
Bashing Geometry with Complex Numbers
Evan Chen《陳誼廷》

29 August 2015

This is a (quick) English translation of the complex numbers note I wrote
for Taiwan IMO 2014 training. Incidentally I was also working on an airplane.

1 The Complex Plane
Let C and R denote the set of complex and real numbers, respectively.

Each z ∈ C can be expressed as

z = a+ bi = r (cos θ + i sin θ) = reiθ

where a, b, r, θ ∈ R and 0 ≤ θ < 2π. We write |z| = r =
√
a2 + b2 and arg z = θ.

More importantly, each z is associated with a conjugate z = a − bi. It satisfies the
properties

w ± z = w ± z

w · z = w · z
w/z = w/z

|z|2 = z · z

Note that z ∈ R ⇐⇒ z = z and z ∈ iR ⇐⇒ z + z = 0.

Im

Re

0

z = 3 + 4i

z = 3− 4i

−1− 2i

|z| = 5

θ

Figure 1: Points z = 3 + 4i and −1− 2i; z = 3− 4i is the conjugate.

We represent every point in the plane by a complex number. In particular, we’ll use a
capital letter (like Z) to denote the point associated to a complex number (like z).
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Complex numbers add in the same way as vectors. The multiplication is more interest-
ing: for each z1, z2 ∈ C we have

|z1z2| = |z1| |z2| and arg z1z2 = arg z1 + arg z2.

This multiplication lets us capture a geometric structure. For example, for any points Z
and W we can express rotation of Z at W by 90◦ as

z 7→ i(z − w) + w.

Im

Re0

z

w

i(z − w) + w

z − w
i(z − w)

Im

Re0

z = 3 + 4i

iz = −4 + 3i

Figure 2: z 7→ i(z − w) + w.

2 Elementary Propositions
First, some fundamental formulas:

Proposition 1. Let A, B, C, D be pairwise distinct points. Then AB ⊥ CD if and
only if d−c

b−a ∈ iR; i.e.
d− c

b− a
+

(
d− c

b− a

)
= 0.

Proof. It’s equivalent to d−c
b−a ∈ iR ⇐⇒ arg

(
d−c
b−a

)
≡ ±90◦ ⇐⇒ AB ⊥ CD.

Proposition 2. Let A, B, C be pairwise distinct points. Then A, B, C are collinear if
and only if c−a

c−b ∈ R; i.e.
c− a

c− b
=

(
c− a

c− b

)
.

Proof. Similar to the previous one.

Proposition 3. Let A, B, C, D be pairwise distinct points. Then A, B, C, D are
concyclic if and only if

c− a

c− b
:
d− a

d− b
∈ R.

Proof. It’s not hard to see that arg
(
c−a
c−b

)
= ∠ACB and arg

(
d−a
d−b

)
= ∠ADB. (Here

angles are directed).
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a

b

c

d

0

b− a
d− c

Figure 3: AB ⊥ CD ⇐⇒ d−c
b−a ∈ iR.

Now, let’s state a more commonly used formula.

Lemma 4 (Reflection About a Segment). Let W be the reflection of Z across AB. Then

w =
(a− b)z + ab− ab

a− b
.

Of course, it then follows that the foot from Z to AB is exactly 1
2(w + z).

Im

Re0 1

a

b
z

w

Im

Re0 1

b− a
z − a

w − a

Im

Re0 1

z−a
b−a

w−a
b−a

Figure 4: The reflection of Z across AB.

Proof. According to Figure 4 we obtain

w − a

b− a
=

(
z − a

b− a

)
=

z − a

b− a
.

From this we derive w = (a−b)z+ab−ab

a−b
.

Here are two more formulas.

Theorem 5 (Complex Shoelace). Let A, B, C be points. Then 4ABC has signed area

i

4

∣∣∣∣∣∣
a a 1

b b 1
c c 1

∣∣∣∣∣∣ .
In particular, A, B, C are collinear if and only if this determinant vanishes.
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Proof. Cartesian coordinates.

Often, Theorem 5 is easier to use than Proposition 2.
Actually, we can even write down the formula for an arbitrary intersection of lines.

Proposition 6. Let A, B, C, D be points. Then lines AB and CD intersect at
(āb− ab̄)(c− d)− (a− b)(c̄d− cd̄)

(ā− b̄)(c− d)− (a− b)(c̄− d̄)
.

But unless d = 0 or a, b, c, d are on the unit circle, this formula is often too messy to
use.

3 The Unit Circle, and Triangle Centers
On the complex plane, the unit circle is of critical importance. Indeed if |z| = 1 we have

z =
1

z
.

