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§0 Problems
1. For every ordered pair of integers (i, j), not necessarily positive, we wish to select

a point Pi,j in the Cartesian plane whose coordinates lie inside the unit square
defined by

i < x < i+ 1, j < y < j + 1.

Find all real numbers c > 0 for which it’s possible to choose these points such
that for all integers i and j, the (possibly concave or degenerate) quadrilateral
Pi,jPi+1,jPi+1,j+1Pi,j+1 has perimeter strictly less than c.

2. Let p be an odd prime number. Suppose P and Q are polynomials with integer
coefficients such that P (0) = Q(0) = 1, there is no nonconstant polynomial dividing
both P and Q, and

1 +
x

1 +
2x

1 +

. . .
1 + (p− 1)x

=
P (x)

Q(x)
.

Show that all coefficients of P except for the constant coefficient are divisible by p,
and all coefficients of Q are not divisible by p.

3. Let A = {a1, . . . , a2024} be a set of 2024 pairwise distinct real numbers. Assume
that there exist positive integers b1, b2, . . . , b2024 such that

a1b1 + a2b2 + · · ·+ a2024b2024 = 0.

Prove that one can choose a2025, a2026, a2027, . . . such that ak ∈ A for all k ≥ 2025
and, for every positive integer d, there exist infinitely many positive integers n
satisfying

n∑
k=1

akk
d = 0.

4. Let ABCD be a quadrilateral inscribed in a circle with center O and E be the
intersection of segments AC and BD. Let ω1 be the circumcircle of ADE and ω2

be the circumcircle of BCE. The tangent to ω1 at A and the tangent to ω2 at C
meet at P . The tangent to ω1 at D and the tangent to ω2 at B meet at Q. Show
that OP = OQ.

5. For a positive integer k, let s(k) denote the number of 1s in the binary representation
of k. Prove that for any positive integer n,

n∑
i=1

(−1)s(3i) > 0.

6. Determine whether there exists a function f : Z>0 → Z>0 such that for all positive
integers m and n,

f(m+ nf(m)) = f(n)m + 2024! ·m.

7. An infinite sequence a1, a2, a3, . . . of real numbers satisfies

a2n−1 + a2n > a2n+1 + a2n+2 and a2n + a2n+1 < a2n+2 + a2n+3

for every positive integer n. Prove that there exists a real number C such that
anan+1 < C for every positive integer n.
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8. Let ABC be a scalene triangle, and let D be a point on side BC satisfying
∠BAD = ∠DAC. Suppose that X and Y are points inside ABC such that
triangles ABX and ACY are similar and quadrilaterals ACDX and ABDY are
cyclic. Let lines BX and CY meet at S and lines BY and CX meet at T . Prove
that lines DS and AT are parallel.

9. Let n ≥ 2 be a fixed integer. The cells of an n× n table are filled with the integers
from 1 to n2 with each number appearing exactly once. Let N be the number of
unordered quadruples of cells on this board which form an axis-aligned rectangle,
with the two smaller integers being on opposite vertices of this rectangle. Find the
largest possible value of N .
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§1 Solutions to Day 1
§1.1 TSTST 2024/1, proposed by Karthik Vedula
Available online at https://aops.com/community/p31006977.

Problem statement

For every ordered pair of integers (i, j), not necessarily positive, we wish to select a
point Pi,j in the Cartesian plane whose coordinates lie inside the unit square defined
by

i < x < i+ 1, j < y < j + 1.

Find all real numbers c > 0 for which it’s possible to choose these points such
that for all integers i and j, the (possibly concave or degenerate) quadrilateral
Pi,jPi+1,jPi+1,j+1Pi,j+1 has perimeter strictly less than c.

¶ Answer. c ≥ 4.

¶ Proof c < 4 is not possible. Let n be an arbitrary positive integer. We take an n×n
subgrid of unit squares (i.e. Pi,j for 1 ≤ i, j ≤ n), and compute a lower bound on the
average of all possible quadrilaterals from this subgrid.

Consider the average length of the “top side” of all possible quadrilaterals in this grid.
Note that this is equal to:

1

(n− 1)2

n−1∑
i=1

n−1∑
j=1

Pi,jPi+1,j ≥
1

(n− 1)2

n−1∑
j=1

P1,jPn,j >
n− 2

n− 1
.

We can apply this bound to all four sides of the quadrilateral (the left, right, bottom, and
top sides) to find that the average perimeter of all possible quadrilaterals is greater than

4(n− 2)

n− 1
= 4− 4

n− 1
.

This means we can always find a quadrilateral whose perimeter is at least 4− 4
n−1 . By

taking sufficiently large n, this lower bound will exceed c.

¶ Proof c = 4 is possible. We’ll place point Pi,j at the coordinates (f(i), f(j)) for some
function f : Z → R. The perimeter of Pi,jPi+1,jPi+1,j+1Pi,j+1 is then

2
(
|f(i+ 1)− f(i)|+ |f(j + 1)− f(j)|

)
.

Therefore we have a valid construction for c = 4 if f satisfies n < f(n) < n + 1 and
|f(n+ 1)− f(n)| < 1 for all n. This is achieved by

f(n) = n+ 0.5 +

{
−
∑n

i=1
1
10i

if n ≥ 0,∑−n
i=1

1
10i

if n < 0.

Let’s check the conditions. The sum is bounded by
∑∞

i=1
1
10i

= 1
9 in magnitude, so

n < f(n) < n+ 1. Furthermore, we can verify that

f(n+ 1)− f(n) = 1−

{
1

10n+1 if n ≥ 0,
1

10−n if n < 0
< 1.
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§1.2 TSTST 2024/2, proposed by Andrew Gu
Available online at https://aops.com/community/p31006985.

Problem statement

Let p be an odd prime number. Suppose P and Q are polynomials with integer
coefficients such that P (0) = Q(0) = 1, there is no nonconstant polynomial dividing
both P and Q, and

1 +
x

1 +
2x

1 +

. . .
1 + (p− 1)x

=
P (x)

Q(x)
.

Show that all coefficients of P except for the constant coefficient are divisible by p,
and all coefficients of Q are not divisible by p.

¶ Solution 1. We first make some general observations about rational functions repre-
sented through continued fractions.

