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§1 January 26, 2015

“Despite having taught this course four times, I can never remember the name of this
course. . . I wish they would just call it algebraic number theory.” – Mark Kisin

• Office Hours: Monday at 2PM (SC 234) or by appointment (kisin@math.harvard.edu)

• Homework due Wednesday in class.

• Textbook: Algebraic Theory of Numbers

• Midterm: March 11, in class.

Midterm and final exam questions will either be things literally done in class or on the
homework – “I don’t believe in tricky exams”.

§1.1 Overview

Topics: Unique factorization, Class groups, Unit groups, Local Fields, Adeles.
This will enable to solve the following Diophantine equations:

• (Fermat) If p ≡ 1 (mod 4) is a prime, then p is a sum of two squares. (Converse is
true.)

• (Pell’s Equation) Solving x2 − dy2 = 1 for d squarefree.

§1.2 What is a Number Field?

Definition 1.1. A number field is a field K with characteristic zero (meaning K
contains Q) and K is finite-dimensional when regarded as a Q-vector space.

Example 1.2

K = Q(α) for some α the root of a monic polynomial. (In fact, all examples will be
of this form.) To give a concrete example,

K = Q(
√

2) = Q[x]/(x2 − 2) =
{
a+ b

√
2 | a, b ∈ Q

}
.

Lemma 1.3

If K is a number field and α ∈ K then there exists a monic polynomial f with
rational coefficients such that f(α) = 0.

First Proof. Just kill using the fact that
{

1, α, α2, . . .
}

cannot be linearly independent
in a finite-dimensional space.

Second Proof, via characteristic polynomials. Let L be a field, and V a finite dimensional
L-vector space. Let ϕ : V → v be an L-linear map (which means it’s linear as a L-vector
space). Then we consider the (defined-later) characteristic polynomial

Pϕ(X) ∈ L[X]
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is a monic polynomial of degree dimL V such that

Pϕ(ϕ) ≡ 0.

This is the Cayley-Hamilton Theorem, which we’ll examine in the first homework.
By Pϕ(ϕ) we mean

ϕn + an−1ϕ
n−1 + · · ·+ a0 ∈ EndL(V )

where a0, . . . , an−1 ∈ L, and ϕk means ϕ applied k times.
Now to do the proof, let V = K and L = Q. Define a map α̃ : K → K by x 7→ αx.

Then Pα̃(α̃) : K → K is the map which sends x 7→ x · Pα̃(α) (check this yourself). The
Cayley-Hamilton Theorem tells us this is actually the zero map. This can only occur if
Pα̃(α) = 0.

§1.3 Defining Characteristic Polynomial

Let V be a finite dimensional space over L, and ϕ : V → V an L-linear map. Consider
the L[X]-module

V ⊗L L[X].

If we identify V = Ld, you can consider this as L[X]d. Consider the map

X − ϕ : V ⊗ L[X]→ V ⊗ L[X].

You can think of this as a d× d matrix with entries in L[X].

Definition 1.4. The characteristic polynomial is defined by

Pϕ(X) = det (X − ϕ) .

Remark. Everything we’ve done so far works for a free finitely generated module M
over a ring R.

§1.4 Ring of Integers

Definition 1.5. If K is a number field then the ring of integers OK ⊆ K is the set of
roots of some monic polynomial with integer coefficients.

Example 1.6

Using the rational root theorem, OQ ∼= Z.

Lemma 1.7

Let K be a number field and α ∈ K. The following are equivalent:

• α ∈ OK

• The minimal Q-polynomial of α has integer coefficients.

Proof. Gauss Lemma.

“Ahh, it’s already 2!” A small teaser:

Example 1.8

If K = Q[
√

2] then OK = Z[
√

2]. But if K = Q[
√

5] then OK = Z
[
1+
√
5

2

]
.
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§2 January 28, 2015

Review.
Instructor manually computes the ring of integers for the rings Q(

√
2) and does half

the calculation for Q(
√

5).

§2.1 Ring of integers deserves its name

Also, obligatory following lemma.

Lemma 2.1

OK is actually a subring of K.

We’ll prove this even more generally.

Definition 2.2. Suppose we have a commutative subring A ⊆ R (with identity). An
element α ∈ R is called integral over A if ∃f(x) ∈ A[x] monic which annihilates α.

Proposition 2.3

Given A ⊆ R a commutative subring, the set of integral elements is a subring.

Lemma 2.4

Let A be a ring, and M a finitely-generated A-module. Let α : M → M be an
A-linear map. Then there exists a monic polynomial f(x) ∈ A[x] such that f(α) is
the zero map.

Proof. If M is free over A (meaning M = An), then we can apply the Cayley-Hamilton
Theorem to see the characteristic polynomial of α works.

In general, we have a surjection An �M and we can lift α : M →M to a map as

An -- M

An

α̂

?
-- M

α

?

Then we use Cayley-Hamilton on α̃.

Remark 2.5. The Cayley-Hamilton theorem applies only for maps between finitely
generated free modules. That’s why we need to split into the two cases above, and add
the hypothesis that M is a finitely generated A-module.

Example 2.6

There are easy counterexamples if we drop the condition that M is finitely generated.
For example, let A = Z, and M = Z[x] and take the “multiplication” map x̃ by
g 7→ x · g. Then there is no way to get this map to vanish! One can’t get f(x̃) to be
the zero map.
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Remark 2.7. As a reminder, “finitely generated” is weaker than “free”. For example,
Z/2Z is finitely generated but certainly not free.

Lemma 2.8

If A ⊆ R is a subring and α ∈ R, then the following are equivalent.

• α is integral.

• The ring A[α] generated by α is a finitely generated A-module.

• A[α] is contained in some subring B ⊆ R which is finitely generated.

Proof. First part is standard.
To show the second implies the third, just take B = A[α].
Finally, we will show that if A[α] ⊆ B ⊆ R then α is integral. Consider the map

α̃ : B → B by b 7→ α · b. Hence by our previous lemma we get that f(α̃) is the zero map;
hence f(α) = 0.

Remark 2.9. This proof implies that if A[α] is contained in something finitely generated,
then it is itself finitely generated. It is tempting to try to apply this line of reasoning
directly: certainly submodules of finitely generated modules are themselves finitely
generated, right? Unfortunately, this turns out to be true only given additional conditions
on A: we need it to be Noetherian (whatever that means).

In practice, most structures we deal with will be Noetherian. But in any case the
lemma lets us argue “if A[α] is contained in something finitely generated, then A[α] is
finitely generated, and hence α is integral” in total generality.

Now we can prove the proposition that OK is a ring.

Proof. Let A′ = {α ∈ R : α integral over A}. If α, β ∈ A′ then A[α, β] is finitely gen-
erated over A (by multiplying all the bases together). Now A[α + β] and A[αβ] are
contained in the finitely generated A[α, β]. Thus α+ β and αβ are integral over A.

8



Evan Chen (Spring 2015) 3 January 30, 2015

§3 January 30, 2015

Recall that if A is a subring of a ring R, then the set of integral elements over A is also a
subrbring of R.

§3.1 Corollaries

Corollary 3.1

If A ⊆ B ⊆ C be subrings. If B is integral over A, and C is integral over B then C
is integral over A.

Proof. Let α ∈ C, f(x) ∈ B[x] its monic minimal polynomial over B, and let B′ be the
ring A[b0, . . . , bn−1], where

f(x) = xn + bn−1x
n−1 · · ·+ b0

(here bi ∈ B). Then B′[α] is finitely generated over B′. Moreover, B′ is finitely generated
over A. Hence B′[α] is finitely generated over A, and so is A[α], as needed.

Also, we saw last time that the ring of integers OK is indeed a subring of the field K.
By definition, OK is integral over Z. This leads us to ask if OK is also finitely generated

as a Z-module. In fact it is, but this is not entirely trivial.

Example 3.2 (Integral Rings Over Z Need Not Be Finitely Generated)

Let Q be the algebraic numbers, and let Z ⊆ Q be its ring of integers
Now let’s consider the Q-span of Z, clearly this a subspace of Q. In a moment we

will show it actually equals Q. Hence Z is not finitely generated, since we can show
that Q is infinite dimensional over Q.

§3.2 Algebraic Integers and Algebraic Numbers

Proposition 3.3

The Q-span of the algebraic integers is the algebraic numbers. That is, for any α an
algebraic integer, there exists a positive integer M such that Mα ∈ Z.

Proof. Trivial. Scale so that polynomials become monic.

We can obfuscate the above statement by saying that there’s an isomorphism

Z⊗Z Q→ Q by z ⊗ q 7→ qz.

The above shows that the map is surjective; injectivity is slightly more work.

§3.3 Quadratic Fields

Suppose K/Q is two-dimensional (i.e. K is a quadratic extension). If α ∈ K is irrational,
then Q(α) 6= Q, forcing Q(α) = K. Now the minimal polynomial of α is a quadratic;
hence we can put K = Q(

√
d) for 0 6= d ∈ Q. Simple reductions let us assume d is an

integer and squarefree. Hence every quadratic extension K is of the form Q(
√
d) for

some squarefree integer d.
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Instructor proceeds to compute OK , to arrive at conclusion

OK =

{
Z
[
1+
√
d

2

]
d ≡ 1 (mod 4)

Z[
√
d] d 6≡ 1 (mod 4).
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§4 February 4, 2015

Recall that last week we considered number fields K, for which we had the ring of integers
OK . Hence for α ∈ OK , Z[α] is finitely generated as a Z-module.

Today we will show more strongly that

Proposition 4.1

OK is finitely generated as Z-module. More precisely, if dimQK = n then OK ' Zn.

Primitive Element Theorem meow.

§4.1 The Trace of an Element

Definition 4.2. Let B be a ring (commutative with 1 as usual) and let A ⊆ B be a
subring such that B is a finitely generated and free A-module (meaning B ' An as an
A-module).

For α ∈ B, we consider α̃ : B → B by x 7→ a · x. Then we define the trace
TrB/A(α) ∈ A to be the trace of the matrix associated to α̃. Similarly we define the
norm NB/A(α) ∈ A to be the determinant of the matrix associated to α̃.

We can see that this corresponds to the Vieta-style coefficients of the characteristic
polynomial.

We might have seen this in the context of fields. If L/K is a finite extension of fields
which is Galois, and we take α ∈ L, we may have seen the “sum of conjugates” definition

TrL/K(α) =
∑

σ∈Gal(L/K)

σ(α) ∈ K.

It turns out these definitions coincide; we’ll see this later.

Lemma 4.3

Let K be a number field. If α ∈ OK , then TrK/Q(α) ∈ Z.

(A priori, we would only expect TrK/Q(α) ∈ Q.)

Proof. Let f be the minimal polynomial of α; by Gauss it has integral coefficients. Note
that it is the characteristic polynomial p of α̃ which acts on Q(α). (This is trivial. One
way to see it is by noting that deg f = deg p, and by Cayley-Hamilton, f divides p.)

If K = Q(α) we would be done, but we’re not necessarily so lucky. In general, we have
a tower of fields

Q ⊆ Q(α) ⊆ K.

We can interpret K as a Q(α) vector space. Then α̃ over K as a matrix is just a bunch
of copies of the matrix α̃ over Q(α) (diagonal copies).

§4.2 Trace Pairing

Define a map K ×K → Q by

(x, y) 7→ TrK/Q(xy).

11
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This map is Q-bilinear. By currying, this gives a map

K → HomQ(K,Q) = K∨

by

y 7→ Ψy
def
= (x 7→ TrKQ(xy)) .

Here K∨ is the dual vector space (in the notation of Gaitsgory). Now,

Proposition 4.4

The map y 7→ Ψy is actually an isomorphism K
∼−→ K∨.

Proof. First, we check that the map is injective. It suffices to check that it has nontrivial
kernel: letting y 6= 0, we note that the map for y, Ψy is not the zero map since

Ψy(y
−1) = TrK/Q 1 = [K : Q] 6= 0.

For dimension reasons, any map K → K∨ which is injective must be an isomorphism.

Remark 4.5. This proof would fail if we tried to replace Q with a field of characteristic
p, because in that case [K : Q] may not be zero.

§4.3 Dual Subgroups

Definition 4.6. For any additive subgroup L ⊆ K, define the complementary sub-
group L∨ ⊆ K by

L∨
def
=
{
α ∈ K | TrK/Q(αx) ∈ Z ∀x ∈ L

}
⊆ K.

Question 4.7. Show that if A ⊆ B then A∨ ⊇ B∨.

