
USA TSTST 2023 Solutions
United States of America — TST Selection Test

Andrew Gu, Evan Chen, Gopal Goel

65th IMO 2024 United Kingdom and 13th EGMO 2024 Georgia

Contents
0 Problems 2

1 Solutions to Day 1 4
1.1 TSTST 2023/1, proposed by Merlijn Staps . . . . . . . . . . . . . . . . . 4
1.2 TSTST 2023/2, proposed by Raymond Feng, Luke Robitaille . . . . . . . 9
1.3 TSTST 2023/3, proposed by Merlijn Staps . . . . . . . . . . . . . . . . . 13

2 Solutions to Day 2 16
2.1 TSTST 2023/4, proposed by Ankan Bhattacharya . . . . . . . . . . . . . 16
2.2 TSTST 2023/5, proposed by David Altizio . . . . . . . . . . . . . . . . . . 17
2.3 TSTST 2023/6, proposed by Holden Mui . . . . . . . . . . . . . . . . . . 20

3 Solutions to Day 3 24
3.1 TSTST 2023/7, proposed by Luke Robitaille . . . . . . . . . . . . . . . . 24
3.2 TSTST 2023/8, proposed by Ankan Bhattacharya . . . . . . . . . . . . . 25
3.3 TSTST 2023/9, proposed by Holden Mui . . . . . . . . . . . . . . . . . . 28

1



USA TSTST 2023 Solutions Andrew Gu, Evan Chen, Gopal Goel

§0 Problems
1. Let ABC be a triangle with centroid G. Points R and S are chosen on rays GB

and GC, respectively, such that

∠ABS = ∠ACR = 180◦ − ∠BGC.

Prove that ∠RAS + ∠BAC = ∠BGC.

2. Let n ≥ m ≥ 1 be integers. Prove that

n∑
k=m

(
1

k2
+

1

k3

)
≥ m ·

(
n∑

k=m

1

k2

)2

.

3. Find all positive integers n for which it is possible to color some cells of an infinite
grid of unit squares red, such that each rectangle consisting of exactly n cells (and
whose edges lie along the lines of the grid) contains an odd number of red cells.

4. Let n ≥ 3 be an integer and let Kn be the complete graph on n vertices. Each edge
of Kn is colored either red, green, or blue. Let A denote the number of triangles in
Kn with all edges of the same color, and let B denote the number of triangles in
Kn with all edges of different colors. Prove that

B ≤ 2A+
n(n− 1)

3
.

5. Suppose a, b, and c are three complex numbers with product 1. Assume that none
of a, b, and c are real or have absolute value 1. Define

p = (a+ b+ c) +

(
1

a
+

1

b
+

1

c

)
and q =

a

b
+

b

c
+

c

a
.

Given that both p and q are real numbers, find all possible values of the ordered
pair (p, q).

6. Let ABC be a scalene triangle and let P and Q be two distinct points in its interior.
Suppose that the angle bisectors of ∠PAQ, ∠PBQ, and ∠PCQ are the altitudes
of triangle ABC. Prove that the midpoint of PQ lies on the Euler line of ABC.

7. The Bank of Pittsburgh issues coins that have a heads side and a tails side. Vera
has a row of 2023 such coins alternately tails-up and heads-up, with the leftmost
coin tails-up.
In a move, Vera may flip over one of the coins in the row, subject to the following
rules:

• On the first move, Vera may flip over any of the 2023 coins.
• On all subsequent moves, Vera may only flip over a coin adjacent to the coin

she flipped on the previous move. (We do not consider a coin to be adjacent
to itself.)

Determine the smallest possible number of moves Vera can make to reach a state
in which every coin is heads-up.
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8. Let ABC be an equilateral triangle with side length 1. Points A1 and A2 are chosen
on side BC, points B1 and B2 are chosen on side CA, and points C1 and C2 are
chosen on side AB such that BA1 < BA2, CB1 < CB2, and AC1 < AC2.
Suppose that the three line segments B1C2, C1A2, and A1B2 are concurrent, and
the perimeters of triangles AB2C1, BC2A1, and CA2B1 are all equal. Find all
possible values of this common perimeter.

9. Let p be a fixed prime and let a ≥ 2 and e ≥ 1 be fixed integers. Given a function
f : Z/aZ → Z/peZ and an integer k ≥ 0, the kth finite difference, denoted ∆kf , is
the function from Z/aZ to Z/peZ defined recursively by

∆0f(n) = f(n)

∆kf(n) = ∆k−1f(n+ 1)−∆k−1f(n) for k = 1, 2, . . . .

Determine the number of functions f such that there exists some k ≥ 1 for which
∆kf = f .
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§1 Solutions to Day 1
§1.1 TSTST 2023/1, proposed by Merlijn Staps
Available online at https://aops.com/community/p28015679.

Problem statement

Let ABC be a triangle with centroid G. Points R and S are chosen on rays GB and
GC, respectively, such that

∠ABS = ∠ACR = 180◦ − ∠BGC.

Prove that ∠RAS + ∠BAC = ∠BGC.

In all the following solutions, let M and N denote the midpoints of AC and AB,
respectively.

A

B C

MN

G

S

R

¶ Solution 1 using power of a point. From the given condition that ]ACR = ]CGM ,
we get that

MA2 = MC2 = MG ·MR =⇒ ]RAC = ]MGA.

Analogously,
]BAS = ]AGN.

Hence,

]RAS + ]BAC = ]RAC + ]BAS = ]MGA+ ]AGN = ]MGN = ]BGC.

¶ Solution 2 using similar triangles. As before, 4MGC ∼ 4MCR and 4NGB ∼
4NBS. We obtain

|AC|
|CR|

=
2|MC|
|CR|

=
2|MG|
|GC|

=
|GB|
2|NG|

=
|BS|
2|BN |

=
|BS|
|AB|

which together with ∠ACR = ∠ABS yields

4ACR ∼ 4SBA =⇒ ]BAS = ]CRA.

4
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Hence

]RAS + ]BAC = ]RAC + ]BAS = ]RAC + ]CRA = −]ACR = ]BGC,

which proves the statement.

¶ Solution 3 using parallelograms. Let M and N be defined as above. Let P be the
reflection of G in M and let Q the reflection of G in N . Then AGCP and AGBQ are
parallelograms.

A

B C

MN

G

S
R

PQ

Claim — Quadrilaterals APCR and AQBS are concyclic.

Proof. Because ]APR = ]APG = ]CGP = −]BGC = ]ACR.

Thus from PC ‖ GA we get

]RAC = ]RPC = ]GPC = ]PGA

and similarly
]BAS = ]BQS = ]BQG = ]AGQ.

We conclude that

]RAS + ]BAC = ]RAC + ]BAS = ]PGA+ ]AGQ = ]PGQ = ]BGC.

¶ Solution 4 also using parallelograms, by Ankan Bhattacharya. Construct parallelo-
grams ARCK and ASBL. Since

]CAK = ]ACR = ]CGB = ]CGK,

it follows that AGCK is cyclic. Similarly, AGBL is also cyclic.
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A

B C

G

K
L

R
S

Finally, observe that

∠RAS + ∠BAC = ]BAS + ]RAC

= ]ABL+ ]KCA

= ]AGL+ ]KGA

= ]KGL

= ∠BGC

as requested.