Claim — Let a1, a2, . . . , be a sequence of nonzero integers. Define the sequence of
polynomials P1(x) = 1, P2(x) = 1 + a1x, and

Pk+1(x) = Pk(x) + akxPk−1(x)

for k ≥ 1. Then the following properties hold for all k ≥ 0:

• Pk(0) = 1,

• gcd(Pk+1, Pk) = 1, and

• degPk = bk/2c.

• 1 +
akx

1 +
ak−1x

1 +

. . .
1 + a1x

=
Pk+1(x)

Pk(x)
.

Proof. These all follow by induction.

With the setup of the claim, the polynomials P and Q in the problem are exactly Pp

and Pp for the sequence a1 = p− 1, a2 = p− 2, . . . , ap−1 = 1. From here, we will define
P and Q in terms of this recurrence and make two transformations on the ai.

First, subtract p from each ai so we now have a1 = −1, a2 = −2, . . . , ap−1 = −(p− 1).
The coefficients of P and Q only have changed by a multiple of p. The claim also shows
that P (0) = Q(0) = 1, gcd(P,Q) = 1, and the degrees of P and Q have not changed, i.e.
no leading terms have been added or removed. Therefore it is equivalent to work with
this sequence instead.
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Similarly, we can multiply ai by −1 to get a1 = 1, a2 = 2, . . . , ap−1 = p− 1. This is
equivalent to replacing x with −x, so some coefficients of P and Q are negated by this.
The key conditions still remain unchanged.

Remark. For rigor, it’s important to prove the facts about continued fractions first rather
than going straight to the coefficient replacement as the requirements imposed by the
problem statement on P and Q are not always preserved modulo p.

At this point, we are ready to directly calculate the polynomials Pn.

Claim — For all n, we have

Pn(x) =
∑
k≥0

n!

2kk!(n− 2k)!
xk.

Here, we define n!
(n−2k)! = n(n − 1) . . . (n − 2k + 1) so the sum actually stops at

k = bn/2c.

Proof. We use induction. The base cases are clear, and

Pn + nxPn−1 =
∑
k≥0

1

2kk!

n!

(n− 2k)!
xk + nx

∑
k≥0

1

2kk!

(n− 1)!

(n− 2k − 1)!
xk

=
∑
k≥0

1

2kk!

n!

(n− 2k)!
xk +

∑
k≥0

1

2kk!

n!

(n− 2k − 1)!
xk+1

=
∑
k≥0

1

2kk!

n!

(n− 2k)!
xk +

∑
k≥1

1

2k−1(k − 1)!

n!

(n− 2k + 1)!
xk

= 1 +
∑
k≥1

[
1

2kk!

n!

(n− 2k)!
+

1

2k−1(k − 1)!

n!

(n− 2k + 1)!

]
xk

= 1 +
∑
k≥1

1

2kk!

n!

(n− 2k + 1)!
[(n− 2k + 1) + 2k]xk

= 1 +
∑
k≥1

1

2kk!

(n+ 1)!

(n− 2k + 1)!
xk

=
∑
k≥0

1

2kk!

(n+ 1)!

(n− 2k + 1)!
xk

= Pn+1.

At this point we can directly check the coefficients of P and Q. We have

P (x) = Pp(x) =
∑
k≥0

p!

2kk!(p− 2k)!
xk.

For k = 0, we get a coefficient of 1. For k ≥ 1, the denominator is not a multiple of p,
so the remaining coefficients are multiples of p. Meanwhile, the coeffiicents for Q are

(p−1)!
2kk!(p−1−2k)!

. None of these are divisible by p because (p− 1)! is not divisible by p.
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Remark. This problem was created from the identity

1

1−
x

1−
2x

1−
3x

1− . . .

=

∞∑
i=0

(2i− 1)!!xi.

You can use this to solve the problem. However, the proof of the identity as well as the
details to convert this into the given problem are very lengthy so this is only left as a remark.

¶ Solution 2.

Lemma
Define a series of polynomials An, Bn, Cn, Dn by letting A1 = 1, B1 = x, C1 = 1,
and D1 = 0, and for n ≥ 2,

An = An−1 +Bn−1 Bn = nxAn−1

Cn = Cn−1 +Dn−1 Dn = nxCn−1.

Then, if we define fk(t) = 1 + kx
t , then

(f1 ◦ f2 ◦ · · · ◦ fn)(t) =
Ant+Bn

Cnt+Dn
.

Proof. Straightforward by induction: the n = 1 case is true and for n ≥ 2,
An−1fn(t) +Bn−1

Cn−1fn(t) +Dn−1
=

An−1(t+ nx) +Bn−1t

Cn−1(t+ nx) +Dn−1t
=

(An−1 +Bn−1)t+ nxAn−1

(Cn−1 +Dn−1)t+ nxDn−1
.

It is possible to solve these recurrences algebraically, but there is in fact a nice
combinatorial interpretation of these polynomials:

Lemma
Let In be the set of involutions on {1, 2, . . . , n} and for π ∈ In, let a(π) denote the
number of transpositions in π. Let Jn ⊆ In be the set of involutions π where the
minimal fixed point is less than the minimal x with π(x) < x. Then, for all k ≥ 1,
we have

An =
∑
π∈In

xa(π) Bn =
∑

π∈In+1

π(n+1)6=n+1

xa(π)

Cn =
∑
π∈Jn

xa(π) Dn =
∑

π∈Jn+1

π(n+1)6=n+1

xa(π).

Proof. We use induction on n, with the case n = 1 being easily verified. For n ≥ 2, note
that

An −Bn−1 =
∑

π∈Ik+1

π(k+1)=k+1

xa(π) = An−1.
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Moreover, every π ∈ In+1 swapping n+ 1 with something else can be characterized by
one of n choices for π(n+1) and an involution on the remaining n−1 elements. Therefore
Bn = nxAn−1. A similar proof holds for the Cn and Dn.

We now note that

P (x)

Q(x)
= (f1 ◦ f2 ◦ · · · ◦ fp−1)(1) =

Ap−1 +Bp−1

Cp−1 +Dp−1
=

Ap

Cp
.

