$41^{\text {st }}$ IMO Team Selection Test
 Lincoln, Nebraska
 Day I 1:00 p.m. - 5:30 p.m.
 June 10, 2002

1. Let a, b, c be nonnegative real numbers. Prove that

$$
\frac{a+b+c}{3}-\sqrt[3]{a b c} \leq \max \left\{(\sqrt{a}-\sqrt{b})^{2},(\sqrt{b}-\sqrt{c})^{2},(\sqrt{c}-\sqrt{a})^{2}\right\}
$$

2. Let $A B C D$ be a cyclic quadrilateral and let E and F be the feet of perpendiculars from the intersection of diagonals $A C$ and $B D$ to $\overline{A B}$ and $\overline{C D}$, respectively. Prove that $\overline{E F}$ is perpendicular to the line through the midpoints of $\overline{A D}$ and $\overline{B C}$.
3. Let p be a prime number. For integers r, s such that $r s\left(r^{2}-s^{2}\right)$ is not divisible by p, let $f(r, s)$ denote the number of integers $n \in\{1,2, \ldots, p-1\}$ such that $\{r n / p\}$ and $\{s n / p\}$ are either both less than $1 / 2$ or both greater than $1 / 2$. Prove that there exists $N>0$ such that for $p \geq N$ and all r, s,

$$
\left\lceil\frac{p-1}{3}\right\rceil \leq f(r, s) \leq\left\lfloor\frac{2(p-1)}{3}\right\rfloor .
$$

$41{ }^{\text {st }}$ IMO Team Selection Test
 Lincoln, Nebraska
 Day II 1:00 p.m. - 5:30 p.m.
 June 11, 2002

4. Let n be a positive integer. Prove that

$$
\binom{n}{0}^{-1}+\binom{n}{1}^{-1}+\cdots+\binom{n}{n}^{-1}=\frac{n+1}{2^{n+1}}\left(\frac{2}{1}+\frac{2^{2}}{2}+\cdots+\frac{2^{n+1}}{n+1}\right) .
$$

5. Let n be a positive integer. A corner is a finite set S of ordered n-tuples of positive integers such that if $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}$ are positive integers with $a_{k} \geq b_{k}$ for $k=1,2, \ldots, n$ and $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in S$, then $\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in S$. Prove that among any infinite collection of corners, there exist two corners, one of which is a subset of the other one.
6. Let $A B C$ be a triangle inscribed in a circle of radius R, and let P be a point in the interior of $A B C$. Prove that

$$
\frac{P A}{B C^{2}}+\frac{P B}{C A^{2}}+\frac{P C}{A B^{2}} \geq \frac{1}{R}
$$