¶ Solution 5 using complex numbers, by Milan Haiman. Note that ∠RAS+∠BAC =
∠BAS + ∠RAC. We compute ∠BAS in complex numbers; then ∠RAC will then be
known by symmetry.

Let a, b, c be points on the unit circle representing A, B, C respectively. Let
g = 1

3(a+ b+ c) represent the centroid G, and let s represent S.

Claim — We have
s− a

b− a
=

ab− 2bc+ ca

2ab− bc− ca
.

Proof. Since S is on line CG, which passes through the midpoint of segment AB, we
have that

s =
a+ b

2
+ t(c− g)

for some t ∈ R.
By the given angle condition, we have that

(s− b)/(b− a)

(c− g)/(g − b)
∈ R.

Note that
s− b

b− a
= t

c− g

b− a
− 1

2
.

So,
t
g − b

b− a
− g − b

2(c− g)
∈ R.
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Thus

t =
Im
(

g−b
2(c−g)

)
Im
(
g−b
b−a

) =
1

2
·

(
g−b
c−g

)
−
(
g−b
c−g

)
(
g−b
b−a

)
−
(
g−b
b−a

) .
Let N and D be the numerator and denominator of the second factor above.

We want to compute

s− a

b− a
=

1

2
+ t

c− g

b− a
=

(b− a) + 2t(c− g)

2(b− a)
=

(b− a)D + (c− g)N

2(b− a)D
.

We have

(c− g)N = g − b− (c− g)

(
g − b

c− g

)
=

a+ b+ c

3
− b−

(
c− a+ b+ c

3

) 1
a + 1

b +
1
c −

3
b

3
c −

1
a − 1

b −
1
c

=
(a+ c− 2b)(2ab− bc− ca)− (2c− a− b)(ab+ bc− 2ca)

3(2ab− bc− ca)

=
3(a2b+ b2c+ c2a− ab2 − bc2 − ca2)

3(2ab− bc− ca)

=
(a− b)(b− c)(a− c)

2ab− bc− ca

We also compute

(b− a)D = g − b− (b− a)

(
g − b

b− a

)
=

a+ b+ c

3
− b− (b− a)

1
a + 1

b +
1
c −

3
b

3
b −

3
a

=
(a+ c− 2b)c+ (ab+ bc− 2ca)

3c

=
ab− bc− ca+ c2

3c

=
(a− c)(b− c)

3c

So, we obtain

s− a

b− a
=

1
3c +

a−b
2ab−bc−ca
2
3c

=
2ab− bc− ca+ 3c(a− b)

2(2ab− bc− ca)
=

ab− 2bc+ ca

2ab− bc− ca
.

By symmetry,
r − a

c− a
=

ab− 2bc+ ca

2ca− ab− bc
.

Hence their ratio
s− a

b− a
÷ r − a

c− a
=

2ab− bc− ca

2ca− ab− bc

has argument ∠RAC + ∠BAS.
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We also have that ∠BGC is the argument of

b− g

c− g
=

2b− a− c

2c− a− b
.

Note that these two complex numbers are inverse-conjugates, and thus have the same
argument. So we’re done.
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§1.2 TSTST 2023/2, proposed by Raymond Feng, Luke Robitaille
Available online at https://aops.com/community/p28015692.

Problem statement

Let n ≥ m ≥ 1 be integers. Prove that

n∑
k=m

(
1

k2
+

1

k3

)
≥ m ·

(
n∑

k=m

1

k2

)2

.

We show several approaches.

¶ First solution (authors). By Cauchy-Schwarz, we have

n∑
k=m

k + 1

k3
=

n∑
k=m

(
1
k2

)2
1

k(k+1)

≥

(
1
m2 + 1

(m+1)2
+ · · ·+ 1

n2

)2
1

m(m+1) +
1

(m+1)(m+2) + · · ·+ 1
n(n+1)

=

(
1
m2 + 1

(m+1)2
+ · · ·+ 1

n2

)2
1
m − 1

n+1

>

(∑n
k=m

1
k2

)2
1
m

as desired.

Remark (Bound on error). Let A =
∑n

k=m k−2 and B =
∑n

k=m k−3. The inequality
above becomes tighter for large m and n � m. If we use Lagrange’s identity in place of
Cauchy-Schwarz, we get

A+B −mA2 = m ·
∑

m≤a<b

(a− b)2

a3b3(a+ 1)(b+ 1)
.

We can upper bound this error by

≤ m ·
∑

m≤a<b

1

a3(a+ 1)b(b+ 1)
= m ·

∑
m≤a

1

a3(a+ 1)2
≈ m · 1

m4
=

1

m3
,

which is still generous as (a − b)2 � b2 for b not much larger than a, so the real error is
probably around 1

10m3 . This exhibits the tightness of the inequality since it implies

mA2 +O(B/m) > A+B.

Remark (Construction commentary, from author). My motivation was to write an inequality
where Titu could be applied creatively to yield a telescoping sum. This can be difficult
because most of the time, such a reverse-engineered inequality will be so loose it’s trivial

9
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anyways. My first attempt was the not-so-amazing inequality

n2 + 3n

2
=

n∑
1

i+ 1 =

n∑
1

1
i
1

i(i+1)

>

(
n∑
1

1√
i

)2

,

which is really not surprising given that
∑

1√
i
� n√

2
. The key here is that we need

“near-equality” as dictated by the Cauchy-Schwarz equality case, i.e. the square root of the
numerators should be approximately proportional to the denominators.

This motivates using 1
i4 as the numerator, which works like a charm. After working out

the resulting statement, the LHS and RHS even share a sum, which adds to the simplicity
of the problem.

The final touch was to unrestrict the starting value of the sum, since this allows the
strength of the estimate 1

i2 ≈ 1
i(i+1) to be fully exploited.

¶ Second approach by inducting down, Luke Robitaille and Carl Schildkraut. Fix n;
we’ll induct downwards on m. For the base case of n = m the result is easy, since the
left side is m+1

m3 and the right side is m
m4 = 1

m3 .
For the inductive step, suppose we have shown the result for m+ 1. Let

A =
n∑

k=m+1

1

k2
and B =

n∑
k=m+1

1

k3
.

We know A+B ≥ (m+ 1)A2, and we want to show(
A+

1

m2

)
+

(
B +

1

m3

)
≥ m

(
A+

1

m2

)2

.

Indeed,(
A+

1

m2

)
+

(
B +

1

m3

)
−m

(
A+

1

m2

)2

= A+B +
m+ 1

m3
−mA2 − 2A

m
− 1

m3

=
(
A+B − (m+ 1)A2

)
+

(
A− 1

m

)2

≥ 0,

and we are done.

¶ Third approach by reducing n → ∞, Michael Ren and Carl Schildkraut. First, we
give:

Claim (Reduction to n → ∞) — If the problem is true when n → ∞, it is true for
all n.

Proof. Let A =
∑n

k=m k−2 and B =
∑n

k=m k−3. Consider the region of the xy-plane
defined by y > mx2 − x. We are interested in whether (A,B) lies in this region.

