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§0

1.

Problems

Let ABCD be a quadrilateral inscribed in a circle with center O. Points X and
Y lie on sides AB and CD, respectively. Suppose the circumcircles of ADX and
BCY meet line XY again at P and @, respectively. Show that OP = OQ.

. Let a1 < as < ag < a4 < --- be an infinite sequence of real numbers in the interval

(0,1). Show that there exists a number that occurs exactly once in the sequence

. Find all positive integers k > 1 for which there exists a positive integer n such that

(Z) is divisible by n, and (:fl) is not divisible by n for 2 < m < k.

. Let a and b be positive integers. Suppose that there are infinitely many pairs of

positive integers (m,n) for which m? 4 an + b and n? 4+ am + b are both perfect
squares. Prove that a divides 2b.

. Let T be a tree on n vertices with exactly k leaves. Suppose that there exists a

subset of at least %’H vertices of T, no two of which are adjacent. Show that the

longest path in T" contains an even number of edges.

. Triangles ABC and DEF share circumcircle €2 and incircle w so that points A, F',

B, D, C, and F occur in this order along €. Let A4 be the triangle formed by lines
AB, AC, and EF, and define triangles Ap, A¢, ..., Ap similarly. Furthermore,
let Q4 and wyg be the circumcircle and incircle of triangle A4, respectively, and
define circles Qp, wp, ..., QF, wr similarly.

(a) Prove that the two common external tangents to circles 24 and Qp and the
two common external tangents to circles w4 and wp are either concurrent or
pairwise parallel.

(b) Suppose that these four lines meet at point T4, and define points T and T
similarly. Prove that points T4, T, and T are collinear.

. Let M be a finite set of lattice points and n be a positive integer. A mine-avoiding

path is a path of lattice points with length n, beginning at (0,0) and ending at a
point on the line x + y = n, that does not contain any point in M. Prove that if
there exists a mine-avoiding path, then there exist at least 27| mine-avoiding
paths.

. Let ABC be a scalene triangle. Points Ay, By and Cy are chosen on segments BC),

CA, and AB, respectively, such that AA;B1C1 and AABC are similar. Let Ao
be the unique point on line B1C; such that AAs = A1 As. Points By and Cy are
defined similarly. Prove that AA;B>Cs and AABC are similar.

27
. Let ¢ = p" for a prime number p and positive integer r. Let ( = e ¢ . Find the

least positive integer n such that

DR —
_ rk\n

G, =)

ged(k,p)=1

is not an integer. (The sum is over all 1 < k < g with p not dividing k.)
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§1 Solutions to Day 1

§1.1 TSTST 2021/1, proposed by Holden Mui
Available online at https://aops.com/community/p23586650.

Problem statement

Let ABCD be a quadrilateral inscribed in a circle with center O. Points X and Y

lie on sides AB and CD, respectively. Suppose the circumcircles of ADX and BCY
meet line XY again at P and @, respectively. Show that OP = OQ.

We present many solutions.

irst solution, angle chasing only nkit Bisain). et lines an meet
Fi luti le chasi ly (Ankit Bisai Let li B d DP
(ABCD) again at D" and B’, respectively.

Then BB’ || PX and DD’ || QY by Reim’s theorem. Segments BB’, DD’ and PQ share
a perpendicular bisector which passes through O, so OP = OQ.

9 Second solution via isosceles triangles (from contestants). Let T'= BQ N DP.

Note that PQT is isosceles because
APQT = LAY QB = ABCD = {BAD = £ XPD = LTPQ.
Then (BODT) is cyclic because
£BOD =24BCD = £PQT + LTPQ = £BTD.
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Since BO = OD, TO is an angle bisector of £ BT'D. Since APQT is isosceles, TO L PQ,
so OP = 0Q.

9 Third solution using a parallelogram (from contestants). Let (BCY) meet AB
again at W and let (ADX) meet CD again at Z. Additionally, let O; be the center of
(ADX) and O be the center of (BCY).

Note that (W XY Z) is cyclic since
AXWY + &Y ZX =AYWB+ £XZD =AYCB + £XAD = (°,

so let O’ be the center of (WXY Z). Since AD | WY and BC || XZ by Reim’s theorem,
0010’0y is a parallelogram.

To finish the problem, note that projecting O1, Oz, and O’ onto XY gives the midpoints
of PX, QY , and XY. Since 0010’0y is a parallelogram, projecting O onto XY must
give the midpoint of PQ, so OP = OQ.

9 Fourth solution using congruent circles (from contestants). Let the angle bisector
of £BOD meet XY at K.

Then (BQOK) is cyclic because LKOD = {BAD = LK PD, and (DOPK) is cyclic
similarly. By symmetry over KO, these circles have the same radius r, so

OP =2rsinZOKP =2rsin ZOKQ = 0Q

by the Law of Sines.
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9 Fifth solution by ratio calculation (from contestants). Let XY meet (ABCD) at
X" and Y.
X' A

Y/

Since £Y'BD = APX'D and £{BY'D = {BAD = £ X'PD,

/
ABY'D ~ AXP'D = PX'=BY'. DX .
BD
Similarly,
BY’
ABX'D ~ ABQY' = QY'=DX'- 5D

Thus PX’ = QY’, which gives OP = OQ.

9 Sixth solution using radical axis (from author). Without loss of generality, assume
AD }y BC, as this case holds by continuity. Let (BCY) meet AB again at W, let (ADX)
meet C'D again at Z, and let WZ meet (ADX) and (BCY) again at R and S.

Note that (W XY Z) is cyclic since
AXWY + &Y ZX =AYWB+ LXZD = £YCB + £XAD = (°
and (PQRS) is cyclic since
APQS =AY QS = AYWS = {PXZ = {PRZ = £SRP.
Additionally, AD || PR since
ADAX + LAXP+ AXPR=AYWX + AWXY + LXYW =0°,
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and BC || SQ similarly.
Lastly, (ABCD) and (PQRS) are concentric; if not, using the radical axis theorem
twice shows that their radical axis must be parallel to both AD and BC, contradiction.

9 Seventh solution using Cayley-Bacharach (author). Define points W, Z, R, S as in
the previous solution.

A

x 7

The quartics (ADXZ) U (BCWY) and XY UWZ U (ABCD) meet at the 16 points
A7B7C’D’WX7KZ’P7Q7R7S’I7I?J7J7

where I and J are the circular points at infinity. Since AB U CD U (PQR) contains the
13 points
A’ B7 C? D7 P’ Q? R? W? X’ K Z’ I7 J7

it must contain S, I, and J as well, by quartic Cayley-Bacharach. Thus, (PQRS) is cyclic
and intersects (ABCD) at I, I, J, and J, implying that the two circles are concentric,
as desired.

Remark (Author comments). Holden says he came up with this problem via the Cayley-
Bacharach solution, by trying to get two quartics to intersect.
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§1.2 TSTST 2021/2, proposed by Merlijn Staps
Available online at https://aops.com/community/p23586635.

Problem statement

Let a1 < as < az < aq < --- be an infinite sequence of real numbers in the interval

(0,1). Show that there exists a number that occurs exactly once in the sequence

We present three solutions.

