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§0 Problems
1. Let ABCD be a quadrilateral inscribed in a circle with center O. Points X and

Y lie on sides AB and CD, respectively. Suppose the circumcircles of ADX and
BCY meet line XY again at P and Q, respectively. Show that OP = OQ.

2. Let a1 < a2 < a3 < a4 < · · · be an infinite sequence of real numbers in the interval
(0, 1). Show that there exists a number that occurs exactly once in the sequence

a1
1
,
a2
2
,
a3
3
,
a4
4
, . . . .

3. Find all positive integers k > 1 for which there exists a positive integer n such that(
n
k

)
is divisible by n, and

(
n
m

)
is not divisible by n for 2 ≤ m < k.

4. Let a and b be positive integers. Suppose that there are infinitely many pairs of
positive integers (m,n) for which m2 + an+ b and n2 + am+ b are both perfect
squares. Prove that a divides 2b.

5. Let T be a tree on n vertices with exactly k leaves. Suppose that there exists a
subset of at least n+k−1

2 vertices of T , no two of which are adjacent. Show that the
longest path in T contains an even number of edges.

6. Triangles ABC and DEF share circumcircle Ω and incircle ω so that points A, F ,
B, D, C, and E occur in this order along Ω. Let ∆A be the triangle formed by lines
AB, AC, and EF , and define triangles ∆B, ∆C , . . . ,∆F similarly. Furthermore,
let ΩA and ωA be the circumcircle and incircle of triangle ∆A, respectively, and
define circles ΩB, ωB, . . . ,ΩF , ωF similarly.
(a) Prove that the two common external tangents to circles ΩA and ΩD and the

two common external tangents to circles ωA and ωD are either concurrent or
pairwise parallel.

(b) Suppose that these four lines meet at point TA, and define points TB and TC
similarly. Prove that points TA, TB, and TC are collinear.

7. Let M be a finite set of lattice points and n be a positive integer. A mine-avoiding
path is a path of lattice points with length n, beginning at (0, 0) and ending at a
point on the line x+ y = n, that does not contain any point in M . Prove that if
there exists a mine-avoiding path, then there exist at least 2n−|M | mine-avoiding
paths.

8. Let ABC be a scalene triangle. Points A1, B1 and C1 are chosen on segments BC,
CA, and AB, respectively, such that 4A1B1C1 and 4ABC are similar. Let A2

be the unique point on line B1C1 such that AA2 = A1A2. Points B2 and C2 are
defined similarly. Prove that 4A2B2C2 and 4ABC are similar.

9. Let q = pr for a prime number p and positive integer r. Let ζ = e
2πi
q . Find the

least positive integer n such that ∑
1≤k≤q

gcd(k,p)=1

1

(1− ζk)n

is not an integer. (The sum is over all 1 ≤ k ≤ q with p not dividing k.)
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§1 Solutions to Day 1
§1.1 TSTST 2021/1, proposed by Holden Mui
Available online at https://aops.com/community/p23586650.

Problem statement

Let ABCD be a quadrilateral inscribed in a circle with center O. Points X and Y
lie on sides AB and CD, respectively. Suppose the circumcircles of ADX and BCY
meet line XY again at P and Q, respectively. Show that OP = OQ.

We present many solutions.

¶ First solution, angle chasing only (Ankit Bisain). Let lines BQ and DP meet
(ABCD) again at D′ and B′, respectively.

A

B

C D

O

X

Y

P

Q

B′

D′

Then BB′ ‖ PX and DD′ ‖ QY by Reim’s theorem. Segments BB′, DD′, and PQ share
a perpendicular bisector which passes through O, so OP = OQ.

¶ Second solution via isosceles triangles (from contestants). Let T = BQ ∩DP .
A

B

C D

O

X

Y

P

Q

T

Note that PQT is isosceles because

]PQT = ]Y QB = ]BCD = ]BAD = ]XPD = ]TPQ.

Then (BODT ) is cyclic because

]BOD = 2]BCD = ]PQT + ]TPQ = ]BTD.
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Since BO = OD, TO is an angle bisector of ]BTD. Since 4PQT is isosceles, TO ⊥ PQ,
so OP = OQ.

¶ Third solution using a parallelogram (from contestants). Let (BCY ) meet AB
again at W and let (ADX) meet CD again at Z. Additionally, let O1 be the center of
(ADX) and O2 be the center of (BCY ).

A

B

C D

X

Y

P

Q

W

Z

O

O1

O2

O′

Note that (WXY Z) is cyclic since

]XWY + ]Y ZX = ]YWB + ]XZD = ]Y CB + ]XAD = 0◦,

so let O′ be the center of (WXY Z). Since AD ‖WY and BC ‖ XZ by Reim’s theorem,
OO1O

′O2 is a parallelogram.
To finish the problem, note that projecting O1, O2, and O′ onto XY gives the midpoints

of PX, QY , and XY . Since OO1O
′O2 is a parallelogram, projecting O onto XY must

give the midpoint of PQ, so OP = OQ.

¶ Fourth solution using congruent circles (from contestants). Let the angle bisector
of ]BOD meet XY at K.

A

B

C D

O

X

Y

P

Q

K

Then (BQOK) is cyclic because ]KOD = ]BAD = ]KPD, and (DOPK) is cyclic
similarly. By symmetry over KO, these circles have the same radius r, so

OP = 2r sin∠OKP = 2r sin∠OKQ = OQ

by the Law of Sines.
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¶ Fifth solution by ratio calculation (from contestants). Let XY meet (ABCD) at
X ′ and Y ′.

A

B

C D

O

X

Y

P

Q

X ′

Y ′

Since ]Y ′BD = ]PX ′D and ]BY ′D = ]BAD = ]X ′PD,

4BY ′D ∼ 4XP ′D =⇒ PX ′ = BY ′ · DX
′

BD
.

Similarly,

4BX ′D ∼ 4BQY ′ =⇒ QY ′ = DX ′ · BY
′

BD
.

Thus PX ′ = QY ′, which gives OP = OQ.

¶ Sixth solution using radical axis (from author). Without loss of generality, assume
AD ∦ BC, as this case holds by continuity. Let (BCY ) meet AB again at W , let (ADX)
meet CD again at Z, and let WZ meet (ADX) and (BCY ) again at R and S.

A

B

C D

X

Y

P

Q

W

Z

R

S

Note that (WXY Z) is cyclic since

]XWY + ]Y ZX = ]YWB + ]XZD = ]Y CB + ]XAD = 0◦

and (PQRS) is cyclic since

]PQS = ]Y QS = ]YWS = ]PXZ = ]PRZ = ]SRP.

Additionally, AD ‖ PR since

]DAX + ]AXP + ]XPR = ]YWX + ]WXY + ]XYW = 0◦,
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and BC ‖ SQ similarly.
Lastly, (ABCD) and (PQRS) are concentric; if not, using the radical axis theorem

twice shows that their radical axis must be parallel to both AD and BC, contradiction.