However, the region is bounded by a convex curve, and the sequence of points (0, 0),(
1
m2 ,

1
m3

)
,
(

1
m2 + 1

(m+1)2
, 1
m3 + 1

(m+1)3

)
, . . . has successively decreasing slopes between

consecutive points. Thus it suffices to check that the inequality is true when n → ∞.

Set n = ∞ henceforth. Let

A =

∞∑
k=m

1

k2
and B =

∞∑
k=m

1

k3
;

10
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we want to show B ≥ mA2 −A, which rearranges to

1 + 4mB ≥ (2mA− 1)2.

Write

C =
∞∑

k=m

1

k2(2k − 1)(2k + 1)
and D =

∞∑
k=m

8k2 − 1

k3(2k − 1)2(2k + 1)2
.

Then
2

2k − 1
− 2

2k + 1
=

1

k2
+

1

k2(2k − 1)(2k + 1)
,

and
2

(2k − 1)2
− 2

(2k + 1)2
=

1

k3
+

8k2 − 1

k3(2k − 1)2(2k + 1)2
,

so that
A =

2

2m− 1
− C and B =

2

(2m− 1)2
−D.

Our inequality we wish to show becomes

2m+ 1

2m− 1
C ≥ D +mC2.

We in fact show two claims:

Claim — We have
2m+ 1/2

2m− 1
C ≥ D.

Proof. We compare termwise; we need

2m+ 1/2

2m− 1
· 1

k2(2k − 1)(2k + 1)
≥ 8k2 − 1

k3(2k − 1)2(2k + 1)2

for k ≥ m. It suffices to show

2k + 1/2

2k − 1
· 1

k2(2k − 1)(2k + 1)
≥ 8k2 − 1

k3(2k − 1)2(2k + 1)2
,

which is equivalent to k(2k + 1/2)(2k + 1) ≥ 8k2 − 1. This holds for all k ≥ 1.

Claim — We have
1/2

2m− 1
C ≥ mC2.

Proof. We need C ≤ 1/(2m(2m− 1)); indeed,

1

2m(2m− 1)
=

∞∑
k=m

(
1

2k(2k − 1)
− 1

2(k + 1)(2k + 1)

)
=

∞∑
k=m

4k + 1

2k(2k − 1)(k + 1)(2k + 1)
;

comparing term-wise with the definition of C and using the inequality k(4k+1) ≥ 2(k+1)
for k ≥ 1 gives the desired result.

Combining the two claims finishes the solution.

11
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¶ Fourth approach by bashing, Carl Schildkraut. With a bit more work, the third
approach can be adapted to avoid the n → ∞ reduction. Similarly to before, define

A =

n∑
k=m

1

k2
and B =

n∑
k=m

1

k3
;

we want to show 1 + 4mB ≥ (2mA− 1)2. Writing

C =

n∑
k=m

1

k2(2k − 1)(2k + 1)
and D =

n∑
k=m

8k2 − 1

k3(2k − 1)2(2k + 1)2
.

We compute

A =
2

2m− 1
− 2

2n+ 1
− C and B =

2

(2m− 1)2
− 2

(2n+ 1)2
−D.

Then, the inequality we wish to show reduces (as in the previous solution) to

2m+ 1

2m− 1
C +

2(2m+ 1)

(2m− 1)(2n+ 1)
≥ D +mC2 +

2(2m+ 1)

(2n+ 1)2
+

4m

2n+ 1
C.

We deal first with the terms not containing the variable n, i.e. we show that

2m+ 1

2m− 1
C ≥ D +mC2.

For this part, the two claims from the previous solution go through exactly as written
above, and we have C ≤ 1/(2m(2m− 1)). We now need to show

2(2m+ 1)

(2m− 1)(2n+ 1)
≥ 2(2m+ 1)

(2n+ 1)2
+

4m

2n+ 1
C

(this is just the inequality between the remaining terms); our bound on C reduces this to
proving

4(2m+ 1)(n−m+ 1)

(2m− 1)(2n+ 1)2
≥ 2

(2m− 1)(2n+ 1)
.

Expanding and writing in terms of n, this is equivalent to

n ≥ 1 + 2(m− 1)(2m+ 1)

4m
= m− 2m+ 1

4m
,

which holds for all n ≥ m.

12
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§1.3 TSTST 2023/3, proposed by Merlijn Staps
Available online at https://aops.com/community/p28015682.

Problem statement

Find all positive integers n for which it is possible to color some cells of an infinite
grid of unit squares red, such that each rectangle consisting of exactly n cells (and
whose edges lie along the lines of the grid) contains an odd number of red cells.

We claim that this is possible for all positive integers n. Call a positive integer for which
such a coloring is possible good. To show that all positive integers n are good we prove
the following:

(i) If n is good and p is an odd prime, then pn is good;

(ii) For every k ≥ 0, the number n = 2k is good.

Together, (i) and (ii) imply that all positive integers are good.

¶ Proof of (i). We simply observe that if every rectangle consisting of n cells contains
an odd number of red cells, then so must every rectangle consisting of pn cells. Indeed,
because p is prime, a rectangle consisting of pn cells must have a dimension (length or
width) divisible by p and can thus be subdivided into p rectangles consisting of n cells.

Thus every coloring that works for n automatically also works for pn.

¶ Proof of (ii). Observe that rectangles with n = 2k cells have k + 1 possible shapes:
2m × 2k−m for 0 ≤ m ≤ k.

Claim — For each of these k+1 shapes, there exists a coloring with two properties:

• Every rectangle with n cells and shape 2m × 2k−m contains an odd number of
red cells.

• Every rectangle with n cells and a different shape contains an even number of
red cells.

Proof. This can be achieved as follows: assuming the cells are labeled with (x, y) ∈ Z2,
color a cell red if x ≡ 0 (mod 2m) and y ≡ 0 (mod 2k−m). For example, a 4×2 rectangle
gets the following coloring:

A 2m × 2k−m rectangle contains every possible pair (x mod 2m, y mod 2k−m) exactly
once, so such a rectangle will contain one red cell (an odd number).

13
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On the other hand, consider a 2` × 2k−` rectangle with ` > m. The set of cells this
covers is (x, y) where x covers a range of size 2` and y covers a range of size 2k−`. The
number of red cells is the count of x with x ≡ 0 mod 2m multiplied by the count of y
with y ≡ 0 mod 2k−m. The former number is exactly 2`−k because 2k divides 2` (while
the latter is 0 or 1) so the number of red cells is even. The ` < m case is similar.

Finally, given these k + 1 colorings, we can add them up modulo 2, i.e. a cell will be
colored red if it is red in an odd number of these k + 1 colorings. We illustrate n = 4 as
an example; the coloring is 4-periodic in both axes so we only show one 4× 4 cell.

⊕ ⊕ =

This solves the problem.

Remark. The final coloring can be described as follows: color (x, y) red if

max(0,min(ν2(x), k) + min(ν2(y), k)− k + 1)

is odd.