Using the above, we can derive the following lemmas.
Lemma 7. If |a| = |b| = 1 and z ∈ C, then the reflection of Z across AB is a+ b− abz,
and the foot from Z to AB is

1

2
(z + a+ b− abz) .

Lemma 8. If A, B, C, D lie on the unit circle then the intersection of AB and CD is
given by

ab(c+ d)− cd(a+ b)

ab− cd
.

These are much easier to work with than the corresponding formulas in general. We
can also obtain the triangle centers immediately:
Theorem 9. Let ABC be a triangle center, and assume that the circumcircle of ABC
coincides with the unit circle of the complex plane. Then the circumcenter, centroid, and
orthocenter of ABC are given by 0, 1

3(a+ b+ c), a+ b+ c, respectively.
Observe that the Euler line follows from this.

Proof. The results for the circumcenter and centroid are immediate. Let h = a+ b+ c.
By symmetry it suffices to prove AH ⊥ BC. We may set

z =
h− a

b− c
=

b+ c

b− c
.

Then

z =

(
b+ c

b− c

)
=

b+ c

b− c
=

1
b +

1
c

1
b −

1
c

=
c+ b

c− b
= −z

so z ∈ iR as desired.

We can actually even get the formula for the incenter.
Theorem 10. Let triangle ABC have incenter I and circumcircle Γ. Lines AI, BI, CI
meet Γ again at D, E, F . If Γ is the unit circle of the complex plane then there exists
x, y, z ∈ C satisfying

a = x2, b = y2, c = z2 and d = −yz, e = −zx, f = −xy.

Note that |x| = |y| = |z| = 1. Moreover, the incenter I is given by −(xy + yz + zx).
Proof. Show that I is the orthocenter of 4DEF .
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4 Some Other Lemmas
Lemma 11. Let A, B be on the unit circle and select P so that PA, PB are tangents.
Then

p =
2

a+ b
=

2ab

a+ b
.

Proof. Let M be the midpoint of AB and set O = 0. One can show OM ·OP = 1 and
that O, M , P are collinear; the result follows from this.

a

b

2ab
a+b

Figure 5: Two tangents. p = 2
a+b

.

Lemma 12. For any x, y, z, the circumcenter of 4XY Z is given by∣∣∣∣∣∣
x xx̄ 1
y yȳ 1
z zz̄ 1

∣∣∣∣∣∣÷
∣∣∣∣∣∣
x x̄ 1
y ȳ 1
z z̄ 1

∣∣∣∣∣∣ .
This formula is often easier to apply if we shift z to the point 0 first, then shift back

afterwards.

5 Examples
Example 13 (MOP 2006). Let H be the orthocenter of triangle ABC. Let D, E, F
lie on the circumcircle of ABC such that AD ‖ BE ‖ CF . Let S, T , U respectively
denote the reflections of D, E, F across BC, CA, AB. Prove that points S, T , U , H
are concyclic.

Proof. Let (ABC) be the unit circle and h = a + b + c. WLOG, AD, BE, CF are
perpendicular to the real axis (rotate appropriately); thus d = a and so on. Thus
s = b+ c− bcd = b+ c− abc and so on; we now have

s− t

s− u
=

b− a

c− a
and h− t

h− u
=

b+ abc

c+ abc
.

Compute

s− t

s− u
:
h− t

h− u
=

(b− a)(c+ abc)

(c− a)(b+ abc)
=

(
1
b −

1
a

) (
1
c +

1
abc

)(
1
c −

1
a

) (
1
b +

1
abc

) =⇒ s− t

s− u
:
h− t

h− u
∈ R

as desired.
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F

D
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Q M

Example 14 (Taiwan TST 2014). In 4ABC with incenter I, the incircle is tangent to
CA, AB at E, F . The reflections of E, F across I are G, H. Let Q be the intersection of
GH and BC, and let M be the midpoint of BC. Prove that IQ and IM are perpendicular.

Solution. Let D be the foot from I to BC, and set (DEF ) as the unit circle. (This lets
us exploit the results of Section 3.) Thus |d| = |e| = |f | = 1, and moreover g = −e,
h = −f . Let x = d = 1

d and define y, z similarly. Then

b =
2

d+ f
=

2

x+ z
.

Similarly, c = 2
x+y , so

m =
1

2
(b+ c) =

1

x+ y
+

1

x+ z
=

2x+ y + z

(x+ y)(x+ z)
.