¶ Seventh solution using Cayley-Bacharach (author). Define points W,Z,R, S as in
the previous solution.

A

B

C D

X

Y

P

Q

W

Z

R

S

The quartics (ADXZ) ∪ (BCWY ) and XY ∪WZ ∪ (ABCD) meet at the 16 points

A,B,C,D,W,X, Y, Z, P,Q,R, S, I, I, J, J,

where I and J are the circular points at infinity. Since AB ∪ CD ∪ (PQR) contains the
13 points

A,B,C,D, P,Q,R,W,X, Y, Z, I, J,

it must contain S, I, and J as well, by quartic Cayley-Bacharach. Thus, (PQRS) is cyclic
and intersects (ABCD) at I, I, J , and J , implying that the two circles are concentric,
as desired.

Remark (Author comments). Holden says he came up with this problem via the Cayley-
Bacharach solution, by trying to get two quartics to intersect.
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§1.2 TSTST 2021/2, proposed by Merlijn Staps
Available online at https://aops.com/community/p23586635.

Problem statement

Let a1 < a2 < a3 < a4 < · · · be an infinite sequence of real numbers in the interval
(0, 1). Show that there exists a number that occurs exactly once in the sequence

a1
1
,
a2
2
,
a3
3
,
a4
4
, . . . .

We present three solutions.

¶ Solution 1 (Merlijn Staps). We argue by contradiction, so suppose that for each λ
for which the set Sλ = {k : ak/k = λ} is non-empty, it contains at least two elements.
Note that Sλ is always a finite set because ak = kλ implies k < 1/λ.

Write mλ and Mλ for the smallest and largest element of Sλ, respectively, and define
Tλ = {mλ,mλ + 1, . . . ,Mλ} as the smallest set of consecutive positive integers that
contains Sλ. Then all Tλ are sets of at least two consecutive positive integers, and
moreover the Tλ cover N. Additionally, each positive integer is covered finitely many
times because there are only finitely many possible values of mλ smaller than any fixed
integer.

Recall that if three intervals have a point in common then one of them is contained in
the union of the other two. Thus, if any positive integer is covered more than twice by
the sets Tλ, we may throw out one set while maintaining the property that the Tλ cover
N. By using the fact that each positive integer is covered finitely many times, we can
apply this process so that each positive integer is eventually covered at most twice.

Let Λ denote the set of the λ-values for which Tλ remains in our collection of sets; then⋃
λ∈Λ Tλ = N and each positive integer is contained in at most two sets Tλ.
We now obtain ∑

λ∈Λ

∑
k∈Tλ

(ak+1 − ak) ≤ 2
∑
k≥1

(ak+1 − ak) ≤ 2.

On the other hand, because amλ
= λmλ and aMλ

= λMλ, we have

2
∑
k∈Tλ

(ak+1 − ak) ≥ 2
∑

mλ≤k<Mλ

(ak+1 − ak) = 2(aMλ
− amλ

) = 2(Mλ −mλ)λ

= 2(Mλ −mλ) ·
amλ

mλ
≥ (Mλ −mλ + 1) · a1

mλ
≥ a1 ·

∑
k∈Tλ

1

k
.

Combining this with our first estimate, and using the fact that the Tλ cover N, we obtain

4 ≥ 2
∑
λ∈Λ

∑
k∈Tλ

(ak+1 − ak) ≥ a1
∑
λ∈Λ

∑
k∈Tλ

1

k
≥ a1

∑
k≥1

1

k
,

contradicting the fact that the harmonic series diverges.

¶ Solution 2 (Sanjana Das). Assume for the sake of contradiction that no number
appears exactly once in the sequence. For every i < j with ai/i = aj/j, draw an edge
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between i and j, so every i has an edge (and being connected by an edge is a transitive
property). Call i good if it has an edge with some j > i.

First, each i has finite degree – otherwise

ax1

x1
=
ax2

x2
= · · ·

for an infinite increasing sequence of positive integers xi, but then the axi are unbounded.
Now we use the following process to build a sequence of indices whose ai we can

lower-bound:

• Start at x1 = 1, which is good.

• If we’re currently at good index xi, then let si be the largest positive integer such
that xi has an edge to xi + si. (This exists because the degrees are finite.)

• Let ti be the smallest positive integer for which xi + si + ti is good, and let this
be xi+1. This exists because if all numbers k ≤ x ≤ 2k are bad, they must each
connect to some number less than k (if two connect to each other, the smaller one
is good), but then two connect to the same number, and therefore to each other –
this is the idea we will use later to bound the ti as well.

Then xi = 1 + s1 + t1 + · · ·+ si−1 + ti−1, and we have

axi+1 > axi+si =
xi + si
xi

axi =
1 + (s1 + · · ·+ si−1 + si) + (t1 + · · ·+ ti−1)

1 + (s1 + · · ·+ si−1) + (t1 + · · ·+ ti−1)
axi .

This means

cn :=
axn

a1
>

n−1∏
i=1

1 + (s1 + · · ·+ si−1 + si) + (t1 + · · ·+ ti−1)

1 + (s1 + · · ·+ si−1) + (t1 + · · ·+ ti−1)
.

Lemma
t1 + · · ·+ tn ≤ s1 + · · ·+ sn for each n.

Proof. Consider 1 ≤ i ≤ n. Note that for every i, the ti − 1 integers strictly between
xi+ si and xi+ si+ ti are all bad, so each such index x must have an edge to some y < x.

First we claim that if x ∈ (xi + si, xi + si + ti), then x cannot have an edge to xj for
any j ≤ i. This is because x > xi + si ≥ xj + sj , contradicting the fact that xj + sj is
the largest neighbor of xj .

This also means x doesn’t have an edge to xj + sj for any j ≤ i, since if it did, it would
have an edge to xj .

Second, no two bad values of x can have an edge, since then the smaller one is good.
This also means no two bad x can have an edge to the same y.

Then each of the
∑

(ti − 1) values in the intervals (xi + si, xi + si + ti) for 1 ≤ i ≤ n
must have an edge to an unique y in one of the intervals (xi, xi + si) (not necessarily
with the same i). Therefore∑

(ti − 1) ≤
∑

(si − 1) =⇒
∑

ti ≤
∑

si.
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Now note that if a > b, then a+x
b+x = 1 + a−b

b+x is decreasing in x. This means

cn >
n−1∏
i=1

1 + 2s1 + · · ·+ 2si−1 + si
1 + 2s1 + · · ·+ 2si−1

>
n−1∏
i=1

1 + 2s1 + · · ·+ 2si−1 + 2si
1 + 2s1 + · · ·+ 2si−1 + si

,

By multiplying both products, we have a telescoping product, which results in

c2n ≥ 1 + 2s1 + · · ·+ 2sn + 2sn+1.

The right hand side is unbounded since the si are positive integers, while cn = axn/a1 <
1/a1 is bounded, contradiction.