Remark (Luke Robitaille). Alternatively for (i), if n = 2ek for odd k then one may dissect
an a× b rectangle with area n into k rectangles of area 2e, each 2ν2(a) × 2ν2(b). This gives a
way to deduce the problem from (ii) without having to consider odd prime numbers.

¶ Alternate proof of (ii) using generating functions. We will commit to constructing
a coloring which is n-periodic in both directions. (This is actually forced, so it’s natural
to do so.) With that in mind, let

f(x, y) =

2k−1∑
i=0

2k−1∑
j=0

λi,jx
iyj

denote its generating function, where f ∈ F2[x, y].
For this to be valid, we need that for any 2p × 2q rectangle with area n, the sum of the

coefficients of f over it should be one, modulo x2
k
= y2

k
= 1. In other words, whenever

p+ q = k, we must have

f(x, y)(1 + · · ·+ x2
p−1)(1 + · · ·+ y2

q−1) = (1 + · · ·+ x2
k−1)(1 + · · ·+ y2

k−1),

taken modulo x2
k
= y2

k
= 1. The idea is to rewrite these expressions: because we’re

in characteristic 2, the given assertion is (x + 1)2
k
= (y + 1)2

k
= 0, and the requested

property is
f(x, y)(x+ 1)2

p−1(y + 1)2
q−1 = (x+ 1)2

k−1(y + 1)2
k−1.

This suggests the substitution g(x, y) = f(x+1, y+1): then we can replace (x+1, y+1) 7→
(x, y) to simplify the requested property significantly:

Whenever p+ q = k, we must have

g(x, y)x2
p−1y2

q−1 = x2
k−1y2

k−1,

modulo x2
k and y2

k .

14
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However, now the construction of g is very simple: for example, the choice

g(x, y) =
∑

p+q=k

x2
k−2py2

k−2q

works. The end.

Remark. Unraveling the substitutions seen here, it’s possible to show that this is actually
the same construction provided in the first solution.
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§2 Solutions to Day 2
§2.1 TSTST 2023/4, proposed by Ankan Bhattacharya
Available online at https://aops.com/community/p28015691.

Problem statement

Let n ≥ 3 be an integer and let Kn be the complete graph on n vertices. Each edge
of Kn is colored either red, green, or blue. Let A denote the number of triangles in
Kn with all edges of the same color, and let B denote the number of triangles in Kn

with all edges of different colors. Prove that

B ≤ 2A+
n(n− 1)

3
.

Consider all unordered pairs of different edges which share exactly one vertex (call these
vees for convenience). Assign each vee a charge of +2 if its edge colors are the same, and
a charge of −1 otherwise.

We compute the total charge in two ways.

¶ Total charge by summing over triangles. Note that

• each monochromatic triangle has a charge of +6,

• each bichromatic triangle has a charge of 0, and

• each trichromatic triangle has a charge of −3.

Since each vee contributes to exactly one triangle, we obtain that the total charge is
6A− 3B.

¶ Total charge by summing over vertices. We can also calculate the total charge by
examining the centers of the vees. If a vertex has a red edges, b green edges, and c blue
edges, the vees centered at that vertex contribute a total charge of

2

[(
a

2

)
+

(
b

2

)
+

(
c

2

)]
− (ab+ ac+ bc)

= (a2 − a+ b2 − b+ c2 − c)− (ab+ ac+ bc)

= (a2 + b2 + c2 − ab− ac− bc)− (a+ b+ c)

= (a2 + b2 + c2 − ab− ac− bc)− (n− 1)

≥ −(n− 1).

In particular, the total charge is at least −n(n− 1).

¶ Conclusion. Thus, we obtain

6A− 3B ≥ −n(n− 1) ⇐⇒ B ≤ 2A+
n(n− 1)

3

as desired.
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§2.2 TSTST 2023/5, proposed by David Altizio
Available online at https://aops.com/community/p28015713.

Problem statement

Suppose a, b, and c are three complex numbers with product 1. Assume that none
of a, b, and c are real or have absolute value 1. Define

p = (a+ b+ c) +

(
1

a
+

1

b
+

1

c

)
and q =

a

b
+

b

c
+

c

a
.

Given that both p and q are real numbers, find all possible values of the ordered
pair (p, q).

We show (p, q) = (−3, 3) is the only possible ordered pair.

¶ First solution.

Setup for proof Let us denote a = y/x, b = z/y, c = x/z, where x, y, z are nonzero
complex numbers. Then

p+ 3 = 3 +
∑
cyc

(
x

y
+

y

x

)
= 3 +

x2(y + z) + y2(z + x) + z2(x+ y)

xyz

=
(x+ y + z)(xy + yz + zx)

xyz
.

q − 3 = −3 +
∑
cyc

y2

zx
=

x3 + y3 + z3 − 3xyz

xyz

=
(x+ y + z)(x2 + y2 + z2 − xy − yz − zx)

xyz
.

It follows that

R 3 3(p+ 3) + (q − 3)

=
(x+ y + z)(x2 + y2 + z2 + 2(xy + yz + zx))

xyz

=
(x+ y + z)3

xyz
.

Now, note that if x+ y + z = 0, then p = −3, q = 3 so we are done.

Main proof We will prove that if x+y+z 6= 0 then we contradict either the hypothesis
that a, b, c /∈ R or that a, b, c do not have absolute value 1.

Scale x, y, z in such a way that x+ y + z is nonzero and real; hence so is xyz. Thus,
as p + 3 ∈ R, we conclude xy + yz + zx ∈ R as well. Hence, x, y, z are the roots of a
cubic with real coefficients. Thus,

• either all three of {x, y, z} are real (which implies a, b, c ∈ R),

• or two of {x, y, z} are a complex conjugate pair (which implies one of a, b, c has
absolute value 1).

Both of these were forbidden by hypothesis.
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Construction As we saw in the setup, (p, q) = (−3, 3) will occur as long as x+y+z = 0,
and no two of x, y, z to share the same magnitude or are collinear with the origin. This
is easy to do; for example, we could choose (x, y, z) = (3, 4i,−(3 + 4i)). Hence a = 3

4i ,
b = − 4i

3+4i , c = −3+4i
3 satisfies the hypotheses of the problem statement.

¶ Second solution, found by contestants. The main idea is to make the substitution

x = a+
1

c
, y = b+

1

a
, z = c+

1

b
.

Then we can check that

x+ y + z = p

xy + yz + zx = p+ q + 3

xyz = p+ 2.

Therefore x, y, z are the roots of a cubic with real coefficients. As in the previous
solution, we note that this cubic must either have all real roots, or a complex conjugate
pair of roots. We also have the relation a(y + 1) = ab + a + 1 = x + 1, and likewise
b(z + 1) = y + 1, c(x + 1) = z + 1. This means that if any of x, y, z are equal to −1,
then all are equal to −1.

Assume for the sake of contradiction that none are equal to −1. In the case where
the cubic has three real roots, a = x+1

y+1 would be real. On the other hand, if there is a
complex conjugate pair (without loss of generality, x and y) then a has magnitude 1.
Therefore this cannot occur.