It suffices to show that all nonconstant coefficients of Ap are divisible by p and that all
coefficients of Cp are not divisible by p. If we show this, then any nonconstant factor
dividing Ap must have a leading coefficient divisible by p (proof: reduce the factorization
mod p), then any nonconstant factor dividing Cp cannot have a leading coefficient divisible
by p. Moreover, since Ap and Cp have constant terms of 1, they are relatively prime and
thus P = Ap and Q = Cp (up to sign).

We now evaluate the coefficients of Ap and Cp. We observe that

Ap =

p−1
2∑

k=0

(
p

2k

)
(2k − 1)!!xk,

and it is easy to see that Ap ≡ 1 (mod p). Computing the coefficients of Cn is a bit
harder. Consider elements of Jp with 0 ≤ k ≤ p−1

2 swaps and a minimal fixed point of
a+ 1 (for 0 ≤ a ≤ k). Everything in {1, . . . , a} must be paired with something greater
than a+ 1, and there are k − a swaps among the remaining elements. It follows that

Cp =

p−1
2∑

k=0

k∑
a=0

(p− a− 1)!

(p− 2a− 1)!

(
p− 2a− 1

2k − 2a

)
(2k − 2a− 1)!! · xk

=

p−1
2∑

k=0

k∑
a=0

(p− a− 1)!

(p− 2k − 1)!2k−a(k − a)!
xk

=

p−1
2∑

k=0

(p− 1)!

(p− 2k − 1)!

(
k∑

a=0

1

2k−a(k − a)!
∏a

j=1(p− j)

)
xk

≡

p−1
2∑

k=0

(p− 1)!

(p− 2k − 1)!

(
k∑

a=0

(−1)a

2k−a(k − a)!a!

)
xk

=

p−1
2∑

k=0

(p− 1)!

(p− 2k − 1)!k!

(
k∑

a=0

(
k

a

)
(−1)a

2k−a

)
xk

=

p−1
2∑

k=0

(p− 1)!

(p− 2k − 1)!k!

(
−1 +

1

2

)k

xk.

The result follows.

Remark. It is not hard to see that Cp simplifies further mod p to

p−1
2∑

k=0

(−1)k(2k − 1)!!xk.
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§1.3 TSTST 2024/3, proposed by Daniel Zhu
Available online at https://aops.com/community/p31006991.

Problem statement

Let A = {a1, . . . , a2024} be a set of 2024 pairwise distinct real numbers. Assume
that there exist positive integers b1, b2, . . . , b2024 such that

a1b1 + a2b2 + · · ·+ a2024b2024 = 0.

Prove that one can choose a2025, a2026, a2027, . . . such that ak ∈ A for all k ≥ 2025
and, for every positive integer d, there exist infinitely many positive integers n
satisfying

n∑
k=1

akk
d = 0.

It will be convenient to use 0-based indexing here, i.e. A = {a0, . . . , a2023} and so on. Let
m =

∑2023
i=0 bi. By appending bi − 1 copies of ai for each i, we may extend the sequence

to a0, . . . , am−1 such that a0 + · · ·+ am−1 = 0.

¶ Solution by direct construction. Let sm(n) be the sum of the base-m digits of n,
reduced modulo m. We now claim that ak = asm(k) works. It is clear that this extends
the original sequence in a valid way.

Claim — Fix d. Then the sum
n−1∑
k=0

ak(k + 1)d

is zero when n = cmd+1 for any positive integer c.

If we prove this, then the problem is solved as there are infinitely many possible c. We
have two proofs of this.

Proof of claim by expansion (Andrew Gu). We only need to show that each block of
md+1 terms sums to zero. Each block takes the form

S =

(c+1)md+1−1∑
k=cmd+1

asm(k)(k + 1)d.

We group terms based on the value of sm(k). The values of k in this sum are given by{
cmd+1 +

d∑
i=0

eim
i | (e0, . . . , ed) ∈ {0, . . . ,m− 1}d+1

}
.

9
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In this form, the sum of the base-m digits is sm(c)+ e0+ · · ·+ ed. Therefore we can write

S =

m−1∑
i=0

ai

( ∑
(e0,...,ed)∈{0,...,m−1}d+1

e0+···+ed≡i−sm(c) (mod m)

(
cmd+1 + 1 +

d∑
j=0

ejm
j
)d

︸ ︷︷ ︸
(2)

)

︸ ︷︷ ︸
(1)

.

Since
∑

ai = 0, it suffices to show that the value of the coefficient given by (1) is
independent of i.

Expand the term (2) with the multinomial theorem. Each monomial in the expansion
is a product of terms c, m, ej . Since the exponent is d, no monomial is divisible by the
whole product e0e1 · · · ed. Since the tuples (e0, . . . , ed) are uniformly distributed over all
possible tuples when one or more coordinates are removed, that means that the sum of
each monomial term is independent of i. We conclude that the sum (1) is independent of
i as well.

Proof of claim by Fourier transform. Let ω 6= 1 be an mth root of unity. Then, define
the operator

∆(ω)
a f(x) =

m−1∑
i=0

ωif(x+ ia).

By looking at the leading coefficients, one can see that ∆
(ω)
a lowers the degree of a

polynomial by at least 1.1 As a consequence, by letting f(x) = (x+1)d we conclude that∑
k∈[0,me)

ωsm(k)(k + 1)d = (∆
(ω)
me−1 · · ·∆(ω)

m ∆
(ω)
1 f)(0) = 0.

Since a1+· · ·+am = 0, by a discrete Fourier transform we may write ai =
∑m−1

j=1 cje
2πij/m

for some c1, . . . , cm−1 ∈ C. Therefore
me−1∑
k=0

ak(k + 1)d =
m−1∑
j=1

cj

me−1∑
k=0

(e2πij/m)sm(k)(k + 1)d = 0.

¶ Inductive solution. Define m and extend the sequence to am−1 as before. For d ≥ 0,
let Σd(S) denote

∑
k∈S kd. Also, for d ≥ 0 call a tuple of sets (S0, . . . , Sm−1) to be

d-uniform if for all 0 ≤ d′ ≤ d we have Σd′(S0) = Σd′(S1) = · · · = Σd′(Sm−1).

Lemma 1.1
Suppose (S0, . . . , Sm−1) is d-uniform. Then for all 0 ≤ d′ ≤ d + 1, x ∈ R, and
0 ≤ i, j < m, the quantity Σd′(Si + x)− Σd′(Sj + x) is independent of x.

