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The goal of this document is to provide a easier introduction to olympiad
inequalities than the standard exposition Olympiad Inequalities, by Thomas
Mildorf. T was motivated to write it by feeling guilty for getting free 7’s on
problems by simply regurgitating a few tricks I happened to know, while
other students were unable to solve the problem.

Warning: These are notes, not a full handout. Lots of the exposition is
very minimal, and many things are left to the reader.

In a problem with n variables, these respectively mean to cycle through the n variables,
and to go through all n! permutations. To provide an example, in a three-variable
problem we might write

Za2za2+62+c2

cyc

Z a’b = a®b+ b*c + ta

cyc

Za2za2+a2+b2+62+c2+c2

sym

Z a’b = a®b + a’c + b%c + b%a + *a + 2b.

sym

§1 Polynomial Inequalities

§1.1 AM-GM and Muirhead

Consider the following theorem.

4 N\
Theorem 1.1 (AM-GM)
For nonnegative reals a1, ao, ..., a, we have
artazt -+ an > Yai...any.
n
Equality holds if and only if a; = a2 = - = ay.
J

For example, this implies
a’ + b? > 2ab, a®+ b+ 3 > 3abc.

Adding such inequalities can give us some basic propositions.
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Example 1.2
Prove that a? + b2 + ¢2 > ab + be + ca and a* + b* + ¢* > a2be + b%ca + 2ab.

Proof. By AM-GM,

2 b? 92 4 b4 4
a+ > ab and % > a’be.

Similarly,
b2 2 2b4 4 4
tc > be and WA ta > b2ca.
2 4
2 2 4 4 14
2 b
¢ —|2—a > ca and%Zchﬂ).

Summing the above statements gives

a’® + b + 2 > ab + be + ca and at + vt + > a’be + b*ca + ab. O
Exercise 1.3. Prove that a3 + 0% + ¢ > a?b + b?c + c2a.
Exercise 1.4. Prove that a® + b + ¢® > a®bc + b3ca + c3ab > abc(ab + be + ca).

The fundamental intuition is being able to decide which symmetric polynomials of a
given degree are bigger. For example, for degree 3, the polynomial a3 + b® + ¢? is biggest
and abc is the smallest. Roughly, the more “mixed” polynomials are the smaller. From
this, for example, one can immediately see that the inequality

(a4+b+c)3 > a®+ b3+ + 24abe

must be true, since upon expanding the LHS and cancelling a® + b + ¢3, we find that the
RHS contains only the piddling term 24abc. That means a straight AM-GM will suffice.

A useful formalization of this is Muirhead’s Inequality. Suppose we have two sequences
Ty > 29> >y and Y1 > Yo > -+ > yy such that

T1+ro+--t+xp=y1+y2+ -+ Yn,
and for k=1,2,...,n—1
r1t+az2+--F+ g2y Y2+ + Yk,

Then we say that (z,) majorizes (y,), written (z,,) > (yn).
Using the above, we have the following theorem.

4 )
Theorem 1.5 (Muirhead’s Inequality)
Ifay, ag, . .., ay are positive reals, and (z,) majorizes (y,) then we have the inequality.
Zagflag? coearm > Zai’lagz coad
sym sym
. J
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Example 1.6
Since (5,0,0) > (3,1,1) > (2,2,1),

A+ ++0°+ P+ P> adbe+ adbe + biea + b3ca + ab + ab

> a?b%c + a’b’c + b*cPa + b2Pta + Aa’b + Pa’b.

From this we derive a® 4 b° 4 ¢® > a3bc + b3ca + c2ab > abe(ab + be + ca).

Notice that Muirhead is symmetric, not cyclic. For example, even though (3,0,0) >
(2,1,0), Muirhead’s inequality only gives that

2(a® + b3 + ) > a®b+ a’c + Ve + b2a+ Pa + b

and in particular this does not imply that a® + 0%+ ¢® > a?b+ b?c+ c?a. These situations
must still be resolved by AM-GM.

§1.2 Non-homogeneous inequalities

Consider the following example.

Example 1.7
Prove that if abc = 1 then a® + 02 +c2 > a+b+c.

Proof. AM-GM alone is hopeless here, because whenever we apply AM-GM, the left
and right hand sides of the inequality all have the same degree. So we want to use the
condition abc = 1 to force the problem to have the same degree. The trick is to notice
that the given inequality can be rewritten as

a2+b2—|—02 Z al/3b1/3cl/3 (a+b+c)

Now the inequality is homogeneous. Observe that if we multiply a, b, ¢ by any real
number k > 0, all that happens is that both sides of the inequality are multiplied by k2,
which doesn’t change anything. That means the condition abc = 1 can be ignored now.
Since (2,0,0) > (%, %, %), applying Muirhead’s Inequality solves the problem. O

The importance of this problem is that it shows us how to eliminate a given condition
by homogenizing the inequality; this is very important. (In fact, we will soon see that
we can use this in reverse — we can impose an arbitrary condition on a homogeneous

inequality.)

