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§0 Problems
1. Let n be a positive integer. Find the smallest positive integer k such that for any

set S of n points in the interior of the unit square, there exists a set of k rectangles
such that the following hold:

• The sides of each rectangle are parallel to the sides of the unit square.
• Each point in S is not in the interior of any rectangle.
• Each point in the interior of the unit square but not in S is in the interior of

at least one of the k rectangles.
(The interior of a polygon does not contain its boundary.)

2. Let ABC be a triangle. Let θ be a fixed angle for which

θ <
1

2
min(∠A,∠B,∠C).

Points SA and TA lie on segment BC such that ∠BASA = ∠TAAC = θ. Let PA

and QA be the feet from B and C to ASA and ATA respectively. Then `A is defined
as the perpendicular bisector of PAQA.
Define `B and `C analogously by repeating this construction two more times (using
the same value of θ). Prove that `A, `B, and `C are concurrent or all parallel.

3. Determine all positive integers N for which there exists a strictly increasing sequence
of positive integers s0 < s1 < s2 < · · · satisfying the following properties:

• the sequence s1 − s0, s2 − s1, s3 − s2, . . . is periodic; and
• ssn − ssn−1 ≤ N < s1+sn − ssn−1 for all positive integers n.

4. A function f : N → N has the property that for all positive integers m and n,
exactly one of the f(n) numbers

f(m+ 1), f(m+ 2), . . . , f(m+ f(n))

is divisible by n. Prove that f(n) = n for infinitely many positive integers n.

5. Let A1, . . . , A2022 be the vertices of a regular 2022-gon in the plane. Alice and
Bob play a game. Alice secretly chooses a line and colors all points in the plane on
one side of the line blue, and all points on the other side of the line red. Points on
the line are colored blue, so every point in the plane is either red or blue. (Bob
cannot see the colors of the points.)
In each round, Bob chooses a point in the plane (not necessarily among A1, . . . ,
A2022) and Alice responds truthfully with the color of that point. What is the
smallest number Q for which Bob has a strategy to always determine the colors of
points A1, . . . , A2022 in Q rounds?

6. Let O and H be the circumcenter and orthocenter, respectively, of an acute scalene
triangle ABC. The perpendicular bisector of AH intersects AB and AC at XA and
YA respectively. Let KA denote the intersection of the circumcircles of triangles
OXAYA and BOC other than O.
Define KB and KC analogously by repeating this construction two more times.
Prove that KA, KB, KC , and O are concyclic.
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7. Let ABCD be a parallelogram. Point E lies on segment CD such that

2∠AEB = ∠ADB + ∠ACB,

and point F lies on segment BC such that

2∠DFA = ∠DCA+ ∠DBA.

Let K be the circumcenter of triangle ABD. Prove that KE = KF .

8. Find all functions f : N → Z such that⌊
f(mn)

n

⌋
= f(m)

for all positive integers m, n.

9. Let k > 1 be a fixed positive integer. Prove that if n is a sufficiently large positive
integer, there exists a sequence of integers with the following properties:

• Each element of the sequence is between 1 and n, inclusive.
• For any two different contiguous subsequences of the sequence with length

between 2 and k inclusive, the multisets of values in those two subsequences
is not the same.

• The sequence has length at least 0.499n2.
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§1 Solutions to Day 1
§1.1 TSTST 2022/1, proposed by Holden Mui
Available online at https://aops.com/community/p25516960.

Problem statement

Let n be a positive integer. Find the smallest positive integer k such that for any
set S of n points in the interior of the unit square, there exists a set of k rectangles
such that the following hold:

• The sides of each rectangle are parallel to the sides of the unit square.

• Each point in S is not in the interior of any rectangle.

• Each point in the interior of the unit square but not in S is in the interior of
at least one of the k rectangles.

(The interior of a polygon does not contain its boundary.)

We give the author’s solution. In terms of n, we wish find the smallest integer k for
which (0, 1)2 \ S is always a union of k open rectangles for every set S ⊂ (0, 1)2 of size n.

We claim the answer is k = 2n+ 2 .
The lower bound is given by picking

S = {(s1, s1), (s2, s2), . . . , (sn, sn)}

for some real numbers 0 < s1 < s2 < · · · < sn < 1. Consider the 4n points

S′ = S + {(ε, 0), (0, ε), (−ε, 0), (0,−ε)} ⊂ (0, 1)2

for some sufficiently small ε > 0. The four rectangles covering each of

(s1 − ε, s1), (s1, s1 − ε), (sn + ε, sn), (sn, sn + ε)

cannot cover any other points in S′; all other rectangles can only cover at most 2 points
in S′, giving a bound of

k ≥ 4 +
|S′| − 4

2
= 2n+ 2.
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To prove that 2n + 2 rectangles are sufficient, assume that the number of distinct
y-coordinates is at least the number of distinct x-coordinates. Let

0 = x0 < x1 < · · · < xm < xm+1 = 1,

where x1, . . . , xm are the distinct x-coordinates of points in S, and let Yi be the set of
y-coordinates of points with x-coordinate xi. For each 1 ≤ i ≤ m, include the |Yi| + 1
rectangles

(xi−1, xi+1)× ((0, 1) \ Yi)
in the union, and also include (0, x1) × (0, 1) and (xm, 1) × (0, 1); this uses m + n + 2
rectangles.