Proof. We may expand

Σd′(Si + x) =
d′∑

k=0

(
d′

k

)
xd

′−kΣk(Si).

By d-uniformity, the terms with k ≤ d are independent of i and go away in the subtraction.
The only term left is when k = d′ = d+ 1. However, this term is independent of x, as
desired.

1In fact the degree decreases by exactly 1, but this is not that important.
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Lemma 1.2
Suppose (S0, . . . , Sm−1) is a d-uniform partition of [0, n). Then there exists a (d+1)-
uniform partition (S′

0, . . . , S
′
m−1) of [0,mn) such that Si ⊆ S′

i for all i.

Proof. We let S′
i =

⋃m−1
k=0 (S(i+k) mod m + kn). Then, for every 0 ≤ d′ ≤ d + 1 and

0 ≤ i, j < m, we have

Σd′(S
′
i)− Σd′(S

′
j) =

m−1∑
k=0

Σd′(S(i+k) mod m + kn)− Σd′(S(j+k) mod m + kn)

=
m−1∑
k=0

Σd′(S(i+k) mod m)− Σd′(S(j+k) mod m)

= 0.

Consider the 0-uniform partition of [0,m) given by ({0}, {1}, . . . , {m−1}). By repeatedly
applying Lemma 1.2, we get d-uniform partitions (S

(d)
0 , . . . , S

(d)
m−1) of [0,md+1) such that

S
(d)
i ⊆ S

(d+1)
i for all d and i. For every k, let i be the unique index such that k ∈ S

(d)
i

for some d, and let ak = ai. (This doesn’t redefine a0, . . . , am−1 as for k < m, we have
k ∈ S

(0)
k .) Then, for each e ≥ d, we find that

me+1−1∑
k=0

ak(k + 1)d =
m−1∑
i=0

ai
∑

k∈S(e)
i

(k + 1)d =
m−1∑
i=0

ai

d∑
j=1

(
d

j

)
Σj(S

(e)
i ) = 0.

Remark. The construction here is essentially the same as the sum-of-digits construction
(in fact it would be exactly the same if we replace (i+ k) mod m in the proof of Lemma 1.2
with (i − k) mod m). However, it hints at some flexibility in the construction which is
less apparent with other approaches. For example, if G is any transitive subgroup of
permutations on [0,m) and π0 = id, π1, . . . , π|G|−1 is an enumeration of the elements of G,
one can turn a d-uniform partition (S0, . . . , Sm−1) of [0, n) into a (d+ 1)-uniform partition
(S′

0, . . . , S
′
m−1) of [0, |G|n) by letting S′

i =
⋃|G|−1

k=0 (Sπk(i) + kn). Here we used the special
case πk(i) = (i+k) mod m; it may also be natural to let G be the set of all m! permutations.

Remark. The construction in the solution has appeared a number of times in the literature;
see

• D. H. Lehmer, The Tarry-Escott problem, Scripta Math. 13, 37–41, 1947;

• E. Prouhet, Mémoire sur quelques relations entre les puissances des nombres, C. R.
Acad. Sci. Paris 33, 225, 1851;

• E. M. Wright, Equal sums of like powers, Proc. Edinburgh Math. Soc. 2nd series 8,
138–142, 1949;

• E. M. Wright, Prouhet’s 1851 solution of the Tarry-Escott problem of 1910, Amer.
Math. Monthly 66, 199–201, 1959.
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§2 Solutions to Day 2
§2.1 TSTST 2024/4, proposed by Merlijn Staps
Available online at https://aops.com/community/p31007004.

Problem statement

Let ABCD be a quadrilateral inscribed in a circle with center O and E be the
intersection of segments AC and BD. Let ω1 be the circumcircle of ADE and ω2

be the circumcircle of BCE. The tangent to ω1 at A and the tangent to ω2 at C
meet at P . The tangent to ω1 at D and the tangent to ω2 at B meet at Q. Show
that OP = OQ.

¶ Solution 1. Let R = AD ∩BC (possibly at infinity, but we’ll see it’s an Euclidean
point later).

A B

C

D

E

O

P

Q

R

Claim — ACRP is an isosceles trapezoid with AC ‖ PR. Consequently, R is an
Euclidean point, and OP = OR.

Proof. It is equivalent to show that 4PAC
−∼= 4RCA, or without using R, that

]PAC = ]ACR = ]ACB, and ]PCA = ]CAR = ]CAD.

Indeed, we have
]PAC = ]ADE = ]ADB = ]ACB

and likewise ]PCA = ]CAD, as requested.

Similarly OQ = OR, so we’re done.
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¶ Solution 2.

A

B

CD

O

E

P

Q

A′
B′

Let PA intersect (ABCD) again at A′ and let QB intersect (ABCD) again at B′.
The problem follows from the following claim.

Claim — OA′PC ∼= ODQB′.

Proof. We use directed angles mod π. Note that

]ODQ = ]ODA+ ]ADQ = ]DAO + ]PAD = ]PAO = ]OA′P,

and similarly ]OCP = ]OB′Q. Furthermore,

]A′AD = ]AED = ]CEB = ]CBB′,

so A′D = CB′, i.e. A′CDB′ is an isosceles trapezoid. This means ]A′OC = ]DOB′.
Combined with OA′ = OB′ = OD = DC, these three angle equalities imply the
congruency.

¶ Solution 3 using complex numbers (Noah Walsh). Use complex numbers with
(ABCD) as the unit circle. Because PA is tangent to (ADE), we have ∠PAC =
∠ADB = 1

2∠AOB, and therefore

p−a
c−a

p−a−1

c−1−a−1

=
a

b

=⇒ b
p− a

c− a
= a

acp− c

a− c

=⇒ bp+ a2cp = ab+ ac.

The condition that PC is tangent to (BCE) can be expressed by swapping a with c and
b with d, so we get

bp+ a2cp = ab+ ac

dp+ ac2p = cd+ ac

=⇒ p(ad− bc) = acd+ a2c− abc− ac2

=⇒ p =
ac(a+ d− b− c)

ad− bc
.
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Similarly,

q =
bd(a+ d− b− c)

ad− bc
.