¶ Solution 3 (Gopal Goel). Suppose for sake of contradiction that the problem is false.
Call an index i a pin if

aj
j

=
ai
i

=⇒ j ≥ i.

Lemma
There exists k such that if we have ai

i =
aj
j with j > i ≥ k, then j ≤ 1.1i.

Proof. Note that for any i, there are only finitely many j with aj
j = ai

i , otherwise aj = jai
i

is unbounded. Thus it suffices to find k for which j ≤ 1.1i when j > i ≥ k.
Suppose no such k exists. Then, take a pair j1 > i1 such that aj1

j1
=

ai1
i1

and j1 > 1.1i1,
or aj1 > 1.1ai1 . Now, since k = j1 can’t work, there exists a pair j2 > i2 ≥ i1 such that
aj2
j2

=
ai2
i2

and j2 > 1.1i2, or aj2 > 1.1ai2 . Continuing in this fashion, we see that

aj` > 1.1ai` > 1.1aj`−1
,

so we have that aj` > 1.1`ai1 . Taking ` > log1.1(1/a1) gives the desired contradiction.

Lemma
For N > k2, there are at most 0.8N pins in [

√
N,N).

Proof. By the first lemma, we see that the number of pins in [
√
N, N

1.1) is at most the
number of non-pins in [

√
N,N). Therefore, if the number of pins in [

√
N,N) is p, then

we have
p−N

(
1− 1

1.1

)
≤ N − p,

so p ≤ 0.8N , as desired.

We say that i is the pin of j if it is the smallest index such that ai
i =

aj
j . The pin of j is

always a pin.
Given an index i, let f(i) denote the largest index less than i that is not a pin (we

leave the function undefined when no such index exists, as we are only interested in the
behavior for large i). Then f is weakly increasing and unbounded by the first lemma.
Let N0 be a positive integer such that f(

√
N0) > k.

Take any N > N0 such that N is not a pin. Let b0 = N , and b1 be the pin of b0.
Recursively define b2i = f(b2i−1), and b2i+1 to be the pin of b2i.

9
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Let ` be the largest odd index such that b` ≥
√
N . We first show that b` ≤ 100

√
N .

Since N > N0, we have b`+1 > k. By the choice of ` we have b`+2 <
√
N , so

b`+1 < 1.1b`+2 < 1.1
√
N

by the first lemma. We see that all the indices from b`+1 + 1 to b` must be pins, so we
have at least b` − 1.1

√
N pins in [

√
N, b`). Combined with the second lemma, this shows

that b` ≤ 100
√
N .

Now, we have that ab2i =
b2i

b2i+1
ab2i+1

and ab2i+1
> ab2i+2

, so combining gives us

ab0
ab`

>
b0
b1

b2
b3

· · · b`−1

b`
.

Note that there are at least

(b1 − b2) + (b3 − b4) + · · ·+ (b`−2 − b`−1)

pins in [
√
N,N), so by the second lemma, that sum is at most 0.8N . Thus,

(b0 − b1) + (b2 − b3) + · · ·+ (b`−1 − b`) = b0 − [(b1 − b2) + · · ·+ (b`−2 − b`−1)]− b`

≥ 0.2N − 100
√
N.

Then

b0
b1

b2
b3

· · · b`−1

b`
≥ 1 +

b0 − b1
b1

+ · · ·+ b`−1 − b`
b`

> 1 +
b0 − b1
b0

+ · · ·+ b`−1 − b`
b0

≥ 1 +
0.2N − 100

√
N

N
,

which is at least 1.01 if N0 is large enough. Thus, we see that

aN > 1.01ab` ≥ 1.01ab
√
Nc

if N > N0 is not a pin. Since there are arbitrarily large non-pins, this implies that the
sequence (an) is unbounded, which is the desired contradiction.
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§1.3 TSTST 2021/3, proposed by Merlijn Staps
Available online at https://aops.com/community/p23586679.

Problem statement

Find all positive integers k > 1 for which there exists a positive integer n such that(
n
k

)
is divisible by n, and

(
n
m

)
is not divisible by n for 2 ≤ m < k.

Such an n exists for any k.
First, suppose k is prime. We choose n = (k − 1)!. For m < k, it follows from m! | n

that

(n− 1)(n− 2) · · · (n−m+ 1) ≡ (−1)(−2) · · · (−m+ 1)

≡ (−1)m−1(m− 1)!

6≡ 0 mod m!.

We see that
(
n
m

)
is not a multiple of m. For m = k, note that

(
n
k

)
= n

k

(
n−1
k−1

)
. Because

k - n, we must have k |
(
n−1
k−1

)
, and it follows that n |

(
n
k

)
.

Now suppose k is composite. We will choose n to satisfy a number of congruence
relations. For each prime p ≤ k, let

tp = νp(lcm(1, 2, . . . , k − 1)) = max(νp(1), νp(2), . . . , νp(k − 1))

and choose kp ∈ {1, 2, . . . , k − 1} as large as possible such that νp(kp) = tp. We now
require

n ≡ 0 mod ptp+1 if p - k; (1)
νp(n− kp) = tp + νp(k) if p | k. (2)

for all p ≤ k. From the Chinese Remainder Theorem, we know that an n exists
that satisfies (1) and (2) (indeed, a sufficient condition for (2) is the congruence n ≡
kp + ptp+νp(k) mod ptp+νp(k)+1). We show that this n has the required property.

We first will compute νp(n− i) for primes p < k and 1 ≤ i < k.

• If p - k, then we have νp(i), νp(n− i) ≤ tp and νp(n) > tp, so νp(n− i) = νp(i);

• If p | k and i 6= kp, then we have νp(i), νp(n − i) ≤ tp and νp(n) ≥ tp, so again
νp(n− i) = νp(i);

• If p | k and i = kp, then we have νp(n− i) = νp(i) + νp(k) by (2).

We conclude that νp(n − i) = νp(i) always holds, except when i = kp, when we have
νp(n− i) = νp(i) + νp(k) (this formula holds irrespective of whether p | k or p - k).

