All you have to do is construct a parallelogram!

EVAN CHEN evanchen@mit.edu

Berkeley Math Circle January 9, 2014

As the name suggests, all of these problems can be solved by constructing the fourth vertex of a parallelogram. Most require just one point to be drawn in. A few will require constructing multiple points or even multiple parallelograms.

1 Samples

Problem 1. Let M and N be the midpoints of \overline{AB} and \overline{AC} in triangle ABC. Prove $MN = \frac{1}{2}BC$ without using similar triangles.

2 Appetizers

Problem 2. Let *M* be the midpoint of \overline{BC} in a triangle *ABC*. Given that AM = 2, AB = 3, AC = 4, find the area of *ABC*.

Problem 3 (AIME 2011). In rectangle ABCD, AB = 12 and BC = 10. Points E and F lie inside rectangle ABCD so that BE = 9, DF = 8, $\overline{BE} \parallel \overline{DF}$, $\overline{EF} \parallel \overline{AB}$, and line BE intersects segment \overline{AD} . Find EF.

Problem 4. Let ABC be a triangle and M be the midpoint of \overline{BC} . Squares ABQP and ACYX are erected. Show that PX = 2AM.

Problem 3: AIME 2011.

Problem 4: If APQB and AXYC are squares, prove PX = 2AM.

3 Meals

Problem 5. The area of triangle ABC is 4, and the length of the medians are m_a , m_b , and m_c . A second triangle has side lengths m_a , m_b , and m_c . What is its area?

Problem 6 (USAMO 2003). Let ABC be a triangle. A circle passing through A and B intersects segments AC and BC at D and E, respectively. Lines AB and DE intersect at F, while lines BD and CF intersect at M. Prove that MF = MC if and only if $MB \cdot MD = MC^2$.

Problem 7 (NIMO 8.8). The diagonals of convex quadrilateral BSCT meet at the midpoint M of \overline{ST} . Lines BT and SC meet at A, and AB = 91, BC = 98, CA = 105. Given that $\overline{AM} \perp \overline{BC}$, find the positive difference between the areas of $\triangle SMC$ and $\triangle BMT$.

Problem 6: USAMO 2003.

Problem 7: NIMO 8.8.

Problem 8. Let ABC be a triangle with circumcenter O and orthocenter H, and let M and N be the midpoints of \overline{AB} and \overline{AC} . Rays MO and NO meet line BC at Y and X, respectively. Lines MX and NY meet at P. Prove that \overline{OP} bisects \overline{AH} .

Problem 8: Show that \overline{PO} bisects \overline{AH} .

4 Buffets

Problem 9. Let ABC be a triangle with orthocenter H and let P be a point on the circumcircle of ABC. The Simson line from P is the line passing through the feet of the altitudes from P to \overline{BC} , \overline{CA} , \overline{AB} . Prove that it bisects \overline{PH} .

You may want to use this lemma: the reflection of H over \overline{BC} lies on the circumcircle.

Problem 9: The Simson line bisects \overline{PH} .

Problem 10. Let *ABCDE* be a convex pentagon with AB = BC and CD = DE. If $\angle ABC = 2\angle CDE = 120^{\circ}$ and BD = 2, find the area of *ABCDE*.

Problem 10: If $\angle ABC = 2 \angle CDE = 120^{\circ}$ and BD = 2, find the area of ABCDE.

Problem 11 (ELMO 2012). Let ABC be an acute triangle with AB < AC, and let D and E be points on side BC such that BD = CE and D lies between B and E. Suppose there exists a point P inside ABC such that $\overline{PD} \parallel \overline{AE}$ and $\angle PAB = \angle EAC$. Prove that $\angle PBA = \angle PCA$.