It is now obvious that p and q have the same magnitude.

Remark. One possible trick one might use to compute p is to compute the coordinates
of the points A′, C ′ ∈ (ABCD) such that AA′ and CC ′ are tangent to (ADE) and (BCE)
respectively, and then use the chords intersection formula.

If one does this, one gets a′ = ac/b and c′ = ac/d. At this point, one can simply recognize
that A′ and C ′ are the reflection of B and D over the perpendicular bisector of AC, reflect
everything over said perpendicular bisector, and suddenly realize that one has solved the
problem synthetically.

¶ Solution 4 by linearity (Noah Walsh). If AE = DE the problem is true by symmetry,
so we assume AE 6= DE.

Fix A, D, and E, and move B linearly along line DE. By e.g. Reim’s theorem, C
moves linearly as well.

How do we compute O? It lies on the perpendicular bisector of AD, which is fixed. It
also lies on the perpendicular bisector of BC, which is parallel to a fixed line, and passes
through the midpoint of BC, which moves linearly. Therefore, O moves linearly as well.

Point P is the intersection of the tangent to (ADE) at A, which is fixed, and the
tangent to (BCE) at C, which moves linearly, and therefore is linear. Similarly, Q moves
linearly. Therefore, to verify that

−−→
OP ×

−−→
OP =

−−→
OQ×

−−→
OQ, it suffices to check three cases.

The two cases where EA = EB are trivial by symmetry. We can also check that
limB→∞DE

−−→
OP×

−−→
OP−−→

OQ×
−−→
OQ

= 1.

Indeed, obviously limB→∞DE

|OP |
|AP | = limB→∞DE

|OQ|
|DQ| = 1. In addition,

dAP

dDQ
=

dAP

dAC
× dAC

dBD
× dBD

dBQ

=
sin∠ACP

sin∠APC
× dEC

dEB
× sin∠BQD

sin∠BDQ

=
sin∠ACP

sin(∠ACP + ∠CAP )
× sin∠EBC

sin∠ECB
× sin(∠BDQ+ ∠DBQ)

sin∠BDQ

=
sin∠BCE

sin(∠BCE + ∠ADE)
× sin∠DAE

sin∠ADE
× sin(∠DAE + ∠ECB)

sin∠EAD

=
sin(∠DAE + ∠ECB)

sin(∠BCE + ∠ADE)

= 1.

It follows that limB→∞DE

|AP |
|DQ| = 1. Therefore,

lim
B→∞DE

|OP |
|OQ|

= lim
B→∞DE

|OP |
|AP |

× lim
B→∞DE

|AP |
|DQ|

× lim
B→∞DE

|DQ|
|OQ|

= 1,

which completes the B → ∞DE case, and we are done.
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§2.2 TSTST 2024/5, proposed by Holden Mui
Available online at https://aops.com/community/p31007010.

Problem statement

For a positive integer k, let s(k) denote the number of 1s in the binary representation
of k. Prove that for any positive integer n,

n∑
i=1

(−1)s(3i) > 0.

¶ Solution 1. Given a set of positive integers S, define

f(S) =
∑
k∈S

(−1)s(k).

We also define

Seven = {k ∈ S | k is even}
Sodd = {k ∈ S | k is odd}

and apply functions on sets pointwise, e.g.

S − 1

2
=

{
k − 1

2
| k ∈ S

}
.

The problem follows from the first bullet of the following claim.

Claim — For every positive integer n,

• f({3, 6, . . . , 3n}) > 0

• f({1, 4, . . . , 3n− 2}) < 0

• f({2, 5, . . . , 3n− 1}) ≤ 0

Proof. Induct on n. The base case n = 1 is easy to check.

• For S = {3, 6, . . . , 3n},

f(S) = f(Seven) + f(Sodd)

= f(Seven/2)− f((Sodd − 1)/2) > 0

since the elements of Seven/2 are 0 mod 3 and the elements of (Sodd − 1)/2 are
1 mod 3.

• For S = {1, 4, . . . , 3n− 2},

f(S) = f(Seven) + f(Sodd)

= f(Seven/2)− f((Sodd − 1)/2) < 0

since the elements of Seven/2 are 2 mod 3 and the elements of (Sodd − 1)/2 are
0 mod 3. (Note that (Sodd − 1)/2 has multiples of 3 starting at 0 rather than 3, but
this is fine because f({3, . . . , 3n}) > 0 clearly implies f({0, . . . , 3n}) > 0 as well.)
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• For S = {2, 5, . . . , 3n− 1}, there are two cases.
– Case 1: 22k−1 ≤ 3n− 1 < 22k. Define

Ssmall = {s ∈ S | s < 22k−1}
Sbig = {s ∈ S | s ≥ 22k−1}.

Then

f(S) = f(Ssmall) + f(Sbig)

= f(Ssmall)− f(Sbig − 22k−1) < 0

since Sbig−22k−1 = {0, . . . , 3n−1−22k−1} consists of a prefix of the 0 (mod 3)
positive integers in addition to 0.

– Case 2: 22k < 3n−1 < 22k+1. Note that if a+b = 22k+1−1, then f({a, b}) = 0.
If we use this to cancel out all pairs of numbers in S which add to 22k+1 − 1,
then we find

f(S) = f({2, 5, . . . , 22k+1 − 3n− 2}) ≤ 0.

This completes the induction.

¶ Solution 2. Let

f(n) =
n∑

i=0

(−1)s(3i), g(n) =
n∑

i=0

(−1)s(i).

Note that the problem is equivalent to showing f(n) ≥ 2 for all n ≥ 1.

Lemma
|g(n)| ≤ 1 for all n.

Proof. Note that s(2i+ 1) = −s(2i), so g(2n+ 1) = 0 and g(2n) = (−1)s(2n) by pairing
terms.