9 Solution 1 (Merlijn Staps). We argue by contradiction, so suppose that for each A
for which the set Sy = {k : ax/k = A} is non-empty, it contains at least two elements.
Note that S is always a finite set because ar = kA implies k& < 1/\.

Write my and M) for the smallest and largest element of S, respectively, and define
T\ = {mx,my+ 1,..., M,} as the smallest set of consecutive positive integers that
contains Sy. Then all T\ are sets of at least two consecutive positive integers, and
moreover the Ty cover N. Additionally, each positive integer is covered finitely many
times because there are only finitely many possible values of m) smaller than any fixed
integer.

Recall that if three intervals have a point in common then one of them is contained in
the union of the other two. Thus, if any positive integer is covered more than twice by
the sets T, we may throw out one set while maintaining the property that the T cover
N. By using the fact that each positive integer is covered finitely many times, we can
apply this process so that each positive integer is eventually covered at most twice.

Let A denote the set of the A-values for which T remains in our collection of sets; then
Uxea Th = N and each positive integer is contained in at most two sets T).

We now obtain

Z Z (@h41 —ax) < 2Z(ak+1 —ag) < 2.

AEA KET) k>1

On the other hand, because a,,, = Amy and ap;, = AM), we have

2 (a1 —ar) =22 ) (apgr — ax) = 2(an, — amy) = 2(My — my)A
keTy my<k<My

a a 1
ZQ(M)\_m)\)'mL:Z(M)\_m)\-i-l)‘mfi\zal'Z%.
keTy

Combining this with our first estimate, and using the fact that the Ty cover N, we obtain

4222 Z(akﬂ—ak)zalZZ%ZalZ%,

ANEA KET), AEAN KETy, k>1

contradicting the fact that the harmonic series diverges.

9 Solution 2 (Sanjana Das). Assume for the sake of contradiction that no number
appears exactly once in the sequence. For every ¢ < j with a;/i = a;/j, draw an edge
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between i and j, so every i has an edge (and being connected by an edge is a transitive
property). Call i good if it has an edge with some j > 1.
First, each i has finite degree — otherwise

Az, Qg

r1 ®
for an infinite increasing sequence of positive integers x;, but then the a,, are unbounded.
Now we use the following process to build a sequence of indices whose a; we can
lower-bound:

e Start at 1 = 1, which is good.

o If we're currently at good index x;, then let s; be the largest positive integer such
that x; has an edge to z; + s;. (This exists because the degrees are finite.)

e Let t; be the smallest positive integer for which x; + s; + t; is good, and let this
be z;41. This exists because if all numbers £ < x < 2k are bad, they must each
connect to some number less than & (if two connect to each other, the smaller one
is good), but then two connect to the same number, and therefore to each other —
this is the idea we will use later to bound the t; as well.

Then z; =14+s1+t1 4+ -+ +8;_1 +t;_1, and we have

o sa. _Titsi o l+(ait-Asiats) it Ftioy
Tit1 Ti+s; T T4 1—|—(81—I—--'—l-si,l)—l—(tl—&—"-—i-ti,l)

x4

This means

n—1

Az, L+ (si+-Fsiats)+ i+ +tioa)
L+ (si+-Fsi)+ G+ +tioa)

=1

Lemma
ty4+---+t, <84+ s, for each n.

Proof. Consider 1 < i < n. Note that for every i, the t; — 1 integers strictly between
r; + s; and x; + s; + t; are all bad, so each such index x must have an edge to some y < .

First we claim that if € (z; + s;,z; + s; + t;), then = cannot have an edge to x; for
any j <. This is because x > x; + s; > x; + s;, contradicting the fact that z; + s; is
the largest neighbor of x;.

This also means = doesn’t have an edge to x; + s; for any j < 4, since if it did, it would
have an edge to z;.

Second, no two bad values of « can have an edge, since then the smaller one is good.
This also means no two bad x can have an edge to the same y.

Then each of the > (¢; — 1) values in the intervals (z; + s;,x; + s, +t;) for 1 <i<n
must have an edge to an unique y in one of the intervals (z;, z; + s;) (not necessarily
with the same 7). Therefore

Z(ti_l)SZ(Si_l) — ZtZSZSZ ]
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Now note that if a > b, then £ =1+ ?%Z is decreasing in x. This means

n—1 n—1

1+2s1+--+28_1+s; I+2s1 4+ +2s-1+2s

Cn > > 7
! 11:11 14281+ +281 11:[11+251+~-+23i_1+5i

By multiplying both products, we have a telescoping product, which results in
A >142s +-- 425, + 25,41

The right hand side is unbounded since the s; are positive integers, while ¢, = a,, /a1 <
1/a; is bounded, contradiction.

9 Solution 3 (Gopal Goel). Suppose for sake of contradiction that the problem is false.
Call an index i a pin if
aj S
—_— = =] 2 1.
i

Lemma

There exists k such that if we have % = aJ—J with j >4 > k, then j < 1.14.

Proof. Note that for any i, there are only finitely many 7 with C;—J = %, otherwise a; = Jai
is unbounded. Thus it suffices to find k for which j < 1.14 when j > i > k.

Suppose no such k exists. Then, take a pair j; > i1 such that %1 = % and j; > 1.144,
or aj, > 1.1a;,. Now, since k = j; can’t work, there exists a pair jo > i > i1 such that

% = % and jo > 1.1i9, or aj, > 1.1a;,. Continuing in this fashion, we see that
aj, > 1.1&1'2 > 1.1a]‘2_1,

so we have that aj, > 1.1%a;,. Taking ¢ > log, ;(1/a1) gives the desired contradiction. [J

Lemma
For N > k2, there are at most 0.8N pins in [V'N, N).

Proof. By the first lemma, we see that the number of pins in [V NV, TNl) is at most the

number of non-pins in [\/ﬁ, N). Therefore, if the number of pins in [\/N, N) is p, then

we have )
—-N[1-—)<N-
P ( 1.1> =0k
so p < 0.8N, as desired. ]
We say that i is the pin of j if it is the smallest index such that % = C;—J The pin of j is

always a pin.

Given an index i, let f(i) denote the largest index less than ¢ that is not a pin (we
leave the function undefined when no such index exists, as we are only interested in the
behavior for large 7). Then f is weakly increasing and unbounded by the first lemma.
Let Ny be a positive integer such that f(v/Ng) > k.

Take any N > Ny such that N is not a pin. Let by = N, and b; be the pin of by.
Recursively define by; = f(b2;j—1), and be;+1 to be the pin of by;.
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Let ¢ be the largest odd index such that b, > v/N. We first show that b, < 100v/N.
Since N > Ny, we have by > k. By the choice of ¢ we have byyo < VN, so

bg_;,_l < 1.1bg+2 < 1.1\/N

by the first lemma. We see that all the indices from b1 4+ 1 to b, must be pins, so we
have at least by — 1.1v/N pins in [\/N ,bg). Combined with the second lemma, this shows
that by < 100v/N.
Now, we have that ap,, = bi%ab% 41 and ap,, > ap,,,,, SO combining gives us

o  bobe b

ap,  b1bs be
Note that there are at least

(b1 —b2) + (bg —ba) + -+ 4 (bp—2 — by—1)

pins in [v/N, N), so by the second lemma, that sum is at most 0.8N. Thus,

(bo = b1) + (bg = b3) + -+ (b—1 — be) =bo — [(b1 — ba) + -+ + (be—2 — bp—1)] — by
> 0.2N — 100vV'N.

