All you have to do is construct a parallelogram!

Evan Chen
evanchen@mit.edu
Berkeley Math Circle
January 9, 2014

As the name suggests, all of these problems can be solved by constructing the fourth vertex of a parallelogram. Most require just one point to be drawn in. A few will require constructing multiple points or even multiple parallelograms.

1 Samples

Problem 1. Let M and N be the midpoints of $\overline{A B}$ and $\overline{A C}$ in triangle $A B C$. Prove $M N=\frac{1}{2} B C$ without using similar triangles.

2 Appetizers

Problem 2. Let M be the midpoint of $\overline{B C}$ in a triangle $A B C$. Given that $A M=2$, $A B=3, A C=4$, find the area of $A B C$.

Problem 3 (AIME 2011). In rectangle $A B C D, A B=12$ and $B C=10$. Points E and F lie inside rectangle $A B C D$ so that $B E=9, D F=8, \overline{B E}\|\overline{D F}, \overline{E F}\| \overline{A B}$, and line $B E$ intersects segment $\overline{A D}$. Find $E F$.

Problem 4. Let $A B C$ be a triangle and M be the midpoint of $\overline{B C}$. Squares $A B Q P$ and $A C Y X$ are erected. Show that $P X=2 A M$.

Problem 3: AIME 2011.

Problem 4: If $A P Q B$ and $A X Y C$ are squares, prove $P X=2 A M$.

3 Meals

Problem 5. The area of triangle $A B C$ is 4 , and the length of the medians are m_{a}, m_{b}, and m_{c}. A second triangle has side lengths m_{a}, m_{b}, and m_{c}. What is its area?

Problem 6 (USAMO 2003). Let $A B C$ be a triangle. A circle passing through A and B intersects segments $A C$ and $B C$ at D and E, respectively. Lines $A B$ and $D E$ intersect at F, while lines $B D$ and $C F$ intersect at M. Prove that $M F=M C$ if and only if $M B \cdot M D=M C^{2}$.

Problem 7 (NIMO 8.8). The diagonals of convex quadrilateral $B S C T$ meet at the midpoint M of $\overline{S T}$. Lines $B T$ and $S C$ meet at A, and $A B=91, B C=98, C A=105$. Given that $\overline{A M} \perp \overline{B C}$, find the positive difference between the areas of $\triangle S M C$ and $\triangle B M T$.

Problem 8. Let $A B C$ be a triangle with circumcenter O and orthocenter H, and let M and N be the midpoints of $\overline{A B}$ and $\overline{A C}$. Rays $M O$ and $N O$ meet line $B C$ at Y and X, respectively. Lines $M X$ and $N Y$ meet at P. Prove that $\overline{O P}$ bisects $\overline{A H}$.

Problem 8: Show that $\overline{P O}$ bisects $\overline{A H}$.

4 Buffets

Problem 9. Let $A B C$ be a triangle with orthocenter H and let P be a point on the circumcircle of $A B C$. The Simson line from P is the line passing through the feet of the altitudes from P to $\overline{B C}, \overline{C A}, \overline{A B}$. Prove that it bisects $\overline{P H}$.

You may want to use this lemma: the reflection of H over $\overline{B C}$ lies on the circumcircle.

Problem 9: The Simson line bisects $\overline{P H}$.

Problem 10. Let $A B C D E$ be a convex pentagon with $A B=B C$ and $C D=D E$. If $\angle A B C=2 \angle C D E=120^{\circ}$ and $B D=2$, find the area of $A B C D E$.

Problem 10: If $\angle A B C=2 \angle C D E=120^{\circ}$ and $B D=2$, find the area of $A B C D E$.

Problem 11 (ELMO 2012). Let $A B C$ be an acute triangle with $A B<A C$, and let D and E be points on side $B C$ such that $B D=C E$ and D lies between B and E. Suppose there exists a point P inside $A B C$ such that $\overline{P D} \| \overline{A E}$ and $\angle P A B=\angle E A C$. Prove that $\angle P B A=\angle P C A$.