§1.3 Practice Problems
1. a” +b0" 4+ ¢ > a*b® + b4 + ¢*ad.

(a34+b34c3)
abc

2. Ifa+b+c=1,then i +}+1<342.

.U 4+ LS >atbte
4. 1L 412 — 1 then (a+1)(b+1)(c+1) > 64.
5. (USA 2011) If a® + b2 + 2 + (a + b+ ¢)? < 4, then

ab+1 n be+1 n ca+1 >3
(a+0)?2  (b+c)2 (c+a)2 7
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6. If abed = 1, then a*b+b*c+ctd+d*a>a+b+c+d.

§2 Inequalities in Arbitrary Functions

Let f : (u,v) — R be a function and let ay,as,...,a, € (u,v). Suppose that we fix
W = a (if the inequality is homogeneous, we will often insert such a condition)
and we want to prove that

flar) + faz) + -+ f(an)

is at least (or at most) nf(a). In this section we will provide three methods for doing so.
We say that function f is convez if f”(x) > 0 for all z; we say it is concave if f’(x) <0
for all . Note that f is convex if and only if — f is concave.

§2.1 Jensen / Karamata

Theorem 2.1 (Jensen's Inequality)

If f is convex, then

flar) + -+ flan) St <a1+-7-1-+an>_

n

The reverse inequality holds when f is concave.
. 4

Theorem 2.2 (Karamata's Inequality)

If f is convex, and (x,) majorizes (y,) then

fl@) + -+ f@n) = fyr) + - + Flyn)-

The reverse inequality holds when f is concave.
. J

Example 2.3 (Shortlist 2009)
Givena+b+c= % + % + %, prove that

1 1 1
(2a + b+ ¢)? * (a+2b+c)? + (a+b+2c)?

3
< —.
— 16

Proof. First, we want to eliminate the condition. The original problem is equivalent to
1 N 1 N 1 3 gyt
(2a+b+¢)?  (a+2b+¢)? (a+b+2c)?2 ~ 16 a+b+c

Now the inequality is homogeneous, so we can assume that a + b+ ¢ = 3. Now our
original problem can be rewritten as

1 1 >0
16a  (a+3)2~
cyc
Set f(z) = 1= — ﬁ We can check that f over (0,3) is convex so Jensen completes
the problem. O
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Example 2.4
Prove that

1 1 1 1 1 1 9
—t-+=-2>2 - + > :
a b ¢ a+b b+c cHa at+b+ec

Proof. The problem is equivalent to

1,1 111 11 1 1
E+E+E—@+E+m—a+b+c+a+b+c+a+b+6'

Assume WLOG that a > b > c. Let f(x) = 1/z. Since

(a,b,¢) = a+b a+c b+c a+b+c a+b+c a+b+c
T 27 2 7 2 3 ’ 3 ’ 3

the conclusion follows by Karamata. O

Example 2.5 (APMO 1996)

If a, b, ¢ are the three sides of a triangle, prove that

Va+tb—c+Vb+rcec—a+vVetra—b<+a+Vb+/ec

Proof. Again assume WLOG that a > b > ¢ and notice that (a+b—c,c+a—b,b+c—a) =
(a,b,c). Apply Karamata on f(z) = /x. O

§2.2 Tangent Line Trick

n

. If f is not convex, we can sometimes still prove the inequality

f(x) > fla) + f'(a) (z — a).

If this inequality manages to hold for all x, then simply summing the inequality will give
us the desired conclusion. This method is called the tangent line trick.

Example 2.6 (Cynthia Stoner)
If a+ b+ ¢ =3, prove that

182(3_6)1(4_C)+2(ab+bc+ca) > 15.

cyc

Proof. We can rewrite the given inequality as
18 2)
— —c° | > 6.
> (5=

Using the tangent line trick lets us obtain the magical inequality

18 9 Cc+3 2
—_— (" > —1)*(2c—-9)<0
Good—0 ¢ 2 — < c(c—1)*(2¢—-9) <
and the conclusion follows by summing. O
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Example 2.7 (Japan)

(b+c—a)? 3
Prove 3 oye amr5ror = 5-

Proof. Since the inequality is homogeneous, we may assume WLOG that a + b+ ¢ = 3.
So the inequality we wish to prove is

Z (3 - 2(1)2 > 3
a?+(3—a)2 ~ 5
cyc
With some computation, the tangent line trick gives away the magical inequality:

2a + 1
S22t S, O
(=15 —6ag0>"

(3 — 2a)? 21 18( 1) e 18
A — —_— — — a/ J— J—
(3—a)?+a®> — 5 25 25

§2.3 n—1EV

The last such technique is n —1 EV. This is a brute force method involving much calculus,
but it is nonetheless a useful weapon.