Then
boba by by — b1 bp—1 — by
UMC I >1 B ot .
by bs by — + b1 + + by
bop—b bi_1—0
> 1+ 0 1+...+M
bo bo
4 02N - 100V N

-_ N )
which is at least 1.01 if Ny is large enough. Thus, we see that
ay > 1.01ap, > 1‘01aL\/NJ

if N > Ny is not a pin. Since there are arbitrarily large non-pins, this implies that the
sequence (a,) is unbounded, which is the desired contradiction.

10
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§1.3 TSTST 2021/3, proposed by Merlijn Staps
Available online at https://aops.com/community/p23586679.

Problem statement

Find all positive integers k > 1 for which there exists a positive integer n such that
(Z) is divisible by n, and ( ) is not divisible by n for 2 < m < k.

n
m

Such an n exists for any k.
First, suppose k is prime. We choose n = (k — 1)!. For m < k, it follows from m! | n
that

m—Dn—-2)---(n—=—m+1)=(-1)(-2)---(—m+1)
= (=)™ m —1)!
Z0 mod m!.

We see that () is not a multiple of m. For m = k, note that (}) = %(n_l). Because

k-1
k fn, we must have k | (}_}), and it follows that n | (}).
Now suppose k is composite. We will choose n to satisfy a number of congruence
relations. For each prime p < k, let

tp, =vp(lem(1,2,...,k — 1)) = max(vp(1), 14(2), ..., p(k — 1))

and choose k, € {1,2,...,k — 1} as large as possible such that v,(k,) = t,. We now
require

n=0 mod plr*! if ptk; (1)
vp(n —kp) =t, + vp(k) if p| k. (2)

for all p < k. From the Chinese Remainder Theorem, we know that an n exists
that satisfies (1) and (2) (indeed, a sufficient condition for (2) is the congruence n =
ky 4 pte () mod plrtve(R)+1) We show that this n has the required property.

We first will compute v,(n — i) for primes p < k and 1 <i < k.

o If ptk, then we have v,(7), vp(n — i) < t, and v,(n) > tp, so vp(n — i) = vp(i);

e If p| k and i # kp, then we have v,(i),vp(n — i) < t, and v,(n) > t,, so again
vp(n — i) = vp(i);
o If p| k and i = kp, then we have v,(n — i) = vp(i) + v, (k) by (2).
We conclude that vy(n — i) = v,(i) always holds, except when i = k,, when we have
vp(n — i) = vp(i) + vp(k) (this formula holds irrespective of whether p | k or pt k).

We can now show that (Z) is divisible by n, which amounts to showing that k! divides
(n—1)(n—2)---(n—k+1). Indeed, for each prime p < k we have

vp((n=1n=-2)...(n—k+1) =vpn—kp)+ > vp(n—1i)
i<k,i#kp

= vp(kp) + vp(k) + Z Vp(i)

i<kyitky

11
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= (i) = p(kY),

i=1

so it follows that (n —1)(n —2)---(n — k + 1) is a multiple of k!.

Finally, let 1 < m < k. We will show that n does not divide (:Z), which amounts to
showing that m! does not divide (n — 1)(n —2)---(n — m + 1). First, suppose that m
has a prime divisor ¢ that does not divide k. Then we have

3

vg((n—1)(n—-2)...(n—m+1)) = vg(n — 1)

i

3
L

V(i)
i=1
ve((m —1)1) < g(ml),

as desired. Therefore, suppose that m is only divisible by primes that divide k. If there
is such a prime p with v,(m) > v,(k), then it follows that

v (n=1)(n—2)...(n—m+1)) = (k) + 3 13(0)
=1

< vp(m) + ' Vp(i)
= vp(m!),

so m! cannot divide (n — 1)(n —2)...(n —m + 1). On the other hand, suppose that
vp(m) < vy(k) for all p | k, which would mean that m | k and hence m < 4. Consider
a prime p dividing m. We have k, > g, because otherwise 2k, could have been used
instead of k,. It follows that m < % < kp. Therefore, we obtain

3

vp((n—1)n—-2)...(n—m+1)) = vp(n — 1)

i

3
L

vp(4)
=1
vp((m —1)1) < vp(ml),

showing that (n — 1)(n —2)--- (n — m + 1) is not divisible by m!. This shows that ()
is not divisible by n for m < k, and hence n does have the required property.

12
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§2 Solutions to Day 2

§2.1 TSTST 2021/4, proposed by Holden Mui
Available online at https://aops.com/community/p23864177.

Problem statement

Let a and b be positive integers. Suppose that there are infinitely many pairs of

positive integers (m,n) for which m? + an + b and n? 4+ am + b are both perfect
squares. Prove that a divides 2b.

Treating a and b as fixed, we are given that there are infinitely many quadrpules (m,n,r, s)
which satisfy the system

m?+an+b=(m+r)?
n*+am+b=(n+s)?

We say that (7, s) is exceptional if there exists infinitely many (m,n) that satisfy.

Claim — If (r,s) is exceptional, then either
. O<r<a/2,and0<s<}la2;or
¢« 0<s<a/2and 0 <r < ta? or
o 72+ 5% < 2b.

In particular, finitely many pairs (r, s) can be exceptional.

Proof. Sum the two equations to get:
2+ 52 —2b = (a— 2r)m + (a — 2s)n. (1)

If 0 < r < a/2, then the idea is to use the bound an +b > 2m + 1 to get m < %b_l.

Consequently,

an+b—1 n
2

For this to hold for infinitely many integers n, we need 2s < %, by comparing coefficients.

A similar case occurs when 0 < s < a/2.
If min(r, s) > a/2, then (1) forces 2 + s% < 2b, giving the last case. O

(n+s)?=n*+am+b<n®*+a- b

Hence, there exists some particular pair (r,s) for which there are infinitely many
solutions (m,n). Simplifying the system gives

an=2rm+7r?—b
2sn = am + b — s*

Since the system is linear, for there to be infinitely many solutions (m,n) the system
must be dependent. This gives

a P e

2s a b—s2

13
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2 2
= — SVrrVs g .
so a = 2y/rs and b = NSV Since rs must be square, we can reparametrize as

r = ka2, s = ky?, and ged(z,y) = 1. This gives

a = 2kzy
b= kry(z? — zy + y?).

Thus, a | 2b, as desired.

14
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§2.2 TSTST 2021/5, proposed by Vincent Huang
Available online at https://aops.com/community/p23864182.
Problem statement

Let T be a tree on n vertices with exactly k leaves. Suppose that there exists a
n+k—1

subset of at least " 5— vertices of T', no two of which are adjacent. Show that the
longest path in 7' contains an even number of edges.

The longest path in T must go between two leaves. The solutions presented here will
solve the problem by showing that in the unique 2-coloring of T', all leaves are the same
color.