We can now show that
(
n
k

)
is divisible by n, which amounts to showing that k! divides

(n− 1)(n− 2) · · · (n− k + 1). Indeed, for each prime p ≤ k we have

νp ((n− 1)(n− 2) . . . (n− k + 1)) = νp(n− kp) +
∑

i<k,i 6=kp

νp(n− i)

= νp(kp) + νp(k) +
∑

i<k,i 6=kp

νp(i)

11
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=
k∑

i=1

νp(i) = νp(k!),

so it follows that (n− 1)(n− 2) · · · (n− k + 1) is a multiple of k!.
Finally, let 1 < m < k. We will show that n does not divide

(
n
m

)
, which amounts to

showing that m! does not divide (n− 1)(n− 2) · · · (n−m+ 1). First, suppose that m
has a prime divisor q that does not divide k. Then we have

νq ((n− 1)(n− 2) . . . (n−m+ 1)) =

m−1∑
i=1

νq(n− i)

=

m−1∑
i=1

νq(i)

= νq((m− 1)!) < νq(m!),

as desired. Therefore, suppose that m is only divisible by primes that divide k. If there
is such a prime p with νp(m) > νp(k), then it follows that

νp ((n− 1)(n− 2) . . . (n−m+ 1)) = νp(k) +
m−1∑
i=1

νp(i)

< νp(m) +
m−1∑
i=1

νp(i)

= νp(m!),

so m! cannot divide (n − 1)(n − 2) . . . (n −m + 1). On the other hand, suppose that
νp(m) ≤ νp(k) for all p | k, which would mean that m | k and hence m ≤ k

2 . Consider
a prime p dividing m. We have kp ≥ k

2 , because otherwise 2kp could have been used
instead of kp. It follows that m ≤ k

2 ≤ kp. Therefore, we obtain

νp ((n− 1)(n− 2) . . . (n−m+ 1)) =

m−1∑
i=1

νp(n− i)

=

m−1∑
i=1

νp(i)

= νp((m− 1)!) < νp(m!),

showing that (n− 1)(n− 2) · · · (n−m+ 1) is not divisible by m!. This shows that
(
n
m

)
is not divisible by n for m < k, and hence n does have the required property.
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§2 Solutions to Day 2
§2.1 TSTST 2021/4, proposed by Holden Mui
Available online at https://aops.com/community/p23864177.

Problem statement

Let a and b be positive integers. Suppose that there are infinitely many pairs of
positive integers (m,n) for which m2 + an + b and n2 + am + b are both perfect
squares. Prove that a divides 2b.

Treating a and b as fixed, we are given that there are infinitely many quadrpules (m,n, r, s)
which satisfy the system

m2 + an+ b = (m+ r)2

n2 + am+ b = (n+ s)2

We say that (r, s) is exceptional if there exists infinitely many (m,n) that satisfy.

Claim — If (r, s) is exceptional, then either

• 0 < r < a/2, and 0 < s < 1
4a

2; or

• 0 < s < a/2, and 0 < r < 1
4a

2; or

• r2 + s2 ≤ 2b.

In particular, finitely many pairs (r, s) can be exceptional.

Proof. Sum the two equations to get:

r2 + s2 − 2b = (a− 2r)m+ (a− 2s)n. (†)

If 0 < r < a/2, then the idea is to use the bound an+ b ≥ 2m+ 1 to get m ≤ an+b−1
2 .

Consequently,
(n+ s)2 = n2 + am+ b ≤ n2 + a · an+ b− 1

2
+ b

For this to hold for infinitely many integers n, we need 2s ≤ a2

2 , by comparing coefficients.
A similar case occurs when 0 < s < a/2.
If min(r, s) > a/2, then (†) forces r2 + s2 ≤ 2b, giving the last case.

Hence, there exists some particular pair (r, s) for which there are infinitely many
solutions (m,n). Simplifying the system gives

an = 2rm+ r2 − b

2sn = am+ b− s2

Since the system is linear, for there to be infinitely many solutions (m,n) the system
must be dependent. This gives

a

2s
=

2r

a
=
r2 − b

b− s2

13
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so a = 2
√
rs and b = s2

√
r+r2

√
s√

r+
√
s

. Since rs must be square, we can reparametrize as
r = kx2, s = ky2, and gcd(x, y) = 1. This gives

a = 2kxy

b = k2xy(x2 − xy + y2).

Thus, a | 2b, as desired.

14
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§2.2 TSTST 2021/5, proposed by Vincent Huang
Available online at https://aops.com/community/p23864182.

Problem statement

Let T be a tree on n vertices with exactly k leaves. Suppose that there exists a
subset of at least n+k−1

2 vertices of T , no two of which are adjacent. Show that the
longest path in T contains an even number of edges.

The longest path in T must go between two leaves. The solutions presented here will
solve the problem by showing that in the unique 2-coloring of T , all leaves are the same
color.

¶ Solution 1 (Ankan Bhattacharya, Jeffery Li).

Lemma
If S is an independent set of T , then∑

v∈S
deg(v) ≤ n− 1.

Equality holds if and only if S is one of the two components of the unique 2-coloring
of T .

Proof. Each edge of T is incident to at most one vertex of S, so we obtain the inequality
by counting how many vertices of S each edge is incident to. For equality to hold, each
edge is incident to exactly one vertex of S, which implies the 2-coloring.

We are given that there exists an independent set of at least n+k−1
2 vertices. By

greedily choosing vertices of smallest degree, the sum of the degrees of these vertices is
at least

k + 2 · n− k − 1

2
= n− 1.

Thus equality holds everywhere, which implies that the independent set contains every
leaf and is one of the components of the 2-coloring.

¶ Solution 2 (Andrew Gu).

Lemma
The vertices of T can be partitioned into k − 1 paths (i.e. the induced subgraph on
each set of vertices is a path) such that all edges of T which are not part of a path
are incident to an endpoint of a path.

Proof. Repeatedly trim the tree by taking a leaf and removing the longest path containing
that leaf such that the remaining graph is still a tree.

15
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Now given a path of a vertices, at most a+1
2 of those vertices can be in an independent

set of T . By the lemma, T can be partitioned into k − 1 paths of a1, . . . , ak−1 vertices,
so the maximum size of an independent set of T is∑ ai + 1

2
=
n+ k − 1

2
.

For equality to hold, each path in the partition must have an odd number of vertices,
and has a unique 2-coloring in red and blue where the endpoints are red. The unique
independent set of T of size n+k−1

2 is then the set of red vertices. By the lemma, the
edges of T which are not part of a path connect an endpoint of a path (which is colored
red) to another vertex (which must be blue, because the red vertices are independent).
Thus the coloring of the paths extends to the unique 2-coloring of T . The leaves of T are
endpoints of paths, so they are all red.

16
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§2.3 TSTST 2021/6, proposed by Nikolai Beluhov
Available online at https://aops.com/community/p23864189.

Problem statement

Triangles ABC and DEF share circumcircle Ω and incircle ω so that points A, F ,
B, D, C, and E occur in this order along Ω. Let ∆A be the triangle formed by lines
AB, AC, and EF , and define triangles ∆B, ∆C , . . . ,∆F similarly. Furthermore, let
ΩA and ωA be the circumcircle and incircle of triangle ∆A, respectively, and define
circles ΩB, ωB, . . . ,ΩF , ωF similarly.

(a) Prove that the two common external tangents to circles ΩA and ΩD and the
two common external tangents to circles ωA and ωD are either concurrent or
pairwise parallel.

(b) Suppose that these four lines meet at point TA, and define points TB and TC
similarly. Prove that points TA, TB, and TC are collinear.