4 )
Theorem 2.8 (n — 1 EV)

Let a1, as, ..., a, be real numbers, and suppose a1 + as + --- + a, is fixed. Let
f:R — R be a function with exactly one inflection point. If

flar) + flag) +--- + f(an)

achieves a maximal or minimal value, then n — 1 of the a; are equal to each other.

. J

Proof. See page 15 of Olympiad Inequalities, by Thomas Mildorf. The main idea is to
use Karamata to “push” the a; together. O

Example 2.9 (IMO 2001 / APMOC 2014)
Let a, b, ¢ be positive reals. Prove 1 < chc ﬁ < 2.

Proof. Set e* = 2—3, eV =13, " = g—é’. We have the condition x 4+ y 4+ z = 0 and want to
prove

L< f@) + fly) + f(z) <2

where f(z) = \/piW' You can compute
4e” (4e* — 1
fray= UL
(8e* 4+ 1)2

so by n —1 EV, we only need to consider the case x = y. Let t = €*; that means we want

to show that
2 1

1< + <2
VI8t \/1+8/2

Since this a function of one variable, we can just use standard Calculus BC methods. [
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Example 2.10 (Vietnam 1998)
Let 1, x2, ..., z, be positive reals satisfying > ;" ; m = TIQS' Prove
YriTe ... T
VAr2- e > 1998.
n—1

Proof. Let y; = %. Since y1 +y2 + -+ - + y, = 1, the problem becomes
n 1 "
I[I{=-1)=®m-1".
i—1 Y

Set f(z) =In (% — 1), so the inequality becomes f(y1) + -+ f(yn) > nf (%) We can
prove that

1—2y
W) =53
(y? —y)?
So f has one inflection point, we can assume WLOG that y; = y2 = ...yn—1. Let this

common value be t; we only need to prove
(n—1)In (2 -1)+1 ! 1) > nin(n —1)
n—1)In{-— nf— - nin(n —1).
t 1—(n—1)t -
Again, since this is a one-variable inequality, calculus methods suffice. O

§2.4 Practice Problems
1. Use Jensen to prove AM-GM.

2 2 2 1 1 1 1 1 1
2. If a® 4+ b 4 ¢* = 1 then a?42 + b2+2 + c2+2 < 6ab+c? + 6bc+a? + 6ca+b2 "

3. If a+ b+ c=3 then
a 3
> <
202 +a+1 " 4

cyc

4. (MOP 2012) If a+ b+ c+d =4, then 5+ % + 5 + 5 > a> + % + 2+ d°
§3 Eliminating Radicals and Fractions

§3.1 Weighted Power Mean
AM-GM has the following natural generalization.

[
Theorem 3.1 (Weighted Power Mean)

Let a1, a9, ...,a, and wy, wo, ..., w, be positive reals with wy +wy + -+ 4+ w, = 1.
For any real number r, we define

(w1a] + waah + - - - + wnat) V" #£0

P(r) =
a;ras?...a¥n r=0.
If r > s, then P(r) > P(s). Equality occurs if and only if a1 = as = -+ = ay.
- J
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In particular, if w1:w2:---:wn:%,the above P(r) is just
T T r\ /7
<a1+a2+ +an) "0
P(r) = n
Yaiag ... ay r=20.
By setting » = 2,1,0, —1 we derive
2 2
a PR a/ a PEEY a/ /)’L
s T > L * nZ\n/a1a2---an2ﬁ
n n L71_|_..._|_a

which is QM-AM-GM-HM. Moreover, AM-GM lets us “add” roots, like
b
Va+Vb+ e < 34 w

Example 3.2 (Taiwan TST Quiz)

Prove 3(a + b+ ¢) > 8Vabc + i’/@

%, Wy = %, we find that

34343
<M> 4 g (abc) .