Next, we have Q = DD ∩GH, which implies

q =
dd(g + h)− gh(d+ d)

d2 − gh
=

1
x2

(
− 1

y − 1
z

)
− 1

yz
2
x

1
x2 − 1

yz

=
2x+ y + z

x2 − yz
.

so
m/q =

x2 − yz

(x+ y)(x+ z)
.

Now,

m/q =

1
x2 − 1

yz(
1
x + 1

y

) (
1
x + 1

z

) =
yz − x2

(x+ y)(x+ z)
= −m/q

thus m/q ∈ iR, as desired.

Example 15 (USAMO 2012). Let P be a point in the plane of 4ABC, and γ a line
through P . Let A′, B′, C ′ be the points where the reflections of lines PA,PB, PC with
respect to γ intersect lines BC,AC,AB respectively. Prove that A′, B′, C ′ are collinear.

Solution. Let p = 0 and set γ as the real line. Then A′ is the intersection of bc and pā.
So, using Proposition 6 we get

a′ =
ā(b̄c− bc̄)

(b̄− c̄)ā− (b− c)a
.
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A

B C

P

A′

Note that
ā′ =

a(bc̄− b̄c)

(b− c)a− (b̄− c̄)ā
.

Thus by Theorem 5, it suffices to prove

0 =

∣∣∣∣∣∣∣∣
ā(b̄c−bc̄)

(b̄−c̄)ā−(b−c)a

a(bc̄−b̄c)

(b−c)a−(b̄−c̄)ā
1

b̄(c̄a−cā)

(c̄−ā)b̄−(c−a)b

b(cā−c̄a)

(c−a)b−(c̄−ā)b̄
1

c̄(āb−ab̄)

(ā−b̄)c̄−(a−b)c

c(ab̄−āb)

(a−b)c−(ā−b̄)c̄
1

∣∣∣∣∣∣∣∣ .
This is equivalent to

0 =

∣∣∣∣∣∣
ā(b̄c− bc̄) a(b̄c− bc̄) (b̄− c̄)ā− (b− c)a
b̄(c̄a− cā) b(c̄a− cā) (c̄− ā)b̄− (c− a)b
c̄(āb− ab̄) c(āb− ab̄) (ā− b̄)c̄− (a− b)c

∣∣∣∣∣∣ .
Evaluating the determinant gives∑

cyc
((b̄− c̄)ā− (b− c)a) · −

∣∣∣∣ b b̄
c c̄

∣∣∣∣ · (c̄a− cā)
(
āb− ab̄

)
or, noting the determinant is bc̄− b̄c and factoring it out,

(b̄c− cb̄)(c̄a− cā)(āb− ab̄)
∑
cyc

(
ab− ac+ c̄ā− b̄ā

)
= 0.

Example 16 (Taiwan TST Quiz 2014). Let I and O be the incenter and circumcenter
of ABC. A line ` is drawn parallel to BC and tangent to the incircle of ABC. Let X,
Y be on ` so that I, O, X are collinear and ∠XIY = 90◦. Show that A, X, O, Y are
concyclic.

Solution. Let X ′ and Y ′ respectively denote the reflections of X and Y across I. Note
that X, Y lie on BC. Also, let P , Q be the intersections of IY with the circumcircle.

Of course, (ABC) is the unit circle. Let j be the complex number corresponding to I
(to avoid confusion with i =

√
−1). Thus,

x′ =

(
bc− bc

)
(j − 0)−

(
j0− j0

)
(b− c)

(b− c)(j − 0)− (b− c)(j − 0)
=

j · c2−b2

bc

j · c−b
bc − (b− c)j

=
j(b+ c)

j + bcj
.

We seek y′ now. Consider the quadratic equation in z given by

z − j

j
+

1
z − j

j
= 0 ⇐⇒ z2 − 2jz + j/j = 0.
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A

B C

O

I

XY

P

Q

Y ′X ′

Its zeros in z are p and q, which implies that p+ q = 2j and pq = j/j (by Vieta!). From
this we can compute

y′ =
pq(b+ c)− bc(p+ q)

pq − bc
=

j(b+ c)− 2bcjj

j − bcj
=

j(b+ c)− 2bcjj

j − bcj
.

which gives

x = 2j − x′ =
j(2j − b− c+ 2bcj)

j + bcj
and y = 2j − y′ =

j(2j − b− c)

j − bcj
.