We will now prove that f(n) ≥ 2 for all n ≥ 1 by strong induction. We can manually
verify n ≤ 5 as a base case. For the inductive step, let m = b3n−3

4 c so that 4m+ 3 ≤ n.
Let S = {0, 3, . . . , 3n}. Given 0 ≤ k ≤ m, we can append two digits to the binary
representation of k (equivalently, 4k + r for 0 ≤ r < 4) to get a number in S. If k is
a multiple of 3, we can append 00 or 11. Otherwise, we can append one of 01 or 10
depending on k (mod 3). Almost all elements of S can be covered uniquely in this way,
except for at most one missing element. Note that appending 00 or 11 will preserve the
parity of the number of 1s while appending 01 or 10 will change the parity. Therefore we
can write

f(n) ≥ 2
∑

0≤i≤m
i≡0 (mod 3)

(−1)s(i) −
∑

0≤i≤m
i 6≡0 (mod 3)

(−1)s(i) − 1

(the −1 is to account for the possible missing element). Let

x =
∑

0≤i≤m
i≡0 (mod 3)

(−1)s(i), y =
∑

0≤i≤m
i 6≡0 (mod 3)

(−1)s(i).
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According to the lemma, |x+ y| ≤ 1. By the inductive hypothesis, x ≥ 2. Therefore

f(n) ≥ 2x− y − 1 = 3x− (x+ y)− 1 ≥ 6− 1− 1 > 2

as desired.

¶ Solution 3. For r ∈ {0, 1, 2}, define

Sr(a, b) =
∑

i∈[a,b)
i≡r mod 3

(−1)s(i),

where s(i) denotes the number of 1s in i’s binary representation. The problem is equivalent
to proving S0(0, 3n+ 1) > 1 for all n ≥ 1.

Lemma
For any integer d, Sr(0, 2

d) is given by:

d S0(0, 2
d) S1(0, 2

d) S2(0, 2
d)

d odd 3
d−1
2 −3

d−1
2 0

d even 2 · 3
d−2
2 −3

d−2
2 −3

d−2
2

Proof. Induction with d ≤ 2 being clear. For the inductive step, observe that

S0(0, 2
d) = S0(0, 2

d−1) + S0(2
d−1, 2d) = S0(0, 2

d−1)− S2d−1(0, 2d−1)

S1(0, 2
d) = S1(0, 2

d−1) + S1(2
d−1, 2d) = S1(0, 2

d−1)− S1+2d−1(0, 2d−1)

S2(0, 2
d) = S2(0, 2

d−1) + S2(2
d−1, 2d) = S2(0, 2

d−1)− S2+2d−1(0, 2d−1).

Using

2d−1 ≡

{
1 mod 3 d odd
2 mod 3 d even

and applying the inductive hypothesis gives the desired result.

This proves the problem for powers of 2. To prove the problem for general n, split
[0, 3n+ 1) into blocks

[0, 3n+ 1) = [0, 2d1) t [2d1 , 2d1 + 2d2) t [2d1 + 2d2 , 2d1 + 2d2 + 2d3), . . .

whose lengths are decreasing powers of 2. By the lemma,

S0(0, 2
d1) ≥

{
3

d1−1
2 d1 odd

2 · 3
d1−2

2 d1 even

S0(2
d1 , 2d1 + 2d2) = −S2d1 (0, 2

d2) ≥ 0

and for all i,

S0(2
d1 + · · ·+ 2di−1 , 2d1 + · · ·+ 2di) = (−1)i−1S2d1+···+2di−1 (0, 2

di)

≥

{
−2 · 3

di−2

2 di even
−1 · 3

di−1

2 di odd.
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Let D = d1; assume D ≥ 4 since checking D ∈ {1, 2, 3} is easy. Summing over all
intervals gives

S0(0, 3n+ 1) ≥ 2 · 3
D−2
2 + 0−

(
2 · 3

D−4
2 + 3

D−4
2 + 2 · 3

D−6
2 + 3

D−6
2 + · · ·

)
= 3

D−2
2 > 1

when D is even, and

S0(0, 3n+ 1) ≥ 3
D−1
2 + 0−

(
3

D−3
2 + 2 · 3

D−5
2 + 3

D−5
2 + 2 · 3

D−7
2 + · · ·

)
= 1

2 · 3
D−3
2 > 1

when D is odd.

Remark. The following Python code calculates
∑n

i=0(−1)s(3i) in O(logn) time using digit
DP (and in O(K logn) time if 3 is replaced by K):

import functools

K = 3

def sgn(n: int) -> int:
return -1 if bin(n).count('1') % 2 else 1

@functools.lru_cache(maxsize=None)
def f(n: int) -> list[int]:

# Returns an array of size K where arr[i] = sum of
sgn(j) over 0 <= j <= n with j % K = i

ans = [0] * K
if n == 0:

ans[0] += 1
return ans

x = f(n // 2)
for i in range(K):

ans[2 * i % K] += x[i]
ans[(2 * i + 1) % K] -= x[i]

if n % 2 == 0:
ans[(n + 1) % K] -= sgn(n + 1)

return ans

Remark. Define

f(n) =

bn/3c∑
i=0

(−1)s(3i).

Then there exist constants 0 < c1 < c2 such that

lim inf
n→∞

f(n)

nlog4(3)
= c1, lim sup

n→∞

f(n)

nlog4(3)
= c2.

The upper constant is c2 = 2
3 , achieved when n is a power of 4.
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§2.3 TSTST 2024/6, proposed by Jaedon Whyte
Available online at https://aops.com/community/p31007016.

Problem statement

Determine whether there exists a function f : Z>0 → Z>0 such that for all positive
integers m and n,

f(m+ nf(m)) = f(n)m + 2024! ·m.

The answer is no. Let P (m,n) denote the given FE.

¶ Solution 1 (Gopal Goel). Suppose there was a function f , and let r = f(1). Note
that P (1, n) gives

f(1 + rn) = f(n) + 2024!.

Iterating this result gives

f(1 + r + · · ·+ rk) = r + k · 2024!

for all k ∈ Z≥0. If r = 1, this implies f(k+1) = 1+ k · 2024!, which isn’t a valid solution,
so r ≥ 2.

Let m = 1 + r + · · ·+ rr
2(r−1). Note that

1 + r + · · ·+ rk = m+ nf(m) ⇐⇒ rk+1 − rr
2(r−1)+1

r − 1
= n[r + r2(r − 1)2024!].

This has a positive integer solution for n as long as k is sufficiently large in terms of r
and

k ≡ r2(r − 1) (mod φ(1 + r(r − 1) · 2024!)).

For such k, P (m,n) implies

r + k · 2024! = f(n)m + 2024! ·m.