We conclude that x = y = z = −1, so p = −3 and q = 3. The solutions (a, b, c) can
then be parameterized as (a,−1− 1

a ,−
1

1+a). To construct a solution, we need to choose
a specific value of a such that none of the wrong conditions hold; when a = 2i, say, we
obtain the solution (2i,−1 + i

2 ,
−1+2i

5 ).

¶ Third solution by Luke Robitaille and Daniel Zhu. The answer is p = −3 and q = 3.
Let’s first prove that no other (p, q) work.

Let e1 = a+ b+ c and e2 = a−1 + b−1 + c−1 = ab+ ac+ bc. Also, let f = e1e2. Note
that p = e1 + e2.

Our main insight is to consider the quantity q′ = b
a + c

b +
a
c . Note that f = q + q′ + 3.

Also,

qq′ = 3 +
a2

bc
+

b2

ac
+

c2

ab
+

bc

a2
+

ac

b2
+

ab

c2

= 3 + a3 + b3 + c3 + a−3 + b−3 + c−3

= 9 + a3 + b3 + c3 − 3abc+ a−3 + b−3 + c−3 − 3a−1b−1c−1

= 9 + e1(e
2
1 − 3e2) + e2(e

2
2 − 3e1)

= 9 + e31 + e32 − 6e1e2

= 9 + p(p2 − 3f)− 6f

= p3 − (3p+ 6)f + 9.

As a result, the quadratic with roots q and q′ is x2 − (f − 3)x + (p3 − (3p + 6)f + 9),
which implies that

q2 − qf + 3q + p3 − (3p+ 6)f + 9 = 0 ⇐⇒ (3p+ q + 6)f = p3 + q2 + 3q + 9.

At this point, two miracles occur. The first is the following claim:
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Claim — f is not real.

Proof. Suppose f is real. Since (x− e1)(x− e2) = x2 − px+ f , there are two cases:

• e1 and e2 are real. Then, a, b, and c are the roots of x3 − e1x
2 + e2x− 1, and since

every cubic with real coefficients has at least one real root, at least one of a, b, and
c is real, contradiction.

• e1 and e2 are conjugates. Then, the polynomial x3− ē2x
2+ ē1x−1, which has roots

ā−1, b̄−1, and c̄−1, is the same as the polynomial with a, b, c as roots. We conclude
that the multiset {a, b, c} is invariant under inversion about the unit circle, so one
of a, b, and c must lie on the unit circle. This is yet another contradiction.

As a result, we know that 3p + q + 6 = p3 + q2 + 3q + 9 = 0. The second miracle is
that substituting q = −3p− 6 into q2 + 3q + p3 + 9 = 0, we get

0 = p3 + 9p2 + 27p+ 27 = (p+ 3)3,

so p = −3. Thus q = 3.
It remains to construct valid a, b, and c. To do this, let’s pick some e1, let e2 = −3−e1,

and let a, b, and c be the roots of x3−e1x
2+e2x−1. It is clear that this guarantees p = −3.

By our above calculations, q and q′ are the roots of the quadratic x2−(f−3)x+(3f−18),
so one of q and q′ must be 3; by changing the order of a, b, and c if needed, we can
guarantee this to be q. It suffices to show that for some choice of e1, none of a, b, or c
are real or lie on the unit circle.

To do this, note that we can rewrite x3 − e1x
2 + (−3− e1)x− 1 = 0 as

e1 =
x3 − 3x− 1

x2 + x
,

so all we need is a value of e1 that is not x3−3x−1
x2+x

for any real x or x on the unit circle.
One way to do this is to choose any nonreal e1 with |e1| < 1/2. This clearly rules out
any real x. Also, if |x| = 1, by the triangle inequality |x3 − 3x− 1| ≥ |3x| − |x3| − |1| = 1

and |x2 + x| ≤ 2, so
∣∣∣x3−3x−1

x2+x

∣∣∣ ≥ 1
2 .
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§2.3 TSTST 2023/6, proposed by Holden Mui
Available online at https://aops.com/community/p28015708.

Problem statement

Let ABC be a scalene triangle and let P and Q be two distinct points in its interior.
Suppose that the angle bisectors of ∠PAQ, ∠PBQ, and ∠PCQ are the altitudes of
triangle ABC. Prove that the midpoint of PQ lies on the Euler line of ABC.

We present three approaches.

¶ Solution 1 (Ankit Bisain). Let H be the orthocenter of ABC, and construct P ′

using the following claim.

Claim — There is a point P ′ for which

]APH + ]AP ′H = ]BPH + ]BP ′H = ]CPH + ]CP ′H = 0.

Proof. After inversion at H, this is equivalent to the fact that P ’s image has an isogonal
conjugate in ABC’s image.

Now, let X, Y , and Z be the reflections of P over AH, BH, and CH respectively.
Additionally, let Q′ be the image of Q under inversion about (PXY Z).

A

B C

XY

Z

H

P

Q

Q′

P ′

Claim — ABCP ′ −∼ XY ZQ′.

Proof. Since
]Y XZ = ]Y PZ = ](BH,CH) = −]BAC

and cyclic variants, triangles ABC and XY Z are similar. Additionally,

]HQ′X = −]HXQ = −]HXA = ]HPA = −]HP ′A

and cyclic variants, so summing in pairs gives ]Y Q′Z = −]BP ′C and cyclic variants;
this implies the similarity.

20

https://aops.com/community/p28015708


USA TSTST 2023 Solutions Andrew Gu, Evan Chen, Gopal Goel

Claim — Q′ lies on the Euler line of triangle XY Z.

Proof. Let O be the circumcenter of ABC so that ABCOP ′ −∼ XY ZHQ′. Then
]HP ′A = −]HQ′X = ]OP ′A, so P ′ lies on OH. By the similarity, Q′ must lie
on the Euler line of XY Z.

To finish the problem, let G1 be the centroid of ABC and G2 be the centroid of XY Z.
Then with signed areas,

[G1HP ] + [G1HQ] =
[AHP ] + [BHP ] + [CHP ]

3
+

[AHQ] + [BHQ] + [CHQ]

3

=
[AHQ]− [AHX] + [BHQ]− [BHY ] + [CHQ]− [CHZ]

3

=
[HQX] + [HQY ] + [HQZ]

3
= [QG2H]

= 0

where the last line follows from the last claim. Therefore G1H bisects PQ, as desired.

Remark. This solution characterizes the set of all points P for which such a point Q exists.
It is the image of the Euler line under the mapping described in the first claim.

¶ Solution 2 using complex numbers (Carl Schildkraut and Milan Haiman). Let
(ABC) be the unit circle in the complex plane, and let A = a, B = b, C = c such that
|a| = |b| = |c| = 1. Let P = p and Q = q, and O = 0 and H = h = a + b + c be the
circumcenter and orthocenter of ABC respectively.

The first step is to translate the given geometric conditions into a single usable
equation:

Claim — We have the equation

(p+ q)
∑
cyc

a3(b2 − c2) = (p+ q)abc
∑
cyc

(bc(b2 − c2)). (1)

Proof. The condition that the altitude AH bisects ∠PAQ is equivalent to

(p− a)(q − a)

(h− a)2
=

(p− a)(q − a)

(b+ c)2
∈ R

=⇒ (p− a)(q − a)

(b+ c)2
=

(
(p− a)(q − a)

(b+ c)2

)
=

(ap− 1)(aq − 1)b2c2

(b+ c)2a2

=⇒ a2(p− a)(q − a) = b2c2(ap− 1)(aq − 1)

=⇒ a2pq − a2b2c2pq + (a4 − b2c2) = a3(p+ q)− ab2c2(p+ q).

