Combinatorial Nullstellensatz

EVAN CHEN chen.evan60gmail.com

Berkeley Math Circle September 17, 2013

Definition. A *field* is a structure in which one can add, subtract, multiply, and divide¹. The operations are commutative and associative, and multiplication is distributive.

For example, the real numbers \mathbb{R} and the rational numbers \mathbb{Q} are a field. For any prime number p, \mathbb{Z}_p is a field as well. Here \mathbb{Z}_p denotes the integers modulo p.

Definition. Let $R[x_1, x_2, ..., x_n]$ denote the set of polynomials in n variables $x_1, ..., x_n$, with coefficients in R.

Thus $\mathbb{R}[x, y]$ is the set of real polynomials in x and y. This includes, say, $x^2 + \pi x^3 y$.

Fact (Fermat's Little Theorem). Let p be a prime, and suppose x is an integer not 0 modulo p. Then

 $x^{p-1} \equiv 1 \pmod{p}.$

1 Combinatorial Nullstellensatz

Consider the following "theorem":

Theorem 0. Let $f \in F[x]$ be a polynomial of degree t. If $S \subseteq F$ satisfies $|S| \ge t + 1$, then $\exists s \in S : f(s) \ne 0.$

Combinatorial nullstellensatz generalizes this to multiple variables:

Theorem 1 (Combinatorial Nullstellensatz). Let $f \in F[x_1, x_2, ..., x_n]$ be a polynomial of degree $t_1 + \cdots + t_n$. If S_1, S_2, \ldots, S_n are nonempty subsets of F such that $|S_i| \ge t_i + 1$ for all i, then there exists $s_1 \in S_1, s_2 \in S_2, \ldots, s_n \in S_n$ for which $f(s_1, s_2, \ldots, s_n) \ne 0$

as long as the coefficient of $x_1^{t_1} x_2^{t_2} \dots x_n^{t_n}$ is nonzero.

Note the extra condition at the end! The above theorems follows from the lemma:

Lemma 2. Let $f \in F[x_1, \ldots, x_n]$ be a polynomial, and S_1, S_2, \ldots, S_n be nonempty subsets of F. If $f(s_1, s_2, \ldots, s_n) = 0$ for all $s_1 \in S_1, s_2 \in S_2, \ldots, s_n \in S_n$ then there exist polynomials $h_1, h_2, \ldots, h_n \in F[x_1, x_2, \ldots, x_n]$ for which $f = \sum_{i=1}^n (h_i \cdot \prod_{s_i \in S_i} (x_i - s_i))$.

¹Except for dividing by zero.

2 Problems

In what follows, p will denote an odd prime.

- 1. (Russia MO 2007/5) Two distinct numbers are written on each vertex of a convex 100-gon. Prove one can remove a number from each vertex so that the remaining numbers on any two adjacent vertices differ.
- 2. (IMO 2007/6) Let *n* be a positive integer. Consider

$$S = \{(x, y, z) \mid x, y, z \in \{0, 1, \dots, n\}, (x, y, z) \neq (0, 0, 0)\}$$

as a set of $(n + 1)^3 - 1$ points in the three-dimensional space. Determine the smallest possible number of planes, the union of which contains S but does not include (0, 0, 0).

3. (Cauchy-Davenport) If A and B are subsets of \mathbb{Z}_p , then

$$|A + B| \ge \min(p, |A| + |B| - 1).$$

4. (Erdős-Heilbronn Conjecture) Let A be a subset of \mathbb{Z}_p . Then

$$|\{x + y \mid x, y \in A, x \neq y\}| \ge \min(p, 2|A| - 3).$$

- 5. (Chevalley-Warning) Let f_1, f_2, \dots, f_k be polynomials in $\mathbb{Z}_p[x_1, x_2, \dots, x_n]$ with $\sum_{i=1}^k \deg f_i < n$. Show that if the polynomials f_i have a common zero (c_1, c_2, \dots, c_n) , then they have another common zero.
- 6. (Alon) Show that any loopless graph with average degree at least 2p 2 and maximum degree at most 2p 1 contains a *p*-regular subgraph.
- 7. (Shirazi-Verstraëte) Let G = (V, E) be a graph. For each vertex $v \in V$ we are given a bad set B(v) of positive integers.
 - (i) Prove that if $\sum_{v \in V} |B(v)| < |E|$, then there exists a nontrivial subgraph H for which $\deg_H v \notin B(v)$ for any v.
 - (ii) Now suppose we allow $0 \in B(v)$ as well. Prove that if, $|B(v)| \leq \frac{1}{2} \deg v$ for any v, then we can still find such an H (not necessarily nontrivial).
- 8. (Alon, Knuth) Let $n \ge 2$ be even and let $v_1, v_2, \ldots, v_k \in \{\pm 1\}^n$ be vectors of length n such that any $v \in \{\pm 1\}^n$ is orthogonal to at least one of the v_i . Prove that $k \ge n$ and that this estimate is sharp.

3 Further Links

- Alon's original paper: http://www.tau.ac.il/~nogaa/PDFS/null2.pdf
- Slides from a presentation I gave: http://db.tt/G4xx3fdJ
- http://www.math.uiuc.edu/~jobal/teach/nullstellensatz.pdf