A

B C

D

E

F

TA

TB

TC

Let I and r be the center and radius of ω, and let O and R be the center and radius
of Ω. Let OA and IA be the circumcenter and incenter of triangle ∆A, and define OB,
IB, . . . , IF similarly. Let ω touch EF at A1, and define B1, C1, . . . , F1 similarly.

¶ Part (a). All solutions to part (a) will prove the stronger claim that

(ΩA ∪ ωA) ∼ (ΩD ∪ ωD).

The four lines will concur at the homothetic center of these figures (possibly at infinity).

Solution 1 (author) Let the second tangent to ω parallel to EF meet lines AB and
AC at P and Q, respectively, and let the second tangent to ω parallel to BC meet lines
DE and DF at R and S, respectively. Furthermore, let ω touch PQ and RS at U and
V , respectively.
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Let h be inversion with respect to ω. Then h maps A, B, and C onto the midpoints of
the sides of triangle D1E1F1. So h maps k onto the Euler circle of triangle D1E1F1.

Similarly, h maps k onto the Euler circle of triangle A1B1C1. Therefore, triangles
A1B1C1 and D1E1F1 share a common nine-point circle γ. Let K be its center; its radius
equals 1

2r.
Let H be the reflection of I in K. Then H is the common orthocenter of triangles

A1B1C1 and D1E1F1.
Let γU of center KU and radius 1

2r be the Euler circle of triangle UE1F1, and let γV
of center KV and radius 1

2r be the Euler circle of triangle V B1C1.
Let HU be the orthocenter of triangle UE1F1. Since quadrilateral D1E1F1U is cyclic,

vectors
−−−→
HHU and

−−→
D1U are equal. Consequently,

−−−→
KKU = 1

2

−−→
D1U . Similarly,

−−−→
KKV =

1
2

−−→
A1V .
Since both of A1U and D1V are diameters in ω, vectors

−−→
D1U and

−−→
A1V are equal.

Therefore, KU and KV coincide, and so do γU and γV .
As above, h maps γU onto the circumcircle of triangle APQ and γV onto the circumcircle

of triangle DRS. Therefore, triangles APQ and DRS are inscribed inside the same circle
ΩAD.

Since EF and PQ are parallel, triangles ∆A and APQ are homothetic, and so are
figures ΩA ∪ ωA and ΩAD ∪ ω. Consequently, we have

(ΩA ∪ ωA) ∼ (ΩAD ∪ ω) ∼ (ΩD ∪ ωD),

which solves part (a).

Solution 2 (Michael Ren) As in the previous solution, let the second tangent to ω
parallel to EF meet AB and AC at P and Q, respectively. Let (APQ) meet Ω again at
D′, so that D′ is the Miquel point of {AB,AC,BC,PQ}. Since the quadrilateral formed
by these lines has incircle ω, it is classical that D′I bisects ∠PD′C and BD′Q (e.g. by
DDIT).

Let ` be the tangent to Ω at D′ and D′I meet Ω again at M . We have

](`,D′B) = ]D′CB = ]D′QP = ](D′Q,EF ).

Therefore D′I also bisects the angle between ` and the line parallel to EF through D′.
This means that M is one of the arc midpoints of EF . Additionally, D′ lies on arc BC
not containing A, so D′ = D.

Similarly, letting the second tangent to ω parallel to BC meet DE and DF again at
R and S, we have ADRS cyclic.

Lemma
There exists a circle ΩAD tangent to ΩA and ΩD at A and D, respectively.

Proof. (This step is due to Ankan Bhattacharya.) It is equivalent to have ]OAOA =
]ODDO. Taking isogonals with respect to the shared angle of 4ABC and ∆A, we see
that

]OAOA = ](⊥ EF,⊥ BC) = ](EF,BC).

(Here, ⊥ EF means the direction perpendicular to EF .) By symmetry, this is equal to
]ODDO.
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The circle (ADPQ) passes through A and D, and is tangent to ΩA by homothety.
Therefore it coincides with ΩAD, as does (ADRS). Like the previous solution, we finish
with

(ΩA ∪ ωA) ∼ (ΩAD ∪ ω) ∼ (ΩD ∪ ωD).

Solution 3 (Andrew Gu) Construct triangles homothetic to ∆A and ∆D (with positive
ratio) which have the same circumcircle; it suffices to show that these copies have the
same incircle as well. Let O be the center of this common circumcircle, which we take to
be the origin, and MXY denote the point on the circle such that the tangent at that point
is parallel to line XY (from the two possible choices, we make the choice that corresponds
to the arc midpoint on Ω, e.g. MAB should correspond to the arc midpoint on the internal
angle bisector of ACB). The left diagram below shows the original triangles ABC and
DEF , while the right diagram shows the triangles homothetic to ∆A and ∆D.

A

B C

MBC

MCA

MAB

I

D

E

F

MFD

MDE

MEF

MBC

MCA

MAB

I
MFD

MDE

MEF

Using the fact that the incenter is the orthocenter of the arc midpoints, the incenter of
∆A in this reference frame is MAB+MAC −MEF and the incenter of ∆D in this reference
frame is MDE +MDF −MBC . Since ABC and DEF share a common incenter, we have

MAB +MBC +MCA =MDE +MEF +MFD.

Thus the copies of ∆A and ∆D have the same incenter, and therefore the same incircle
as well (Euler’s theorem determines the inradius).

¶ Part (b). We present several solutions for this part of the problem. Solutions 3 and
4 require solving part (a) first, while the others do not. Solutions 1, 4, and 5 define TA
solely as the exsimilicenter of ωA and ωD, whereas solutions 2 and 3 define TA solely as
the exsimilicenter of ΩA and ΩD.

Solution 1 (author) By Monge’s theorem applied to ω, ωA, and ωD, points A, D,
and TA are collinear. Therefore, TA = AD ∩ IAID.

Let p be pole-and-polar correspondence with respect to ω. Then p maps A onto line
E1F1 and D onto line B1C1. Consequently, p maps line AD onto XA = B1C1 ∩ E1F1.

Furthermore, p maps the line that bisects the angle formed by lines AB and EF and
does not contain I onto the midpoint of segment A1F1. Similarly, p maps the line that
bisects the angle formed by lines AC and EF and does not contain I onto the midpoint of
segment A1E1. So p maps IA onto the midline of triangle A1E1F1 opposite A1. Similarly,
p maps ID onto the midline of triangle D1B1C1 opposite D1. Consequently, p maps line
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IAID onto the intersection point YA of this pair of midlines, and p maps TA onto line
XAYA.