9 Solution 1 (Ankan Bhattacharya, Jeffery Li).

\
Lemma
If S is an independent set of T', then
Z deg(v) <n—1
veS
Equality holds if and only if S is one of the two components of the unique 2-coloring
of T.
. J

Proof. Each edge of T is incident to at most one vertex of S, so we obtain the inequality
by counting how many vertices of S each edge is incident to. For equality to hold, each
edge is incident to exactly one vertex of S, which implies the 2-coloring. O

We are given that there exists an independent set of at least %’H vertices. By
greedily choosing vertices of smallest degree, the sum of the degrees of these vertices is
at least

k+2- "%‘H =n—1

Thus equality holds everywhere, which implies that the independent set contains every
leaf and is one of the components of the 2-coloring.

9 Solution 2 (Andrew Gu).

Lemma

The vertices of T' can be partitioned into k£ — 1 paths (i.e. the induced subgraph on
each set of vertices is a path) such that all edges of 7' which are not part of a path
are incident to an endpoint of a path.

Proof. Repeatedly trim the tree by taking a leaf and removing the longest path containing
that leaf such that the remaining graph is still a tree. O

15
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Now given a path of a vertices, at most “7‘"1 of those vertices can be in an independent
set of T. By the lemma, T' can be partitioned into & — 1 paths of ay,...,ar_1 vertices,
so the maximum size of an independent set of T is

2 2

For equality to hold, each path in the partition must have an odd number of vertices,
and has a unique 2-coloring in red and blue where the endpoints are red. The unique
independent set of T' of size %k_l is then the set of red vertices. By the lemma, the
edges of T" which are not part of a path connect an endpoint of a path (which is colored
red) to another vertex (which must be blue, because the red vertices are independent,).
Thus the coloring of the paths extends to the unique 2-coloring of T'. The leaves of T" are
endpoints of paths, so they are all red.

16
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§2.3 TSTST 2021/6, proposed by Nikolai Beluhov

Available online at https://aops.com/community/p23864189.

Problem statement

Triangles ABC and DFEF share circumcircle 2 and incircle w so that points A, F,
B, D, C, and E occur in this order along ). Let A4 be the triangle formed by lines
AB, AC, and EF, and define triangles Ap, Ag, ..., Ap similarly. Furthermore, let
Q4 and w4 be the circumcircle and incircle of triangle A 4, respectively, and define
circles Qp, wp, ..., Qr, wp similarly.

(a) Prove that the two common external tangents to circles Q4 and Qp and the
two common external tangents to circles wa and wp are either concurrent or
pairwise parallel.

(b) Suppose that these four lines meet at point T4, and define points T and T

similarly. Prove that points T4, T, and T are collinear.
g J

Ta

Let I and r be the center and radius of w, and let O and R be the center and radius
of Q. Let O4 and I4 be the circumcenter and incenter of triangle A 4, and define Op,
Ip,...,Ip similarly. Let w touch EF at Ay, and define By, C4,..., I similarly.

9 Part (a). All solutions to part (a) will prove the stronger claim that
(QA UwA) ~ (QD UwD).

The four lines will concur at the homothetic center of these figures (possibly at infinity).
Solution 1 (author) Let the second tangent to w parallel to EF meet lines AB and
AC at P and @, respectively, and let the second tangent to w parallel to BC meet lines

DE and DF at R and S, respectively. Furthermore, let w touch PQ and RS at U and
V', respectively.
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Let h be inversion with respect to w. Then h maps A, B, and C onto the midpoints of
the sides of triangle D1 E1F}. So h maps k onto the Euler circle of triangle Dy Fq F}.

Similarly, h maps k£ onto the Euler circle of triangle A1 B1C. Therefore, triangles
A1B1C; and D E1F; share a common nine-point circle 7. Let K be its center; its radius
equals %r.

Let H be the reflection of I in K. Then H is the common orthocenter of triangles
A1B101 and D1E1F1.

Let vy of center Ky and radius %r be the Euler circle of triangle U E1 Fy, and let ~y
of center Ky, and radius %’I“ be the Euler circle of triangle V B1CY.

Let Hy be the orthocenter of triangle U E1 F}. Slrﬂuadmlateral DiE1FU whc,

vectors HHyr and DU are equal. Consequently, KKy = %Dlij. Similarly, KKy =

LAV

Since both of A U and D1V are diameters in w, vectors D—lUZ and A—ﬂ} are equal.
Therefore, Ki; and Ky coincide, and so do vy and 7y .

As above, h maps g onto the circumcircle of triangle AP and ~y onto the circumcircle
of triangle DRS. Therefore, triangles APQ and DRS are inscribed inside the same circle
Qap.

Since EF and PQ are parallel, triangles A4 and APQ are homothetic, and so are
figures Q4 Uwa and Qap Uw. Consequently, we have

(QA UwA) ~ (QAD Uw) ~ (QD UwD),

which solves part (a).

Solution 2 (Michael Ren) As in the previous solution, let the second tangent to w
parallel to EF meet AB and AC at P and @Q, respectively. Let (APQ) meet () again at
D', so that D' is the Miquel point of {AB, AC, BC, PQ}. Since the quadrilateral formed
by these lines has incircle w, it is classical that D'T bisects ZPD'C and BD'Q (e.g. by
DDIT).

Let ¢ be the tangent to Q at D’ and D’I meet 2 again at M. We have

£(¢,D'B) = {D'CB = £D'QP = £(D'Q, EF).

Therefore D'I also bisects the angle between ¢ and the line parallel to EF through D’.
This means that M is one of the arc midpoints of EF. Additionally, D’ lies on arc BC
not containing A, so D' = D.

Similarly, letting the second tangent to w parallel to BC' meet DE and DF' again at
R and S, we have ADRS cyclic.

Lemma

There exists a circle Q4p tangent to 24 and Qp at A and D, respectively.

Proof. (This step is due to Ankan Bhattacharya.) It is equivalent to have LOAO4 =
£OpDO. Taking isogonals with respect to the shared angle of AABC and A4, we see
that

£OAO4 = 4(L EF,1 BC) = £(EF,BC).

(Here, L E'F means the direction perpendicular to EF'.) By symmetry, this is equal to
£O0pDO. O
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The circle (ADPQ) passes through A and D, and is tangent to Q4 by homothety.
Therefore it coincides with Q4p, as does (ADRS). Like the previous solution, we finish
with

(QA UwA) ~ (QAD Uw) ~ (QD UwD).

Solution 3 (Andrew Gu) Construct triangles homothetic to A4 and Ap (with positive
ratio) which have the same circumcircle; it suffices to show that these copies have the
same incircle as well. Let O be the center of this common circumcircle, which we take to
be the origin, and M xy denote the point on the circle such that the tangent at that point
is parallel to line XY (from the two possible choices, we make the choice that corresponds
to the arc midpoint on €2, e.g. M4p should correspond to the arc midpoint on the internal
angle bisector of ACB). The left diagram below shows the original triangles ABC and
DEF, while the right diagram shows the triangles homothetic to A4 and Ap.

A Mgr Mpr
F Mca Mca

Map Mag

Mpp Mrp

B C

D MpEg MpE
Mpc MBpc

Using the fact that the incenter is the orthocenter of the arc midpoints, the incenter of
A 4 in this reference frame is Map + Mac — Mgr and the incenter of Ap in this reference
frame is Mpg + Mpp — Mpc. Since ABC and DEF share a common incenter, we have

Mg+ Mpc + Mca = Mpg + Mgr + Mpp.