All remaining uncovered points are between pairs of points with the same y-coordinate
and adjacent x-coordinates {xi, xi+1}. There are at most n−m such pairs by the initial
assumption, so covering the points between each pair with

(xi, xi+1)× (y − ε, y + ε)
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for some sufficiently small ε > 0 gives a total of

(m+ n+ 2) + (n−m) = 2n+ 2

rectangles.
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§1.2 TSTST 2022/2, proposed by Hongzhou Lin
Available online at https://aops.com/community/p25516988.

Problem statement

Let ABC be a triangle. Let θ be a fixed angle for which

θ <
1

2
min(∠A,∠B,∠C).

Points SA and TA lie on segment BC such that ∠BASA = ∠TAAC = θ. Let PA

and QA be the feet from B and C to ASA and ATA respectively. Then `A is defined
as the perpendicular bisector of PAQA.

Define `B and `C analogously by repeating this construction two more times (using
the same value of θ). Prove that `A, `B, and `C are concurrent or all parallel.

We discard the points SA and TA since they are only there to direct the angles correctly
in the problem statement.

¶ First solution, by author. Let X be the projection from C to APA, Y be the projection
from B to AQA.

A

B C
PA

QA

X

Y

MA

MBMC

Claim — Line `A passes through MA, the midpoint of BC. Also, quadrilateral
PAQAY X is cyclic with circumcenter MA.

Proof. Since

APA ·AX = AB ·AC · cos θ cos(∠A− θ) = AQA ·AY,

it follows that PA, QA, Y , X are concyclic by power of a point. Moreover, by projection,
the perpendicular bisector of PAX passes through MA, similar for QAY , implying that
MA is the center of PAQAY X. Hence `A passes through MA.
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Claim — ](MAMC , `A) = ]Y PAQA.

Proof. Indeed, `A ⊥ PAQA, and MAMC ⊥ PAY (since MAPA = MAY from (PAQAYAX)
and MCPA = MCMA = MCY from the circle with diameter AB). Hence ](MAMC , `A) =
](PAY, PAQA) = ]Y PAQA.

Therefore,

sin∠(MAMC , `A)

sin∠(`A,MAMB)
=

sin∠Y PAQA

sin∠PAQAX
=

Y QA

XPA
=

BC sin(∠C + θ)

BC sin(∠B + θ)
=

sin(∠C + θ)

sin(∠B + θ)
,

and we conclude by trig Ceva theorem.

¶ Second solution via Jacobi, by Maxim Li. Let D be the foot of the A-altitude. Note
that line BC is the external angle bisector of ∠PADQA.

Claim — (DPAQA) passes through the midpoint MA of BC.

Proof. Perform
√
bc inversion. Then the intersection of BC and (DPAQA) maps to the

second intersection of (ABC) and (A′PAQA), where A′ is the antipode to A on (ABC),
i.e. the center of spiral similarity from BC to PAQA. Since BPA : CQA = AB : AC, we
see the center of spiral similarity is the intersection of the A-symmedian with (ABC),
which is the image of MA in the inversion.

It follows that MA lies on `A; we need to identify a second point. We’ll use the
circumcenter OA of (DPAQA). The perpendicular bisector of DPA passes through
MC ; indeed, we can easily show the angle it makes with MCMA is 90◦ − θ − C, so
∠OAMCMA = 90 − θ − C, and then by analogous angle-chasing we can finish with
Jacobi’s theorem on 4MAMBMC .
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§1.3 TSTST 2022/3
Available online at https://aops.com/community/p25517008.

Problem statement

Determine all positive integers N for which there exists a strictly increasing sequence
of positive integers s0 < s1 < s2 < · · · satisfying the following properties:

• the sequence s1 − s0, s2 − s1, s3 − s2, . . . is periodic; and

• ssn − ssn−1 ≤ N < s1+sn − ssn−1 for all positive integers n.

¶ Answer. All N such that t2 ≤ N < t2 + t for some positive integer t.

¶ Solution 1 (local). If t2 ≤ N < t2 + t then the sequence sn = tn+ 1 satisfies both
conditions. It remains to show that no other values of N work.

Define an := sn − sn−1, and let p be the minimal period of {an}. For each k ∈ Z≥0,
let f(k) be the integer such that

sf(k) − sk ≤ N < sf(k)+1 − sk.