As in the solution to part (a), let H be the common orthocenter of triangles A1B1C1 and
D1E1F1. Let HA be the foot of the altitude from A1 in triangle A1B1C1 and let HD be
the foot of the altitude from D1 in triangle D1E1F1. Furthermore, let LA = HA1 ∩E1F1

and LD = HD1 ∩B1C1.
Since the reflection of H in line B1C1 lies on ω, A1H ·HHA equals half the power of H

with respect to ω. Similarly, D1H ·HHD equals half the power of H with respect to ω.
Then A1H ·HHA = D1H ·HHD and A1HHD ∼ D1HHA. Since ∠HHDLA = 90◦ =

∠HHALD, figures A1HHDLA and D1HHALD are similar as well. Consequently,

HLA

LAA1
=

HLD

LDD1
= s

as a signed ratio.
Let the line through A1 parallel to E1F1 and the line through D1 parallel to B1C1 meet

at ZA. Then HXA/XAZA = s and YA is the midpoint of segment XAZA. Therefore, H
lies on line XAYA. This means that TA lies on the polar of H with respect to ω, and by
symmetry so do TB and TC .

Solution 2 (author) As in the first solution to part (a), let h be inversion with respect
to ω, let γ of center K be the common Euler circle of triangles A1B1C1 and D1E1F1,
and let H be their common orthocenter.

Again as in the solution to part (a), h maps ΩA onto the nine-point circle γA of triangle
A1E1F1 and ΩD onto the nine-point circle γD of triangle D1B1C1.

Let KA and KD be the centers of γA and γD, respectively, and let `A be the perpen-
dicular bisector of segment KAKD. Since γA and γD are congruent (both of them are of
radius 1

2r), they are reflections of each other across `A.
Inversion h maps the two common external tangents of ΩA and ΩD onto the two circles

α and β through I that are tangent to both of γA and γD in the same way. (That is,
either internally to both or externally to both.) Consequently, α and β are reflections of
each other in `A and so their second point of intersection SA, which h maps TA onto, is
the reflection of I in `A.

Define `B, `C , SB, and SC similarly. Then SB is the reflection of I in `B and SC is
the reflection of I in `C .

As in the solution to part (a),
−−−→
KKA = 1

2

−−−→
D1A1 and

−−−→
KKD = 1

2

−−−→
A1D1. Consequently, K

is the midpoint of segment KAKD and so K lies on `A. Similarly, K lies on `B and `C .
Therefore, all four points I, SA, SB , and SC lie on the circle of center K that contains

I. (This is also the circle on diameter IH.) Since points SA, SB, and SC are concyclic
with I, their images TA, TB, and TC under h are collinear, and the solution is complete.

Solution 3 (Ankan Bhattacharya) From either of the first two solutions to part (a),
we know that there is a circle ΩAD passing through A and D which is (internally) tangent
to ΩA and ΩD. By Monge’s theorem applied to ΩA,ΩD, and ΩAD, it follows that A,D,
and TA are collinear.

The inversion at TA swapping ΩA with ΩD also swaps A with D because TA lies on
AD and A is not homologous to D. Let ΩA and ΩD meet Ω again at LA and LD. Since
ADLALD is cyclic, the same inversion at TA also swaps LA and LD, so TA = AD∩LALD.

By Taiwan TST 2014, LA and LD are the tangency points of the A-mixtilinear and
D-mixtilinear incircles, respectively, with Ω. Therefore ALA ∩DLD is the exsimilicenter
X of Ω and ω. Then TA, TB, and TC all lie on the polar of X with respect to Ω.
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Solution 4 (Andrew Gu) We show that TA lies on the radical axis of the point circle
at I and Ω, which will solve the problem. Let IA and ID be the centers of ωA and ωD

respectively. By the Monge’s theorem applied to ω, ωA, and ωD, points A, D, and TA are
collinear. Additionally, these other triples are collinear: (A, IA, I), (D, ID, I), (IA, ID, T ).
By Menelaus’s theorem, we have

TAD

TAA
=
IAI

IAA
· IDD
IDI

.

If s is the length of the side opposite A in ∆A, then we compute
IAI

IAA
=

s/ cos(A/2)
rA/ sin(A/2)

=
2RA sin(A) sin(A/2)

cos(A/2)

=
4RA sin2(A/2)

rA

=
4RAr

2

rAAI2
.

From part (a), we know that RA
rA

= RD
rD

. Therefore, doing a similar calculation for IDD
IDI ,

we get
TAD

TAA
=
IAI

IAA
· IDD
IDI

=
4RAr

2

rAAI2
· rDDI

2

4RDr2

=
DI2

AI2
.

Thus TA is the point where the tangent to (AID) at I meets AD and TAI2 = TAA ·TAD.
This shows what we claimed at the start.

Solution 5 (Ankit Bisain) As in the previous solution, it suffices to show that
IAI
AIA

· DID
IDI = DI2

AI2
. Let AI and DI meet Ω again at M and N , respectively. Let ` be the

line parallel to BC and tangent to ω but different from BC. Then

DID
IDI

=
d(D,BC)

d(BC, `)
=
DB ·DC/2R

2r
=
MI2 −MD2

4Rr
.

Since IDM ∼ IAN , we have

DID
IDI

· IAI
AIA

=
MI2 −MD2

NI2 −NA2
=
DI2

AI2
,

as desired.

Remark (Author comments on generalization of part (b) with a circumscribed hexagram).
Let triangles ABC and DEF be circumscribed about the same circle ω so that they form a
hexagram. However, we do not require anymore that they are inscribed in the same circle.

Define circles ΩA, ωA, . . . , ωF as in the problem. Let TCirc
A be the intersection point of

the two common external tangents to circles ΩA and ΩD, and define points TCirc
B and TCirc

C

similarly. Also let T In
A be the intersection point of the two common external tangents to

circles ωA and ωD, and define points T In
B and T In

C similarly.
Then points TCirc

A , TCirc
B , and TCirc

C are collinear and points T In
A , T In

B , and T In
C are also

collinear.
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The second solution to part (b) of the problem works also for the circumcircles part of
the generalisation. To see that segments KAKD, KBKE , and KCKF still have a common
midpoint, let M be the centroid of points A, B, C, D, E, and F . Then the midpoint of
segment KAKD divides segment OM externally in ratio 3 : 1, and so do the other two
midpoints as well.

For the incircles part of the generalisation, we start out as in the first solution to part (b)
of the problem, and eventually we reduce everything to the following:

Let points A1, B1, C1, D1, E1, and F1 lie on circle ω. Let lines B1C1 and E1F1 meet at
point XA, let the line through A1 parallel to B1C1 and the line through D1 parallel to E1F1

meet at point ZA, and define points XB, ZB, XC , and ZC similarly. Then lines XAZA,
XBZB, and XCZC are concurrent.

Take ω as the unit circle and assign complex numbers u, v, w, x, y, and z to points A1,
F1, B1, D1, C1, and E1, respectively, so that when we permute u, v, w, x, y, and z cyclically
the configuration remains unchanged. Then by standard complex bash formulas we obtain
that each two out of our three lines meet at ϕ/ψ, where

ϕ =
∑
Cyc

u2vw(wx− wy + xy)(y − z)

and

ψ = − u2w2y2 − v2x2z2 − 4uvwxyz +
∑
Cyc

u2(vwxy − vwxz + vwyz − vxyz + wxyz).