Thus the copies of A4 and Ap have the same incenter, and therefore the same incircle
as well (Euler’s theorem determines the inradius).

9 Part (b). We present several solutions for this part of the problem. Solutions 3 and
4 require solving part (a) first, while the others do not. Solutions 1, 4, and 5 define T’y
solely as the exsimilicenter of w4 and wp, whereas solutions 2 and 3 define T}y solely as
the exsimilicenter of 24 and Qp.

Solution 1 (author) By Monge’s theorem applied to w, w4, and wp, points A, D,
and T4 are collinear. Therefore, Ty = AD N 1Alp.

Let p be pole-and-polar correspondence with respect to w. Then p maps A onto line
E1F1 and D onto line B1Cy. Consequently, p maps line AD onto X4 = B1C1 N E1 Fy.

Furthermore, p maps the line that bisects the angle formed by lines AB and EF and
does not contain I onto the midpoint of segment A; F;. Similarly, p maps the line that
bisects the angle formed by lines AC and EFF and does not contain I onto the midpoint of
segment, A1 F1. So p maps I4 onto the midline of triangle A1 E1 F; opposite A;. Similarly,
p maps Ip onto the midline of triangle Dy B1C; opposite D;. Consequently, p maps line
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I4Ip onto the intersection point Y4 of this pair of midlines, and p maps T4 onto line
XaY4.

As in the solution to part (a), let H be the common orthocenter of triangles A1 B;C; and
D E 1 Fy. Let Hy be the foot of the altitude from A; in triangle A;B1Cy and let Hp be
the foot of the altitude from D1 in triangle Dy E1 Fy. Furthermore, let Ly = HA N E )
and Lp = HD N B1Ch.

Since the reflection of H in line B1C} lies on w, A1 H - HH 5 equals half the power of H
with respect to w. Similarly, D1 H - HHp equals half the power of H with respect to w.

Then A\H-HHy = D1H-HHp and Ay HHp ~ D1HH,. Since ZHHpL 4 = 90° =
ZHHALp, figures AAHHpL 4 and D1HH 4 Lp are similar as well. Consequently,

HLy HLp s

LiA,  LpD;

as a signed ratio.

Let the line through A; parallel to E1F} and the line through D; parallel to B1C meet
at Z4. Then HX 4/ X 4Z4 = s and Yy is the midpoint of segment X 4Z4. Therefore, H
lies on line X 4Y4. This means that T4 lies on the polar of H with respect to w, and by
symmetry so do T and T¢.

Solution 2 (author) As in the first solution to part (a), let & be inversion with respect
to w, let v of center K be the common Euler circle of triangles A1 B1C1 and Dy E1F1,
and let H be their common orthocenter.

Again as in the solution to part (a), h maps €24 onto the nine-point circle y4 of triangle
A1 E1Fy and Qp onto the nine-point circle vp of triangle D1 B;CY.

Let K4 and Kp be the centers of v4 and vp, respectively, and let £4 be the perpen-
dicular bisector of segment K 4K p. Since v4 and yp are congruent (both of them are of
radius %7‘), they are reflections of each other across 4.

Inversion A maps the two common external tangents of €24 and Qp onto the two circles
a and § through I that are tangent to both of 74 and ~p in the same way. (That is,
either internally to both or externally to both.) Consequently, o and /3 are reflections of
each other in ¢4 and so their second point of intersection S4, which h maps T4 onto, is
the reflection of I in £ 4.

Define ¢, ¢c, Sp, and S¢ similarly. Then Sp is the reflection of I in £ and S¢ is
the reflection of I in /¢.

As in the solution to part (a), KK = %DlAl and KKp = %AlDl. Consequently, K
is the midpoint of segment K4 Kp and so K lies on £4. Similarly, K lies on £ and {¢.

Therefore, all four points I, Sa, Sp, and S¢ lie on the circle of center K that contains
I. (This is also the circle on diameter I H.) Since points Sy, Sp, and S¢ are concyclic
with I, their images T4, T, and T under h are collinear, and the solution is complete.

Solution 3 (Ankan Bhattacharya) From either of the first two solutions to part (a),
we know that there is a circle Q4 p passing through A and D which is (internally) tangent
to Q4 and Qp. By Monge’s theorem applied to Q4,p, and Qap, it follows that A, D,
and T4 are collinear.

The inversion at T4 swapping Q24 with Qp also swaps A with D because T4 lies on
AD and A is not homologous to D. Let 24 and Qp meet  again at L4 and Lp. Since
ADL 4 Lp is cyclic, the same inversion at T4 also swaps Ls and Lp,so T4 = ADNLALp.

By Taiwan TST 2014, L4 and Lp are the tangency points of the A-mixtilinear and
D-mixtilinear incircles, respectively, with 2. Therefore AL, N DLp is the exsimilicenter
X of Q and w. Then T4, Tpg, and T all lie on the polar of X with respect to €.
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Solution 4 (Andrew Gu) We show that T4 lies on the radical axis of the point circle
at I and €2, which will solve the problem. Let I4 and Ip be the centers of wa and wp
respectively. By the Monge’s theorem applied to w, w4, and wp, points A, D, and T4 are
collinear. Additionally, these other triples are collinear: (A,14,1),(D,Ip,I),(I1a,Ip,T).
By Menelaus’s theorem, we have

TaD  Ial IpD
TaA ~ IpA Ipl-
If s is the length of the side opposite A in A 4, then we compute
IxI  s/cos(A)2)
I4A r4/sin(A/2)
_ 2Rasin(A)sin(A/2)
N cos(A/2)
_ 4Ry sin?(A4/2)
De—
- AR p1?
g A%

From part (a), we know that f—f‘ — b Therefore, doing a similar calculation for %,
A D D

we get
TaD  Isl IpD
TaA ~ IpA Ipl
_4Rur* rpDI?
T rAAI?  ARpr?
_ DI?
=1
Thus T4 is the point where the tangent to (AID) at I meets AD and T4I? = T4 A-TaD.
This shows what we claimed at the start.

Solution 5 (Ankit Bisain) As in the previous solution, it suffices to show that
% . % = %. Let Al and DI meet Q2 again at M and N, respectively. Let £ be the
line parallel to BC and tangent to w but different from BC. Then

DIp d(D,BC) DB-DC/2R  MI*— MD?
IpI  d(BC,t) 2r B 4Rr
Since IDM ~ I AN, we have
DIp IaI  MI*—MD* DI?
IpI AIh, NI2—NA?2  AJ?’

as desired.

Remark (Author comments on generalization of part (b) with a circumscribed hexagram).
Let triangles ABC and DEF be circumscribed about the same circle w so that they form a
hexagram. However, we do not require anymore that they are inscribed in the same circle.

Define circles Q4, wa,...,wr as in the problem. Let Tgir“ be the intersection point of
the two common external tangents to circles Q24 and 2p, and define points Tgirc and Tg”“
similarly. Also let T be the intersection point of the two common external tangents to
circles wy and wp, and define points T3 and T2 similarly.