Example 4.8 (Example of a Complementary Subgroup)

Let e1, . . . , en be a Q-basis of K, and consider the case L = Ze1 + · · ·+ Zen (i.e. the
subgroup generated by the ei’s). Using the trace pairing isomorphism, L∨ viewed as
a subgroup of K∨ is given by

Ze∨1 + · · ·+ Ze∨n

Proof. This is tautology. . .
Let e∨1 , . . . , e

∨
n to be the dual basis (it’s a Q-basis). We have ei ∈ K∨, but we can now

think of each e∨i as an element of K using the isomorphism.
Unwinding the definition, L∨ viewed as a subgroup of K∨ means{

ξ ∈ K∨ | ξ(x) ∈ Z ∀x ∈ L
}
.

Here ξ is the image of α under the definition. Tautologically, the condition on ξ is the
one we gave.
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§4.4 Proving the main theorem

Let’s actually do something now. We showed that TrK/Q(α) ∈ Z for all α ∈ OK .

Question 4.9. Viewing OK as an additive subgroup of K, we have

(OK)∨ ⊇ OK .

(Recall that (OK)∨ ⊆ K is a complementary subgroup.)
Now we claim that OK is finitely generated over Z. Take a Q-basis e1, . . . , en of K.

We can assume e1, . . . , en ∈ OK by scaling the basis appropriately (recall that for any
α ∈ K, nα ∈ OK for some n).

Remark 4.10. I don’t claim that the ei’s generate OK , but at least they are contained
in it.

Hence define L = Z · e1 + · · · + Z · en ⊆ OK . Now we can take the complementary
subgroups, to obtain

(OK)∨ ⊆ L∨.

Hence by the question,
L ⊆ OK ⊆ (OK)∨ ⊆ L∨.

So OK is trapped inside L∨ which is finitely generated, and hence OK is itself finitely
generated.

Example 4.11

Let K = Q(
√
d) and let L = Z[

√
d]. We wish to compute L∨. We can let e1 = 1 and

e2 =
√
d. Then e∨1 = 1

2 and e∨2 = 1
2d
−1/2. (Do some blah computation. We have

√
d ∼

(
0 1
d 0

)
and so some computation gives you that this is the dual basis (i.e. that e∨i (ej) really
is 1 for i = j and 0 otherwise.))

Remark 4.12. One might wonder if the inclusion OK ⊆ (OK)∨ is strict. In fact, it’s a
deeper theorem (which we’ll prove) that OK ( (OK)∨ holds if and only if K = Q.
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§5 February 6, 2015

Last time we showed that if K is a number of a field of rank r, then OK turns out
to be isomorphic to Zr. We used the trace pairing to get an isomorphism from K to
HomQ(K,Q). We also defined the complementary module.

§5.1 Discriminant

Let O∨K be the complementary subgroup of OK . We saw that OK ⊆ O∨K and both are of
rank r. Hence the additive group

O∨K/OK
is a finite abelian group. We define this to be the discriminant of K (up to sign; we’re
about to give a signed definition of discriminant).

Lemma 5.1

Let α1, . . . , αn be a Z-basis of OK . Consider the n × n matrix M whose (i, j)th
entry is TrK/Q(αiαj). Then detM is the discriminant of K, i.e.

detM = ±
[
O∨K : OK

]
.

This should be surprising: it’s not at all clear that the matrix M does not depend on the
choice of basis.

Before we do anything, let’s compute the discriminant of our standard example
Q(
√
d).

Example 5.2 (Discriminant when d 6≡ 1 (mod 4))

If d 6≡ 1 (mod 4), then
OK = Z + Z ·

√
d

and {1,
√
d} is a basis. One can check that Tr(

√
d) = 0, while Tr(1) = 2 and

Tr(d) = 2d, so in this case the discriminant is equal to

det

(
2 0
0 2d

)
= 4d

Example 5.3 (Discriminant when d ≡ 1 (mod 4))

One can check that if d ≡ 1 (mod 4), then OK has Z-basis 1, 1+
√
d

2 .

Since Tr(1) = 2 and Tr(
√
d) = 0, we get in general that Tr(a+ b

√
d) = 2a. So we

may compute the discriminant to be

det

(
2 1
1 1

2(d+ 1)

)
= d.

These will become important later when we study ramified things.

14
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§5.2 Left-Hand Side is Invariant

More generally, suppose we have α1, . . . , αn ∈ K and β1, . . . , βn ∈ K elements (not
necessarily a basis). Denote

α =


α1

α2
...
αn

 and β =


β1
β2
...
βn

 .

Then we can look at the matrix α · βT , and look at the term-wise traces.

Lemma 5.4

If M is a n× n matrix with rational coefficients and α′ = M · α, then

det
(
TrK/Q(α′ · βT )i,j

)
= detM · det

(
TrK/Q(α · βT )i,j

)
Here, again, we’re taking termwise traces.

Proof. The main observation is that TrK/Q(q · x) = qTrK/Q(x) for q ∈ Q and x ∈ K.
Writing out the matrix multiplication, you can get

TrK/Q(α′ · βT )i,j = M · TrK/Q(α · βT )i,j .

At this point, the teacher makes the following remark of which I’m very happy because it
strongly agrees with part of my teaching philosophy.

This is one of those things that if I write out, one of two things will happen:
either I will get confused, or even if that doesn’t happen, anyone who is
already confused will be confused. You should just do the calculation for a
2× 2 matrix and it will be immediately clear why this is true.

Anyways, this completes the proof.

Corollary 5.5

Given α and β as above such that the {αi} and {βi} are Q-bases, then the quantity
det Tr(α · βT )i,j depends only up to sign on the groups

L = Z · α1 + · · ·+ Z · αn
L′ = Z · β1 + · · ·+ Z · βn

Proof. If α′1, . . . , α′n is another Z-basis for L, then α′ = M · α. From the fact that α is a
basis, we obtain that M has integer coefficients. Going the other way, we get that M−1

has integer coefficients. Hence detM and detM−1 = (detM)−1 are both integers, so
they are ±1.

So the cost of switching from {αi} to the {α′i} is just a factor of ±1. The cost for
switching β is also ±1.

During the next corollary:

15
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*cell phone rings*
“It’s my wife!”
*pause*
“I’m explaining the discriminant!’
*resumes writing*

Corollary 5.6

If α1, . . . , αn is a Q-basis, then det Tr(αiαj)i,j depends only on the value of I =
Z · α1 + · · ·+ Zαn (not even up to sign).

Proof. This comes through the proof of the previous lemma.
Note that in the previous proof, if we do the change twice we pick up a factor of

detM for changing one guy and detM for changing the other guy, so in fact the cost is
(detM)2 = 1 – no minus signs.

§5.3 Finishing the Proof

Let’s pause for a moment. We were trying to prove

det Tr (αiαj)i,j = ±[O∨K : OK ].

All of our sublemmas let us show that the left-hand side does not depend on the choice
of basis (here L = OK). Now, let’s prove a next lemma.

Lemma 5.7

Suppose α1, . . . , αn is a Q-basis of K, that L = α1Z⊕ · · · ⊕αnZ as before, and M is
a matrix with integer coefficients with detM 6= 0. Let α′ = M · α and L′ its Z-span.
Then

[L : L′] = ±detM.

We’ll prove this next time for time reasons. Let’s complete the proof.
Now we can finally prove the main theorem. Let α∨1 , . . . , α∨n be the dual basis of

α1, . . . , αn the Z-basis of OK . Then O∨K ⊇ OK , so we may write α = M · α∨ where M is
an integer matrix (can you guess what α∨ is?).

In that case,
det
(
Tr(α ◦ αT )i,j

)
= detM · det

(
Tr(α∨ · αT )i,j

)
but α∨ · αT is the identity for everything by definition, so the determinant is 1. On the
other hand detM = ± |O∨K : OK |.
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§6 February 11, 2015

Now let us prove the lemma from last time.

§6.1 Finishing the Proof of Lemma

We have the following reformulation.

Lemma 6.1

If L ⊆ V is a finitely generated abelian group, which contains a Q-basis for V . Let
M : L → L be linear and suppose detM 6= 0 (meaning M is injective), and set
L′ = M“(L) the image of M .

Then [L : L′] = ±detM .

Sanity checks: The fact that L contains a Q-basis of V means that it’s a free group of
some rank; say L ∼= Zr. The fact that detM 6= 0 means that M is injective, so L′, so L′

also has rank r.
Now we prove the lemma. The idea is that we want to use induction.
Suppose we have a chain of finite abelian groups

L ) L′′ ) L′

where all groups are free Z-modules. Then we can get a commutative diagram of maps

L
∼
M ′′

- L′′

L ⊃ L′

M ∼

?�

∼
M
′

by projecting bases. In that case we have

detM = detM ′ · detM ′′.

Moreover, [L : L′′][L′′ : L′] = [L : L′], and so we have an “inductive step”.
Hence, we only need to consider the case where no such intermediate L′′ exists. In that

case [L : L′] is of prime order. (Indeed, choices of L′′ correspond to nontrivial proper
subgroups of L/L′.) Hence the whole song and dance reduces us to the prime order case;
as we’ll soon see this makes the manipulation much nicer.

Suppose L/L′ ∼= Z/pZ. Choose any basis α1, . . . , αn of L. Then consider the projection
of

L =
⊕

αiZ � L/L′ ∼= Z/pZ.

So some αi, say α1, must have nonzero kernel. Then by fiddling with the αi for i > 2, we
can replace αi with αi− cα1 for some α’s; hence we may assume without loss of generality
that α1 has nonzero image but α2, . . . , αn live in the kernel L′.

Look at p · α1Z + α2Z + · · ·+ αnZ Clearly it’s a subset of L′; then for index reasons it
must equal L′. Thus the matrix is actually

p 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0

0 0 0
. . . 0

0 0 0 . . . 1
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which has determinant p.
There’s also a case to handle where L = L′, but in this case that means M is a bijection,

and hence has an inverse, and again we have Z 3 detM,detM−1 = (detM)−1 and so
detM = ±1.

§6.2 A Second Argument

Let L ⊃ L′ and consider U = L⊗ R/L′ ⊗ R. This gives us a covering map U/L′ → U/L
which has degree [L : L′].

Then, informally speaking, the covering map has a notion of volume via

Vol(U/L′) = [L : L′] Vol(V/L).

Hence detM = [L : L′].

§6.3 Application of the Discriminant

Let DK denote the discriminant of the number field K. Next time we hope to prove the
following.

Proposition 6.2

Let K and L be linearly disjoint number fields over Q. Then

OK · OL ⊆ OK·L ⊆
1

gcd(DK , DL)
OK · OL.

In particular if gcd(DK , DL) = 1 the inclusions are equalities.

Here, recall that K, L live in algebraic closure Q; then K · L is the subfield (in Q)
generated by K and L. We will define “linearly disjoint” later.

Note that the inclusion OK · OL ⊆ OK·L is obvious.

Example 6.3

Let K = Q(
√

5) and L = Q(
√

7). Then OK = Z[1+
√
5

2 ] and OL = Z[
√

7]. Then
DK = 5, DL = 28 and so we conclude

OK·L = Z[
√

7,
1 +
√

5

2
].

Example 6.4

For an example when gcd(DK , DL) 6= 1 and equality fails, we may take K = Q(
√

7)
(hence OK = Z[

√
7], DK = 28) and L = Q(

√
11) (hence OL = Z[

√
11], DL = 44).

And you can check that √
7−
√

11

2
∈ OK·L.
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§7 February 13, 2015

In this lecture we’ll define “linearly disjoint” and then prove the proposition of last time,
namely:

Let K and L be linearly disjoint number fields over Q. Then

OK · OL ⊆ OK·L ⊆
1

gcd(DK , DL)
OK · OL.

In particular if gcd(DK , DL) = 1 the inclusions are equalities.

§7.1 Linearly Disjoint Fields

Let K and L be number fields over Q; hence they live in some algebraic closure Q. Then
we say K and L are linearly disjoint if

[K · L : Q] = [K : Q] [L : Q] .

Here K · L is the smallest field containing both. Equivalently, the projection

K ⊗ L� K · L ⊆ Q

by the map α⊗ β → α · β should be an isomorphism.
Intuitively, this just means the fields should be “as disjoint as impossible”.

Example 7.1

For any quadratic fields K, L which are distinct, we claim the fields K and L are
linearly independent. Indeed, just consider the towers

K · L

K

2

L

2

Q

4

22

The point is that if K 6= L then [KL : L] > 1 =⇒ [KL : L] ≥ 2.