(But the calculations were too difficult for me to do by hand, so I used SymPy.)

Remark (Author comments on generalization of part (b) with an inscribed hexagram).
Let triangles ABC and DEF be inscribed inside the same circle Ω so that they form a
hexagram. However, we do not require anymore that they are circumscribed about the same
circle.

Define points TCirc
A , TCirc

B , . . . , T In
C as in the previous remark. It looks like once again

points TCirc
A , TCirc

B , and TCirc
C are collinear and points T In

A , T In
B , and T In

C are also collinear.
However, I do not have proofs of these claims.

Remark (Further generalization from Andrew Gu). Let ABC and DEF be triangles which
share an inconic, or equivalently share a circumconic. Define points TCirc

A , TCirc
B , . . . , T In

C as in
the previous remarks. Then it is conjectured that points TCirc

A , TCirc
B , and TCirc

C are collinear
and points T In

A , T In
B , and T In

C are also collinear. (Note that extraversion may be required
depending on the configuration of points, e.g. excircles instead of incircles.) Additionally, it
appears that the insimilicenters of the circumcircles lie on a line perpendicular to the line
through TCirc

A , TCirc
B , and TCirc

C .
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§3 Solutions to Day 3
§3.1 TSTST 2021/7, proposed by Ankit Bisain, Holden Mui
Available online at https://aops.com/community/p24130213.

Problem statement

Let M be a finite set of lattice points and n be a positive integer. A mine-avoiding
path is a path of lattice points with length n, beginning at (0, 0) and ending at a
point on the line x + y = n, that does not contain any point in M . Prove that if
there exists a mine-avoiding path, then there exist at least 2n−|M | mine-avoiding
paths.

We present two approaches.

¶ Solution 1. We prove the statement by induction on n. We use n = 0 as a base case,
where the statement follows from 1 ≥ 2−|M |. For the inductive step, let n > 0. There
exists at least one mine-avoiding path, which must pass through either (0, 1) or (1, 0).
We consider two cases:

Case 1: there exist mine-avoiding paths starting at both (1, 0) and (0, 1).
By the inductive hypothesis, there are at least 2n−1−|M | mine-avoiding paths starting

from each of (1, 0) and (0, 1). Then the total number of mine-avoiding paths is at least
2n−1−|M | + 2n−1−|M | = 2n−|M |.

Case 2: only one of (1, 0) and (0, 1) is on a mine-avoiding path.
Without loss of generality, suppose no mine-avoiding path starts at (0, 1). Then some

element of M must be of the form (0, k) for 1 ≤ k ≤ n in order to block the path along
the y-axis. This element can be ignored for any mine-avoiding path starting at (1, 0). By
the inductive hypothesis, there are at least 2n−1−(|M |−1) = 2n−|M | mine-avoiding paths.

This completes the induction step, which solves the problem.

¶ Solution 2.

Lemma
If |M | < n, there is more than one mine-avoiding path.

Proof. Let P0, P1, . . . , Pn be a mine-avoiding path. Set Pi = (xi, yi). For 0 ≤ i < n,
define a path Qi as follows:

• Make the first i+ 1 points P0, P1, . . . , Pi.

• If Pi → Pi+1 is one unit up, go right until (n− yi, yi).

• If Pi → Pi+1 is one unit right, go up until (xi, n− xi).
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The diagram above is an example for n = 5 with the new segments formed by the Qi

in red, and the line x+ y = n in blue.
By definition, M has less than n points, none of which are in the original path. Since

all Qi only intersect in the original path, each mine is in at most one of Q0, Q1, . . . , Qn−1.
By the Pigeonhole Principle, one of the Qi is mine-avoiding.

Now, consider the following process:

• Start at (0, 0).

• If there is only one choice of next step that is part of a mine-avoiding path, make
that choice.

• Repeat the above until at a point with two possible steps that are part of mine-
avoiding paths.

• Add a mine to the choice of next step with more mine-avoiding paths through it.
If both have the same number of mine-avoiding paths through them, add a mine
arbitrarily.

1

1

112

2

13

55

0

0

0

For instance, consider the above diagram for n = 4. Lattice points are replaced with
squares. Mines are black squares and each non-mine is labelled with the number of
mine-avoiding paths passing through it. This process would start at (0, 0), go to (1, 0),
then place a mine at (1, 1).

This path increases the size of M by one, and reduces the number of mine-avoiding
paths to a nonzero number at most half of the original. Repeat this process until there is
only one path left. By our lemma, the number of mines must be at least n by the end of
the process, so the process was iterated at least n− |M | times. By the halving property,
there must have been at least 2n−|M | mine-avoiding paths before the process, as desired.
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§3.2 TSTST 2021/8, proposed by Fedir Yudin
Available online at https://aops.com/community/p24130228.

Problem statement

Let ABC be a scalene triangle. Points A1, B1 and C1 are chosen on segments BC,
CA, and AB, respectively, such that 4A1B1C1 and 4ABC are similar. Let A2 be
the unique point on line B1C1 such that AA2 = A1A2. Points B2 and C2 are defined
similarly. Prove that 4A2B2C2 and 4ABC are similar.

We give three solutions.

¶ Solution 1 (author). We’ll use the following lemma.

Lemma
Suppose that PQRS is a convex quadrilateral with ∠P = ∠R. Then there is a point
T on QS such that ∠QPT = ∠SRP , ∠TRQ = ∠RPS, and PT = RT .

Before proving the lemma, we will show how it solves the problem. The lemma applied
for the quadrilateral AB1A1C1 with ∠A = ∠A1 shows that ∠B1A1A2 = ∠C1AA1. This
implies that the point A2 in 4A1B1C1 corresponds to the point A1 in 4ABC. Then
4A2B2C2 ∼ 4A1B1C1 ∼ 4ABC, as desired.

Additionally, PT = RT is a corollary of the angle conditions because

]PRT = ]SRQ− ]TRQ− ]SRP = ]QPS − ]RPS − ]QPT = ]TPR.

Therefore we only need to prove the angle conditions.

Proof 1 of lemma Denote X = PQ ∩RS and Y = PS ∩RQ. Note that ∠XPY =
∠XRY , so PRXY is cyclic. Let T be the point of intersection of tangents to this circle at
P and R. By Pascal’s theorem for the degenerate hexagon PPXRRY , we have T ∈ QS
(alternatively, Q, S, and T are collinear on the pole of PR ∩XY with respect to the
circle). Also, ]QPT = ]XRP = ]SRP and similarly ]TRQ = ]RPY = ]RPS, so
we’re done.

P

Q

R

S

X

Y

T
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Proof 2 of lemma Let P ′ and R′ be the reflections of P and R in QS. Note that
PR′ and RP ′ intersect at a point X on QS. Let T be the second intersection of the
circumcircle of 4PRX with QS. Note that

]PXT = ]R′PQ+ ]PQS

= ]R′SQ+ ]PQS

= ]QSR+ ]PQS

= ](PQ, SR)

= ]QPR+ ]PRS.