Then points 75, T5, and TS™ are collinear and points T%, TH, and T2 are also
collinear.
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The second solution to part (b) of the problem works also for the circumcircles part of
the generalisation. To see that segments K4 Kp, KgKp, and Ko Kp still have a common
midpoint, let M be the centroid of points A, B, C, D, FE, and F. Then the midpoint of
segment K4 Kp divides segment OM externally in ratio 3 : 1, and so do the other two
midpoints as well.

For the incircles part of the generalisation, we start out as in the first solution to part (b)
of the problem, and eventually we reduce everything to the following:

Let points A1, B1, C1, Dy, E1, and Fy lie on circle w. Let lines B1Cy and E1F; meet at
point X 4, let the line through Ay parallel to B1Cy and the line through D1 parallel to E1Fy
meet at point Za, and define points Xg, Zg, Xc, and Zc similarly. Then lines XaZa,
XpZp, and XcZc are concurrent.

Take w as the unit circle and assign complex numbers u, v, w, x, y, and z to points Aj,
Fy, By, Dy, C4, and Eq, respectively, so that when we permute u, v, w, x, y, and z cyclically
the configuration remains unchanged. Then by standard complex bash formulas we obtain
that each two out of our three lines meet at ¢/, where

©= Z wvw(wr — wy + zy)(y — 2)
Cyc
and
Y= — u2w2y2 —v2z22? — duvwzyz + Z u? (vwzy — vwrz + vwyz — veyz + wxyz)

Cyc

(But the calculations were too difficult for me to do by hand, so I used SymPy.)

Remark (Author comments on generalization of part (b) with an inscribed hexagram).
Let triangles ABC and DEF be inscribed inside the same circle €2 so that they form a
hexagram. However, we do not require anymore that they are circumscribed about the same
circle.

Define points Tgi“, Tgi“, e Tgl as in the previous remark. It looks like once again
points Tgi"c, Tgir“, and Tgirc are collinear and points Tgﬂ }9“, and Tgl are also collinear.
However, I do not have proofs of these claims.

Remark (Further generalization from Andrew Gu). Let ABC and DEF be triangles which
share an inconic, or equivalently share a circumconic. Define points 75", TS ... T as in
the previous remarks. Then it is conjectured that points 75", TS, and TS™ are collinear
and points T, T3 and T(I/P are also collinear. (Note that extraversion may be required
depending on the configuration of points, e.g. excircles instead of incircles.) Additionally, it
appears that the insimilicenters of the circumcircles lie on a line perpendicular to the line
through Tgi“, Tgir", and Tgi”’.
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§3 Solutions to Day 3
§3.1 TSTST 2021/7, proposed by Ankit Bisain, Holden Mui

Available online at https://aops.com/community/p24130213.

Problem statement

Let M be a finite set of lattice points and n be a positive integer. A mine-avoiding
path is a path of lattice points with length n, beginning at (0,0) and ending at a
point on the line x + y = n, that does not contain any point in M. Prove that if
there exists a mine-avoiding path, then there exist at least T ] mine-avoiding

paths.
g J

We present two approaches.

q[ Solution 1. We prove the statement by induction on n. We use n = 0 as a base case,
where the statement follows from 1 > 2=l For the inductive step, let n > 0. There
exists at least one mine-avoiding path, which must pass through either (0,1) or (1,0).
We consider two cases:

Case 1: there exist mine-avoiding paths starting at both (1,0) and (0,1).

By the inductive hypothesis, there are at least 27~ 1~IM| mine-avoiding paths starting
from each of (1,0) and (0,1). Then the total number of mine-avoiding paths is at least
2n—1—\M| + 2n—1—|M| _ 2n—|M|

Case 2: only one of (1,0) and (0,1) is on a mine-avoiding path.

Without loss of generality, suppose no mine-avoiding path starts at (0,1). Then some
element of M must be of the form (0, k) for 1 < k < n in order to block the path along
the y-axis. This element can be ignored for any mine-avoiding path starting at (1,0). By
the inductive hypothesis, there are at least 271~ (M=) — on=IM| pine_avoiding paths.

This completes the induction step, which solves the problem.

q[ Solution 2.

Lemma

If |M| < n, there is more than one mine-avoiding path.

Proof. Let Py, Py, ..., P, be a mine-avoiding path. Set P; = (x;,y;). For 0 < i < n,
define a path @Q; as follows:

e Make the first ¢ + 1 points Py, Pi,..., B;.
o If P, — P4 is one unit up, go right until (n — y;, y;).

o If P, — P, is one unit right, go up until (x;,n — z;).
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The diagram above is an example for n = 5 with the new segments formed by the Q;
in red, and the line z + y = n in blue.

By definition, M has less than n points, none of which are in the original path. Since
all @; only intersect in the original path, each mine is in at most one of Qq, @1, ..., Qn-1.
By the Pigeonhole Principle, one of the (); is mine-avoiding. O

Now, consider the following process:
o Start at (0,0).

o If there is only one choice of next step that is part of a mine-avoiding path, make
that choice.

e Repeat the above until at a point with two possible steps that are part of mine-
avoiding paths.

e Add a mine to the choice of next step with more mine-avoiding paths through it.
If both have the same number of mine-avoiding paths through them, add a mine

arbitrarily.
0
0 1
0 2 1

For instance, consider the above diagram for n = 4. Lattice points are replaced with
squares. Mines are black squares and each non-mine is labelled with the number of
mine-avoiding paths passing through it. This process would start at (0,0), go to (1,0),
then place a mine at (1,1).

This path increases the size of M by one, and reduces the number of mine-avoiding
paths to a nonzero number at most half of the original. Repeat this process until there is
only one path left. By our lemma, the number of mines must be at least n by the end of
the process, so the process was iterated at least n — | M| times. By the halving property,
there must have been at least 2"~ ™| mine-avoiding paths before the process, as desired.
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§3.2 TSTST 2021/8, proposed by Fedir Yudin

Available online at https://aops.com/community/p24130228.

Problem statement

Let ABC be a scalene triangle. Points Ay, B; and Cy are chosen on segments BC),

CA, and AB, respectively, such that AA;B1C1 and AABC are similar. Let As be
the unique point on line B1C; such that AAs = A1 As. Points By and Cy are defined
similarly. Prove that AAsBsCy and AABC' are similar.

We give three solutions.

9 Solution 1 (author). We’ll use the following lemma.

Lemma

Suppose that PQR.S is a convex quadrilateral with /P = ZR. Then there is a point
T on @S such that ZQPT = Z/SRP, /TRQ = ZRPS, and PT = RT.

Before proving the lemma, we will show how it solves the problem. The lemma applied
for the quadrilateral AB1A1Cy with LA = ZA; shows that £B1A1Ay = ZC1AA;. This
implies that the point As in A A1 B1C1 corresponds to the point A1 in AABC. Then
AAQBQCQ ~ AAlBlCl ~ AABC, as desired.

Additionally, PT = RT is a corollary of the angle conditions because

APRT = £SRQ — {TRQ — {SRP = £QPS — {RPS — {QPT = {TPR.

Therefore we only need to prove the angle conditions.