§7.2 Traces are Integers

Proposition 7.2

Let Q ⊆ K ⊆ L be number fields and consider the map TrL/K : L → K. Then
TrL/K (OL) ⊆ OK .

Proof. This is similar to our solution when K = Q. Consider the characteristic polynomial

Pα(X) = det
K

(X − α̃|L)

19
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We will prove more strongly that all coefficients of Pα are in OK .
Let α ∈ OL. Let Pα,K(X) ∈ K[X] be the minimal polynomial. It’s enough to show

Pα,0(X) has coefficients in OK , because then we have a tower

K ⊆ K(α) ⊆ L

so that the characteristic polynomial is a power of Pα,0.
Let Pα,Q be the minimal polynomial over Q. Then Pα,K divides it in the ring K[X].

We know that Pα,Q(X) has integer coefficients (since α is an algebraic integer, from the
first lecture).

All roots of Pα,Q are integral over Z, so all roots of Pα,K are integral over Z. Hence the
coefficients of Pα,K are integral over Z, which means exactly that Pα,K ∈ OK [X].

§7.3 Gauss’s Lemma

A closely related lemma (i.e. with around the same proof) is as follows.

Lemma 7.3 (Gauss’s Lemma for OK)

If g, h ∈ K[X] are monic, g · h ∈ OK [X]. Then g and h are also in OK [X].

Proof. Let L ⊆ K be a splitting field of g · h. If α ∈ L is a root of L, then α is integral
over OK , id est, α is in the integral closure of OK in L. So the coefficients of g are
symmetric sums of such α’s and hence themselves integral over OK .

§7.4 Trace as Sums of Galois Things

Lemma 7.4

Let L/K be a field extension. If K is the algebraic closure of K and α ∈ L then

TrL/K(α) =
∑

σ:L↪→K

σ(α) ∈ K.

Here the sum runs over all maps σ : L→ K which fix K.

A priori we would only expect the sum to live in K.
To elaborate on the summation, we want

L ⊂
σ
- K

K

??
-

If L/K is Galois, then for a fixed embedding τ : L→ K, then all other morphism are of
the form τ ◦ φ where φ ∈ Gal(L/K).

Proof in next lecture.
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§8.1 Loose Ends

Let’s complete the proof of last time. Recall we were trying to prove

Let L/K be a field extension. If K is the algebraic closure of K and α ∈ L
then

TrL/K(α) =
∑

σ:L↪→K

σ(α) ∈ K.

Here the sum runs over all maps σ : L→ K which fix K.

A priori we would only expect the sum to live in K.

Proof. Suppose first L = K(α), and let n = [L : K]. Let

p(X)
def
= det

K
(X − α|L).

We claim this equals ∏
σ:L→K

(X − σα).

In K we see p(X) decomposes as

(x− α1)(x− α2) . . . (x− αn)

where α1, . . . , αn ∈ K are distinct (since we’re in characteristic zero, all irreducible
polynomials are separable). Every map σ is required to send α ∈ L to a given αi ∈ K;
hence at most n embeddings exist. But deg p = n, so they must all work.

For the general case, let α ∈ K \ L, and consider the diagram

L

K(α)
∪

6

⊂ - K

................................

σ

-

K

6
-

We claim there are exactly [L : K(α)] embeddings. This will imply the conclusion,
because then we will get∑

L↪→K

σ(α) = [L : K(α)]
∑

σ0:K(α)↪→K

σ0(α)

and the trace has the same property.
Now just throw the primitive element theorem at it.

Note that by the same proof we obtain
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Corollary 8.1

The norm of α over L/K is

NL/K(α) =
∏

σ:L→K

σ(α).

§8.2 Finishing the proof

Now we will finally finish proving this result from like a week ago.

Let K and L be linearly disjoint number fields over Q. Then

OK · OL ⊆ OK·L ⊆
1

gcd(DK , DL)
OK · OL.

In particular if gcd(DK , DL) = 1 the inclusions are equalities.

We need to define the following generalization of the dual subgroup.

Definition 8.2. For any extension of number fields K ⊆ K ′ and OK submodule L ⊆ K ′,
then

L∨K
def
=
{
α ∈ K ′ | TrL/K(αβ) ∈ OK ∀β ∈ L.

}
.

We saw before just the case where K = Q.

Proposition 8.3

If K, L are linearly disjoint then

(OK ⊗OL)∨K = OK ⊗O∨L = OK · O∨L ⊆ K · L.

Proof. This is carefully unwinding definitions. If α ∈ L, then

det
K

(X − α |K·L) = det
Q

(X − α|L)

just because a Q-basis of L is a K-basis for K · L (we use linear independence here).
Let e1, . . . , es be a Z-basis for OK so

OK =
⊕
i

Zei.

meaning it’s a Q-basis for K. Then

OK ⊗OL =
⊕
OL · e1.

For any β ∈ L,

TrLK/K(α · β) = TrLK/K(
∑
i

eiαiβ)

=
∑

ei TrLK/K(
∑
i

eiαiβ)

=
∑
i

ei TrLK/K(αiβ)

=
∑
i

ei TrL/Q(αiβ)
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Now suppose β ∈ OL. Then

TrLK/K(αβ) ∈ OK ⇐⇒ TrL/Q(αi · β) ∈ Z 1 ≤ i ≤ s.
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§9 February 20, 2015

Didn’t attend class. Here is a very short summary.
Let p be an odd prime and ζp be a primitive pth root of unity. We showed that

Gal (Q(ζp)/Q) ∼= (Z/pZ)∗

is the cyclic group of order p−1, in the canonical way ζp 7→ ζip. In particular, xp−1+ · · ·+1
is irreducible over Q.
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§10 February 23, 2015

Assume the results of the previous lecture. Last time we established the following.
Let p be an odd prime.

“If p is even, the theory is trivial. Left as an exercise.”

Theorem 10.1

Q(ζp)/Q has Galois group (Z/pZ)∗.

§10.1 The ring of integers of the cyclotomic field

Let K = Q(ζp). We continue our investigation of cyclotomic fields by proving that
OK = Z[ζp].

First, an intermediate proposition.

Proposition 10.2

TrK/Q(ζp) = −1 and NK/Q(1− ζp) = p.

Proof. Just use the minimal polynomial. This is an olympiad exercise.

The norm calculation is what Kisin calls a “dinner party problem”, because of the
elementary phrasing and the “one-trick” solution: given a regular p-gon A1A2 . . . Ap in a
unit circle, we have

ApA1 ·ApA2 · · · · ·ApAp−1 = p.

Remark 10.3. This implies that 1− ζp is not a unit in OK ; note that NK/Q(1− ζp) = p
is not a unit and any unit must have norm ±1.

Lemma 10.4

The rational integers contained in OK · (1− ζp) are precisely the multiples of p.

Proof. We can see that p ∈ OK · (1 − ζp) from the above, since 1 − ζkp ∈ OK for every
integer k and we can use the fact that

(1− ζp)OK 3 (1− ζp)
p−1∏
k=2

(
1− ζkp

)
= p.

Hence, pZ is contained inside this set. Now assume some other integer relatively prime
to p is contained in the set. By Bezout’s Lemma, we force 1 ∈ (1 − ζp)OK . Hence
(1− ζp)α = 1 for some α ∈ OK which is impossible because by taking norms (or from
the remark earlier that 1− ζp is not a unit).

Corollary 10.5

TrK/Q(y(1− ζp)) ∈ pZ for any y ∈ OK .
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Proof. We compute

Z 3 TrK/Q(y(1− ζp))

=
∑

σ∈Gal(K/Q)

σ(y(1− ζp))

=
∑

σ∈Gal(K/Q)

σ(y)(1− σ(ζp))

=
∑

σ∈Gal(K/Q)

σ(y)(1− ζsomething
p )

∈ (1− ζp) · OK .

But it’s also in Z as needed.

Now we can prove the main result.

Theorem 10.6

The ring of integers of K is precisely Z[ζp].

Proof. Since each ζkp is in K, we only need the other inclusion.
Let x ∈ OK , and write it in the basis

x = a0 + a1ζp + · · ·+ ap−2ζ
p−2
p

where ai ∈ Q. (Notice we only go up to p− 2! There’s a relation between all p− 1 powers:
they have sum −1.)

We want to show that each ai is in fact an integer. It would be nice if we could just
take the trace directly, but this doesn’t work. So we instead do the following trick:

OK 3 (1− ζp)x = a0(1− ζp) + a1(ζp − ζ2p ) + · · ·+ ap−2(ζ
p−2
p − ζp−1p ).

Now we take the trace of this. We see that TrK/Q(ζp − ζ2p) = 1− 1 = 0 (or even more
lazily, these terms are Galois conjugates so they have the same trace). Similarly all the
other terms vanish. On the other hand, TrK/Q(1− ζp) = p. Hence we obtain

a0p = TrK/Q (x(1− ζp))

which is in pZ by the corollary (a priori we only expect Z), hence a0 ∈ Z.
To get the rest of the coefficients are integers, just use do cyclic shifts, considering

(x− a0)/ζp ∈ OK .

§10.2 Discriminant

We finish our study with the following result.

Theorem 10.7

The discriminant of Q(ζp) is pp−2 · (−1)
1
2
(p−1).

26



Evan Chen (Spring 2015) 10 February 23, 2015

I am somewhat dismayed to see this proven in class, because I submitted my homework
two weeks early and stayed up an hour proving it myself because I had no idea we would
get it for free. So I’ll just copy the proof I put on my homework.

We can compute the discriminant of K as follows. It is not hard to see that for
k = 0, 1, . . . , p− 1 we have

TrK/Q(ζkp ) =

{
p− 1 k = 0

−1 otherwise

since ζ̃kp permutes basis elements, other than ζp−1p = −(1 + · · ·+ ζp−2p ). It follows that
the discriminant is

det



p− 1 −1 −1 . . . −1 −1 −1
−1 −1 −1 . . . −1 −1 −1
−1 −1 −1 . . . −1 −1 p− 1
−1 −1 −1 . . . −1 p− 1 −1
−1 −1 −1 . . . p− 1 −1 −1
...

...
...

. . .
...

...
...

−1 −1 p− 1 . . . −1 −1 −1


.

Adding the second column to all the others gives

det



p −1 0 . . . 0 0 0
0 −1 0 . . . 0 0 0
0 −1 0 . . . 0 0 p
0 −1 0 . . . 0 p 0
0 −1 0 . . . p 0 0
...

...
...

. . .
...

...
...

0 −1 p . . . 0 0 0


= pp−2 · (−1)

1
2
(p−1)

where the 1
2(p− 1) is found by permuting columns.

§10.3 Square Definition of Discriminant

Lemma 10.8

Let L/K be a finite extension of number fields, and let α = (α1, . . . , αn) be a Z-basis
of L. Let σ1, . . . , σn : L→ K be the n embeddings of L.

Then the discriminant DL = D(α) is also given by

D(α) = [det(σj(ai))i,j ]
2 .

Proof. Let M be the matrix whose (i, j)th entry is σj(ai). We wish to show the discrimi-
nant is (detM)2. We have that

DL/K(α) = det
(
TrL/K(αiαj)

)
ij

= det

(∑
k

σk(αiαj)

)
ij

= det

(∑
k

σk(αi)σk(αj)

)
ij
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Recognizing the sum of a matrix multiplication we discover

= det(MMT )

= (detM)2.

Specifically, the point of the above proof is that σ1(α1) . . . σn(α1)
...

. . .
...

σ1(αn) . . . σn(αn)


 σ1(α1) . . . σ1(αn)

...
. . .

...
σn(α1) . . . σn(αn)


equals  TrK/Q(α1α1) . . . TrK/Q(α1αn)

...
. . .

...
TrK/Q(αnα1) . . . TrK/Q(αnαn)


from matrix multiplication, and we can take the determinant of both sides.
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Didn’t attend class. These notes are from W Mackey (thanks!).
We have proved the following statement: if L/K is an extension of degree n, and

α1, ..., αn ∈ L, then D(α) = det(TrL/K(αiαj))− det(σk(αi))
2 for σi : L ↪→ K.

§11.1 Vandermonde Determinant

Corollary 11.1

If L = K[x], x ∈ L with minimal polynomial f(X) ∈ K[X], then D(1, x, ..., xn−1) =
(−1)n(n−1)/2NL/K(f ′(x)) where f ′ is the derivative of the polynomial.

The proof of this is our previous proposition: Let x1, . . . , xn be the distinct roots of
f(X) in K. Now f must be sent to one of these roots, since it evaluates to 0 on x, so
det(σk(x

i))2 = det(xik)
2
k,i, which gives the determinant of

1 x1 x21 . . . xn−11

1 x2 x22 . . . xn−12
...