Note that f(sn−1) = sn for all n. Since {an} is periodic with period p, f(k+p) = f(k)+p
for all k, so k 7→ f(k)− k is periodic with period p. We also note that f is nondecreasing:
if k < k′ but f(k′) < f(k) then

N < sf(k′)+1 − sk′ < sf(k) − sk ≤ N,

which is absurd. We now claim that

max
k

(f(k)− k) < p+ min
k

(f(k)− k).

Indeed, if f(k′) − k′ ≥ p + f(k) − k then we can shift k and k′ so that 0 ≤ k − k′ < p,
and it follows that k ≤ k′ ≤ f(k′) < f(k), violating the fact that f is nondecreasing.
Therefore maxk(f(k)−k) < p+mink(f(k)−k), so f(k)−k is uniquely determined by its
value modulo p. In particular, since an = f(sn−1)− sn−1, an is also uniquely determined
by its value modulo p, so {an mod p} also has minimal period p.

Now work in Z/pZ and consider the sequence s0, f(s0), f(f(s0)), . . . . This sequence
must be eventually periodic; suppose it has minimal period p′, which must be at most p.
Then, since

fn(s0)− fn−1(s0) = sn − sn−1 = an,

and {an mod p} has minimal period p, we must have p′ = p. Therefore the directed
graph G on Z/pZ given by the edges k → f(k) is simply a p-cycle, which implies that
the map k 7→ f(k) is a bijection on Z/pZ. Therefore, f(k + 1) 6= f(k) for all k (unless
p = 1, but in this case the following holds anyways), hence

f(k) < f(k + 1) < · · · < f(k + p) = f(k) + p.

This implies f(k + 1) = f(k) + 1 for all k, so f(k) − k is constant, therefore an =
f(sn−1)− sn−1 is also constant. Let an ≡ t. It follows that t2 ≤ N < t2+ t as we wanted.
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¶ Solution 2 (global). Define {an} and f as in the previous solution. We first show
that si 6≡ sj (mod p) for all i < j < i + p. Suppose the contrary, i.e. that si ≡ sj
(mod p) for some i, j with i < j < i + p. Then asi+k = asj+k for all k ≥ 0, therefore
ssi+k − ssi = ssj+k − ssj for all k ≥ 0, therefore

ai+1 = f(si)− si = f(sj)− sj = aj+1 and si+1 = f(si) ≡ f(sj) = sj+1 (mod p).

Continuing this inductively, we obtain ai+k = aj+k for all k, so {an} has period j− i < p,
which is a contradiction. Therefore si 6≡ sj (mod p) for all i < j < i+ p, and this implies
that {si, . . . , si+p−1} forms a complete residue system modulo p for all i. Consequently
we must have si+p ≡ si (mod p) for all i.

Let T = sp−s0 = a1+· · ·+ap. Since {an} is periodic with period p, and {i+1, . . . , i+kp}
contains exactly k values of each residue class modulo p,

si+kp − si = ai+1 + · · ·+ ai+kp = kT

for all i, k. Since p | T , it follows that ssp−ss0 = T
p ·T = T 2

p . Summing up the inequalities

ssn − ssn−1 ≤ N < ssn+1 − ssn−1 = ssn − ssn−1 + asn+1

for n ∈ {1, . . . , p} then implies

T 2

p
= ssp − ss0 ≤ Np <

T 2

p
+ as1+1 + as2+1 + · · ·+ asp+1 =

T 2

p
+ T,

where the last equality holds because {s1 + 1, . . . , sp + 1} is a complete residue system
modulo p. Dividing this by p yields t2 ≤ N < t2 + t for t := T

p ∈ Z+.

Remark (Author comments). There are some similarities between this problem and IMO
2009/3, mainly that they both involve terms of the form ssn and ssn+1 and the sequence
s0, s1, . . . turns out to be an arithmetic progression. Other than this, I don’t think knowing
about IMO 2009/3 will be that useful on this problem, since in this problem the fact that
{sn+1 − sn} is periodic is fundamentally important.

The motivation for this problem comes from the following scenario: assume we have boxes
that can hold some things of total size ≤ N , and a sequence of things of size a1, a2, . . .
(where ai := si+1 − si). We then greedily pack the things in a sequence of boxes, ‘closing’
each box when it cannot fit the next thing. The number of things we put in each box gives
a sequence b1, b2, . . . . This problem asks when we can have {an} = {bn}, assuming that we
start with a sequence {an} that is periodic.

(Extra motivation: I first thought about this scenario when I was pasting some text
repeatedly into the Notes app and noticed that the word at the end of lines are also
(eventually) periodic.)
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§2 Solutions to Day 2
§2.1 TSTST 2022/4, proposed by Merlijn Staps
Available online at https://aops.com/community/p25517031.

