Combinatorial Nullstellensatz

Evan Chen
chen.evan6@gmail.com

Berkeley Math Circle
September 17, 2013

Definition. A field is a structure in which one can add, subtract, multiply, and divid ϵ^{1}. The operations are commutative and associative, and multiplication is distributive.

For example, the real numbers \mathbb{R} and the rational numbers \mathbb{Q} are a field. For any prime number p, \mathbb{Z}_{p} is a field as well. Here \mathbb{Z}_{p} denotes the integers modulo p.

Definition. Let $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ denote the set of polynomials in n variables x_{1}, \ldots, x_{n}, with coefficients in R.

Thus $\mathbb{R}[x, y]$ is the set of real polynomials in x and y. This includes, say, $x^{2}+\pi x^{3} y$.
Fact (Fermat's Little Theorem). Let p be a prime, and suppose x is an integer not 0 modulo p. Then

$$
x^{p-1} \equiv 1 \quad(\bmod p)
$$

1 Combinatorial Nullstellensatz

Consider the following "theorem":

Theorem 0. Let $f \in F[x]$ be a polynomial of degree t. If $S \subseteq F$ satisfies $|S| \geq t+1$, then

$$
\exists s \in S: f(s) \neq 0
$$

Combinatorial nullstellensatz generalizes this to multiple variables:

Theorem 1 (Combinatorial Nullstellensatz). Let $f \in F\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be a polynomial of degree $t_{1}+\cdots+t_{n}$. If $S_{1}, S_{2}, \ldots, S_{n}$ are nonempty subsets of F such that $\left|S_{i}\right| \geq t_{i}+1$ for all i, then there exists $s_{1} \in S_{1}, s_{2} \in S_{2}, \ldots$, $s_{n} \in S_{n}$ for which

$$
f\left(s_{1}, s_{2}, \ldots, s_{n}\right) \neq 0
$$

as long as the coefficient of $x_{1}^{t_{1}} x_{2}^{t_{2}} \ldots x_{n}^{t_{n}}$ is nonzero.

Note the extra condition at the end! The above theorems follows from the lemma:
Lemma 2. Let $f \in F\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial, and $S_{1}, S_{2}, \ldots, S_{n}$ be nonempty subsets of F. If $f\left(s_{1}, s_{2}, \ldots, s_{n}\right)=0$ for all $s_{1} \in S_{1}, s_{2} \in S_{2}, \ldots, s_{n} \in S_{n}$ then there exist polynomials $h_{1}, h_{2}, \ldots, h_{n} \in F\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ for which $f=\sum_{i=1}^{n}\left(h_{i} \cdot \prod_{s_{i} \in S_{i}}\left(x_{i}-s_{i}\right)\right)$.

[^0]
2 Problems

In what follows, p will denote an odd prime.

1. (Russia MO 2007/5) Two distinct numbers are written on each vertex of a convex 100-gon. Prove one can remove a number from each vertex so that the remaining numbers on any two adjacent vertices differ.
2. (IMO 2007/6) Let n be a positive integer. Consider

$$
S=\{(x, y, z) \mid x, y, z \in\{0,1, \ldots, n\},(x, y, z) \neq(0,0,0)\}
$$

as a set of $(n+1)^{3}-1$ points in the three-dimensional space. Determine the smallest possible number of planes, the union of which contains S but does not include ($0,0,0$).
3. (Cauchy-Davenport) If A and B are subsets of \mathbb{Z}_{p}, then

$$
|A+B| \geq \min (p,|A|+|B|-1) .
$$

4. (Erdős-Heilbronn Conjecture) Let A be a subset of \mathbb{Z}_{p}. Then

$$
|\{x+y \mid x, y \in A, x \neq y\}| \geq \min (p, 2|A|-3)
$$

5. (Chevalley-Warning) Let $f_{1}, f_{2}, \cdots, f_{k}$ be polynomials in $\mathbb{Z}_{p}\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ with $\sum_{i=1}^{k} \operatorname{deg} f_{i}<n$. Show that if the polynomials f_{i} have a common zero $\left(c_{1}, c_{2}, \cdots, c_{n}\right)$, then they have another common zero.
6. (Alon) Show that any loopless graph with average degree at least $2 p-2$ and maximum degree at most $2 p-1$ contains a p-regular subgraph.
7. (Shirazi-Verstraëte) Let $G=(V, E)$ be a graph. For each vertex $v \in V$ we are given a bad set $B(v)$ of positive integers.
(i) Prove that if $\sum_{v \in V}|B(v)|<|E|$, then there exists a nontrivial subgraph H for which $\operatorname{deg}_{H} v \notin B(v)$ for any v.
(ii) Now suppose we allow $0 \in B(v)$ as well. Prove that if, $|B(v)| \leq \frac{1}{2} \operatorname{deg} v$ for any v, then we can still find such an H (not necessarily nontrivial).
8. (Alon, Knuth) Let $n \geq 2$ be even and let $v_{1}, v_{2}, \ldots, v_{k} \in\{ \pm 1\}^{n}$ be vectors of length n such that any $v \in\{ \pm 1\}^{n}$ is orthogonal to at least one of the v_{i}. Prove that $k \geq n$ and that this estimate is sharp.

3 Further Links

- Alon's original paper: http://www.tau.ac.il/~nogaa/PDFS/null2.pdf
- Slides from a presentation I gave: http://db.tt/G4xx3fdJ
- http://www.math.uiuc.edu/~jobal/teach/nullstellensatz.pdf

[^0]: ${ }^{1}$ Except for dividing by zero.