...
...

. . .
...

1 xn x2n . . . xn−1n


2

,

which is the Vandermonde determinant1∏
i<j

(xi − xj)

2

.

Anyways, this is also equal to

(−1)n(n−1)/2
∏
i 6=j

(xi − xj).

Then this is equal to (−1)n(n−1)/2
∏
i f
′(xi) since the derivative, by the product rule (since

f ′(xi) = σi(f
′(x)), and we nicely annihilate everything that has xi in it), gives exactly

the elements we want going over the js for an individual i, then we just take the product
of these to get what we want. Then this is just equal to (−1)n(n−1)/2NL/K(f ′(x)).

§11.2 Discriminant of Cyclotomic Field

Corollary 11.2

If L = Q(ζp), and K = Q, then DL = pp−2(−1)(p−1)/2.

This is just a bit of ugly computation applying the above. We have Gal(Q(ζp)/Q) =
(Z/pZ)× has even order, therefore it has a unique subfield of order 2, so we want to find
a degree 2 extension of the field.

1We won’t actually prove this, but it makes sense: if any xi = xj , then the matrix will have linearly
dependent rows and should be annihilated by det.
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§11.3 Divisibility of Discriminant

Lemma 11.3

Let Q ⊆ K ⊆ L be an extension of number fields. Then DK divides DL.

This gives the result: Let H = Z/(p − 1)Z ' (Z/pZ)×. Then K = Q(ζp)
H is a

quadratic extension of Q, with L = Q(ζp). If K = Q(
√
d), with d squarefree, we have

Dk = d if d ≡ 1 (mod 4), and 4d otherwise. Then

DL = ±pp−2.

Since p is odd, we have d ≡ 1 (mod 4), and since it’s squarefree, we must have only p,
hence d = ±p. Then, of course, these two facts completely determine what d is.

Before proving the lemma, we first prove the following. As a sublemma:

Lemma 11.4

If K ⊆ L ⊆ M is an extension of number fields, and α ∈ M , then TrM/K(α) =
TrL/K ◦TrM/L(α).

Proof. Let K be an algebraic closure of K. Then TrM/K(α) =
∑

σ:M→K σ(α) =∑
i:L→K

∑
σ σ(α) where σ extends the embedding of L into an embedding of M . Then

this is just the composition of the two traces. �

Now we claim the following.

Claim 11.5. O∨K ⊆ O∨L.

Proof. This comes straight from the definition O∨K = {α ∈ K : TrK/Q(αβ) ∈ Z∀β ∈ OK}.
From the sublemma, for α ∈ O∨K , and β ∈ OL, we have TrL/Q(αβ) = TrK/Q TrL/K(αβ) =
TrK/Q(αTrL/K(β)) ∈ Z by hypothesis. �

Then we have the sequence

O∨K ↪→ O∨L � O∨L/OL.

Then OL ∩ O∨K ⊆ OL ∩K = OK , so the above composition annihilates elements in OK .
Hence we obtain an inclusion O∨K/OK → O∨L/OL is an inclusion, so DK |DL.
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§12 February 27, 2015

We want another way to see the result from last lecture.

§12.1 Recap

From Wikipedia:

A classical example of the construction of a quadratic field is to take the
unique quadratic field inside the cyclotomic field generated by a primitive
p-th root of unity, with p an odd prime. (The uniqueness is a consequence of
Galois theory, there being a unique subgroup of index 2 in the Galois group
over Q). As explained at Gaussian period, the discriminant of the quadratic
field is p for p = 4n + 1 and p for p = 4n + 3. This can also be predicted
from enough ramification theory. In fact p is the only prime that ramifies in
the cyclotomic field, so that p is the only prime that can divide the quadratic
field discriminant. That rules out the “other” discriminants −4p and 4p in
the respective cases.

We saw that as Q(
√
d) ⊆ Q(ζp), we have

d =

{
p p ≡ 1 (mod 4)

−p p ≡ 3 (mod 4).

§12.2 Legendre Symbol and the unique quadratic subfield

Let
√
d be the unique squarefree element so that Q(

√
d) ⊆ Q(ζp).

Define the Legendre symbol as follows. Consider a map

Gal(Q(ζp)/Q) ' (Z/pZ)∗ � {±1}.

Thus ±
√
d is fixed by any σ in the Galois group. So we define

(
σ
p

)
by

(
σ

p

)
=

{
1 σ(

√
d) =

√
d

−1 σ(
√
d) = −

√
d.

This is an (abelian) character in the sense that it’s a map from a group to C∗.
Let G denote the Galois group and consider

g
def
=
∑
σ∈G

(
σ

p

)
σ(ζp) ∈ OQ(ζp).

Observe that for any τ ∈ G we get

τ(g) =
∑
σ∈G

(
σ

p

)
τσ(ζp) =

(∑
σ∈G

(
στ

p

)
(τσ)(ζp)

)(
τ

p

)
=

(
τ

p

)
g.

Now, write
G ∼= (Z/pZ)∗ = {1, . . . , p− 1} .

Then

g2 =
∑

a,b∈(Z/pZ)∗

(
a

p

)(
b

p

)
ζa+bp .
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Letting t = ba, this becomes

g2 =
∑

a,t∈(Z/pZ)∗

(
a2t

p

)
(ζap )1+t

=
∑

a,t∈(Z/pZ)∗

(
t

p

)
(ζap )1+t

=
∑
t

(
t

p

)∑
a

(ζap )1+t

Unless t = −1, the 1 + t does nothing and the sum is just equals the trace −1. So we
obtain

=

(
−1

p

)
(p− 1) +

∑
t6=−1

(
t

p

)
· (−1)

= p

(
−1

p

)
−
∑
t

(
t

p

)
= p

(
−1

p

)
.

Now we’re done if we know olympiad number theory! Indeed, recall that we had(
−
p

)
: G→ (Z/pZ)∗ � {±1}.

So yeah whatever.

§12.3 Dedekind domains

We now move on to a new topic.

Definition 12.1. A Dedekind domain is a ring (commutative with 1) A such that
the following three conditions hold.

(a) A is Noetherian.

(b) Any nonzero prime ideal p ⊆ A is maximal. (Equivalently, “prime” and “maximal”
coincide.)

(c) A is integrally closed in its field of fractions.

Point (b) is the most important one; it’s very strong.

Example 12.2

A = Z and A = C[x] are Dedekind domains. (So is A = C or A = Q, but that’s a
disappointing example. Note that Q is integrally closed in Q because lol.)

Proposition 12.3

Let K be a number field. Then OK is a Dedekind domain.
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Proof. Since OK ∼= Zd as a Z-module, we see that there are no ascending chains.
Integral closure was done ages ago (as homework).
Hence the point is to check that nonzero prime ideals are maximal. We will use the

following lemma.

Lemma 12.4

If I ⊆ OK is a nonzero ideal then OK/I is finite.

Proof. The point is to show that 0 6= n = NK/Q(α) ∈ I, which will imply the conclusion,
since in that case we have a surjection

Zd/(nZd) ∼= OK/nOK � OK/I

and the left-hand side has order nd.
We use the characteristic polynomial. Let 0 6= α ∈ I, and consider its characteristic

polynomial
Pα(X) = det

Z
(X − α |OK

) . = xn + cn−1x
n−1 + · · ·+ c0

where 0 6= c0 = ±n ∈ Z. Since α satisfies its own characteristic polynomial, we see that
n ∈ αOK . But αOK ⊆ I since ideals absorb multiplication. Hence n ∈ I, as needed. �

Let 0 6= p ⊆ OK be prime. Then OK/p is an integral domain. Since it’s also finite by
the lemma, it’s a field (classical algebra exercise). So p is maximal.
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§13 March 2, 2015

We continue Dedekind domains. Recall that a Dedekind domain is a Notherian ring
integrally closed in its field of fractions with the very special property that every nonzero
prime ideal is actually maximal.

We showed that for any number field K, OK is a Dedekind domain.

§13.1 Fractional Ideals

Let A be a Dedekind domains, and K be the field of fractions. Let I and J be additive
subgroups of K, and define I · J to be the subgroup generated by elements αβ, where
α ∈ I and β ∈ J .

Remark that if I, J are OK submodules then so is I · J .

Definition 13.1. A fractional ideal I ⊆ K is a nonzero A-submodule such that for
some 0 6= d ∈ A, we have dI ⊆ A, id est, I ⊆ d−1A.

Remark 13.2. Observe if d′ ∈ I, we have

d′ ·A ⊆ I ⊆ d−1 ·A.

Example 13.3

When A = Z, 1
2Z is the canonical example of a fractional ideal. But Z[12 ] is not a

fractional ideal (no single d works).

Lemma 13.4

If I, J are fractional ideals, then so are I + J and I · J .

Proof. It’s easy to check everyone is a submodule. If we pick d1, d2 so that d1I and d2J
are contained in A, then d = d1d2 is enough for both I + J and I · J .

Remark 13.5. I ·A = I for any A-submodule I. So A behaves like an “identity”.

§13.2 Unique factorization

For m > 0 we put p−m
def
= (p−1)m. Now we can present the main theorem on unique

factorization.

34



Evan Chen (Spring 2015) 13 March 2, 2015

Theorem 13.6 (Unique Factorization into Fractional Ideals)

Let A be a Dedekind domain and K its field of fractions.

(a) The fractional ideals of A form a group under ideal multiplication, with identity
A. In particular, given a fractional ideal I there exists a fractional ideal denoted
“I−1” such that I · I−1 = A.

(b) Every fractional ideal I can be written uniquely in the form

I =
∏
p

pn(p)

where the multiplication is an ideal product, at most finitely many n(p) are
nonzero (so the product is finite), and the product runs over all the nonzero
prime (i.e. maximal) ideals p ⊆ A.

(It’s not terribly obvious that what we think of p−1 happens to be a fractional ideal; this
is part of the theorem.) Needless to say, when A = Z we get the fundamental theorem of
arithmetic on Q.

Example 13.7

Fractional ideals of Z are precisely qZ, for some nonzero q ∈ Q.

A quick remark here. The most obvious analog of a prime number is the following.

Definition 13.8. An element f ∈ A is called irreducible if it is not a unit, and whenever
f = gh for g, h ∈ A, then either g or h is a unit.

However it turns out that ideals are nicer, and in general the concept “(p) is prime”
and “p is irreducible” do not coincide.

Example 13.9

Let OK = Z(
√
−5) arise from K = Q(

√
−5). It does not have unique factorization

of irreducibles since
6 = 2 · 3 =

(
1 +
√
−5
) (

1−
√
−5
)

and for norm reasons, you can show that these factors are irreducible.
Now let’s factor into ideals. Let

p =
(
1 +
√
−5, 2

)
=
(
1−
√
−5, 2

)
.

Also, let q1 = (1 +
√
−5, 3) and q2 = (1 −

√
−5, 3). Then the point is that the

factorization reads
(6) = pq1 · pq2 = p2 · q1q2.
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Example 13.10

Let OK = Z(
√
−17) arise from K = Q(

√
−17). Let’s find all factorizations of 21

into irreducible elements. Of course, we have 21 = 3 · 7. So we would like to factor 3
and 7.

We begin by factoring 3. We know OK ∼= Z[x]/(x2 + 17). Now

OK/3OK ∼= Z[x]/(3, x2 + 17) ∼= F3[x]/(x2 + 2) ∼= F3[x]/ ((x− 1)(x+ 1)) .

This already shows that (3) cannot be a prime (i.e. maximal) ideal, since otherwise
our result should be a field.

Thus we have a map

OK � F3[x]/ ((x− 1)(x+ 1)) .

Let q1 be the pre-image (x− 1) in the image. You can compute q1 = (3,
√
−17− 1).

Similarly, q2 = (3,
√
−17 + 1). We have OK/q1 ∼= F3, so q1 is maximal (prime).

Similarly q2 is prime. Magically, you can check explicitly that

q1q2 = (3)

and in fact this holds more generally, but in any case it will follow from the theorem
later.

Hence we’ve factored (3). The factoring of (7) will be similar. We can compute

OK/7OK ∼= F7[x]/(x2 + 17) = F7[x]/ ((x− 2)(x+ 2))

and so the primes are (7,
√
−17± 2).

§13.3 A Quick Note

In showing 2, 3, 1 +
√

5 and 1−
√

5 were irreducible in Z(
√
−5) we implicitly used the

following.

Lemma 13.11

Let α ∈ OK for K a number field. If N(α) = ±1, then α−1 ∈ OK .