Problem statement

A function f : N → N has the property that for all positive integers m and n, exactly
one of the f(n) numbers

f(m+ 1), f(m+ 2), . . . , f(m+ f(n))

is divisible by n. Prove that f(n) = n for infinitely many positive integers n.

We start with the following claim:

Claim — If a | b then f(a) | f(b).

Proof. From applying the condition with n = a, we find that the set Sa = {n ≥ 2 :
a | f(n)} is an arithmetic progression with common difference f(a). Similarly, the set
Sb = {n ≥ 2 : b | f(n)} is an arithmetic progression with common difference f(b). From
a | b it follows that Sb ⊆ Sa. Because an arithmetic progression with common difference
x can only be contained in an arithmetic progression with common difference y if y | x,
we conclude f(a) | f(b).

In what follows, let a ≥ 2 be any positive integer. Because f(a) and f(2a) are both
divisible by f(a), there are a+ 1 consecutive values of f of which at least two divisible
by f(a). It follows that f(f(a)) ≤ a.

However, we also know that exactly one of f(2), f(3), . . . , f(1+ f(a)) is divisible by a;
let this be f(t). Then we have Sa = {t, t+ f(a), t+ 2f(a), . . . }. Because a | f(t) | f(2t),
we know that 2t ∈ Sa, so t is a multiple of f(a). Because 2 ≤ t ≤ 1 + f(a), and f(a) ≥ 2
for a ≥ 2, we conclude that we must have t = f(a), so f(f(a)) is a multiple of a. Together
with f(f(a)) ≤ a, this yields f(f(a)) = a. Because f(f(a)) = a also holds for a = 1
(from the given condition for n = 1 it immediately follows that f(1) = 1), we conclude
that f(f(a)) = a for all a, and hence f is a bijection.

Moreover, we now have that f(a) | f(b) implies f(f(a)) | f(f(b)), i.e. a | b, so a | b if
and only if f(a) | f(b). Together with the fact that f is a bijection, this implies that
f(n) has the same number of divisors of n. Let p be a prime. Then f(p) = q must be a
prime as well. If q 6= p, then from f(p) | f(pq) and f(q) | f(pq) it follows that pq | f(pq),
so f(pq) = pq because f(pq) and pq must have the same number of divisors. Therefore,
for every prime number p we either have that f(p) = p or f(pf(p)) = pf(p). From here,
it is easy to see that f(n) = n for infinitely many n.

11
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§2.2 TSTST 2022/5, proposed by Ray Li
Available online at https://aops.com/community/p25517063.

Problem statement

Let A1, . . . , A2022 be the vertices of a regular 2022-gon in the plane. Alice and Bob
play a game. Alice secretly chooses a line and colors all points in the plane on one
side of the line blue, and all points on the other side of the line red. Points on the
line are colored blue, so every point in the plane is either red or blue. (Bob cannot
see the colors of the points.)

In each round, Bob chooses a point in the plane (not necessarily among A1, . . . ,
A2022) and Alice responds truthfully with the color of that point. What is the
smallest number Q for which Bob has a strategy to always determine the colors of
points A1, . . . , A2022 in Q rounds?

The answer is 22. To prove the lower bound, note that there are 2022 · 2021 + 2 > 221

possible colorings. If Bob makes less than 22 queries, then he can only output 221 possible
colorings, which means he is wrong on some coloring.

Now we show Bob can always win in 22 queries. A key observation is that the set of
red points is convex, as is the set of blue points, so if a set of points is all the same color,
then their convex hull is all the same color.

Lemma
Let B0, . . . , Bk+1 be equally spaced points on a circular arc such that colors of B0

and Bk+1 differ and are known. Then it is possible to determine the colors of B1,
. . . , Bk in dlog2 ke queries.

Proof. There exists some 0 ≤ i ≤ k such that B0, . . . , Bi are the same color and Bi+1,
. . . , Bk+1 are the same color. (If i < j and B0 and Bj were red and Bi and Bk+1

were blue, then segment B0Bj is red and segment BiBk+1 is blue, but they intersect).
Therefore we can binary search.

Lemma
  Let B0, . . . , Bk+1 be equally spaced points on a circular arc such that colors of
B0, Bdk/2e, Bk+1 are both red and are known.   Then at least one of the following
holds: all of B1 ,. . . , Bdk/2e are red or all of Bdk/2e,. . . ,Bk are red.   Furthermore,
in one query we can determine which one of the cases holds.

Proof. The existence part holds for similar reason to previous lemma. To figure out
which case, choose a point P such that all of B0, . . . , Bk+1 lie between rays PB0 and
PBdk/2e, and such that B1, . . . , Bdk/2e−1 lie inside triangle PB0Bdk/2e and such that
Bdk/2e+1, . . . , Bk+1 lie outside (this point should always exist by looking around the
intersections of lines B0B1 and Bdk/2e−1Bdk/2e). Then if P is red, all the inside points
are red because they lie in the convex hull of red points P , B0, Bdk/2e. If P is blue, then
all the outside points are red: if Bi were blue for i > dk/2e, then the segment PBi is
blue and intersect the segment B0Bdk/2e, which is red, contradiction.

