The Incenter／Excenter Lemma

Evan Chen《陳誼廷》

6 August 2016

In this short note，we＇ll be considering the following useful lemma．

Lemma

Let $A B C$ be a triangle with incenter I, A－excenter I_{A} ，and denote by L the midpoint of $\operatorname{arc} B C$ ．Show that L is the center of a circle through I, I_{A}, B, C ．

Proof．This is just angle chasing．Let $A=\angle B A C, B=\angle C B A, C=\angle A C B$ ，and note that A, I, L are collinear（as L is on the angle bisector）．We are going to show that $L B=L I$ ，the other cases being similar．

First，notice that

$$
\angle L B I=\angle L B C+\angle C B I=\angle L A C+\angle C B I=\angle I A C+\angle C B I=\frac{1}{2} A+\frac{1}{2} B
$$

However，

$$
\angle B I L=\angle B A I+\angle A B I=\frac{1}{2} A+\frac{1}{2} B .
$$

Hence，$\triangle B I L$ is isosceles．So $L B=L I$ ．The rest of the proof proceeds along these lines．

Now，let＇s see where this lemma has come up before．．．

§1 Mild Embarrassments

Problem 1.1 （USAMO 1988）．Triangle $A B C$ has incenter I ．Consider the triangle whose vertices are the circumcenters of $\triangle I A B, \triangle I B C, \triangle I C A$ ．Show that its circumcenter coincides with the circumcenter of $\triangle A B C$ ．

Problem 1.2 （CGMO 2012）．The incircle of a triangle $A B C$ is tangent to sides $A B$ and $A C$ at D and E respectively，and O is the circumcenter of triangle $B C I$ ．Prove that $\angle O D B=\angle O E C$ ．

Problem 1.3 （CHMMC Spring 2012）．In triangle $A B C$ ，the angle bisector of $\angle A$ meets the perpendicular bisector of $\overline{B C}$ at point D ．The angle bisector of $\angle B$ meets the perpendicular bisector of $\overline{A C}$ at point E ．Let F be the intersection of the perpendicular bisectors of $\overline{B C}$ and $\overline{A C}$ ．Find $D F$ ，given that $\angle A D F=5^{\circ}, \angle B E F=10^{\circ}$ and $A C=3$ ．

Problem 1.4 （Nine－Point Circle）．Let $A B C$ be an acute triangle with orthocenter H ． Let D, E, F be the feet of the altitudes from A, B, C to the opposite sides．Show that the midpoint of $\overline{A H}$ lies on the circumcircle of $\triangle D E F$ ．

§2 Some Short－Answer Problems

Problem 2.1 （HMMT 2011）．Let $A B C D$ be a cyclic quadrilateral，and suppose that $B C=C D=2$ ．Let I be the incenter of triangle $A B D$ ．If $A I=2$ as well，find the minimum value of the length of diagonal $B D$ ．

Problem 2.2 （HMMT 2013）．Let triangle $A B C$ satisfy $2 B C=A B+A C$ and have incenter I and circumcircle ω ．Let D be the intersection of $A I$ and ω（with A, D distinct）． Prove that I is the midpoint of $A D$ ．

Problem 2.3 （Online Math Open 2014／F19）．In triangle $A B C, A B=3, A C=5$ ，and $B C=7$ ．Let E be the reflection of A over $\overline{B C}$ ，and let line $B E$ meet the circumcircle of $A B C$ again at D ．Let I be the incenter of $\triangle A B D$ ．Compute $\cos \angle A E I$ ．

Problem 2.4 （NIMO 2012）．Let $A B X C$ be a cyclic quadrilateral such that $\angle X A B=$ $\angle X A C$ ．Let I be the incenter of triangle $A B C$ and by D the foot of I on $\overline{B C}$ ．Given $A I=25, I D=7$ ，and $B C=14$ ，find $X I$ ．

§3 Intermediate Examples

Problem 3．1．Let $A B C$ be an acute triangle such that $\angle A=60^{\circ}$ ．Prove that $I H=I O$ ， where I, H, O are the incenter，orthocenter，and circumcenter．

Problem 3.2 （IMO 2006）．Let $A B C$ be a triangle with incenter I ．A point P in the interior of the triangle satisfies

$$
\angle P B A+\angle P C A=\angle P B C+\angle P C B .
$$

Show that $A P \geq A I$ ，and that equality holds if and only if $P=I$ ．
Problem 3.3 （APMO 2007）．In triangle $A B C$ ，we have $A B>A C$ and $\angle A=60^{\circ}$ ．Let I and H denote the incenter and orthocenter of the triangle．Show that $2 \angle A H I=3 \angle B$ ．

Problem 3.4 （ELMO 2013，Evan Chen）．Triangle $A B C$ is inscribed in circle ω ．A circle with chord $B C$ intersects segments $A B$ and $A C$ again at S and R ，respectively．Segments
$B R$ and $C S$ meet at L ，and rays $L R$ and $L S$ intersect ω at D and E ，respectively．The internal angle bisector of $\angle B D E$ meets line $E R$ at K ．Prove that if $B E=B R$ ，then $\angle E L K=\frac{1}{2} \angle B C D$ ．

