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1. Let a, b, c be nonnegative real numbers. Prove that
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2. Let ABCD be a cyclic quadrilateral and let E and F be the feet of perpendiculars
from the intersection of diagonals AC and BD to AB and CD, respectively. Prove
that EF is perpendicular to the line through the midpoints of AD and BC.

3. Let p be a prime number. For integers r, s such that rs(r2 − s2) is not divisible by p,
let f(r, s) denote the number of integers n ∈ {1, 2, . . . , p − 1} such that {rn/p} and
{sn/p} are either both less than 1/2 or both greater than 1/2. Prove that there exists
N > 0 such that for p ≥ N and all r, s,⌈
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4. Let n be a positive integer. Prove that(
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5. Let n be a positive integer. A corner is a finite set S of ordered n-tuples of positive
integers such that if a1, a2, . . . , an, b1, b2, . . . , bn are positive integers with ak ≥ bk for
k = 1, 2, . . . , n and (a1, a2, . . . , an) ∈ S, then (b1, b2, . . . , bn) ∈ S. Prove that among
any infinite collection of corners, there exist two corners, one of which is a subset of
the other one.

6. Let ABC be a triangle inscribed in a circle of radius R, and let P be a point in the
interior of ABC. Prove that
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