Writing the symmetric conditions that BH and CH bisect ∠PBQ and ∠PCQ gives
three equations:

a2pq − a2b2c2pq + (a4 − b2c2) = a3(p+ q)− ab2c2(p+ q)

b2pq − a2b2c2pq + (b4 − c2a2) = b3(p+ q)− bc2a2(p+ q)
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c2pq − a2b2c2pq + (c4 − a2b2) = c3(p+ q)− ca2b2(p+ q).

Now, sum (b2 − c2) times the first equation, (c2 − a2) times the second equation, and
(a2 − b2) times the third equation. On the left side, the coefficients of pq and pq are
0. Additionally, the coefficient of 1 (the parenthesized terms on the left sides of each
equation) sum to 0, since∑

cyc
(a4 − b2c2)(b2 − c2) =

∑
cyc

(a4b2 − b4c2 − a4c2 + c4b2).

This gives (1) as desired.

We can then factor (1):

Claim — The left-hand side of (1) factors as

−(p+ q)(a− b)(b− c)(c− a)(ab+ bc+ ca)

while the right-hand side factors as

−(p+ q)(a− b)(b− c)(c− a)(a+ b+ c).

Proof. This can of course be verified by direct expansion, but here is a slightly more
economic indirect proof.

Consider the cyclic sum on the left as a polynomial in a, b, and c. If a = b, then it
simplifies as a3(a2 − c2) + a3(c2 − a2) + c3(a2 − a2) = 0, so a− b divides this polynomial.
Similarly, a− c and b− c divide it, so it can be written as f(a, b, c)(a− b)(b− c)(c− a)
for some symmetric quadratic polynomial f , and thus it is some linear combination
of a2 + b2 + c2 and ab + bc + ca. When a = 0, the whole expression is b2c2(b − c), so
f(0, b, c) = −bc, which implies that f(a, b, c) = −(ab+ bc+ ca).

Similarly, consider the cyclic sum on the right as a polynomial in a, b, and c. If
a = b, then it simplifies as ac(a2 − c2) + ca(c2 − a2) + a2(a2 − a2) = 0, so a − b
divides this polynomial. Similarly, a − c and b − c divide it, so it can be written as
g(a, b, c)(a− b)(b− c)(c−a) where g is a symmetric linear polynomial; hence, it is a scalar
multiple of a+b+c. When a = 0, the whole expression is bc(b2−c2), so g(0, b, c) = −b−c,
which implies that g(a, b, c) = −(a+ b+ c).

Since A, B, and C are distinct, we may divide by (a− b)(b− c)(c− a) to obtain

(p+ q)(ab+ bc+ ca) = (p+ q)abc(a+ b+ c) =⇒ (p+ q)h = (p+ q)h.

This implies that
p+q
2

−0

h−0 is real, so the midpoint of PQ lies on line OH.

¶ Solution 3 also using complex numbers (Michael Ren). We use complex numbers
as in the previous solution. The angle conditions imply that (a−p)(a−q)

(b−c)2
, (b−p)(b−q)

(c−a)2
, and

(c−p)(c−q)
(a−b)2

are real numbers. Take a linear combination of these with real coefficients X,
Y , and Z to be determined; after expansion, we obtain[

X

(b− c)2
+

Y

(c− a)2
+

Z

(a− b)2

]
pq

−
[

aX

(b− c)2
+

bY

(c− a)2
+

cZ

(a− b)2

]
(p+ q)
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+

[
a2X

(b− c)2
+

b2Y

(c− a)2
+

c2Z

(a− b)2

]
which is a real number. To get something about the midpoint of PQ, the pq coefficient
should be zero, which motivates the following lemma.

Lemma
There exist real X, Y , Z for which

X

(b− c)2
+

Y

(c− a)2
+

Z

(a− b)2
= 0 and

aX

(b− c)2
+

bY

(c− a)2
+

cZ

(a− b)2
6= 0.

Proof. Since C is a 2-dimensional vector space over R, there exist real X,Y, Z such that
(X,Y, Z) 6= (0, 0, 0) and the first condition holds. Suppose for the sake of contradiction
that aX

(b−c)2
+ bY

(c−a)2
+ cZ

(a−b)2
= 0. Then

(b− a)Y

(c− a)2
+

(c− a)Z

(a− b)2

=
aX

(b− c)2
+

bY

(c− a)2
+

cZ

(a− b)2
− a

(
X

(b− c)2
+

Y

(c− a)2
+

Z

(a− b)2

)
=0.

We can easily check that (Y, Z) = (0, 0) is impossible, therefore (b−a)3

(c−a)3
= −Z

Y is real.
This means ∠BAC = 60◦ or 120◦. By symmetry, the same is true of ∠CBA and ∠ACB.
This is impossible because ABC is scalene.

With the choice of X, Y , Z as in the lemma, there exist complex numbers α and
β, depending only on a, b, and c, such that α 6= 0 and α(p + q) + β is real. Therefore
the midpoint of PQ, which corresponds to p+q

2 , lies on a fixed line. It remains to show
that this line is the Euler line. First, choose P = Q to be the orthocenter to show that
the orthocenter lies on the line. Secondly, choose P and Q to be the foci of the Steiner
circumellipse to show that the centroid lies on the line. (By some ellipse properties, the
external angle bisector of ∠PAQ is the tangent to the circumellipse at A, which is the
line through A parallel to BC. Therefore these points are valid.) Therefore the fixed line
of the midpoint is the Euler line.

Remark. This solution does not require fixing the origin of the complex plane or setting
(ABC) to be the unit circle.

23



USA TSTST 2023 Solutions Andrew Gu, Evan Chen, Gopal Goel

§3 Solutions to Day 3
§3.1 TSTST 2023/7, proposed by Luke Robitaille
Available online at https://aops.com/community/p28015706.

Problem statement

The Bank of Pittsburgh issues coins that have a heads side and a tails side. Vera
has a row of 2023 such coins alternately tails-up and heads-up, with the leftmost
coin tails-up.

In a move, Vera may flip over one of the coins in the row, subject to the following
rules:

• On the first move, Vera may flip over any of the 2023 coins.

• On all subsequent moves, Vera may only flip over a coin adjacent to the coin
she flipped on the previous move. (We do not consider a coin to be adjacent
to itself.)

Determine the smallest possible number of moves Vera can make to reach a state in
which every coin is heads-up.

The answer is 4044 . In general, replacing 2023 with 4n+ 3, the answer is 8n+ 4.

¶ Bound. Observe that the first and last coins must be flipped, and so every coin is
flipped at least once. Then, the 2n+ 1 even-indexed coins must be flipped at least twice,
so they are flipped at least 4n+ 2 times.