Proof. Look at the minimal polynomial and flip it on its head.
Specifically, it is

xn + cn−1x
n−1 + · · ·+ c1x± 1.

Then α−1 is a root of

∓xn
[(

1

x

)n
+ cn−1

(
1

x

)n−1
+ · · ·+ c1

(
1

x

)
± 1

]
.
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§14 March 4, 2015

Instructor begins by factoring 21 completely in Q(
√
−17). Since I submitted my homework

already, I have not enough patience to copy down the steps.

§14.1 Class group

Definition 14.1. Let K be a number field. Let JK be the group of fractional ideals,
and PK the subgroup of principal fractional ideals. We can view these as groups (with
respect to ideal multiplication). The class group is defined as

ClK
def
= JK/PK .

For example, when K = Q(
√
−17) it turns out that ClK = Z/4Z. It’s a beautiful

theorem that ClK is always finite, and we will prove this later in the course.

§14.2 Unique Factorization

Proposition 14.2

Let A be a Dedekind domain which is not a field. Then every maximal ideal m ⊆ Å
has an inverse: that is, there exists a fractional ideal m′ such that

mm′ = A.

Proof. Let K be the field of fractions of A. The claim is that

m′ = {x ∈ K | xm ⊆ A}

works. We need to show that mm′ = A (we have mm′ ⊆ A) and that m′ is indeed a
fractional ideal.

First, we check that m′ is a fractional ideal. Clearly m′ is an A-submodule (meaning
that it’s closed under addition and absorbs multiplication by A). Also A ⊆ m′, so m′ is
nonzero. Taking any 0 6= d ∈ m, we have d ·m′ ⊆ A. Okay yeah this is all tautology.

Also,
m ⊆ mm′ ⊆ A.

But m was supposed to be maximal. This can only occur if mm′ = A or mm′ = m. assume
for contradiction we’re in the latter situation.

So suppose for contradiction that m ·m′ = m. We first show this the inclusion A ⊆ m′

is an equality.
Consider any x ∈ m′, and pick any 0 6= d ∈ m. We have xm ⊆ m. But then x2m ⊆ xm,

and in this way we obtain the chain

A ⊇ m ⊇ xm ⊇ x2m ⊇ . . .

Hence xn ∈ d−1A for each n.
Look at A[x] ⊆ K; evidently it is in d−1A. Thus A[x] is a finitely generated A-module

(here we use the fact that A is a Dedekind domain). So x is integral over A, but
since A is integrally closed and x ∈ A. Thus m′ ⊆ A; hence m′ = A.

We now state two lemmas.
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Lemma 14.3

If p ⊆ R is prime (for R any commutative ring) and a1 . . . an ⊆ p (for some ideals
ai) then some ai is actually contained in p.

Proof. Trivial. If not not; pick ai ∈ ai \ p but then
∏
ai ∈ p, impossible. �

Lemma 14.4

Let R be a Noetherian integral domain and a a nonzero ideal. Then a contains a
product of nonzero prime ideals.

(If we drop the “nonzero on the prime ideals” condition, then this is true for any R, and
vacuously so for any R. Note that R being an integral domain means (0) is prime.)

Proof. Let Φ be the set of ideals which do not contain a product of nonzero prime ideals,
and assume that Φ is not empty.

Since A is Noetherian2, Φ has a maximal element b.
Since b is not itself prime, there exists x, y ∈ A, x, y /∈ b and xy ∈ b. Then b (

b + (x), b + (y). By maximality, b + (x), b + (y) contain products of prime ideals and
hence so does

(b + (x))(b + (y)) ⊆ b + (xy) = b

which is a contradiction. �

To get a contradiction, we will exhibit an element b ∈ m′ not in A. Pick any 0 6= a ∈ m
and consider the ideal (a) = A · a. It contains a product of nonzero prime ideals by the
latter lemma. Take a minimal decomposition of primes viz

m ⊇ A · a ⊇ p1p2 . . . pn.

Since m is prime (it’s maximal), there is some prime pi contained inside it. Since we’re
in a Dedekind domain, m = p1, as prime ideals are maximal! Let b = p2 . . . pn; by
minimality of n, there exists b ∈ b such that b /∈ a ·A. Then

m · b ⊆ m · b = p1 . . . pn ⊆ A · a

and thus ba−1 ∈ m′. But by construction, b /∈ a · A =⇒ ba−1 /∈ A. This gives the
required contradiction.

2Zorn’s Lemma is not sufficient here, because the union of a chain need not be an upper bound for it.

38



Evan Chen (Spring 2015) 15 March 6, 2015

§15 March 6, 2015

Let A be a Dedekind domain. Last time we showed that if m ⊆ A is a maximal ideal,
then ∃m′ ⊆ K a fractional ideal such that m ·m′ = A. We got down to two lemmas; I’ve
retroactively added their proofs to the previous lecture.

Now we proceed to prove the main theorem on unique factorization for II.

§15.1 Uniqueness of factorization

Cancelling common primes, suppose that

pα1
1 . . . pαr

r = qβ11 . . . qβss

where α, βi > 0 are integers and the pi, qi are pairwise distinct prime ideals. We’ll show
r = s = 0. Assume not, so that

pi ⊇ qβ11 . . . qβrr .

But this implies that some qi is a subset of p1. But since we’re in a Dedekind domain,
we have q1 is maximal, so p1 = qi for some i, which is impossible.

§15.2 Existence of Factorization For Ideals

First we solve the case where b ⊆ A is in fact an ideal (rather than a general fractional
ideal). Let Φ be the set of nonzero ideals which are not such a product. Then Φ has a
maximal element a ⊆ A since A is Noetherian.

Let p be a prime ideal containing a. By the proposition, there is an inverse ideal p′

such that pp′ = A. Since a ⊆ p, we have

a ⊇ ap′ ⊆ pp′ = A.

Claim 15.1. ap′ ) a.

Proof. Otherwise, for all x ∈ p′, xa ⊆ a. Hence xna ⊆ a for all n, and thus x is integral
over A. Since A is integrally closed, x ∈ A.

But x ∈ p′ was arbitrary. Hence A = p′. Multiplying both sides by p gives that
p = pp′ = A.

By maximality of a ∈ Φ, it follows that ap′ factors as a product of prime ideals
∏

q.
Thus a = p

∏
q, contradiction.

§15.3 Complete Existence

First, we wish to reduce to the case where b is in fact an ideal. Let b ∈ K be a fractional
ideal, so db ⊆ A for 0 6= d ∈ A. Thus

b = (db)(d−1A).

Observe
(d) =

∏
p

pn(p)

and hence
(d) ·

∏
p

p−n(p) = A

so d−1A = (d)−1 =
∏
pp p
−n(p). Hence we’re through.
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§16.1 Loose Ends on Unique Factorization

Let A be a Dedekind domain and K its field of fractions. Recall that we now have unique
factorization into prime ideals.

Lemma 16.1

Let I =
∏

p p
n(p) be a fractional ideal and suppose that in fact I ⊆ A. Then n(p) ≥ 0

for each p.

This lemma is pretty intuitive; it would be really bizzare if it was false.

Proof. Assume not. We can rewrite this into

pα1
1 . . . pαs

s ⊆ qβ11 . . . qβtt

where αi, βi > 0 and s ≥ 0, t > 0. Then q1 divides some pi which is impossible.

Corollary 16.2

Suppose I and J are fractional ideals in K. Let I =
∏

p p
n(p) and and J =

∏
p p

m(p).
Then I ⊆ J if and only if n(p) ≥ m(p) for each p.

Proof. Consider IJ−1 =
∏

p p
n(p)−m(p).

Also, we can now formalize the process we used before to factor 6 in Z[
√
−5] ear-

lier.

Corollary 16.3 (Factoring Primes in OK)

Let p be a rational prime number, and K a number field. Suppose we’re lucky enough
that OK = Z[α] for some α ∈ OK with minimal polynomial f . For a polynomial ψ
let ψ be its image in Z/pZ[x]. Suppose f factors as

f =
r∏
i=1

(f i)
ei .

Then pi = (fi(α), p) is prime for each i (note that this ideal doesn’t depend on the
pre-image fi chosen) and we have

OK ⊇ (p) =
r∏
i=1

peii .

Note that earlier, we could check the factorization worked for any particular case. The
corollary guarantees us that this process will work.

Proof. First, note that the pi are prime just because

OK/pi ∼= (Z[x]/f)/(p, fi) ∼= Zp[x]/fi
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is a field.
Let I =

∏r
i=1 p

ei
i . Modulo p it is equal to

r∏
i=1

(fi(α))ei ≡ (f(α)) ≡ 0 (mod p)

id est, I is in the kernel of the projection map

OK → OK/pOK .

Thus I ⊆ (p). Actually, we can even write

(p) =
∏
i

p
e′i
i

where e′i ≤ ei for each i.

We want this equality to be tight. If not, then the image pOK =
∏
i p
e′i
i in OK/pOK is

not zero, which is impossible.

Example 16.4 (Factoring p in the pth cyclotomic field)

Let K = Q(ζp), meaning OK = Z[ζp]. We seek the factorization of p.
First, we wish to factor the minimal polynomial of ζp, namely Φp(x) = xp−1 +
· · ·+ 1 = xp−1

x−1 , modulo p. Observe that

Φp(x+ 1) =
1

x

(
xp +

(
p

1

)
xp−1 + · · ·+

(
p

p− 1

)
x+ 1− 1

)
≡ xp−1 (mod p).

Consequently Φp = (x− 1)p−1 (mod p).
Thus, the factorization is

(p) = (p, ζp − 1)p−1.

§16.2 Requested homework solutions

In a problem like this, the solution is always part science and part art.
The science part is like computing the trace or something. . . The art part is
eyeballing an element of OK . Even the art part, if you know enough, has a
science to it, but. . .

– Mark Kisin

Example 16.5

Let K = Q(
√

23,
√

3). Compute OK .

Proof. Observe that OK ⊆ 1
4Z[
√

23,
√

3] by the lemma on linearly disjoint fields. Hence
any element x ∈ OK has the form

x =
A+B

√
3 + C

√
23 +D

√
69

4
.

Consider TrK/L(x), for the fields L = Q(
√

3), Q(
√

23), Q(
√

69), with associated OL as

Z[
√

3], Z[
√

23], Z[12(1 +
√

69]. The calculation gives
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• 1
2(A+B

√
3) ∈ Z[

√
3], so A, B are even.

• 1
2(A+ C

√
23) ∈ Z[

√
23], so A, C are even.

• 1
2(A+D

√
69) ∈ Z[12(1 +

√
69)] from which we can show A and D are even.

Hence any element x ∈ OK has the form

x =
A′ +B′

√
3 + C ′

√
23 +D′

√
69

4
.

Next, we observe that 1
2 , 1

2

√
3, 1

2

√
23, 1

2

√
69 are not in OK by considering their minimal

polynomials and noticing that they are not monic. On the other hand, 1
2(
√

23−
√

3) and
1
2(1 +

√
69) are. From this one can deduce that the answer is

OK =

{
1

2
(A′ +B′

√
3 + C ′

√
23 +D′

√
69) | A′ +D′, B′ + C ′ ∈ 2Z

}
.

Another solution proceeds by using the fact that Q(
√

3) and Q(
√

69) are linearly disjoint
to get a bound

OK ⊆
1

3

(
Z[
√

3,
1

2
(1 +

√
69)]

)
where we recall that K = Q(

√
3,
√

69) ∼= Q(
√

3,
√

23). Combined with the other lemma,
we get bounds with factors of 1

3 and 1
4 which together eradicate the problem.

Example 16.6

Let K = Q(ζp, ζq) for distinct odd primes p and q. Show that OK = Z[ζp, ζq].

Proof. The hard part is to show that they are linearly disjoint; after that it’s trivialized
by the fact that the discriminants are ±pp−2 and ±qq−2.

We claim that
Z[ζp]/q · Z[ζp]

is a finite field. Note that Z[x]/Φp(x) ∼= OK (where Φp is the cyclotomic polynomial) so

OK/qOK ∼= (Z/qZ)[x]/Φp(x).

So the point is to show that Φp(x) is separable. In fact, more strongly xp− 1 is separable,
just by taking the derivative.

Now we have to show Φq(x) is irreducible over Z[ζp]. We can repeat the proof with
irreducibility over Z via Eisenstein; the argument still works because of the preceding
claim. (Instead of Z/qZ we use Z[ζp]/qZ[ζp].)
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Midterm.
What is a class group?
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Today we prove that C is algebraically closed. This will actually get used: let K be a
number field, and consider all embedding ι : K ↪→ C. Then the image of OK yields a
lattice in the product.