12
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Now the strategy is: Bob picks A1. WLOG it is red. Now suppose Bob does not know
the colors of ≤ 2k − 1 points Ai, . . . , Aj with j − i + 1 ≤ 2k − 1 and knows the rest
are red. I claim Bob can win in 2k − 1 queries. First, if k = 1, there is one point and
he wins by querying the point, so the base case holds, so assume k > 1. Bob queries
Ai+d(j−i+1)/2e. If it is blue, he finishes in 2 log2 d(j − i+ 1)/2e ≤ 2(k − 1) queries by the
first lemma, for a total of 2k − 1 queries. If it is red, he can query one more point and
learn some half of Ai, . . . , Aj that are red by the second lemma, and then he has reduced
it to the case with ≤ 2k−1 − 1 points in two queries, at which point we induct.
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§2.3 TSTST 2022/6, proposed by Hongzhou Lin
Available online at https://aops.com/community/p25516957.

Problem statement

Let O and H be the circumcenter and orthocenter, respectively, of an acute scalene
triangle ABC. The perpendicular bisector of AH intersects AB and AC at XA and
YA respectively. Let KA denote the intersection of the circumcircles of triangles
OXAYA and BOC other than O.

Define KB and KC analogously by repeating this construction two more times.
Prove that KA, KB, KC , and O are concyclic.

We present several approaches.

¶ First solution, by author. Let �OXAYA intersects AB, AC again at U , V . Then by
Reim’s theorem UV CB are concyclic. Hence the radical axis of �OXAYA, �OBC and
�(UV CB) are concurrent, i.e. OKA, BC, UV are concurrent, Denote the intersection
as K∗

A, which is indeed the inversion of KA with respect to �O. (The inversion sends
�OBC to the line BC).

Let PA, PB, PC be the circumcenters of 4OBC, 4OCA, 4OAB respectively.

Claim — K∗
A coincides with the intersection of PBPC and BC.

Proof. Note that d(O,BC) = 1/2AH = d(A,XAYA). This means the midpoint MC of
AB is equal distance to XAYA and the line through O parallel to BC. Together with
OMC ⊥ AB implies that ∠MCXAO = ∠B. Hence ∠UV O = ∠B = ∠AV U . Similarly
∠V UO = ∠AUV , hence 4AUV ' 4OUV . In other words, UV is the perpendicular
bisector of AO, which pass through PB, PC . Hence K∗

A is indeed PBPC ∩BC.

Finally by Desargue’s theorem, it suffices to show that APA, BPB, CPC are concurrent.
Note that

d(PA, AB) = PAB sin(90◦ + ∠C − ∠A),

d(PA, AC) = PAC sin(90◦ + ∠B − ∠A).

Hence the symmetric product and trig Ceva finishes the proof.

14
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A

B C

O

PA

H

XA YA

KA

K∗
A

U1

U2
MC

¶ Second solution, from Jeffrey Kwan. Let OA be the circumcenter of 4AXAYA. The
key claim is that:

Claim — OAXAYAO is cyclic.

Proof. Let DEF be the orthic triangle; we will show that 4OXAYA ∼ 4DEF . Indeed,
since AO and AD are isogonal, it suffices to note that

AXA

AB
=

AH/2

AD
=

R cosA
AD

,

and so
AO

AD
= R · AXA

AB ·R cosA
=

AXA

AE
=

AYA
AF

.

Hence ∠XAOYA = 180◦ − 2∠A = 180◦ − ∠XAOAYA, which proves the claim.

Let PA be the circumcenter of 4OBC, and define PB, PC similarly. By the claim,
A is the exsimilicenter of (OXAYA) and (OBC), so APA is the line between their two
centers. In particular, APA is the perpendicular bisector of OKA.

15



USA TSTST 2022 Solutions Andrew Gu and Evan Chen

A

B C

O

H

XA
YA

KA

OA

PA

Claim — APA, BPB, CPC concur at T .

Proof. The key observation is that O is the incenter of 4PAPBPC , and that A, B, C
are the reflections of O across the sides of 4PAPBPC . Hence PAA, PBB, PCC concur
by Jacobi.

Now T lies on the perpendicular bisectors of OKA, OKB, and OKC . Hence OKAKBKC

is cyclic with center T , as desired.
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§3 Solutions to Day 3
§3.1 TSTST 2022/7, proposed by Merlijn Staps
Available online at https://aops.com/community/p25516961.

Problem statement

Let ABCD be a parallelogram. Point E lies on segment CD such that

2∠AEB = ∠ADB + ∠ACB,

and point F lies on segment BC such that

2∠DFA = ∠DCA+ ∠DBA.

