5 Canonical Bundle

The canonical bundle ω is the nth exterior power of the cotangent bundle. For curves,
n = 1 and so this is just the cotangent bundle.
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§26 April 29, 2015

Today we’ll try to use Riemann-Roch to classify conics.
First, let’s start by making a list of the line bundles we know.

• On CPn we have the tautological bundle, the hyperplane bundle, and powers of
these.

• On an arbitrary X, we have a canonical bundle.

That’s not a lot, so let’s give more examples of line bundles.

§26.1 Divisors, and their associated sheaves

Let C be a smooth, irreducible projective curve over C. We want to construct sheaves of
sections of line bundles.

Definition 26.1. A divisor D on C is a finite formal sum

D =
∑

mipi

where pi ∈ C, mi ∈ Z. Its degree is
∑
mi.

Definition 26.2. Define the sheaf O(D) by setting

O(D)(U) = {rational functions f = h/g | poles of f at pi have order ≤ mi.} .

Example 26.3

O(0) is just the sheaf of regular functions. Thus O is a generalization of “regular
functions” in which we allow some poles but place restrictions on how bad those
poles can be.

This has the following relation to line bundles: let L be a line bundle and L the sheaf of
sections. Take a nonzero section s ∈ H0(C,L) and let D be the divisor of zeroes of s.
This lets us construct O(D). It turns out that

O(D) ' L

and in particular O(D) doesn’t depend on D, up to isomorphism! (This is not too
surprising, since the degree of each divisor equals to the degree of L.)

We can allow mi to be negative as well; if mi < 0 then the requirement means “f has
a zero of multiplicity ≥ mi”.

Definition 26.4. Abbreviate O(0) to just O.

Next, some observations:

• H0(C,O) = C, since the regular functions on a curve are just the constant functions.
In particular, dimH0(C,O) = C.

• If D is a divisor of degree D < 0, then

dimH0(C,O(D)) = 0.

This follows from a result on compact Riemann surface: complex functions here
cannot have more zeros than poles.
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• If degD > 0, then
degD = degO(D).

Let’s see this in the case that mi > 0 for all i. To see this, pick sections s0, . . . , sn ∈
H0(C,O(D)); this gives a map from C to projective space via

p 7→ [s0(p) : · · · : sn(p)] .

Let’s count the intersections of this image with of C with the hyperplane. If we
just conveniently pick the hyperplane to be xn = 0, then we get exactly degD
intersections (corresponding to zeros of sn); thus degD = degO(D).

§26.2 Genus

We black box the following result:

Theorem 26.5

We have dimH0(C,ω) = g, where g is the genus of C and the left-hand side is the
global sections of the canonical bundle.

Theorem 26.6 (Riemann-Roch Restated)

Let C be an irreducible smooth projective curve, and let K be any divisor of the
global section of ω. Then we have

dimH0(C,O(D))− dimH0(C,O(K −D)) = degD + 1− g.

The previous theorem is the special case D = 0.

§26.3 Applications

Theorem 26.7

Let K be the canonical divisor of a curve C. We have degK = 2g − 2.

Proof. First, we apply Riemann-Roch to the canonical bundle ω on C. Thus

dimH0(C,O(K))− dimH0(CO(K −K)) = deg k + 1− g.

Thus
g − 1 = degK + 1− g

hence
degK = 2g − 2.

Next, we try to classify all curves for genus zero.

Theorem 26.8

The only curve of genus zero is CP1, the Riemann sphere.
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Proof. Clearly we have CP1 the Riemann sphere. Are there others?
Suppose C is such a curve, and let pick p ∈ C; consider O(p). By the Riemann Roch

Theorem we have

dimH0(C,O(p))− dimH0(C,O(K − P )) = 1 + 1− 0.

Also, by our previous result we have degK = −2 Hence O(K − P ) has degree −3, and
as we saw already negative degrees give zero. Hence the above term vanishes and

dimH0(C,O(p)) = 2.

The constant functions contribute one to the degree, but the dimension of two so there
ought to be a nonconstant global section of O(p) somewhere. Thus, choosing two linearly
independent sections of H0(C,O(p)) gives a map

m : C → CP1 by x 7→ [s0(x) : s1(x)].

Let’s pick s0 = 1 and s1 to b some nonconstant section. Thus our map is

x 7→ [1 : s1(x)].

In particular, p 7→ [1 : s1(p)] = [0 : 1] since s1 has a pole at p. But for other points x 6= p
the image of x is not [0 : 1].

In fact, this map is injective onto CP1 (equivalently, s1 is injective). Thus m is an
isomorphism, as desired.

Theorem 26.9

The only curves of genus one are ???

Remark 26.10. It’s instructive to try to apply Riemann Roch on the divisor D = p as
before. This gives

dimH0(C,O(p))− dimH0(C,O(K − p)) = 1 + 1− 1 = 1.

As degK = 0, degK − p = −1 and thus the second term vanishes. Hence we have

dimH0(C,O(p)) = 1.

Since we know about constant sections, it follows these are the only sections of O(p).
This lets us map to CP0. . . which we could do already.

Proof. Use Riemann-Roch on D = np. This gives

dimH0(C,O(np))− dimH0(C,O(K − np)) = n+ 1− 1 = n.

As deg(K − np) < 0, we get in general that

dimH0(C,O(np)) = n.

These sheaves are not unrelated; we have

H0(C,O) ⊆ H0(C,O(p)) ⊆ H0(C,O(2p)) ⊆ . . . .
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Let’s pick basis elements inductively. At H0(C,O(p)) we have a basis element 1. At
H0(C,O(2p)) extend it to basis 1, x. At H0(C,O(3p)) extend it to basis 1, x, y.

Now we use the NUMBER SIX. Consider

H0(C,O(6p)).

We can exhibit seven elements {
1, x3, y2, xy, x2, x, y

}
which are in here by pole counting (for example, since x has pole of order 2 it follows
that x3 has pole of order 6). Moreover, since x3 and y2 both have a pole of order six,
they appear with nonzero coefficient, and we can write

Ay2 +Bxy + Cy = Ex3 + Fx2 +Gx+H

and using a suitable change of variables we can make this into

y′2 = x′(x′ − 1)(x′ − c)

for some constant c.
Finally, we have a map C → CP2. Consider the map C → CP2 given by O(3p), using

the sections 1, x′, y′, that is
q 7→

[
1 : x′(q) : y′(q)

]
.

But since x′, y′ satisfy the above relation, they all live in ELLIPTIC CURVES. That is,
any genus one curve can be embedded as a cubic in CP2.
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