Proof 1 of lemma Denote X = PQN RS and Y = PSN RQ. Note that /XPY =
/ZXRY,so PRXY is cyclic. Let T be the point of intersection of tangents to this circle at
P and R. By Pascal’s theorem for the degenerate hexagon PPX RRY, we have T € QS
(alternatively, @, S, and T are collinear on the pole of PR N XY with respect to the
circle). Also, LQPT = A XRP = £SRP and similarly {TRQ = {RPY = £RPS, so

we’re done.

X
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Proof 2 of lemma Let P’ and R’ be the reflections of P and R in S. Note that
PR’ and RP' intersect at a point X on QS. Let T be the second intersection of the
circumcircle of APRX with QS. Note that

APXT = £R'PQ + £PQS
= AR'SQ+ £PQS
= AQSR + £PQS
= 4(PQ, SR)
= AQPR + £PRS.

This means that

AQPT = LQPR — {TPR
=ALQPR— LTXR
=ALQPR — LPXT
= 4LQPR - £QPR — £PRS
= £ASRP.

Similarly, L{QRT = £SPR, so we’re done.

R/

(AN

Proof 3 of lemma Let T be the point on QS such that ZQPT = ZSRP. Then we

h
e QT  sinQPT-PT/sinPQT  PQ/sinPRQ  R(APQR)

TS  sinTPS-PT/snTSP  PS/sinSRP  R(APRS)’

which is symmetric in P and R, so we're done.

9 Solution 2 (Ankan Bhattacharya). We prove the main claim ﬁ;éi = ijé.

Let AAgByCy be the medial triangle of AABC. In addition, let A} be the reflection

of Ay over B1C1, and let X be the point satisfying AXBC ~ AAB;C1, so that we have
a compound similarity

AABCUX ~ AA|B,Cy U A.

Finally, let O4 be the circumcenter of AA|B1C1, and let A be the point on B;C}
A3 _ BA

el trol

Recall that O is the Miquel point of AA;B1Cq, as well as its orthocenter.

satisfying f

26



USA TSTST 2021 Solutions Andrew Gu and Evan Chen

| Claim — AA] || BC.

Proof. We need to verify that the foot from A; to B1C4 lies on the A-midline. This
follows from the fact that O is both the Miquel point and the orthocenter. O

| Claim — H ” BlCl.

Proof. From the compound similarity,

L(BC,AX) = L(AA}, B,C).
As AAY || BC, we obtain AX || B1C}. O
| Claim — AX 1 A4,0.
Proof. Because O is the orthocenter of AA1B1C;. ]
| Claim — AA!| 1 A3O04.
Proof. Follows from AX 1 A;O after the similarity

ANABCUX ~ AA’IBlCl U A. (]
| Claim — AAj; = Al As.
P?"OOf. Since KClABl = KC’lAllBl, AOA = AIIOA, SO AAII 1 A;OA implies AAY =

Al A3, O
Finally, Aj A5 = Ay A; by reflections, so AAS = A1 A%, and Ay = As.
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§3.3 TSTST 2021/9, proposed by Victor Wang

Available online at https://aops.com/community/p24130243.

Problem statement

27

Let ¢ = p” for a prime number p and positive integer r. Let ( = e ¢ . Find the least
positive integer n such that

1
D

1<k<q
ged(k,p)=1

is not an integer. (The sum is over all 1 < k < g with p not dividing k.)
- v

Let S, denote the set of primitive gth roots of unity (thus, the sum in question is a sum
over Sy).

9 Solution 1 (author). Let ¢, = e?™/P be a fixed primitive pth root of unity. Observe
that the given sum is an integer for all n < 0 (e.g. because the sum is an integer
symmetric polynomial in the primitive gth roots of unity). By expanding polynomials in
the basis (1 — z)*, it follows that if the sum in the problem statement is an integer for
all n < ng, then
weSy
for all n < ng and f € Z[z], whereas for n = ng there is some f € Z[z] for which the sum
is not an integer (e.g. f =1).

Let 2z, = ré(q) —q/p =p " 1[r(p— 1) — 1]. We claim that the answer is n = z, +1. We
prove this by induction on r. First is the base case r = 1.

~
Lemma
There exist polynomials u, v € Z[x] such that (1—w)P~!/p = u(w) and p/(1—w)P~! =
v(w) for all w € Sp.
(What we are saying is that p is (1 — w)P~! times a unit (invertible algebraic
integer), namely v(w).)
J

Proof. Note that p = (1 —w)--- (1 —wP~!). Thus we can write

P Cl-w 1 —w? 1 —wPt
l-wpl 1-w 1-w l-w

and take

Similarly, the polynomial u is

p—1 ke

1 — Mk

u(x) - H 1— xk
k=1
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where £}, is a multiplicative inverse of £ modulo p. O

Now, the main idea: given g € Z|x], observe that

5= (1-wyw)

wEeSy

is divisible by 1 —Cg (i.e. it is 1—(1’9“ times an algebraic integer) for every k coprime to p. By
symmetric sums, S is an integer; since SP~! is divisible by (1 —¢,)--- (1 — Z’;_l) =p, the
integer S must itself be divisible by p. (Alternatively, since h(z) := (1 — z)g(x) vanishes
at x = 1, one can interpret S using a roots of unity filter: S = p- h([z%] + [#P]+---) =0
(mod p).) Now write

—w)P! w w
Zaﬁzz(l ) 9(w) :Z“(w)( 9(w)

— w)r—2 —w)pP—2°
p wEeSp p (1 w) wESp 1 w)

Taking g = v - (1 — 2)F for k > 0, we see that the sum in the problem statement is an
integer for any n < p — 2.

Finally, we have
u(w) 1 p—1
_—_— = _ = — Z

wEeSp weSp

so the sum is not an integer for n = p — 1.
Now let r > 2 and assume the induction hypothesis for » — 1.

Lemma
There exist polynomials U,V € Z[z] such that (1 — w)?/(1 — wP) = U(w) and
(1-wP)/(1 —w)? =V(w) for all w € S;. (Again, these are units.)

Proof. Similarly to the previous lemma, we write 1 —w? = (1 —w()) -+ (1 —w 21y The
polynomials U and V are

Pl (ka/p+1)e

— xkq/p+1
pie 1—=x

p—1 kq/p+1
1 — /P
Vi) = ] L

k=1

1—=x

where ¢}, is a multiplicative inverse of kq/p 4+ 1 modulo q. O

Corollary
If w € S, then (1 — w)®@ /p is a unit.

