1. Let ABC be a triangle. Prove that
\[
\sin \frac{3A}{2} + \sin \frac{3B}{2} + \sin \frac{3C}{2} \leq \cos \frac{A - B}{2} + \cos \frac{B - C}{2} + \cos \frac{C - A}{2}.
\]

2. Let p be a prime number greater than 5. For any integer x, define
\[
f_p(x) = \sum_{k=1}^{p-1} \frac{1}{(px + k)^2}.
\]
Prove that for all positive integers x and y the numerator of $f_p(x) - f_p(y)$, when written in lowest terms, is divisible by p^3.

3. Let n be an integer greater than 2, and P_1, P_2, \ldots, P_n distinct points in the plane. Let S denote the union of all segments $P_1P_2, P_2P_3, \ldots, P_{n-1}P_n$. Determine if it is always possible to find points A and B in S such that $P_1P_n \parallel AB$ (segment AB can lie on line P_1P_n) and $P_1P_n = kAB$, where (1) $k = 2.5$; (2) $k = 3$.

Copyright © Committee on the American Mathematics Competitions, Mathematical Association of America
4. Let n be a positive integer and let S be a set of $2^n + 1$ elements. Let f be a function from the set of two-element subsets of S to $\{0, \ldots, 2^{n-1} - 1\}$. Assume that for any elements x, y, z of S, one of $f(\{x, y\}), f(\{y, z\}), f(\{z, x\})$ is equal to the sum of the other two. Show that there exist a, b, c in S such that $f(\{a, b\}), f(\{b, c\}), f(\{c, a\})$ are all equal to 0.

5. Consider the family of non-isosceles triangles ABC satisfying the property $AC^2 + BC^2 = 2AB^2$. Points M and D lie on side AB such that $AM = BM$ and $\angle ACD = \angle BCD$. Point E is in the plane such that D is the incenter of triangle CEM. Prove that exactly one of the ratios

$$\frac{CE}{EM}, \frac{EM}{MC}, \frac{MC}{CE}$$

is constant.

6. Find in explicit form all ordered pairs of positive integers (m, n) such that $mn - 1$ divides $m^2 + n^2$.

Copyright © Committee on the American Mathematics Competitions, Mathematical Association of America