§18.1 First proof of Fundamental Theorem of Algebra

First, a standard complex analysis proof. We need the fact that the following is
true.

Theorem 18.1 (Louiville’s Theorem)

If f : C→ C is holomorphic and bounded then f is constant.

Assume that P (z) is monic and nonconstant. If it is not monic, then 1
P (z) is holomorphic

and bounded and hence constant.

§18.2 Second proof of Fundamental Theorem of Algebra

Observe that any polynomial over R of odd degree has a solution (by considering its
limits to ±∞). Also, the property is true for polynomials of degree 2 by the quadratic
formula.

“If you wrote this on the exam I would give you two out of ten points.” –
Kisin

“The rest of this is left as an exercise to the reader.” – Aaron

“Then I would two points to you and eight points to the reader.” – Kisin

Now let E/C be a finite extension which is Galois over R and let G = Gal(E/R) and
H ⊆ G a 2-Sylow subgroup.

Let F = EH , and note that

[F : R] = [G : H] ≡ 1 (mod 2).

Take α ∈ F a primitive element. Then the minimal polynomial Pα(x) of α has degree
[F : R] which is odd.

Evidently Pα(x) has a zero since it has odd degree, so degPα = 1 and therefore F = R.
Consequently H = G, meaning |G| is a power of two.

Lemma 18.2

If p is a prime, then a group H of order pk is solvable, meaning there is a sequence
of extensions

H1 . H1 . · · · . Hm = {0}

such that Hi/Hi+1 is abelian.

Proof. Standard group theory lemma.
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Assuming the lemma, let H1 ⊆ H be the stabilizer of C. Let H = Gal(E/R), so
[H : H1] = 2. Since H1 is a 2-group, there exists a normal H2 / H1 such that H1/H2 is
abelian and nontrivial, so we get a map

θ : H1 → H1/H2 � Z/2Z.

Consider F = Eker θ. Let [H1 : ker θ] = 2. Since

H ⊃
2
H1 ⊃

2
ker θ,

or
EH ⊂

2
EH1 ⊂

2
Eker θ

which is
R−

2
C−

2
Eker θ

which contradicts the fact that there are no degree two extensions of C (quadratic
formula).
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We are going to start the geometry of numbers. Our main aim is to show that if K is a
number field, then then its class group ClK is finite.

Recall that the class group is defined as the set of fractional ideals modulo the set of
principal fractional ideals.

Example 19.1

If K = Q or more generally if OK is a principal ideal domain, then the class group
of K is trivial.

§19.1 Signatures and Embeddings

Look at the n embeddings of K into C. We will number them as follows:

• σ1, . . . , σr1 are the real embeddings.

• σr1+1, . . . , σr1+r2 are the first half of the non-real embeddings (meaning the image
of these embeddings is not contained in R), and

• σr1+1, . . . , σr1+r2 are the conjugates of the nonreal embeddings.

Hence n = r1 + 2r2. The pair (r1, r2) is called the signature of K.
Observe that any map σi : K ↪→ C extends to a map K ⊗ R ↪→ C. The image of this

extended map must be a real vector space sitting inside C, which forces it to be either R
or C, meaning we have

OK ↪→ K ⊗Q R '
r1∏
i=1

R×
r1+r2∏
i=r1+1

C.

This arises from

K
∏
σi−−−→

r1∏
i=1

R×
r1+r2∏
i=r1+1

C

and doing a tensor product. The fact that we had an isomorphism follows for degree
reasons.

§19.2 Overview

The image of OK with this embedding is thus a “lattice” in

Rr1 × Cr2 .

So it looks kind of like embedding Zn into Rn. In fact, we will show σ(OK) is “discrete”.
As a result, we’ll show that if a ⊆ OK is an ideal, then there exists x ∈ a−1 with

NK/Q(x) ≤ cN a

where c is a constant depending only on K. Here N(a)
def
= |OK/aOK | as usual. That’s

the same as N(b) ≤ c fro b = a(x). (Here b ∼ a in the class group, since x is a single
element.)

This will imply the conclusion, there are only finitely many ideals whose norm are at
most c.
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§19.3 Geometry

Recall that an additive subgroup H ⊆ Rn is discrete if there exists some open subset
U ⊆ Rn at the origin such that U ∩ h contains just the point {0}. (This implies such
neighborhoods at all points, because H is an additive subgroup.) For example, Zn ⊆ Rn
is discrete.

Lemma 19.2

H ⊆ Rn discrete if and only if for every compact set K ⊆ Rn, the set H ∩K is finite.

Proof. Suppose H is discrete. Suppose h1, h2, . . . is a Cauchy sequence in H. Then
hi − hj → 0, and from discreteness, we in fact have hi is eventually constant Hence
limhi ∈ H. Thus H is closed.

From the fact that K is compact, notice that H ∩K is closed, and hence compact.
But H ∩K has the discrete topology on it, from which H ∩K is finite.3

Conversely, suppose H ∩K is compact. Let K denote the closed ball Br of radius r
for r > 0. From H ∩K finite we get that H ∩Br = {0} for r small enough.

Lemma 19.3

The image of

OK
σ
↪→ Rr1 × Cr2

is discrete.

Proof. We want to exhibit an open ball whose intersection with the lattice above is just
the point 0.

If x ∈ OK , we can consider its norm NK/Q(x). If x 6= 0 then

0 6= NK/Q(x) ∈ Z.

Now recall that the norm is the product of the Galois conjugates:

r1∏
i=1

σi(x)

r2∏
i=r1+1

σi(x)σi(x).

It is also an integer, and hence has absolute value at least 1.
Hence, if we take the box

B =

{
(z1, . . . , zr1+r2) ∈ Rr1 × Cr2 | |zi| <

1

2

}
then for any α ∈ OK , we cannot possibly have σ(α) ∈ B.

3Trick: compact discrete sets are finite.
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Didn’t attend class.

Definition 20.1. A subgroup H ⊆ Rn is discrete if H ∩K is finite for any set K.

Example 20.2

Zr is the standard example of a discrete subgroup of Rr.

Theorem 20.3

Let H be a discrete subgroup of Rn. Then H is generated as a Z-module by r
linearly independent vectors (here r ≤ n).

Definition 20.4. A discrete subgroup of Rn with rank n is called a lattice.
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Last time we had an embedding

σ : OK → Rr1 × Cr2 ' K ⊗ R

and we showed that it was a lattice. We showed that it is discrete.

§21.1 Discrete Things and Lattices

Corollary 21.1

Let H ⊆ Rn denote a discrete subgroup. The following are equivalent.

• H is a lattice, meaning it has maximal rank.

• H spans Rn, meaning H ⊗ R � Rn.

• H is an isomorphism H ⊗ R ' Rn.

• Rn/H has finite volume.

Proof. (1) ⇐⇒ (2) ⇐⇒ (3) already happened last time.
Let’s see (4). First, assume H is not a lattice. Then the Z-rank of H is strictly less

than n, so the map H ⊗ R→ Rn fails to be surjective and hence vol(Rn/H) =∞.
Conversely, assume its a lattice. Set H =

⊕n
i=1 Z · ei. Then, as we show in a moment,

vol(Rn/H) = |det (e1, . . . , en)| .

§21.2 Fundamental Domains

Let H ⊆ Rn be a lattice with basis e = (e1, . . . , en) be a basis. We define

Pe =

{
x ∈ Rn | x =

n∑
i=1

αiei 0 ≤ αi < 1

}
.

This is called the fundamental domain of H ⊆ Rn; we tautologically have an isomor-
phism Pe ↔ Rn/H as a continuous bijection. For example, if n = 1 this gives a bijection
from [0, 1) to R/Z ' S1; in general Rn/H looks like an n-torus.

Let µ denote the Lebesgue measure (a very fancy area); we won’t need any tricky stuff
since all the sets we will be measuring our simple (e.g. parallelpipeds).

Lemma 21.2

The Lebesgue measaure of Pe is given by

µ(Pe) = vol(Rn/H) = |det (e1, . . . , en)| .

In particular, µ(Pe) depends only on H and not on e.

Proof. The fact that µ(Pe) = vol(Rn/H) follows from the fact that Pe
∼−→ Rn/H in a

continuous bijection. Do some stuff. Blah.

Remark 21.3. If f = (f1, . . . , fn) is another Z-basis ofH, then f = Ae where detA = ±1.
Thus the independence can also be seen from here.
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§21.3 Minkowski

Define vol(H)
def
= vol(Rn/H) = µ(Pe).

Theorem 21.4

Let H ⊆ Rn be a lattice and S ⊆ Rn a measurable set. Assume µ(S) > vol(H).
Then there exists distinct x, y ∈ S such that x− y ∈ vol(H).

Proof. Pigeonhole with volumes.

Corollary 21.5

Let H ⊆ Rn be a lattice and S ⊆ Rn a symmetric measurable convex set containing
0. If either

(a) µ(S) > 2n vol(H), or

(b) µ(S) ≥ 2n vol(H) and S is compact,

then some nonzero point of H is in S.
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Didn’t attend class. Here’s the next few results
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Didn’t attend class.
Recall that the class group Cl(K) consists of the fractional ideals modulo the principal

ideals.

§23.1 The Minkowski Bonud

Recall that the norm of an (integral) ideal a ⊆ OK is defined as

N(α)
def
= |OK/a|

which is finite, as proved earlier when we showed OK was Dedekind. Observe that if
a = (x), then this gives

∣∣NK/Q(x)
∣∣. It is completely multiplicative and thus extends as

well to fractional ideals of OK .

Proposition 23.1 (Minkowski Bound)

Let K be a number field of degree n, with signature (r1, r2). Let DK denote its
discriminant. For any nonzero integral ideal a of K, we have the bound

∣∣NK/Q(x)
∣∣ ≤ ( 4

π

)r2 n!

nn

√
|DK |N(a)

for some x ∈ a.

Proof. Greasy geometry.

§23.2 Consequences of the Minkowski Bound

Corollary 23.2

Every ideal class of K (that is, an element of the class group Cl(K)) contains an
integral ideal b such that

N(b) ≤
(

4

π

)r2 n!

nn

√
|DK |.

Proof. Let a′ be an ideal class, and set a = a−1. By scaling a′ appropriately we assume a
is integral. Take x ∈ a as prescribed in the proposition; then set b = xa−1.

§23.3 Finiteness of the Class Group

Theorem 23.3 (Dirichlet)

The class group Cl(K) of any number field is finite.

Proof. Let p be a prime ideal of OK . If you go through the proof that OK is Dedekind,
you’ll discover that p ∩ Z = (p). In particular, p divides (p), and moreover N(p) = pd for
some d.
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Fixing a rational prime p, we see that there are only finitely many p whose norm is a
power of p; thus each prime power can only be contributed in a finite number of ways.
Moreover for a general ideal a =

∏
pvii we have

N(a) = N(p1)
v1 . . .N(pr)

vr

and hence is a product of prime powers in the same way.
From all this we deduce that for any given integer M , there are at most finitely many

ideals which can have norm exceeding M .
But every ideal class can be represented by an ideal of finite size according to the

corollary. This completes the proof.
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Last time, we proved that if K is a number field, we had |ClK | < ∞ by showing that
every class has a representative with a bounded norm. We will now do an example.

§24.1 Class Group of K = Q(i)

We have DK = −4, and Minkowski’s Bound tells us that every class has an integral ideal
of norm at most

N(b)

(
4

π

)1

· 2!

22
·
√

4 =
4

π
< 2.

Consequently, the class group is trivial, as N(b) = 1; any nontrivial ideal has norm
exceeding 1.

§24.2 Class Group of K = Q(
√
−5)

Let K = Q(
√
−5). The Minkowski Bound gives N(b) < 3, or N(b) ≤ 2. Assume N(b) = 2;

then b divides (2).
We do the standard trick

OK = Z[
√
−5] = Z[x]/(x2 + 5)

and hence OK/(2) = F2[x]/(x+ 1)2. Thus in the same way as before we have

(2) = p2 where p = (2, 1 +
√
−5).

Also, p is nonprincipal.
I had better state the following lemma now.

Lemma 24.1

Let b be an integral ideal with N(b) = 2015. Then b divides the ideal (2015).

Proof. By definition, 2015 = |OK/b|. Then every element of this quotient group has
order dividing 2015; that is, for any α ∈ OK we have

2015α ≡ 0 (mod b) ⇐⇒ 2015α ∈ b ∀α ∈ OK .