The 2n+ 2 odd-indexed coins must then be flipped at least 4n+ 1 times. Since there
are an even number of these coins, the total flip count must be even, so they are actually
flipped a total of at least 4n+ 2 times, for a total of at least 8n+ 4 flips in all.

¶ Construction. For k = 0, 1, . . . , n− 1, flip (4k + 1, 4k + 2, 4k + 3, 4k + 2, 4k + 3, 4k +
4, 4k + 3, 4k + 4) in that order; then at the end, flip 4n+ 1, 4n+ 2, 4n+ 3, 4n+ 2. This
is illustrated below for 4n+ 3 = 15.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

It is easy to check this works, and there are 4044 flips, as desired.
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§3.2 TSTST 2023/8, proposed by Ankan Bhattacharya
Available online at https://aops.com/community/p28015680.

Problem statement

Let ABC be an equilateral triangle with side length 1. Points A1 and A2 are chosen
on side BC, points B1 and B2 are chosen on side CA, and points C1 and C2 are
chosen on side AB such that BA1 < BA2, CB1 < CB2, and AC1 < AC2.

Suppose that the three line segments B1C2, C1A2, and A1B2 are concurrent, and
the perimeters of triangles AB2C1, BC2A1, and CA2B1 are all equal. Find all
possible values of this common perimeter.

The only possible value of the common perimeter, denoted p, is 1.

¶ Synthetic approach (from author). We prove the converse of the problem first:

Claim (p = 1 implies concurrence) — Suppose the six points are chosen so that
triangles AB2C1, BC2A1, CA2B1 all have perimeter 1. Then lines B1C2, C1A2, and
A1B2 are concurrent.

Proof. The perimeter conditions mean that B2C1, C2A1, and A2B1 are tangent to the
incircle of 4ABC.

A

B CA1 A2

B1

B2
C1

C2

Hence the result follows by Brianchon’s theorem.

Now suppose p 6= 1. Let B′
2C

′
1 be the dilation of B2C1 with ratio 1

p at center A, and
define C ′

2, A′
1, A′

2, B′
1 similarly. The following diagram showcases the situation p < 1.

25

https://aops.com/community/p28015680


USA TSTST 2023 Solutions Andrew Gu, Evan Chen, Gopal Goel

A

B CA′
1 A′

2

B′
1

B′
2

C ′
1

C ′
2

A1 A2

B1

B2
C1

C2

By the reasoning in the p = 1 case, note that B′
1C

′
2, C ′

1A
′
2, and A′

1B
′
2 are concurrent.

However, B1C2, C1A2, A1B2 lie in the interior of quadrilaterals BCB′
1C

′
2, CAC ′

1A
′
2, and

ABA′
1B

′
2, and these quadrilaterals do not share an interior point, a contradiction.

Thus p ≥ 1. Similarly, we can show p ≤ 1, and so p = 1 is forced (and achieved if, for
example, the three triangles are equilateral with side length 1/3).

¶ Barycentric solution (by Carl, Krit, Milan). We show that, if the common perimeter
is 1, then the lines concur. To do this, we use barycentric coordinates. Let A = (1 : 0 : 0),
B = (0 : 1 : 0), and C = (0 : 0 : 1). Let A1 = (0 : 1 − a1 : a1), A2 = (0 : a2 : 1 − a2),
B1 = (b1 : 0 : 1−b1), B2 = (1−b2 : 0 : b2), C1 = (1−c1 : c1 : 0), and C2 = (c2 : 1−c2 : 0).
The line B1C2 is defined by the equation

det

x y z
b1 0 1− b1
c2 1− c2 0

 = 0;

i.e.
x
(
− (1− b1)(1− c2)

)
+ y
(
(1− b1)c2

)
+ z
(
b1(1− c2)

)
= 0.

Computing the equations for the other lines cyclically, we get that the lines B1C2, C1A2,
and A1B2 concur if and only if

det

−(1− b1)(1− c2) (1− b1)c2 b1(1− c2)
c1(1− a2) −(1− c1)(1− a2) (1− c1)a2
(1− a1)b2 a1(1− b2) −(1− a1)(1− b2)

 = 0.

Let this matrix be M . We also define the similar matrix

N =

−(1− b2)(1− c1) (1− b2)c1 b2(1− c1)
c2(1− a1) −(1− c2)(1− a1) (1− c2)a1
(1− a2)b1 a2(1− b1) −(1− a2)(1− b1)

 .

Geometrically, detN = 0 if and only if B′
2C

′
1, C ′

2A
′
1, and A′

2B
′
1 concur, where for a point

P on a side of triangle ABC, P ′ denotes its reflection over that side’s midpoint.
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Claim — We have detM = detN .

Proof. To show detM = detN , it suffices to demonstrate that the determinant above is
invariant under swapping subscripts of “1” and “2,” an operation we call Ψ.

We use the definition of the determinant as a sum over permutations. The even
permutations give us the following three terms:

−(1− b1)(1− c2)(1− c1)(1− a2)(1− a1)(1− b2) = −
2∏

i=1

(
(1− ai)(1− bi)(1− ci)

)
(1− a1)b2(1− b1)c2(1− c1)a2 =

(
(1− a1)(1− b1)(1− c1)

)(
a2b2c2

)
c1(1− a2)a1(1− b2)b1(1− c2) =

(
(1− a2)(1− b2)(1− c2)

)(
a1b1c1

)
.

The first term is invariant under Ψ, while the second and third terms are swapped under
Ψ. For the odd permutations, we have a contribution to the determinant of∑

cyc
(1− b1)(1− c2)(1− c1)a2a1(1− b2);

each summand is invariant under Ψ. This finishes the proof of our claim.

Now, it suffices to show that, if AB2C1, BC2A1, and CA2B1 each have perimeter 1,
then

det

−(1− b2)(1− c1) (1− b2)c1 b2(1− c1)
c2(1− a1) −(1− c2)(1− a1) (1− c2)a1
(1− a2)b1 a2(1− b1) −(1− a2)(1− b1).

 = 0.

Indeed, we have AB2 = b2 and AC1 = c1, so by the law of cosines,

1− b2 − c1 = 1−AB2 −AC1 = B2C1 =
√
b22 + c21 − b2c1.

This gives

(1− b2 − c1)
2 = b22 + c21 − b2c1 =⇒ 1− 2b2 − 2c1 + 3b2c1 = 0.

Similarly, 1− 2c2 − 2a1 + 3c2a1 = 0 and 1− 2a2 − 2b1 + 3a2b1 = 0.
Now,

N

11
1

 =

−(1− b2)(1− c1) + (1− b2)c1 + b2(1− c1)
−(1− c2)(1− a1) + (1− c2)a1 + c2(1− a1)
−(1− a2)(1− b1) + (1− a2)b1 + a2(1− b1)


=

−1 + 2b2 + 2c1 − 3b2c1
−1 + 2c2 + 2a1 − 3c2a1
−1 + 2a2 + 2b1 − 2a2b1

 =

00
0

 .

So it follows detN = 0, as desired.
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§3.3 TSTST 2023/9, proposed by Holden Mui
Available online at https://aops.com/community/p28015688.