From this we can obtain

y − x = j · (2j − b− c)(j + bcj)− (2j − b− c+ 2bcj)(j − bcj)

(j − bcj)(j + bcj)

= j · 2bcj(2j − b− c)− 2bcj(j − bcj)

(j − bcj)(j + bcj)

= j ·
2bcj

(
j − b− c+ bcj

)
(j − bcj)(j + bcj)

X =
y − x

x
=

2bcj
(
j − b− c+ bcj

)
(j − bcj)(2j − b− c+ 2bcj)

A =
y − a

a
=

j(2j − b− c− a) + abcj

a(j − bcj)

We need to prove X/A = X/A. Now set a = x2, b = y2, c = z2, j = −(xy + yz + zx),
j = −x+y+z

xyz (this is a different x, y than the points X and Y .) So, the above rewrites as

X =
2yz

x (x+ y + z)(yzx (x+ y + z) + y2 + z2 + xy + yz + zx)(
−yz

x (x+ y + z) + xy + yz + zx
) (

y2 + z2 + 2(xy + yz + zx) + 2yz
x (x+ y + z)

)
=

2yz(x+ y + z)
(
2xyz +

∑
sym x2y

)
(y + z)(x2 − yz) (x(y + z)(2x+ y + z) + 2yz(x+ y + z))
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=
2yz(x+ y + z)(x+ y)(x+ z)

(x2 − yz) ((x2 + yz)(y + z) + (xy + yz + zx)(x+ y + z))

and

A =
(xy + yz + zx)(x+ y + z)2 − xyz(x+ y + z)

x2(−(xy + yz + zx) + yz
x (x+ y + z))

=
(x+ y + z)(x+ y)(y + z)(z + x)

x(yz − x2)(y + z)

thus

X/A =
−2xyz

(x2 + yz)(y + z) + (x+ y + z)(xy + yz + zx)

=
− 2

xyz

( 1
x2 + 1

yz )(
1
y + 1

z ) + ( 1x + 1
y + 1

z )(
1
xy + 1

yz + 1
zx)

= X/A.

6 Practice Problems
1. Let ABCD be cyclic. Let HA, HB, HC , HD denote the orthocenters of BCD,

CDA, DAB, ABC. Show that AHA, BHB, CHC , DHD are concurrent.

2. (China TST 2011) Let Γ be the circumcircle of a triangle ABC. Assume AA′, BB′,
CC ′ are diameters of Γ. Let P be a point inside ABC and let D, E, F be the feet
from P to BC, CA, AB. Let X be the reflection of A′ across D; define Y and Z
similarly. Prove that 4XY Z ∼ 4ABC.

3. In circumscribed quadrilateral ABCD with incircle ω, Prove that the midpoint of
AC and the midpoint of BD are collinear with the center of ω.

4. (Simson Line) Let ABC be a triangle and P a point on its circumcircle.
(a) Let D, E, F be the feet from P to BC, CA, AB. Show that D, E, F are

collinear.
(b) Moreover, prove that the line through these points bisects PH, where H is

the orthocenter of ABC.

5. (PUMaC Finals) Let γ and I be the incircle and incenter of triangle ABC. Let D,
E, F be the tangency points of γ to BC, CA, AB and let D′ be the reflection of
D about I. Assume EF intersects the tangents to γ at D and D′ at points P and
Q. Show that ∠DAD′ + ∠PIQ = 180◦.

6. (Schiffler Point) Let triangle ABC have incenter I. Prove that the Euler lines of
4AIB, 4BIC, 4CIA, 4ABC are concurrent.

7. (USA TST 2014) Let ABCD be a cyclic quadrilateral and let E, F , G, H be the
midpoints of AB, BC, CD, DA. Call W , X, Y , Z the orthocenters of AHE, BEF ,
CFG, DGH. Prove that ABCD and WXY Z have the same area.

8. (Iran 2004) Let O be the circumcenter of ABC. A line ` through O cuts AB and
AC at points X and Y . Let M and N be the midpoints of BY , CX. Show that
∠MON = ∠BAC.

9. (APMO 2010) Let ABC be an acute triangle, where AB > BC and AC > BC.
Denote by O and H the circumcenter and orthocenter. The circumcircle of AHC
intersects AB again at M ; the circumcircle of AHB intersects AC again at N .
Prove that the circumcenter of triangle MNH lies on line OH.
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10. (Iran 2013) Let ABC be acute, and M the midpoint of minor arc B̂C. Let N be
on the circumcircle of ABC such that AN ⊥ BC, and let K, L lie on AB, AC so
that OK ‖ MB, OL ‖ MC. (Here O is the circumcenter of ABC). Prove that
NK = NL.

11. (MOP 2006) Cyclic quadrilateral ABCD has circumcenter O. Let P be a point
in the plane and let O1, O2, O3, O4 be the circumcenters of PAB, PBC, PCD,
PDA. Show that the midpoints of O1O3, O2O4, OP are concurrent.
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