Proof. By Power Mean with r =1, s = %, wy

3
1s5/a3+b3+c3 8, 1
ST TE P < =
(9\/ 3 tgvake] =3

so we want to prove a® + b% + ¢® + 24abc < (a + b + ¢)3, which is clear. O

§3.2 Cauchy and Holder

\
Theorem 3.3 (Holder's Inequality)
Let Ag, Ap, ..., A\, be positive reals with A\, + Ap +---+ A, = 1. Let a1, as, ..., an,
b1, ba, ..., by, ..., 21, 29, ..., Zp be positive reals. Then
n
(@14 Fan) (b4 b)) 2D a2
i=1
Equality holds if ay :ag: -~ :ap, =by :bg: -1 by =---=21:29: - 2.
J
Proof. WLOG a1 +---+ay, =b1+---+ b, =--- =1 (note that the degree of the a; on
either side is \,). In that case, the LHS of the inequality is 1, and we just note
n n
D a2 <> (Aaai + Mo+ ) =1 O
i=1 i=1

If we set Ay = \p = %, we derive what is called the Cauchy-Schwarz inequality.

2
(a1 +ag+---+ap) (b +ba+---+by) > (\/a1b1+ a2b2+-'-+\/anbn> .
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Cauchy can be rewritten as
2 2 2 2
X X X T X cee T
71+72+.__+7n2(1+ o+ + )
Y1 Y2 Yn

yi+-+Yn
This form it is often called Titu’s Lemma in the United States
Cauchy and Hoélder have at least two uses

1. eliminating radicals
2. eliminating fractions

Let us look at some examples

Example 3.4 (IMO 2001)
Prove

; \/a2 + Sbc

Proof. By Holder

2

3
+8bc) > (a+b+
(o) (S ame) oo

So it suffices to prove (a + b+ c)

3> > eye @(a” +8bc) = a” + b® + 3 + 24abe. Does this
look familiar? ]
Example 3.5 (Balkan)
1 27
Prove ;oo + sera) T watp) 2 sarerer
Proof. Again by Holder,
1 1 1
3 3 1 3
a b+c _— >1+1+1=3. O
(=) (Zr) (Tt =
cyc cyc cyc

Example 3.6 (JMO 2012)
Prove chc a;:ﬁgg > % (a2 +b2 4+ 02).

Proof. We use Cauchy (Titu) to obtain

3

a (a?)? (a? +b? + c?)?
= >
Z 5a +b Czy:

5a2 +ab —
cyc c

> ey Da? +ab

We can easily prove this is at least é(a2+b2+02) (recall a2+b2+c is the “biggest” sum, so
we knew in advance this method would work). Similarly >

Cyc5a+b Ha?+b*+c?). O
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Example 3.7 (USA TST 2010)

— 1 1 1 1
If abe = 1, prove a®(b+2c)? + b°(c+2a)? + c®(a+20)? E 3"

Proof. We can use Hélder to eliminate the square roots in the denominator:
2 . . 3
2
(Z ab —+ 2@0) (Z a5(b—|—26)2> Z (Z a) Z 3(Gb + bC + ca) . D
cyc cyc cyc

§3.3 Practice Problems
1. If a+ b4 c=1, thenvab + ¢ + vVbc + a + Vea + b > 1+ Vab + Vbe + +/ca.
2. Ifa?+ b2+ =12,thena- V02 +c2+b- V2 +a2+c- Va2 +b2 <12.
3. (ISL 2004) If ab + bc 4 ca = 1, prove 13/%+6b+ :\3/%+6c+ €/%+6a§ ﬁ

4. (MOP 2011) Va2 — ab + b2+ /b2 — bc + 2+ /2 — ca + a2 +9vabc < 4(a+b+c).

5. (Evan Chen) If a3 + b3 + ¢ + abe = 4, prove

(5a® + be)? (502 + ca)? (5¢? + ab)? S (10 — abc)?
(a+b)at+ec) (b+e)(b+a) (c+a)c+b) ~ a+b+c

When does equality hold?

§4 Problems

1. (MOP 2013) If a + b+ ¢ = 3, then

Va2 +ab+02+ Vb2 +be+ 2+ V2 +ca+a? >3

2. (IMO 1995) If abc = 1, then ag(;+c) + b3(§+a) + 63(;%) > 3.

3. (USA 2003) Prove Y s%-ttd <8

4. (Romania) Let x1, xa, ..., x, be positive reals with xjz5...x, = 1. Prove that
1
2?21 n—l—&-xi S 1

5. (USA 2004) Let a, b, ¢ be positive reals. Prove that

(a® — a® +3) (b° — b* + 3) (05—02+3)2(a+b+c)3.

6. (Evan Chen) Let a, b, ¢ be positive reals satisfying a + b + ¢ = Va + Vb + /c.
Prove a®bbcc > 1.

10
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