Problem statement

Let p be a fixed prime and let a ≥ 2 and e ≥ 1 be fixed integers. Given a function
f : Z/aZ → Z/peZ and an integer k ≥ 0, the kth finite difference, denoted ∆kf , is
the function from Z/aZ to Z/peZ defined recursively by

∆0f(n) = f(n)

∆kf(n) = ∆k−1f(n+ 1)−∆k−1f(n) for k = 1, 2, . . . .

Determine the number of functions f such that there exists some k ≥ 1 for which
∆kf = f .

The answer is
(pe)a · p−epνp(a) = pe(a−pνp(a)).

¶ First solution by author. For convenience in what follows, set d = νp(a), let a = pd · b,
and let a function f : Z/aZ → Z/peZ be essential if it equals one of its iterated finite
differences.

The key claim is the following.

Claim (Characterization of essential functions) — A function f is essential if and
only if

f(x) + f(x+ pd) + · · ·+ f(x+ (b− 1)pd) = 0 (2)

for all x.

As usual, we split the proof into two halves.

Proof that essential implies the equation First, suppose that f is essential, with
∆Nf = f . Observe that f is in the image of ∆k for any k, because ∆mNf = f for any
m. The following lemma will be useful.

Lemma
Let g : Z/aZ → Z/peZ be any function, and let h = ∆pdg. Then

h(x) + h(x+ pd) + · · ·+ h(x+ (b− 1)pd) ≡ 0 (mod p)

for all x.

Proof. By definition,

h(x) = ∆pdg(x) =

pd∑
k=0

(−1)k
(
pd

k

)
g(x+ pd − k).

However, it is known that
(
pd

k

)
is a multiple of p if 1 ≤ k ≤ pd − 1, so

h(x) ≡ g(x+ pd) + (−1)p
d
g(x) (mod p).
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Using this, we easily obtain

h(x) + h(x+ pd) + · · ·+ h(x+ (b− 1)pd)

≡

{
0 p > 2

2(g(x) + g(x+ pd) + · · ·+ g(x+ (b− 1)pd)) p = 2

≡ 0 (mod p),

as desired.

Corollary
Let g : Z/aZ → Z/peZ be any function, and let h = ∆epdg. Then

h(x) + h(x+ pd) + · · ·+ h(x+ (b− 1)pd) = 0

for all x.

Proof. Starting with the lemma, define

h1(x) =
h(x) + h(x+ pd) + · · ·+ h(x+ (b− 1)pd)

p
.

Applying the lemma to h1 shows the corollary for e = 2, since h1(x) is divisible by p,
hence the numerator is divisible by p2. Continue in this manner to get the result for
general e > 2.

This immediately settles this direction, since f is in the image of ∆epd .

Proof the equation implies essential Let S be the set of all functions satisfying
2; then it’s easy to see that ∆ is a function on S. To show that all functions in S are
essential, it’s equivalent to show that ∆ is a permutation on S.

We will show that ∆ is injective on S. Suppose otherwise, and consider two functions f ,
g in S with ∆f = ∆g. Then, we obtain that f and g differ by a constant; say g = f + λ.
However, then

g(0) + g(pe) + · · ·+ g((b− 1)pe)

= (f(0) + λ) + (f(pe) + λ) + · · ·+ (f((b− 1)pe) + λ)

= bλ.

This should also be zero. Since p - b, we obtain λ = 0, as desired.

Counting Finally, we can count the essential functions: all but the last pd entries
can be chosen arbitrarily, and then each remaining entry has exactly one possible choice.
This leads to a count of

(pe)a−pd = pe(a−pνp(a)),

as promised.

¶ Second solution by Daniel Zhu. There are two parts to the proof: solving the e = 1
case, and using the e = 1 result to solve the general problem by induction on e. These
parts are independent of each other.
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The case e = 1 Represent functions f as elements

αf :=
∑

k∈Z/aZ

f(−k)xk ∈ Fp[x]/(x
a − 1)

Then, since α∆f = (x − 1)αf , we wish to find the number of α ∈ Fp[x]/(x
a − 1) such

that (x− 1)mα = α for some m.
Now, make the substitution y = x − 1 and let P (y) = (y + 1)a − 1; we want to find

α ∈ Fp[y]/(P (y)) such that ymα = α for some m.
If we write P (y) = ydQ(y) with Q(0) 6= 0, then by the Chinese Remainder Theorem

we have the ring isomorphism

Fp[y]/(P (y)) ∼= Fp[y]/(y
d)× Fp[y]/(Q(y)).

Note that y is nilpotent in the first factor, while it is a unit in the second factor. So the
α that work are exactly those that are zero in the first factor; thus there are pa−d such α.
We can calculate d = pvp(a) (via, say, Lucas’s Theorem), so we are done.

The general problem The general idea is as follows: call a f : Z/aZ → Z/peZ e-good
if ∆mf = f for some m. Our result above allows us to count the 1-good functions. Then,
if e ≥ 1, every (e+ 1)-good function, when reduced mod pe, yields an e-good function,
so we count (e+ 1)-good functions by counting how many reduce to any given e-good
function.

Formally, we use induction on e, with the e = 1 case being treated above. Suppose
now we have solved the problem for a given e ≥ 1, and we now wish to solve it for e+ 1.
For any function g : Z/aZ → Z/pe+1Z, let ḡ : Z/aZ → Z/peZ be its reduction mod pe.
For a given e-good f , let n(f) be the number of (e+1)-good g with ḡ = f . The following
two claims now finish the problem:

Claim — If f is e-good, then n(f) > 0.

Proof. Suppose m is such that ∆mf = f . Pick any g with ḡ = f , and consider the
sequence of functions

g,∆mg,∆2mg, . . . .

Since there are finitely many functions Z/aZ → Z/pe+1Z, there must exist a < b such
that ∆amg = ∆bmg. We claim ∆amg is the desired (e + 1)-good function. To see this,
first note that since ∆kg = ∆kḡ, we must have ∆amg = ∆amf = f . Moreover,

∆(b−a)m(∆amg) = ∆bmg = ∆amg,

so ∆amg is (e+ 1)-good.

Claim — If f is e-good, and n(f) > 0, then n(f) is exactly the number of 1-good
functions, i.e. pa−pvp(a) .

Proof. Let g be any (e+1)-good function with ḡ = f . We claim that the (e+1)-good g1
with ḡ1 = f are exactly the functions of the form g + peh for any 1-good h. Since these
functions are clearly distinct, this characterization will prove the claim.
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To show that this condition is sufficient, note that g + peh = ḡ = f . Moreover, if
∆mg = g and ∆m′

h = h, then

∆mm′
(g + peh) = ∆mm′

g + pe∆mm′
h = g + peh.

To show that this condition is necessary, let g1 be any (e+ 1)-good function such that
ḡ1 = f . Then g1 − g is also (e+ 1)-good, since if ∆mg = g, ∆m′

g1 = g1, we have

∆mm′
(g1 − g) = ∆mm′

g1 −∆mm′
g = g1 − g.

On the other hand, we also know that g1 − g is divisible by pe. This means that it must
be peh for some function f : Z/aZ → Z/pZ, and it is not hard to show that g1 − g being
(e+ 1)-good means that h is 1-good.
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