In other words, b divides (2015).

§24.3 Trivial Class Groups

In full detail, here is the proof that Q[
√
−n] has trivial class group (and hence is a PID)

for n = 11, 19, 43, 67, 163.
Imaginary quadratic fields have signature (0, 2), and all fields in question are of the

form Q[
√
−n] for −n ≡ 1 (mod 4); hence the discriminant is −n, and the ring of integers

is just

Z
[

1

2
(−1 +

√
−n)

]
∼= Z[x]/

(
x2 + x+

1

4
(n+ 1)

)
.

The Minkowski bound for these imaginary quadratic fields is

M
def
=

(
4

π

)r2
· 2

22

√
|−n| = 2

π

√
n
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For each of the quadratic fields, the class group is generated by (ideal classes of) prime
ideals with norm not exceeding this bound.

Moreover, recall that for prime ideals p, N(p) = pd for some rational prime p, and
actually p divides (p).

So the algorithm for each of these is: consider the primes p at most the Minkowski
bound M , and show in each case that (p) is in fact prime. The factorization of (p) is
induced by the factorization of 4x2 + n− 1 modulo p.

• Q[
√
−11]: here M ≈ 2.11. Since x2 + x+ 3 ≡ x2 + x+ 1 (mod 2) is irreducible, it

follows that (2) is prime, irreducible, and principal; consequently the class group is
trivial.

• Q[
√
−19]: here M ≈ 2.77. Now x2 +x+5 ≡ x2 +x+1 (mod 2) is again irreducible.

• Q[
√
−43]: here M ≈ 4.17. Again x2 + x+ 11 ≡ x2 + x+ 1 (mod 2) is irreducible

and x2 + x+ 11 ≡ x2 + x− 1 (mod 3) is irreducible (no roots).

• Q[
√
−67]: here M ≈ 5.2. The polynomial x2 + x+ 17 is x2 + x+ 1, x2 + x− 1, and

x2 + x+ 2 mod 2, 3, 5. The former two are irreducible already; the last one again
has no roots.

• Q[
√
−163]: now M ≈ 8.12. The polynomial x2 + x+ 41 is quite famous: it is prime

for all values 1 ≤ x ≤ 40, and greater than 7 for each of them, which immediately
implies it has no roots for each of 2, 3, 5, 7.

§24.4 Class Group of Q(
√
−17)

Since DK = −68, we compute the Minkowsi bound

4

π

√
17 < 6.

We then proceed to spend five minutes discussing the difficulty of doing an arithmetic
calculation. Remarks exchanged:

• Will we be allowed to bring a small calculator on the exam? – Aaron

• What does the size of the calculator have to do with anything? You could have
like an Apple Watch. – Kisin

• Just use the fact that π ≥ 3. – me

• Even Gaitsgory doesn’t know that, how are we supposed to? – Wyatt

• You have to do this yourself! – Kisin

• This is an outrage.

Now, it suffices to factor with (2), (3), (5). The minimal polynomial of
√
−17 is x2 +17,

so we can for example factor

(2) = (2,
√
−17 + 1)2

(3) = (3,
√
−17− 1)(3,

√
−17 + 1)

(5) = (5)
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corresponding to the factorizations of x2+17 modulo each of 2, 3, 5. Set p = (2,
√
−17+1)

and q1 = (3,
√
−17− 1), q2 = (3,

√
−17 + 1).

Hence for any c ∈ ClK , we have

c ∈
{

[(1)], [p], [q1], [q2], [p]2
}

where [(1)] = [p2] = [(2)] are trivial. (I’m being pedantic and using [−] to denote classes.)
In particular, the class group has order at most 4.

Since [p] has order two, and p is not principal (hence [p] 6= [(1)]), it follows that the
class group has even order, hence either 2 or 4.

Now we claim [q1]2 6= [(1)], meaning q1 has order greater than 2. If not, q21 is principal.
We can N(q) = 3, so this can only occur if q21 = (3); this would force q1 = q2.

This is impossible since
q1 + q2 = (1).

Thus, q1 has even order greater than 2. So it has to have order 4. Hence ClK = Z/4Z.

§24.5 A Real Quadratic Example, K = Q(
√
7)

Let K = Q(
√

7), with signature (2, 0). The discriminant is 28, and the Minkowski bound
this time is

M =
1

2

√
28 < 3.

By the same calculations as usual,

(2) = (2,
√

7− 1)2 = p2.

But in fact, in this case p isn’t trivial! We have

p = (3−
√

7).

In fact, this comes from the fact that

2 = (3−
√

7)(3 +
√

7).

Hence the class group is trivial.
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§25.1 Number Fields with Bounded Discriminant

Corollary 25.1

For a number field K of degree n ≥ 2 (that is, K 6= Q), we have

|DK | ≥
π

3
·
(

3π

4

)n−1
.

Proof. Take a b and use N(b) ≥ 1. Hence
√
DK ≥

(
π
4

)r2 · nn

n! . The rest is computation,
with the trivial bounds r2 ≥ 2n and π

4 < 1.

In particular,
n

log |DK |
is bounded by some constant (again some bloody calculations).

Corollary 25.2

If K 6= Q, then |DK | ≥ 1.

This will be important later. In fact, we will later see that a rational prime p “ramifies”
if and only if it divides |DK |. So in an extension, some positive number of primes ramify
but only finitely many of them do.

“What do you do if the prime ramifies?” – Aaron

“What do you mean, what do you do? . . . You go to Disney World.” – Kisin

Theorem 25.3

Fix a positive integer M . Then there are finitely many number fields K ⊆ C such
that DK ≤M .

Proof. We will show the result for a fixed degree n (bounded by previous corollary) and
a fixed signature (r1, r2), (as r1 + 2r2 = n).

Let σ1, . . . , σr1 and σr1+1, . . . , σr1+2r2 be the real and complex embeddings with the
complex embeddings in conjugate pairs (as σr1+k = σr1+r2+k).

We now wish to use Minkowski again. We need to pick a region B suitably large, which
will let us find an x ∈ B ∩ σ“(OK).

• If r1 > 0 (there is a real embedding), we pick the box carved out by

|y1| ≤ 2n−1
(π

2

)−r2 √
M.
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Then set |yi| ≤ 1
2 for i ≥ 2 and |zj | ≤ 1

2 for all j. In that case the volume of B is
given by

vol(B) = 2n
(π

2

)−r2 √
M1r1−1

(π
4

)r2
= 2n+r2−2r2

√
M

= 2n−r2
√
M

≥ 2n−r2
√
DK

= 2n vol(σ(OK))

• If r1 = 0, we hack this as follows Put

|2=(z1)| = |z1 − z1| ≤ 2n
(π

2

)1−r2 √
M.

and |2<(z)| = |z1 + z1| ≤ 1
2 . Then set |zj | ≤ 1

2 for all j ≥ 2.

Here, the volume is

vol(B) = 2n
(π

2

)1−r2 1

2

(π
4

)r2−1√
M

= 2n−1 · 2−r2+1
√
M

≥ 2n vol(σ(OK)).

Thus in both cases there is a 0 6= x ∈ OK for which σ(x) ∈ B.
We claim that K = Q(x) now. This will complete the proof, since then x has minimal

polynomial

P (X) =

r1+2r2∏
i=1

(X − σi(x)) ∈ Z[X].

Now the roots are bounded by some constant because of the construction of B. Thus
the coefficients of P (X) are bounded by some constant depending on r1, r2, d; there are
thus only finitely many possible P and the claim would thus imply that there are only
finitely many possible x.

Now we prove the claim. Note that

1 ≤

∣∣∣∣∣
r1+2r2∏
i=1

σi(x)

∣∣∣∣∣ =
∣∣NK/Q(x)

∣∣
and the narrow-ness of the box implies that |σi(x)| < 1 for each i = 2, . . . , r1 + r2; thus
σ1(x) > 1.

• In the first case, where the embedding σ1(x) ∈ R, we thus have σ1(x) 6= σi(x) for
i ≥ 2.

• In the second case r1 = 0, we still have σ1(x) 6= σi(x), except possibly i = r2 + 1,
id est σi = σ1 But

<(σ1(x)) < 1 =⇒ |σ1(x)| > 1

hence σ1(x) /∈ R and this is not an issue.
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Hence in either case σ1(x) 6= σi(x).

K

Q(x)
∪

6

⊂
σ1 - C

................................-

That’s enough to imply that there is no intermediate field, as desired. Meaning, [K :
Q(x)] = 1, and we’re done.

59



Evan Chen (Spring 2015) 26 April 8, 2015

§26 April 8, 2015

Didn’t attend class.
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Today we finish the proof of the unit theorem, which states the following.

§27.1 Review of Unit Theorem

Theorem 27.1 (Dirichlet’s Unit Theorem)

Let K be a number field of signature (r1, r2).

“I can see at least one person is taking the unit theorem appropriately seriously
by wearing a tie. . .

Well, I guess I’m not wearing a tie.” – Mark Kisin

Last time, we defined a map
L : K∗ 7→ Rr1+r2

by
x 7→ (log |σ1(x)| , log |σr1+r2(x)|) .

We restrict it to O∗K . We proved last time through the box

L“(O∗K) ⊆

{
(wi) |

r1∑
i=1

wi +

r1+r2∑
i=r1+1

2wi = 0

}
that O∗K has rank at most r1 + r2 − 1.

§27.2 Quadratic Example

We prove the unit theorem in the special case of K = Q(
√
d) with signature (2, 0) for

concretenesses (say d > 0). It suffices to exhibit a unit of infinite order, since the above
result tells us we have at most 2 + 0− 1 = 1 such generators.

We consider the embedding σ : OK ↪→ R2. Fix α ∈ R+, and consider the box

Bλ =
{

(x1, x2) ∈ R2 | |x1| ≤ λ, |x2| ≤
α

λ

}
.

Clearly its volume is α, so for any point in the box NK/Q(xλ) ≤ α. Now pick α so that
the Minkowski bound works. Then there exists xλ ∈ σ“OK ∩Bλ.

Now by increasing λ drastically, we can get a Bλ′ which omits xλ, and hence has some
nontrivial point xλ′ 6= xλ. (Note that xλ is not on the x-axis because the y-coordinate
is σ2(something).) So we can get an infinite sequence of distinct points. (Rephrasing:
a− b

√
d can be made arbitrarily close to zero).

But the norm is an integer bounded by α, so there are finitely many values. Also, we’ve
seen that there are finitely many ideal for a given norm. Since we can get an infinite
sequence, we realize that there exists λ′ > λ > 0 such that xλ′ 6= ±xλ but the ideals (xλ)
and (xλ′) are equal.

Remark 27.2. Note that here we’ve done a lot of abuse by identifying a point in
σ“OK ⊂ R2 with the original guy in OK .

Then u = xλx
−1
λ ∈ OK , and u ∈ O∗K . Moreover, u 6= ±1. Now since K ⊆ R, it follows

that u has infinite order (any non-infinite unit is a root of unity).

Example 27.3

If K = Q(
√

3), then O∗K ' (2 +
√

3)Z.
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§27.3 General Case

We will continue to abuse notation by identifying an integer in OK with its image under
σ.

It is enough to show that for any f : W → R a nonzero linear form, there exists a unit
u such that

f(L(u)) 6= 0.

This will give a surjection
L(O∗K)⊗ R �W

and hence implies that

rankL(O∗K) ≥ dimW = r1 + r2 − 1

which is what we want. This approach has the advantage that we only need to find
a single unit, rather than juggle around with multiple units and try to show linearly
independence.

Let α ∈ R+ and r = r1 + r2 − 1. If λ = (λ1, . . . , λr) ∈ (R+)r we can choose λr+1 ∈ R+

such that
r1∏
i=1

λi

r1+r2∏
i=r1+1

λ2i = α

(the last term of the product). Next let us take a compact symmetric box as before:

B = {(y1, . . . , yr1 , z1, . . . , zr2) ∈ Rr1 × Cr2 | |yi| ≤ λi, |zi| ≤ λi+r1} .

One can compute its volume, which will only depend on α by contrivation:

vol(B) =

r1∏
i=1

2λi ·
r1+r2∏
i=r1+1

πλ2i = 2r1πr2α.

So if we choose an α so Minkowski works, and we can thus exhibit a 0 6= xλ ∈ B∩σ“(OK).
By construction, |σi(xλ)| ≤ λi for all i. Thus

1 ≤
∣∣NK/Q(xλ)

∣∣ ≤∏
i

|σi(xλ)| ≤ α.