Let K be the circumcenter of triangle ABD. Prove that KE = KF .

Let the circle through A, B, and E intersect CD again at E′, and let the circle through D,
A, and F intersect BC again at F ′. Now ABEE′ and DAF ′F are cyclic quadrilaterals
with two parallel sides, so they are isosceles trapezoids. From KA = KB, it now follows
that KE = KE′, whereas from KA = KD it follows that KF = KF ′.

Next, let the circle through A, B, and E intersect AC again at S. Then

∠ASB = ∠AEB =
1

2
(∠ADB + ∠ACB) =

1

2
(∠ADB + ∠DAC) =

1

2
∠AMB,

where M is the intersection of AC and BD. From ∠ASB = 1
2∠AMB, it follows that

MS = MB, so S is the point on MC such that MS = MB = MD. By symmetry, the
circle through A, D, and F also passes through S, and it follows that the line AS is the
radical axis of the circles (ABE) and (ADF ).

By power of a point, we now obtain

CE · CE′ = CS · CA = CF · CF ′,

from which it follows that E, F , E′, and F ′ are concyclic. The segments EE′ and FF ′

are not parallel, so their perpendicular bisectors only meet at one point, which is K.
Hence KE = KF .
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§3.2 TSTST 2022/8, proposed by Merlijn Staps
Available online at https://aops.com/community/p25516968.

Problem statement

Find all functions f : N → Z such that⌊
f(mn)

n

⌋
= f(m)

for all positive integers m, n.

There are two families of functions that work: for each α ∈ R the function f(n) = bαnc,
and for each α ∈ R the function f(n) = dαne − 1. (For irrational α these two functions
coincide.) It is straightforward to check that these functions indeed work; essentially, this
follows from the identity ⌊

bxnc
n

⌋
= bxc

which holds for all positive integers n and real numbers x.
We now show that every function that works must be of one of the above forms. Let f

be a function that works, and define the sequence a1, a2, . . . by an = f(n!)/n!. Applying
the give condition with (n!, n+1) yields an+1 ∈ [an, an+

1
n!). It follows that the sequence

a1, a2, . . . is non-decreasing and bounded from above by a1 + e, so this sequence must
converge to some limit α.

If there exists a k such that ak = α, then we have a` = α for all ` > k. For each
positive integer m, there exists ` > k such that m | `!. Plugging in mn = `!, it then
follows that

f(m) =

⌊
f(`!)

`!/m

⌋
= bαmc

for all m, so f is of the desired form.
If there does not exist a k such that ak = α, we must have ak < α for all k. For

each positive integer m, we can now pick an ` such that m | `! and a` = α − x with x
arbitrarily small. It then follows from plugging in mn = `! that

f(m) =

⌊
f(`!)

`!/m

⌋
=

⌊
`!(α− x)

`!/m

⌋
= bαm−mxc .

If αm is an integer we can choose ` such that mx < 1, and it follows that f(m) = dαme−1.
If αm is not an integer we can choose ` such that mx < {αm}, and it also follows that
f(m) = dαme − 1. We conclude that in this case f is again of the desired form.
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§3.3 TSTST 2022/9, proposed by Vincent Huang
Available online at https://aops.com/community/p25517112.

Problem statement

Let k > 1 be a fixed positive integer. Prove that if n is a sufficiently large positive
integer, there exists a sequence of integers with the following properties:

• Each element of the sequence is between 1 and n, inclusive.

• For any two different contiguous subsequences of the sequence with length
between 2 and k inclusive, the multisets of values in those two subsequences is
not the same.

• The sequence has length at least 0.499n2.

For any positive integer n, define an (n, k)-good sequence to be a finite sequence of
integers each between 1 and n inclusive satisfying the second property in the problem
statement. The problems asks to show that, for all sufficiently large integers n, there is
an (n, k)-good sequence of length at least 0.499n2.

Fix k ≥ 2 and consider some prime power n = pm with p > k + 1. Consider some
0 < g < n

k − 1 with gcd(g, n) = 1 and let a be the smallest positive integer with ga ≡ ±1
(mod n).

Claim (Main claim) — For k, n, g, a defined as above, there is an (n, k)-good sequence
of length a(n+ 2) + 2.

To prove the main claim, we need some results about the structure of Z/nZ. Specifically,
we’ll first show that any nontrivial arithmetic sequence is uniquely recoverable.

Lemma
Consider any arithmetic progression of length i ≤ k whose common difference is
relatively prime to n, and let S be the set of residues it takes modulo n. Then there
exists a unique integer 0 < d ≤ n

2 and a unique integer 0 ≤ a < n such that

S = {a, a+ d, . . . , a+ (i− 1)d}.

