BMC Intermediate II: Triangle Centers

Evan Chen

January 20, 2015

1 The Eyeballing Game

Game 0. Given a point O, the locus of points P such that the length of $O P$ is 5 .

Game 1. Given a triangle $A B C$, the locus of points P such that $P B=P C$.

Game 2. Given a triangle $A B C$, the locus of points P in $\triangle A B C$ such that the distance from P to $\overline{A B}$ and $\overline{A C}$ is the same.

Game 3. Given a triangle $A B C$, the locus of points P such that the triangles $P A B$ and $P A C$ have the same area. (This one's a little harder, you might want to skip it and come back later.)

Game 4. Let A be a point and consider a circle. Let P be any point on the circle, and M the midpoint of $\overline{A P}$. As P varies, what is the locus of M ?

2 Triangle Centers

Circumcenter O (via Game 1)

Centroid G (via Game 3)

Incenter I (via Game 2)

Orthocenter H (via Game 1. How?)

In words:

- Every triangle has exactly one circle passing through all of its vertices. This is called the circumcircle, and its center O is called the circumcenter. The point O is the intersection of the perpendicular bisectors.
- Every triangle has exactly one circle which is inscribed inside it. This is called the incircle, and the center I is called the incenter. It is the intersection of the angle bisectors.
- The three medians of a triangle concur at a center G called the centroid of the triangle.
- The three altitudes of a triangle concur at a center H called the orthocenter of the triangle.

3 Orthocenter Flipping

Game 5. Given a triangle $A B C$, the points P such that $\angle B P C=180^{\circ}-\angle A$.

Some hints for the above game:

- Can you identify the point P_{1} I've drawn?
- How are P_{2} and P_{3} related to P_{1} ?
- What's the relation between A, B, P_{2}, P_{3}, and C ?

4 Circle Theorems

Theorem 1. The sum of the angles in a triangle is 180°.
Theorem 2 (Inscribed Angle Theorem, also "Star Trek Theorem"). An inscribed angle in a circle cuts out an arc equal to twice its measure.

The inscribed angle theorem has important special cases. As in the left diagram, suppose A, B, Y, X lie on a circle in that order. Then $\angle X A Y=\angle X B Y$, because both are equal to $\frac{1}{2} \widehat{X Y}$! Similarly, if A, X, B, Y lie on a circle in that order, then $\angle X A Y+\angle X B Y=180^{\circ}$, because the two angles mark out the entire circle: the sum of those arcs is 360°.

It turns out the reverse is true: if points A, B, X, Y satisfy the conditions above, all four lie on a circle.

5 The Nine-Point Circle

What happens when we combine Game 4 and Game 5?
Theorem 3 (Nine-Point Circle). Let $A B C$ be a triangle with orthocenter H. The feet of the altitudes, the midpoints of the sides, as well as the three midpoints of $\overline{A H}, \overline{B H}$, $\overline{C H}$ all lie on a single circle, called the nine-point circle of triangle $A B C$. Its center is the midpoint of $\overline{O H}$.

Summary of work:

- $\angle B H C=180^{\circ}-\angle A$.
- As we saw in Game 5, the reflections of H across $\overline{B C}$ and its midpoint all lie on the circumcircle of $\triangle A B C$.
- Now apply Game 4.

6 Euler's Line

Now let $\overline{A M_{A}}$ intersect $\overline{O H}$ at S.

- Why are triangles $A H S$ and $O M_{A} S$ similar?
- Why are triangles $A B C$ and $M_{A} M_{B} M_{C}$ similar? What ratio?
- Which center of $M_{A} M_{B} M_{C}$ is O ? (Not the circumcenter!)
- Compute $A H / O M_{A}$.
- Compute $H S / S O$ and $A S / S M_{A}$.

So let's give S a new definition: it is the " $\frac{1}{3}$-way point of O and H ". Our work above tells us that A, S, M_{A} are collinear. That means $B M_{B}$ and $C M_{C}$ must also pass through it.

So, what is S ?
Theorem 4 (Euler Line). The centroid, circumcenter, orthocenter, and nine-point center are all collinear.

7 The Incenter

Game 6. Let $A B C$ be a triangle with circumcircle Γ and incenter I. We hold Γ, B, C fixed and let A vary on Γ. What is the locus of I ?

Can you prove it?
To fully appreciate the result of this problem, I define the A-excenter I_{A} to be the intersection of the external angles of $\angle B$ and $\angle C$. Then we get the following result.

Theorem 5 (Incenter/Excenter Lemma). Let $A B C$ be a triangle with incenter I, A excenter I_{A}, and denote by L the midpoint of arc $B C$. Then L is the center of a circle through I, I_{A}, B, C.

You can do this entirely by just computing angles. Try it!

8 Tying It All Together

What happens if we add in all the excenters?

9 A Problem To Think About If You're Bored

Problem. Let $A B C$ be a triangle and let M be a point on its circumcircle. The tangents from M to the incircle of $A B C$ intersect at points X_{1} and X_{2}. A circle ω (called the A-mixtilinear incircle) touches $\overline{A B}$ and $\overline{A C}$, as well as the circumcircle internally at the point T. Prove that points T, M, X_{1}, X_{2} lie on a circle.

Here is the diagram for the solution I gave. See if you can find some of the things we talked about hiding in this picture! (For those of you that were here in October, there's also Pascal's Theorem hiding somewhere in there.)

This problem is by Cosmin Poahata. It appeared as the most difficult problem of the 2014 Taiwan Team Selection Tests for the International Mathematical Olympiad. No one solved it during the time limit, although we discovered the above solution afterwards.