In particular, r + (k −m) · 2024! is a perfect mth power. This has to be true for all k
sufficiently large in an arithmetic progression, which is clearly impossible, as desired.

¶ Solution 2 (Carl Schildkraut). As in the previous solution, we have

f(1 + r + · · ·+ rk) = r + k · 2024!

for all k ∈ Z≥0, where r = f(1) ≥ 2.

Claim — We have f(a) ≥ 2a−1
2024!·a for a ∈ Z>0.

Proof. Let c = a+ af(a), b = f(c) + a, and d = f(a), so that

a+ bf(a) = a+ af(a) + f(a)f(c) = c+ df(c).

Comparing P (a, b) and P (c, d) tells us

f(b)a + 2024! · a = f(d)c + 2024! · c,
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so
f(b)a −

(
f(d)1+f(a)

)a
= 2024! · af(a).

Since the left side of the above equation is positive, it must be at least 2a − 1, which
implies the claim.

Plugging in a = 1 + r + · · · + rk into the above claim immediately gives the desired
contradiction, for sufficiently large k.

¶ Solution 3 (students). If f existed, then for any k ∈ Z>0 we would have

f(f(3))3+kf(3) + 2024!(3 + kf(3)) = f(3 + kf(3) + f(3)f(3 + kf(3)))

= f(3 + (k + f(3 + kf(3))f(3)))

= f(k + f(3 + f(3)k))3 + 2024! · 3.

Choosing k = 27(2024!)2f(3)2 gives

f (k + f(3 + f(3)k))3 =
(
f(f(3))1+9(2024!)2f(3)3

)3
+ (3 · 2024!f(3))3

which contradicts Fermat’s last theorem (no two perfect cubes may sum to a perfect
cube). Hence f cannot exist.
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§3 Solutions to Day 3
§3.1 TSTST 2024/7, proposed by Merlijn Staps
Available online at https://aops.com/community/p31007023.

Problem statement

An infinite sequence a1, a2, a3, . . . of real numbers satisfies

a2n−1 + a2n > a2n+1 + a2n+2 and a2n + a2n+1 < a2n+2 + a2n+3

for every positive integer n. Prove that there exists a real number C such that
anan+1 < C for every positive integer n.

It suffices to solve the problem for sufficiently large n. Let dn = (−1)n−1(an+2 − an).
The assertion simply says that d1, d2, . . . is strictly increasing.

We consider the following cases.

• Suppose that dk > 0 for some k. Then,

a2n+1 = a1 + (d1 + d3 + · · ·+ d2n−1)

clearly diverges to +∞, and

a2n = a2 − (d2 + d4 + · · ·+ d2n−2)

clearly diverges to −∞, so taking C = 0 works.

• Now assume that dk ≤ 0 for all k. This implies that (a2n+1)n≥0 is weakly decreasing
and (a2n)n≥1 is weakly increasing. Adding the two expressions above together, we
see that

d1 + a1 + a2 < a2n + a2n+1 < a1 + a2.

Since (a2n+1)n≥0 is weakly decreasing, it either diverges to −∞ or has a finite limit.
Similarly, (a2n)n≥1 either diverges to +∞ or has a finite limit.

– If (a2n+1)n≥0 diverges to −∞, then the first inequality above implies that
(a2n)n≥1 must diverge to +∞, in which case C = 0 works.

– If (a2n)n≥1 diverges to +∞, then the second inequality implies that (a2n+1)n≥0

must diverge to −∞, so again C = 0 works.
– Finally assume that both limn→∞ a2n+1 and limn→∞ a2n exist, so the limit

L = limn→∞ a2na2n+1 also exists. The result follows taking C > L.
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§3.2 TSTST 2024/8, proposed by Michael Ren
Available online at https://aops.com/community/p31007038.

Problem statement

Let ABC be a scalene triangle, and let D be a point on side BC satisfying ∠BAD =
∠DAC. Suppose that X and Y are points inside ABC such that triangles ABX
and ACY are similar and quadrilaterals ACDX and ABDY are cyclic. Let lines
BX and CY meet at S and lines BY and CX meet at T . Prove that lines DS and
AT are parallel.

¶ Solution by characterizing X and Y . We first state an important property of X
and Y .

Claim — Points X and Y are isogonal conjugates with respect to 4ABC.

A

B CD

X
Y

E

F

S

T

B′

C ′

Here are two proofs of the claim.

First proof of claim by Maxim Li. We prove an equivalent statement that S and T are
isogonal conjugates with respect to 4ABC.

First, we note that ∠Y BC = ∠Y AD = ∠XAD = ∠XCB, so BT = TC. Now, let T ′

be the isogonal conjugate of S w.r.t. 4ABC. Since ∠ABS = ∠ACS, it follows that
T ′B = T ′C. Thus, both T and T ′ lies on perpendicular bisector of BC.

Moreover, since AX and AY are isogonal with respect to ∠BAC, by DDIT on point A
and BXCY , we get that AS and AT are isogonal with respect to ∠BAC. Hence, A, T, T ′

are collinear. Since 4ABC is scalene, combining this with the previous paragraph gives
T = T ′, or S and T are isogonal conjugates.
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A second different proof of the claim. Let γB be the circle through B and C tangent to
AB, and define γC similarly. We claim that X ∈ γB and Y ∈ γC .

Let E be the second intersection of γB with AC, and let F be the intersection of BE
and AD. Consider the transformation τ that is the composition of a reflection across
AD and a homothety at A with ratio AB

AC . Note that τ maps Y 7→ X, B 7→ E, and
D 7→ F . Thus, X lies on τ(�(ABD)) = �(AEF ), so X is the second intersection of
�(AEF ) and �(ADC), i.e. it is the Miquel point of quadrilateral CDFE. Thus, X lies
on �(BEC) = γB, as claimed.

Finally, the main claim follows from ∠BCX = ∠ABX = ∠ACY .

Here are two ways to finish after the claim.

Finish with isosceles trapezoid. We compute

∠AXB = 360◦ − ∠BXC − ∠CXA = 360◦ − ∠BEC − ∠CDA = 180◦ − ∠A
2

.

