$42^{\text {nd }}$ IMO Team Selection Test
 Washington, D.C.
 Day I 1:00 p.m. - 5:30 p.m.
 June 9, 2001

1. Let $\left\{a_{n}\right\}_{n \geq 0}$ be a sequence of real numbers such that $a_{n+1} \geq a_{n}^{2}+\frac{1}{5}$ for all $n \geq 0$. Prove that $\sqrt{a_{n+5}} \geq a_{n-5}^{2}$ for all $n \geq 5$.
2. Express

$$
\sum_{k=0}^{n}(-1)^{k}(n-k)!(n+k)!
$$

in closed form.
3. For a set S, let $|S|$ denote the number of elements in S. Let A be a set of positive integers with $|A|=2001$. Prove that there exists a set B such that
(i) $B \subseteq A$;
(ii) $|B| \geq 668$;
(iii) for any $u, v \in B$ (not necessarily distinct), $u+v \notin B$.

$42^{\text {nd }}$ IMO Team Selection Test
Lincoln, Nebraska
Day II 1:00 p.m. - 5:30 p.m.
June 10, 2001

4. There are 51 senators in a senate. The senate needs to be divided into n committees so that each senator is on one committee. Each senator hates exactly three other senators. (If senator A hates senator B, then senator B does not necessarily hate senator A.) Find the smallest n such that it is always possible to arrange the committees so that no senator hates another senator on his or her committee.
5. In triangle $A B C, \angle B=2 \angle C$. Let P and Q be points on the perpendicular bisector of segment $B C$ such that rays $A P$ and $A Q$ trisect $\angle A$. Prove that $P Q<A B$ if and only if $\angle B$ is obtuse.
6. Let a, b, c be positive real numbers such that

$$
a+b+c \geq a b c
$$

Prove that at least two of the inequalities

$$
\frac{2}{a}+\frac{3}{b}+\frac{6}{c} \geq 6, \quad \frac{2}{b}+\frac{3}{c}+\frac{6}{a} \geq 6, \quad \frac{2}{c}+\frac{3}{a}+\frac{6}{b} \geq 6
$$

are true.

$42^{\text {nd }}$ IMO Team Selection Test
Washington, D.C.
Day III 1:00 p.m. - 5:30 p.m. June 11, 2001

7. Let $A B C D$ be a convex quadrilateral such that $\angle A B C=\angle A D C=135^{\circ}$ and

$$
A C^{2} \cdot B D^{2}=2 A B \cdot B C \cdot C D \cdot D A
$$

Prove that the diagonals of quadrilateral $A B C D$ are perpendicular.
8. Find all pairs of nonnegative integers (m, n) such that

$$
(m+n-5)^{2}=9 m n .
$$

9. Let A be a finite set of positive integers. Prove that there exists a finite set B of positive integers such that $A \subseteq B$ and

$$
\prod_{x \in B} x=\sum_{x \in B} x^{2} .
$$