Proof of lemma. We’ll split into cases, based on if i is odd or not.
• Case 1: i is odd, so i = 2j + 1 for some j. Then the middle term of the arithmetic

progression is the average of all residues in S, which we can uniquely identify as
some u (and we know n is coprime to i, so it is possible to average the residues).
We need to show that there is only one choice of d, up to ±, so that S = {u −
jd, u− (j − 1)d, . . . , u+ jd}.
Let X be the sum of squares of the residues in S, so we have

X ≡ (u− jd)2+(u− (j− 1)d)2+ · · ·+(u+ jd)2 = (2j+1)u2+d2
j(j + 1)(2j + 1)

3
,

which therefore implies

3(X − (2j + 1)u2)(j(j + 1)(2j + 1))−1 ≡ d2,
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thus identifying d uniquely up to sign as desired.

• Case 2: i is even, so i = 2j for some j. Once again we can compute the average u
of the residues in S, and we need to show that there is only one choice of d, up
to ±, so that S = {u− (2j − 1)d, u− (2j − 3)d, . . . , u+ (2j − 1)d}. Once again we
compute the sum of squares X of the residues in S, so that

X ≡ (u−(2j−1)d)2+(u−(2j−3)d)2+· · ·+(u+(2j−1)d)2 = 2ju2+
(2j − 1)2j(2j + 1)

3

which therefore implies

3(X − 2ju2)((2j − 1)2j(2j + 1))−1 ≡ d2,

again identifying d uniquely up to sign as desired.

Thus we have shown that given the set of residues an arithmetic progression takes on
modulo n, we can recover that progression up to sign. Here we have used the fact that
given d2 (mod n), it is possible to recover d up to sign provided that n is of the form pm

with p 6= 2 and gcd(d, n) = 1.

Now, we will proceed by chaining many arithmetic sequences together.

Definition. For any integer l between 0 and a−1, inclusive, define Cl to be the sequence
0, gl, gl, 2gl, 3gl, . . . , (n− 1)gl, (n− 1)gl taken (mod n). (This is just a sequence where
the ith term is (i− 1)gl, except the terms gl, (n− 1)gl is repeated once.)

Definition. Consider the sequence Sn of residues mod n defined as follows:

• The first term of Sn is 0.

• For each 0 ≤ l < a, the next n+ 2 terms of Sn are the terms of Cl in order.

• The next and final term of Sn is 0.

We claim that Sn constitutes a k-good string with respect to the alphabet of residues
modulo n. We first make some initial observations about Sn.

Lemma
Sn has the following properties:

• Sn has length a(n+ 2) + 2.

• If a contiguous subsequence of Sn of length ≤ k contains two of the same
residue (mod n), those two residues occur consecutively in the subsequence.

Proof of lemma. The first property is clear since each Cl has length n+ 2, and there are
a of them, along with the 0s at beginning and end.

To prove the second property, consider any contiguous subsequence Sn[i : i+ k − 1] of
length k which contains two of the same residue modulo n. If Sn[i : i+ k − 1] is wholly
contained within some Cl, it’s clear that the only way Sn[i : i + k − 1] could repeat
residues if it repeats one of the two consecutive values gl, gl or (n − 1)gl, (n − 1)gl, so
assume that is not the case.
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Now, it must be true that Sn[i : i+ k − 1] consists of one contiguous subsequence of
the form

(n− k1)g
l−1, (n− (k1 − 1))gl−1, . . . , (n− 1)gl−1, (n− 1)gl−1,

which are the portions of Sn[i : i+k−1] contained in Cl−1, and then a second contiguous
subsequence of the form

0, gl, gl, 2gl, . . . , k2g
l,

which are the portions of Sn[i : i + k − 1] contained in Cl, and we obviously have
k2+k1 = k−3. For Sn[i : i+k−1] to contain two of the same residue in non-consecutive
positions, there would have to exist some 0 < u ≤ k1, 0 < v ≤ k2 with (n− u)gl−1 ≡ vgl

(mod n), meaning that u + gv ≡ 0 (mod n). But we know since k1 + k2 < k that
0 < u+ gv < k + kg < n, so this is impossible, as desired.

Now we can prove the main claim.

Proof of main claim. Consider any multiset M of 2 ≤ i ≤ k residues (mod n) which
corresponds to some unknown contiguous subsequence of Sn. We will show that it is
possible to uniquely identify which contiguous subsequence M corresponds to, thereby
showing that Sn has no twins of length i for each 2 ≤ i ≤ k, and then the result will
follow.

First suppose M contains some residue twice. By the last lemma there are only a few
possible cases:

• M contains multiple copies of the residue 0. In this case we know M contains the
beginning of Sn, so the corresponding contiguous subsequence is just the first i
terms of Sn.

