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dse S: f(s) #0.
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Theorem (Combinatorial Nullstellensatz)

Sl Let f € Flz1,x9,...,x,] be a polynomial of degree
t14 - +tn IfS1,S9,...,S, CF satisfies |S;| > t; for all i,

Other Results

Summary

Js; € Si: f(s1,82,-..,80) #0

t1,.t2

whenever the coefficient of z{'z:} ...zl is nonzero.
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Small Fry

Problem (Russia 2007, Day 2, Problem 1)

Two distinct numbers are written on each vertex of a convex
100-gon. Prove one can remove a number from each vertex so
that the remaining numbers on any two adjacent vertices differ.
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Small Fry

Problem (Russia 2007, Day 2, Problem 1)

Two distinct numbers are written on each vertex of a convex
100-gon. Prove one can remove a number from each vertex so
that the remaining numbers on any two adjacent vertices differ.

Proof.

Define P (x1,...,2100) by

(r1 — w2) (22 — 23) (3 — 4) . .. (T99 — Z100) (T100 — T1) -

The coefficient of z1x3 ... z100 is 2. L]
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#1's are easy, let's kill IMO #6's

Problem (IMO 2007 Problem 6)

Let n be a positive integer. Consider

S ={(z,y,2) | z,y,2 € {0,1,...,n}, (z,y,2) # (0,0,0)}

as a set of (n + 1) — 1 points in the three-dimensional space.
Determine the smallest possible number of planes, the union of
which contains S but does not include (0,0, 0).
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#1's are easy, let's kill IMO #6's

Problem (IMO 2007 Problem 6)

Let n be a positive integer. Consider

S ={(z,y,2) | z,y,2 € {0,1,...,n}, (z,y,2) # (0,0,0)}

as a set of (n + 1) — 1 points in the three-dimensional space.
Determine the smallest possible number of planes, the union of
which contains S but does not include (0,0, 0).

Answer

3n. Use the planesz =1,2,...,n,y=1,2,...,n and
z=1,2,...,n.
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A(fE, Y, Z) d:ef H a; T + bzy + (&4 + d’L)
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3

Other Results

d
Summary B(Jf,y,z) :e H Xr — Z H — ’L

=1 =1 7

Z—Z
1

n
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A(fE, Y, Z) d:ef H a; T + bzy + (&4 + d’L)
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Other Results def
Summary B(J;,y,z) = H fU—Z H _/L

i=1 =1 7

3

(z —1)
i=1
@ The coefficient of z"y"2™ in A is 0.

@ The coefficient of z"y™2" in B is 1.
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A(0,0,0

P(LU, Y, Z) dzaf A(I, Y, Z) - BEO’,O:O;B(J:, Y, Z)‘
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e Now P(z,y,z) =0 for any z,y,z € {O,l,...,n}3.

A(0707O)
B(0,0,0)

@ This is a contradiction of the nullstellensatz.

Summary

@ But the coefficient of x™y" 2" is —
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Other Results o If |A| 4+ |B| > p you can just use Pigeonhole.

Summary @ Otherwise, take any set C with |C| = |A| + |B| — 2. We
want to show 3(a,b) € A x B for whicha+b ¢ C.
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Summary @ Otherwise, take any set C with |C| = |A| + |B| — 2. We
want to show 3(a,b) € A x B for whicha+b ¢ C.

fat) ET]@+b—c).
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The coefficient of al4l=1p151-1 is ('AEELQ) #£0 (mod p). [
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The coefficient of z!4l1=1yl41=2 jg
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Chevalley’s Theorem

Corollary (Chevalley, 1935)

Let fl? f27 sy Jk S Zp[X17X27 o 7Xn] 53ti5fy
Zle deg f; < n. If the polynomials f; have a common zero
(c1,¢2,- -+ ,cn), then they have another common zero.
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Summary =1l
def =
B(xlax% ,l’n) = H ((-:UZ - Cz)p f— 1)
=1
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Chevalley’s Theorem

Corollary (Chevalley, 1935)

Let fl?f??"' 7fk € Zp[X17X2a"'

Zle deg f; < n. If the polynomials f; have a common zero
(c1,¢2,- -+ ,cn), then they have another common zero.

, Xp] satisfy

. ,xn)p_l — 1)
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Fitherd Let p be a prime and let S, S, -, Sk C Z>q, each containing
(B et 0 and having pairwise distinct elements modulo p. Suppose
Introduction that > ,(|S;| — 1) > p. Then for any elements a1, -- ,aj € Zy,
Contest the equation ), x;a; = 0 has a solution
Practice 5

(x1, - ,x) € S1 X -+ X Sy other than the all-zero solution.

Additive
Combinatorics

Other Results

Problem (TSTST 2011/9)

Let n € Z*. Suppose we're given 2" + 1 distinct sets, each
containing finitely many objects. Place each set into one of two
categories, the red sets and the blue sets, with at least one set
in each category. We define the symmetric difference of two
sets as the set of objects belonging to exactly one of the two
sets. Prove that there are at least 2" different sets which can
be obtained as the symmetric difference of a red and blue set.

Summary
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And More Treats. ..

Theorem

Let Hy, Ho, ..., H,, be a family of hyperplanes in R" that
cover all vertices of the unit cube {0,1}" but one. Then
m < n.

Theorem (Alon)

For any prime p, any loopless graph G = (V, E) with average
degree at least 2p — 2 and maximum degree at most 2p — 1
contains a p-regular subgraph.

Corollary of above is the Berge-Saurer Conjecture: any simple
4-regular graph contains a 3-regular subgraph.



Ne‘tu)mvwsw]or

Lincoln

Combinatorial
Nullstellensatz

Richard
(Evan) Chen

Introduction

Contest
Practice

Additive
Combinatorics

Other Results

Summary

And Even More Treats. ..

Theorem (Alon)

A graph G = (V, E) on the vertices {1,2,...,n} is not
k-colorable if and only if the graph polynomiaFP fq lies in the
ideal generated by the polynomials :L’f — 1, where 1 < i <n.

“The graph polynomial
fa = fa(@i,za,... mn) = [[{(@i — z;) 1 0 < g, {vi,v;} € E}.

Theorem (Alon)

Let p be a prime, and let G = (V, E) be a graph on a set of
|V| > d(p — 1) vertices. Then there is a nonempty subset U of
vertices of G such that the number of cliques of d vertices of G
that intersect U is O modulo p.
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@ Profit.
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