From this we deduce that
|σi(xλ)| ≥ λi/α

for every i. Thus we have
σi
α
≤ |σi(xλ)| ≤ λi

which rearranges to
0 ≤ log λi − log |σi(xλ)| ≤ logα ∀i (†)

OK. . . no we actually bring in our function f . Let (y1, . . . , yr1+r2) = y ∈W ⊆ Rr1+r2 .
By using the condition that y1 + · · ·+ yr1+r2 = 0, we can think of f as a function

f(y) =

r1+r2−1∑
i=1

ciyi ci ∈ R.

Now weight (†) by |ci| and summing, we obtain

0 ≤
r1+r2∑
i=1

|ci log λi − ci log |σi(xλ)|| ≤
r1+r2∑
i=1

|ci| logα.
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By applying the triangle inequality, we actually can strengthen the lower bound of zero
to ∣∣∣∣∣∑

i

ci log |σi(xλ)| − ci log λi

∣∣∣∣∣ =

∣∣∣∣∣f(L(x))−
∑
i

ci log λi

∣∣∣∣∣ .
Now, choose β > (

∑
|ci|) logα, and choose λh = (λ1,h, . . . , λr,h) such that

r∑
i=1

ci log λi,h = 2βh

which implies
|f(L(xλh))− 2βh| < β.

Then
(2h− 1)β < f(L(xλh)) < (2h+ 1)β

and hence the f(L(xλh)) are distinct as h = 1, 2, . . . .
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§28 April 22, 2015

§28.1 Review of finite fields

Let p be a rational prime, and set Fp = Z/pZ. Fix an algebraic closure Fp of Fp. For
q = pr we set

Fq =
{
x ∈ Fp | xq = x

}
.

Proposition 28.1

We have

(1) Fq is a subfield of Fp

(2) If q′ = pr
′

then Fq ⊆ Fq′ if and only if r ≤ r′.

(3)
⋃
r≥1 Fq = Fp.

(4) Gal(Fq/Fp) = 〈x 7→ xp〉 ' Z/rZ.

(5) If F ⊆ Fp is a subfield with [F : Fp] <∞ then F = Fq, where q = |F |.

Remark 28.2. For (5) there are infinite proper subfields of Fp. Actually we have an
inverse limit

Gal(Fp/Fp) ' lim
←r

Z/rZ.

Corollary 28.3

We have

• F∗q is cyclic of order q − 1.

• Fq = Fp[ζq−1], where ζq−1 is a (q − 1)th root of unity.

• Fq
Tr−→ Fp is surjective.

Actually,

TrFq/Fp
(x) =

r−1∑
i=1

xp
i

is a polynomial of degree pr−1.

§28.2 Lemma on Total Ramification

Theorem 28.4

Let L/K be a Galois extension of number fields, and let p ⊆ OK be prime. Then

p · OL = (q1 . . . qm)e

for some e ∈ Z and distinct primes qi.

This is since Gal(L/K) permutes the prime factors.
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Proposition 28.5

In the notation above, let q = qi for some i.

• OL/q is a Galois extension of OK/p.

• There is a natural map

θ : Gq � Gal ((OL/q)/(OK/p))

which is surjective. Here

Gq = {σ ∈ Gal(L/K) : σ(q) = q} .

• ker θ has order e.

Note that if e = 1 (which is “almost always true”) then Gq ' Gal(OL/q/OK/p) via θ.
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§29 April 24, 2015

It’s a curse now that those two things are equal. . . . I’m never sure which one
to write, so I have to write both.

Goal: we’re going to use the results we obtained in order to show the existence of
Frobenius elements, in order to get quadratic reciprocity.

§29.1 Frobenius Elements

Observe the corollary from last time that

Corollary 29.1

Let L/K be a Galois extension of number fields. If p ⊇ OK is unramified in L and
q is a prime factor of p, then

Gal(L/K) ⊇ Gq = Gal ((OL/q)/(OK/p)) .

In any case, we know that the right-hand side is generated by the Frobenius map 〈x 7→ xq〉,
where q = |OK/p|. Denote the corresponding element by Frobq ∈ Gal(L/K).

Note that if q′ is any other prime of q, there is a σ ∈ Gal(L/K) such that σq = q′.
From this it follows that

Gq′ = σGqσ
−1 =⇒ Frobq′ = σ Frobq σ

−1.

Thus the conjugacy class depends only p, not on q. Moreover if Gal(L/K) is abelian
then Frobq depends only on p.

§29.2 Example: Cyclotomic Fields

Lemma 29.2

If ` 6= p is a rational prime, then ζ is unramified in K = Q(ζp).

Proof 1. The discriminant of K is ±pp−2 which isn’t divisible by `.

Proof 2. Let f be be the minimal polynomial of ζp. We want f(x) to have distinct roots
in F`, and we do so by bashing derivatives. (Blah about separable polynomials.)
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§30 April 27, 2015

§30.1 From last time

Let’s take L = Q(ζ`) for some rational prime `. Then for any rational prime p 6= `, p is
unramified in L and we have an element

Frobp ∈ Gal(L/Q) ' (Z/`Z)∗

distinguished as follows: let p =
∏
i p
e
i . Then the Frobp is the element which fixes OL/pi.

Note that
Frobp(ζ`) = ζp` .

Indeed, by hypothesis Frobp(ζ`) = ζa` for some a ∈ (Z/`Z)∗ but modulo pi we have
ζa` ≡ η

p
` (mod p)i; this actually implies ζa` = ζp` or a ≡ ` (mod p).

In fact, all elements of Gal(L/Q) are of the form Frobp. This follows from Dirichlet’s
Theorem: there exists a prime ≡ a (mod `) (in fact infinitely many) for any a 6≡ 0
(mod `).

§30.2 Quadratic Reciprocity

Let L = Q(ζ`), so ∆L = ±``−2. There is a unique quadratic subgroup of L by Galois
theory, say K = Q(

√
`∗). Since ∆K must divide ∆L, it follows that `∗ has to be ±` so

that ` ≡ 1 (mod 4). (One can also do this just by considering ramifications.)
It comes in this way: let H be the unique subgroup of order two of Gal(K/Q) ' (Z/`Z)∗.

Note that we can extract it as follows: there is a surjection(•
`

)
: (Z/`Z)∗ � {±1}

with kernel H, corresponding to the quadratic residues. The quadratic subfield is then

K = (fixed field of Q(ζ`) under H) = Q(
√
`∗).

Lemma 30.1

Let Frobp ∈ Gal(K/Q). Then Frobp ∈ H if and only if p splits in K.

Proof. Let p divide OK . Then Frobp ∈ H is equivalent to Frobp fixing OK .

Claim 30.2. Frobp fixes OK if and only if it fixes OK/p1.

Proof. One direction is immediate. For the other direction, take q a prime factor of
p1 · OL. Blah. �

Theorem 30.3 (Quadratic Reciprocity for Odd Primes)

For distinct odd primes p and ` we have(p
`

)( `
p

)
= (−1)

1
2
(p−1)· 1

2
(`−1).
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Proof. Assume p, ` odd. We have

1 =
(p
`

)
⇐⇒ Frobp ∈ H ⇐⇒ p splits in K.

We have

OK = Z
[

1

2
(1 +

√
`∗)

]
.

So p splits in K exactly when x2 + x + 1−`∗
4 has roots mod p, which is

(
`∗

p

)
= 1. In

summary (p
`

)
=

(
`∗

p

)
which is secretly quadratic reciprocity.

The proof with p = 2 is analogous, just that dealing with x2 + x+ 1−`∗
4 is a little weirder

because it’s not just
(
`∗

p

)
. Instead, it’s whether 1−`∗

4 is even or odd, which amounts to

` ≡ ±1 (mod 8) in the good case.
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§31 May 1, 2015

§31.1 The p-adic numbers

Let p ⊆ OK be a prime. If x ∈ K, we can consider the fractional ideal x · OK , and let

νp(x) = exponent of p in x

if x 6= 0, and ∞ otherwise.
Then for any q we may set

|x|p
def
= qνp(x).

For convenience, we may let q = N(p). This induces an ultrametric on K with

|x+ y|p ≤ max
{
|x|p , |y|p

}
.

We can thus complete it (in the topological sense) to Kp. We can think of it as the limit

Kp = lim
←i
OK/pi.

We can also think of it concretely as the set of Cauchy sequences in K.

Lemma 31.1

Kp is a field.

Proof. The metric is continuous with respect to the ring operation on K, so it follows
that Kp is a ring. Thus all that remains is to get that all nonzero elements are invertible.
Blah.

Example 31.2

Letting K = Q, p = (p) we obtain the p-adic integers Qp.

Proposition 31.3

If p | p · OK , then
Kp/Qp

is a finite extension of degree epfp. Here ep is the power of p dividing p · OK , and
fp = [OK/p : Fp].

(The fact that Qp ⊆ Kp can be checked directly.)

§31.2 Classification of Norms

Definition 31.4. A norm |•| : K → R is a map with

(1) |x| = 0 ⇐⇒ x = 0.

(2) |xy| = |x| |y|

(3) |x+ y| ≤ |x|+ |y|
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(4) For some nonzero x ∈ K, |x| 6= 1. (This disallows the norm sending all nonzero
elements to 1, which would induce the discrete topology.)

Two norms are equivalent if they induce the same topology on K.

Theorem 31.5 (Classification of Norms on Number Fields)

Any norm on K is equivalent to one of

(i) |•|p for some prime p.

(ii) A map |x|σ = ‖σ(x)‖, where σ : K ↪→ C is an embedding and ‖−‖ is complex
absolute value.

Remark 31.6. Using the Chinese Remainder Theorem, we can show that two norms
of the first type are all non-equivalent. No two norms of the first and second type are
equivalent, and the only time when distinct embeddings give the same topology is when
they are conjugates.

§31.3 Adeles

“Now you can play the music”
(Adele starts playing)

Convention: an infinite prime p of K is a norm induced by some embedding K ↪→ C.
Then we denote by Kp the completion of K; it will be isomorphic to either R or C
(although the topology on K itself is not one of them).

§31.4 Adeles

Definition 31.7. An adele of K, the set of which is denoted AK ⊆
∏

pKp, (where the
product runs over infinite primes as well), is defined as

AK
′∏
p

Kp =
{

(xp) | xp ∈ OKp for almost all p
}
.

(Remark that xp ∈ OKp ⇐⇒ |x|p ≤ 1 for almost all p).

Here “almost all” means cofinitely many.
This is a topological ring, whose basis of neighborhoods is given by open sets∏

p

Up

where Up ⊆ OKp and for almost all p, Up = OKp .

Definition 31.8. An idele is an element of IK ⊆
∏
p pK

×
p given by{

(αp)p | αp ∈ O×Kp
for almost all p

}
Here K×p is the units of Kp, i.e. everything not zero. We can put a topology on it,

with basis given by 1 + Up, where Up ⊆ OKp is open.
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Remark 31.9. The topology of K×p is not the subspace topology on Kp. Assume not.
Indeed, consider the sequence

{pm | m = 1, 2, . . . } → 0

in Qp. Then the sequence is Cauchy in Q×p . Next

Q×p → Q×p by x 7→ x−1.

Thus {p−m} would be Cauchy too, which is impossible.

§31.5 Idele Class Group

Observe that K× can be thought of as a subset of IK by mapping x ∈ K× to the constant
sequence (x). We can then define the idele class group as

CK
def
= IK/K

×.

Moreover, we can define a group homomorphism

N : IK → R+

by

(αp)p 7→
∏
p

|αp|p .

(Note that positive real numbers form an abelian group under multiplication.) In the
real places p, we use the norm as the standard absolute value; for the complex places p
we use the square of this.

Proposition 31.10

We have K∗ ⊆ ker(N).

Example 31.11

Let K = Q. Enough to check that if N(x) = 1 for x = p and x = −1.
For x = −1, we have |x|p = 1 for all p. For x = p, we have |p|∞ = p, |p|q = 1 for

any q 6= 4, and |p|p = p−νp(p) = p−1. Multiplying, we see N(p) = 1, which implies
the conclusion.

Proposition 31.12

The subspace K∗ ⊆ IK is discrete and hence closed.

Sketch of Proof. Lt I0K = kerN . Let C0
K = I0K/K

×. It’s a topological group.
The fact that C0

K is compact is equivalent to the finiteness of the class groups and the
unit theorem. Indeed, the proofs are not substantially different; in proving C0

K directly,
one sees much the same techniques.
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Note: there is a map
C0
K � ClK

by

(αp)p 7→
∏
p

pνp(αp).

The compactness of C0
K forces ClK to be finite.
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