Proof. Induct on r. For r = 1, this is the first lemma. For the inductive step, we are
given that (1 — wP)?(@/P) /p is a unit. By the second lemma, (1 — w)?(@ /(1 — wP)?(@/P) ig
also a unit. Multiplying these together yields another unit. O
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Thus we have polynomials A, B € Z[x] such that

Aw) = Wv(wyw
(- w)¢(q) ol
Blw) = = —U(w)

for all w € S,.
Given g € Z[x], consider the pth roots of unity filter

p—1
S(x) = g(¢w) =p- h(z?),
k=0

where h € Z[z]. Then

for all n € 5,/p, so

hn)  _ Sw) (I —w)Par  g(w)
(1 — n)zq/p B p(l — n)ZQ/p o Z (1 — wp)zq/p p(l — w)pzq/p

wP=n

w)<¢>(q) g(w)
Z U 4/17 » (1 — w)zq

wP=n

(Implicit in the last line is z, = ¢(q) + pzyp-) Since U(w) and (1 — w)?@ /p are units,
we can let ¢ = A - f for arbitrary f € Z[z], so that the expression in the summation
simplifies to f(w)/(1 —w)?. From this we conclude that for any f € Z[z], there exists
h € Z[z] such that

Z(l—w Z Z 1—w

wESy NESyp WP= 77
-y h(n)
1 —p)?ar’
was, 1=

By the inductive hypothesis, this is always an integer.
In the other direction, for n € S/, we have

B(w) 1
2 T~ 2 (o)

wP =n wP =n

1 1
p(1 —mn)a/r 2 l-w

wP =n

_ 1 paP~ !
~p(L=n)e 2P =],

R
BCETRET

Summing over all n € S,

q/p» We conclude by the inductive hypothesis that
B(w) 1
Z (1 — w)1+zq o Z (1 — )1+Zq/p
weSy UESq/p n

is not an integer. This completes the solution.
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9 Solution 2 (Nikolai Beluhov). Suppose that the complex numbers ﬁ for w € S,

are the roots of

P(z) =2 — iz + con®2 — . £ ¢y,

so that ¢y is their k-th elementary symmetric polynomial and d = ¢(q) = (p — 1)p" L.
Additionally denote
1
Sp = —_—.
" Z (1 —w)

Then, by Newton’s identities,

Sl =C1,

Sy = 151 — 2c¢2,

Sg = 6152 — CQSl + 363,
and so on. The general pattern when n < d is

n—1
S, = Z(—l)j‘*'lcjsn,j + (=) ne,.
j=1

After that, when n > d, the pattern changes to

Lemma

All of the ¢; are integers except for ¢y. Furthermore, ¢4 is 1/p times an integer.

Proof. The gth cyclotomic polynomial is

T—1

Dy(z) =142 422 4. g p
The polynomial
Q) =1+ 1 +2)P  +1+2)2 "+ 4 (1 +z) P

has roots w — 1 for w € Sy, so it is equal to p(—x)¢P(—1/x) by comparing constant
coefficients. Comparing the remaining coefficients, we find that ¢, is 1/p times the z"
coefficient of Q).

Since (z + y)? = 2P + P (mod p), we conclude that, modulo p,

Qlz) =1+ (1 +33pr_1) + (1 +ﬂ§pr_l)2 ot (1 _|_$p*—1)p—1

= [+ ) 1]
Since (f) is a multiple of p when 0 < j < p, it follows that all coefficients of Q(x) are

multiples of p save for the leading one. Therefore, ¢, is an integer when n < d, while ¢y
is 1/p times an integer. O

By the recurrences above, S, is an integer for n < d. When r = 1, we get that dcg is
not an integer, so Sy is not an integer, either. Thus the answer for r =1isn=p— 1.
Suppose now that r > 2. Then dcg does become an integer, so Sy is an integer as well.
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Lemma

For all n with 1 < n < d, we have vp(nc,) > r — 2. Furthermore, the smallest n
such that vp(ne,) =7 —21isd —p" 1 + 1.

Proof. The value of nec, is 1/p times the coefficient of 2"~ in the derivative Q'(x). This
derivative is

p—1
ol _{_x)p’"_l—l [Z k(1 +$)(k—1)PT_1] )
k=1

What we want to prove reduces to showing that all coefficients of the polynomial in
the square brackets are multiples of p except for the leading one.

Using the same trick (z+y)? = 2P +y? (mod p) as before and also writing w for ¥’ ',
modulo p the polynomial in the square brackets becomes

1+2(1+w) +3(1+w)?+ -+ (p—1)(1 +w)P~2
This is the derivative of
L+ (1 +w) + 1 +w)?++ 1 +wPt =[1+w)? —1]/w
and so, since (‘;’) is a multiple of p when 0 < j < p, we are done. ]

Finally, we finish the problem with the following claim.
Claim — Let m =d —p"~!. Then for all k > 0 and 1 < 7 < d, we have

Vp(Skdtm+1) =7 —2—k
Up(Skdm+j) =7 —2— k.

Proof. First, S1,Sa,...,S,, are all divisible by p"~! by Newton’s identities and the second
lemma. Then v,(Sy,+1) = — 2 because

vp((m+1)cmyr1) =1 — 2,

and all other terms in the recurrence relation are divisible by p"~!. We can similarly
check that v,(S,,) > r—2 for m+1 < n < d. Newton’s identities combined with the first
lemma now imply the following for n > d:

o If 1 (Sn—j) > ¢ forall 1 <j<dand vp(Sp—q) >+ 1, then v,(S,) > £.
o If1p(Sp—j) >Lforalll <j<dandvy(S,—q)=4¢, then v,(S,) =¢— 1.
Together, these prove the claim by induction. O

By the claim, the smallest n for which 1,(S,) < 0 (equivalent to S,, not being an
integer, by the recurrences) is

n=r—-1)d+m+1=(p-1)r—1)p 1 +1.
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Remark. The original proposal was the following more general version:

Let n be an integer with prime power factorization ¢ - - - ¢,,. Let .S, denote
the set of primitive nth roots of unity. Find all tuples of nonnegative integers
(#1,...,2m) such that

Z fw) c7

2 (1 —wn/a)z1 ... (1 — wn/am)zm

for all polynomials f € Z[z].

The maximal z; are exponents in the prime ideal factorization of the different ideal of the
cyclotomic extension Q(¢,)/Q.

Remark. Let F = (27 — 1)/(x — 1) be the minimal polynomial of ¢, = e*™/? over Q. A
calculation of Euler shows that
1

G Ak

Z[G) = {a=9(G) €QG): Y flw)glw) € ZVS € Zlal} =

wEeS,

P -4+ + G

1-¢ B
is (1 —¢p)P~1=1 = (1 — ¢,)P~? times a unit of Z[(,]. Here, (Z[(,])* is the dual lattice of
Z[Gp)-

p(l - gp)71C571

F'(G) =

Remark. Let K = Q(w), so (p) factors as (1 —w)P~! in the ring of integers O (which, for
cyclotomic fields, can be shown to be Z[w]). In particular, the ramification index e of (1 — w)
over p is the exponent, p — 1. Since e = p — 1 is not divisible by p, we have so-called tame
ramification. Now by the ramification theory of Dedekind’s different ideal, the exponent z;
that works when n =pise—1=p— 2.

Higher prime powers are more interesting because of wild ramification: p divides ¢(p") =
p"~(p — 1) if and only if » > 1. (This is a similar phenomena to how Hensel’s lemma for

22 — ¢ is more interesting mod powers of 2 than mod odd prime powers.)

Remark. Let F = (7 — 1)/(29/? — 1) be the minimal polynomial of ¢, = €27/ over Q.
The aforementioned calculation of Euler shows that

@I = {a=9(¢) €Qle): Y Flw)gw) € ZVf € Zla]} = ﬁg)mcq],
wESy q

where the chain rule implies (using the computation from the prime case)

F'(¢) = [p(1— &)~ ¢p 1] - pcq/m T=q(1-¢) ¢

s (1 —¢)r®@=a/P = (1 — ¢,)% times a unit of Z[(,].
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