Problem 3.5 （Online Math Open 2012／F27）．Let $A B C$ be a triangle with circumcircle ω ．Let the bisector of $\angle A B C$ meet segment $A C$ at D and circle ω at $M \neq B$ ．The circumcircle of $\triangle B D C$ meets line $A B$ at $E \neq B$ ，and $C E$ meets ω at $P \neq C$ ．The bisector of $\angle P M C$ meets segment $A C$ at $Q \neq C$ ．Given that $P Q=M C$ ，determine the degree measure of $\angle A B C$ ．

§4 Harder Tasks

Problem 4.1 （Iran 2001）．Let $A B C$ be a triangle with incenter I and A－excenter I_{A} ． Let M be the midpoint of arc $B C$ not containing A ，and let N denote the midpoint of $\operatorname{arc} M B A$ ．Lines $N I$ and $N I_{A}$ intersect the circumcircle of $A B C$ at S and T ．Prove that the lines $S T, B C$ and $A I$ are concurrent．

Problem 4.2 （Online Math Open 2014／F26）．Let $A B C$ be a triangle with $A B=26$ ， $A C=28, B C=30$ ．Let X, Y, Z be the midpoints of arcs $B C, C A, A B$（not containing the opposite vertices）respectively on the circumcircle of $A B C$ ．Let P be the midpoint of arc $B C$ containing point A ．Suppose lines $B P$ and $X Z$ meet at M ，while lines $C P$ and $X Y$ meet at N ．Find the square of the distance from X to $M N$ ．

Problem 4.3 （Euler）．Let $A B C$ be a triangle with incenter I and circumcenter O ．Show that $I O^{2}=R(R-2 r)$ ，where R and r are the circumradius and inradius of $\triangle A B C$ ， respectively．

Problem 4.4 （IMO 2010）．Let I be the incenter of a triangle $A B C$ and let Γ be its circumcircle．Let the line $A I$ intersect Γ again at D ．Let E be a point on the $\operatorname{arc} B D C$ and F a point on the side $B C$ such that

$$
\angle B A F=\angle C A E<\frac{1}{2} \angle B A C .
$$

Finally，let G be the midpoint of $\overline{I F}$ ．Prove that $\overline{D G}$ and $\overline{E I}$ intersect on Γ ．

§5 Bonus Problems

Problem 5.1 （Russia 2014）．Let $A B C$ be a triangle with $A B>B C$ and circumcircle Ω ． Points M, N lie on the sides $A B, B C$ respectively，such that $A M=C N$ ．Lines $M N$ and $A C$ meet at K ．Let P be the incenter of the triangle $A M K$ ，and let Q be the K－excenter of the triangle $C N K$ ．If R is midpoint of arc $A B C$ of Ω then prove that $R P=R Q$ ．

Problem 5．2．Let $A B C$ be a triangle with circumcircle Ω ，and let D be any point on $\overline{B C}$ ．We draw a curvilinear incircle tangent to $\overline{A D}$ at L ，to $\overline{B C}$ at K and internally tangent to Ω ．Show that the incenter of triangle $A B C$ lies on $\overline{K L}$ ．

§6 Hints to the Problems

1．1．Tautological．

1．2．Who is O ？
1．3．Point F is the circumcenter of $\triangle A B C$ ．Who are D and E ？
1．4．What is the incenter of $\triangle D E F$ ？What is the D－excenter？
2．1．Show that $A C=4$ ．
2．2．Apply Ptolemy＇s Theorem．
2．3．Who is C ？Erase E ．
2．4．Apply Ptolemy＇s Theorem．
3．1．Since $\angle B H C=\angle B I C=\angle B O C=120^{\circ}$ ，points H and O now lie on the magic circle too．So $I H=I O$ is just an equality of certain arcs．

3．2．Use the angle condition to show that P also lies on the magic circle．
3．3．The point H lies on the magic circle．So $\angle I H C=180^{\circ}-\angle I B C$ ．
3．4．You need to do quite a bit of angle chasing．Show that R is the incenter of $\triangle C D E$ ． Who is B ？

3．5．Both M and P are arc midpoints．（Why？）
4．1．First show that S, T, I, I_{A} are concyclic，say by $N I \cdot N S=N M^{2}=N I_{A} \cdot N T$ ．
4．2．Add the incenter I ．Line $M N$ is a tangent．
4．3．Add in point L ，the midpoint of arc $B C$ ．By Power of a Point，it＇s equivalent to prove $A I \cdot I L=2 R r$ ，which can be done with similar triangles．

4．4．Take a homothety with ratio 2 at I ．This sends G to F and D to the A－excenter．
5．1．Construct arc midpoints on the circumcircles of both $\triangle A M J$ and $\triangle C N K$ ．Use spiral similarity at R ．

5．2．Let the tangency point to Ω be T ，let M be the midpoint of arc $B C$ ，and let lines $K L$ and $A M$ meet at I ．Show that M, K, T are collinear．Show that $A L I T$ is cyclic．Prove that $M I^{2}=M K \cdot M T=M C^{2}=M I^{2}$ ．