• M contains multiple copies of multiple residues. By the last lemma and the structure
of Sn, we can easily see that M must contain two copies of −gi−1 and two copies of
gi for some 0 ≤ i < a that can be identified uniquely, and M must contain portions
of both Ci−1, Ci. It follows M ’s terms can be partitioned into two portions, the
first one being

−i1g
i−1,−(i1 − 1)gi−1, . . . ,−gi−1,−gi−1,

and the second one being
0, gi, gi, 2gi, . . . , i2g

i

for some i1, i2 with i1 + i2 = i − 3, and we just need to uniquely identify i1, i2.
Luckily, by dividing the residues in M by gi−1, we know we can partition M ’s
terms into

−i1,−(i1 − 1), . . . ,−1,−1

as well as
0, g, g, 2g, . . . , i2g.

Now since i2g ≤ kg < n− k and −i1 ≡ n− i1 ≥ n− k it is easy to see that i1, i2
can be identified uniquely, as desired.

• M contains multiple copies of only one residue gi, for some 0 ≤ i < a that can be
identified uniquely. Then by the last lemma M must be located at the beginning
of Ci and possibly contain the last few terms of Ci−1, so M must be of the form
gi, gi, 2gi, . . . , i1g

i, along with possibly the term 0 or the terms 0,−gi−1. So when
we divide M by gi−1 we should be left with terms of the form g, g, 2g, . . . , i1g along
with possibly 0 or 0,−1. Since i1g ≤ kg < n− k, we can easily disambiguate these
cases and uniquely identify the contiguous subsequence corresponding to M .
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• M contains multiple copies of only one residue −gi, for some 0 ≤ i < a that can be
identified uniquely. Then by the last lemma M must be located at the end of Ci and
possibly the first terms of Ci+1, so M must be of the form −gi,−gi,−2gi, . . . ,−i1g

i,
along with possibly the term 0 or the terms 0, gi+1. So when we divide M by gi−1

we should be left with terms of the form −1,−1,−2, . . . ,−i1, along with possibly 0
or 0, g. Since −i1 ≡ n− i1 ≥ n

2 and g < n
2 , we can disambiguate these cases and

uniquely identify the contiguous subsequence corresponding to M .

Thus in all cases where M contains a repeated residue, we can identify the unique
contiguous subsequence of Sn corresponding to M .

When M does not contain a repeated residue, it follows that M cannot contain both
of the gi terms or (n− 1)gi terms at the beginning or end of each Ci. It follows that M
is either entirely contained in some Ci or contained in the union of the end of some Ci

with the beginning of some Ci+1, meaning M corresponds to a contiguous subsequence
of (−gi, 0, gi+1). In the first case, since each Ci is an arithmetic progression when
the repeated terms are ignored, Lemma 1 implies that we can uniquely determine the
location of M , and in the second case, it is easy to tell which contiguous subsequence of
(−gi, 0, gi+1) corresponds to M .

Therefore, in all cases, for any multiset M corresponding to some contiguous sub-
sequence of Sn of length i ≤ k, we can uniquely identify the contiguous subsequence,
meaning Sn is k-good with respect to the alphabet of residues modulo n, as desired.

Now we will finish the problem. We observe the following.

Claim — Fix k and let p > k + 1 be a prime. Then for n = p2 we can find a
(n, k)-good sequence of length p(p−1)(p2+2)

2 .

Proof of last claim. Let g be the smallest primitive root modulo n = p2, so that a =
p(p−1)

2 . As long as we can show that g < n
k − 1, we can apply the previous claim to get

the desired bound.
We will prove a stronger statement that g < p. Indeed, consider any primitive root g0

(mod p). Then g0 + ap has order p− 1 modulo p, so its order modulo p2 is divisible by
p− 1, hence g0 + ap is a primitive root modulo p2 as long as (g0 + ap)p−1 6≡ 1 (mod p2).
Now

(g0 + ap)p−1 =
∑
i

gp−1−i
0 (ap)i

(
p− 1

i

)
≡ gp−1

0 + gp−2
0 (ap) (mod p2).

In particular, of the values g0, g0 + p, . . . , g0 + p(p− 1), only one has order p− 1 and the
rest are primitive roots.

So for each 0 < g0 < p which is a primitive root modulo p, either g0 is a primitive root
modulo p2 or g0 has order p − 1 but g0 + p, g0 + 2p, . . . , g0 + p(p − 1) are all primitive
roots. By considering all choices of g0, we either find a primitive root (mod p2) which
is between 0 and p, or we find that all residues (mod p2) of order p− 1 are between 0
and p. But if ordp2(a) = p− 1 then ordp2(a

−1) = p− 1, and two residues between 0, p
cannot be inverses modulo p2 (because with the exception of 1, they cannot multiply to
something ≥ p2 + 1), so there is always a primitive root between 0, p as desired.

Now for arbitrarily large n we can choose p <
√
n with p√

n
arbitrarily close to 1; by

the previous claim, we can get an (n, k)-good sequence of length at least p−1
p · p4

2 for any
constant, so for sufficiently large n, p we get (n, k)-good sequences of length 0.499n2.
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