Thus, if BX meets �(ACD) again at C ′, then

∠ADC ′ = ∠AXC ′ =
∠A
2

= ∠CAD,

so ADCC ′ is an isosceles trapezoid. Similarly, if CY meets �(ABD) again at B′,
then ADBB′ is an isosceles trapezoid. Hence, BCC ′B′ is an isosceles trapezoid whose
diagonals meet at S, so we have that SA = SD.

However, by the claim, S and T are isogonal conjugates in ABC. Thus,

∠ADS = ∠SAD = ∠DAT,

which completes the proof.

Finish with angle chasing (Pitchayut Saengrungkongka). By the claim, let ∠DAX =
∠DAY = ∠ABX = ∠ACY = θ. Then,

∠XSY = ∠A+ 2θ

∠XDY = ∠BDY + ∠CDX − 180◦ = 180◦ − (∠BAY + ∠CAX)

= 180◦ − (∠A+ 2θ),

so XSY D is cyclic. Moreover,

∠XTY = 180◦ − ∠Y BC − ∠XCB = 180◦ − 2θ = 180◦ − ∠XAY,

so AXTY is also cyclic. Finally,

](AT,AX) = ]TY X = ]BYD + ]DYX

= ]BAD + ]DSX = ]BXA+ ]DSX

= ](DS,AX).

¶ Solution 2 (Ruben Carpenter). Let M be the midpoint of BC, and S′, T ′ the
reflections of S, T over M . In what follows, DDIT is short for the dual of Desargues’
involution theorem.
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Claim — S′ lies on AT .

Proof. From 4ABX
−∼ 4AY C, reflection along the angle bisector of ∠ABC is an involu-

tion on the pencil of lines through A with pairs (AB,AC), (AX,AY ) and (A∞BS , A∞CS).
By DDIT from A onto complete quadrilateral XY STBC, AS is sent to AT . By DDIT
from A onto BC∞BX∞CY SS

′, (AS,AS′) is also an involutive pair, so AS′ ≡ AT .

Claim — T ′ lies on DS.

Proof. Using the circles (ACDX), (ABDY ) we obtain

∠BDT = ∠DAY = ∠DAC − ∠Y AC = ∠BAD − ∠BAX = ∠XAD = ∠TCB,

so T lies on the perpendicular bisector of BC. Furthermore

∠CDY = ∠BAY = ∠XAC = ∠XDB,

so by DDIT from D onto XSY TBC shows ∠CDT = ∠SDB. The conclusion follows.

Finally, since STS′T ′ is a parallelogram we immediately have DS ‖ AT .

Remark. This problem was discovered by taking a degenerate case of IMO 2018/6 in which
three of the vertices of the quadrilateral are collinear. Nevertheless, this origin is very
obscured in the problem statement and does not seem to help with the solution at all. The
original statement asked to show that the midpoints of AD, BC, and XY are collinear.
However, it was found that this is a straightforward consequence of a high-powered result
about isogonal conjugates, so the statement was changed.
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§3.3 TSTST 2024/9
Available online at https://aops.com/community/p31007051.

Problem statement

Let n ≥ 2 be a fixed integer. The cells of an n× n table are filled with the integers
from 1 to n2 with each number appearing exactly once. Let N be the number of
unordered quadruples of cells on this board which form an axis-aligned rectangle,
with the two smaller integers being on opposite vertices of this rectangle. Find the
largest possible value of N .

The largest possible value of N is 1
12n

2(n2 − 1). Call these rectangles wobbly. We defer
the construction until the proof is complete, since the proof suggests the construction.

¶ Proof of bound. Call a triple of integers (a, b, c) an elbow if a and b are in the same
row, b and c are in the same column, and a < b > c. Observe that the wobbly rectangles
are exactly the ones with 2 elbows.

Claim — Every axis-aligned rectangle has at least 1 elbow.

Proof. The smallest integer in any rectangle is the center of an elbow.

Remark. In fact, it is true that any rectangle must have exactly 1 or 2 elbows. However,
this fact is not needed in the proof.

Let E be the number of elbows and M be the number of non-wobbly rectangles. Then,
the number of elbows is at least M + 2N =

(
n
2

)2
+N , so

E ≥
(
n

2

)2

+N ⇐⇒ N ≤ E −
(
n

2

)2

.

To this end, we will provide an upper bound on E. For each cell c, define:

• f(c) to be the number of cells in c’s row which are smaller than c, and

• g(c) to be the number of cells in c’s column which are smaller than c.

Then, the number of elbows centered at c equals f(c)g(c). Thus, the number of elbows
satisfies

E =
∑
c

f(c)g(c)

≤
∑
c

1

2

[
f(c)2 + g(c)2]

= n(02 + · · ·+ (n− 1)2)

=
n2(n− 1)(2n− 1)

6
.

It follows that the number of wobbly rectangles satisfies

N ≤ E −
(
n

2

)2
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≤ n2(n− 1)(2n− 1)

6
− n2(n− 1)2

4

=
n2(n2 − 1)

12

as desired.

¶ Construction. From the proof above, equality holds if and only if f(c) = g(c)
everywhere.

Select any n × n Latin square on symbols 0, . . . , n − 1, and replace the n copies of
symbol k with the integers kn+ 1, . . . , kn+ n in some order. This construction is valid,
because for each cell c, f(c) and g(c) both equal the symbol originally placed in c.

Here is an example for n = 6. The left grid is the Latin square, and the right grid is
one possible table that can be derived from it.

0 1

5 32

4 27

3 22

2 17

1 12

1 7

0 2

5 33

4 28

3 23

2 18

2 13

1 8

0 3

5 34

4 29

3 24

3 19

2 14

1 9

0 4

5 35

4 30

4 25

3 20

2 15

1 10

0 5

5 36

5 31

4 26

3 21

2 16

1 11

0 6

Remark (Structure of optimal tables). In fact, any optimal table must lead to a Latin
square in a similar way, by reversing the above idea: replace each cell c with f(c) = g(c).

This suggests how to construct all optimal tables: choose any Latin square on 0, . . . ,
n − 1, and fill in the cells so that the relative order of cells in every row and column is
preserved.

Remark. If the grid is filled out in a random order, the expected number of wobbly
rectangles is 1

12n
2(n− 1)2. This is asymptotically equal to the maximum value.
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