This means that

]QPT = ]QPR− ]TPR

= ]QPR− ]TXR

= ]QPR− ]PXT

= ]QPR− ]QPR− ]PRS

= ]SRP.

Similarly, ]QRT = ]SPR, so we’re done.

P

Q

R

S

P ′

R′

XT

Proof 3 of lemma Let T be the point on QS such that ∠QPT = ∠SRP . Then we
have

QT

TS
=

sinQPT · PT/ sinPQT
sinTPS · PT/ sinTSP

=
PQ/ sinPRQ
PS/ sinSRP

=
R(4PQR)
R(4PRS)

,

which is symmetric in P and R, so we’re done.

¶ Solution 2 (Ankan Bhattacharya). We prove the main claim B1A2
A2C1

= BA1
A1C

.
Let 4A0B0C0 be the medial triangle of 4ABC. In addition, let A′

1 be the reflection
of A1 over B1C1, and let X be the point satisfying 4XBC −∼ 4AB1C1, so that we have
a compound similarity

4ABC tX −∼ 4A′
1B1C1 tA.

Finally, let OA be the circumcenter of 4A′
1B1C1, and let A∗

2 be the point on B1C1

satisfying B1A∗
2

A∗
2C1

= BA1
A1C

.
Recall that O is the Miquel point of 4A1B1C1, as well as its orthocenter.
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Claim — AA′
1 ‖ BC.

Proof. We need to verify that the foot from A1 to B1C1 lies on the A-midline. This
follows from the fact that O is both the Miquel point and the orthocenter.

Claim — AX ‖ B1C1.

Proof. From the compound similarity,

](BC,AX) = ](AA′
1, B1C1).

As AA′
1 ‖ BC, we obtain AX ‖ B1C1.

Claim — AX ⊥ A1O.

Proof. Because O is the orthocenter of 4A1B1C1.

Claim — AA′
1 ⊥ A∗

2OA.

Proof. Follows from AX ⊥ A1O after the similarity

4ABC tX −∼ 4A′
1B1C1 tA.

Claim — AA∗
2 = A′

1A2.

Proof. Since ]C1AB1 = ]C1A
′
1B1, AOA = A′

1OA, so AA′
1 ⊥ A∗

2OA implies AA∗
2 =

A′
1A

∗
2.

Finally, A′
1A

∗
2 = A1A

∗
2 by reflections, so AA∗

2 = A1A
∗
2, and A∗

2 = A2.
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§3.3 TSTST 2021/9, proposed by Victor Wang
Available online at https://aops.com/community/p24130243.

Problem statement

Let q = pr for a prime number p and positive integer r. Let ζ = e
2πi
q . Find the least

positive integer n such that ∑
1≤k≤q

gcd(k,p)=1

1

(1− ζk)n

is not an integer. (The sum is over all 1 ≤ k ≤ q with p not dividing k.)

Let Sq denote the set of primitive qth roots of unity (thus, the sum in question is a sum
over Sq).

¶ Solution 1 (author). Let ζp = e2πi/p be a fixed primitive pth root of unity. Observe
that the given sum is an integer for all n ≤ 0 (e.g. because the sum is an integer
symmetric polynomial in the primitive qth roots of unity). By expanding polynomials in
the basis (1− x)k, it follows that if the sum in the problem statement is an integer for
all n < n0, then ∑

ω∈Sq

f(ω)

(1− ω)n
∈ Z

for all n < n0 and f ∈ Z[x], whereas for n = n0 there is some f ∈ Z[x] for which the sum
is not an integer (e.g. f = 1).

Let zq = rφ(q)− q/p = pr−1[r(p− 1)− 1]. We claim that the answer is n = zq +1. We
prove this by induction on r. First is the base case r = 1.

Lemma
There exist polynomials u, v ∈ Z[x] such that (1−ω)p−1/p = u(ω) and p/(1−ω)p−1 =
v(ω) for all ω ∈ Sp.

(What we are saying is that p is (1 − ω)p−1 times a unit (invertible algebraic
integer), namely v(ω).)

Proof. Note that p = (1− ω) · · · (1− ωp−1). Thus we can write

p

(1− ω)p−1
=

1− ω

1− ω
· 1− ω2

1− ω
· · · 1− ωp−1

1− ω

and take

v(x) =

p−1∏
k=1

1− xk

1− x
.

Similarly, the polynomial u is

u(x) =

p−1∏
k=1

1− xk`k

1− xk
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where `k is a multiplicative inverse of k modulo p.

Now, the main idea: given g ∈ Z[x], observe that

S =
∑
ω∈Sp

(1− ω)g(ω)

is divisible by 1−ζkp (i.e. it is 1−ζkp times an algebraic integer) for every k coprime to p. By
symmetric sums, S is an integer; since Sp−1 is divisible by (1− ζp) · · · (1− ζp−1

p ) = p, the
integer S must itself be divisible by p. (Alternatively, since h(x) := (1− x)g(x) vanishes
at x = 1, one can interpret S using a roots of unity filter: S = p · h([x0] + [xp] + · · · ) ≡ 0
(mod p).) Now write

Z 3 S

p
=

∑
ω∈Sp

(1− ω)p−1

p

g(ω)

(1− ω)p−2
=

∑
ω∈Sp

u(ω)
g(ω)

(1− ω)p−2
.

Taking g = v · (1− x)k for k ≥ 0, we see that the sum in the problem statement is an
integer for any n ≤ p− 2.

Finally, we have ∑
ω∈Sp

u(ω)

(1− ω)p−1
=

∑
ω∈Sp

1

p
=
p− 1

p
/∈ Z,

so the sum is not an integer for n = p− 1.
Now let r ≥ 2 and assume the induction hypothesis for r − 1.

Lemma
There exist polynomials U, V ∈ Z[x] such that (1 − ω)p/(1 − ωp) = U(ω) and
(1− ωp)/(1− ω)p = V (ω) for all ω ∈ Sq. (Again, these are units.)

Proof. Similarly to the previous lemma, we write 1−ωp = (1−ωζ0p ) · · · (1−ωζp−1
p ). The

polynomials U and V are

U(x) =

p−1∏
k=1

1− x(kq/p+1)`k

1− xkq/p+1

V (x) =

p−1∏
k=1

1− xkq/p+1

1− x

where `k is a multiplicative inverse of kq/p+ 1 modulo q.

Corollary
If ω ∈ Sq, then (1− ω)φ(q)/p is a unit.

Proof. Induct on r. For r = 1, this is the first lemma. For the inductive step, we are
given that (1− ωp)φ(q/p)/p is a unit. By the second lemma, (1− ω)φ(q)/(1− ωp)φ(q/p) is
also a unit. Multiplying these together yields another unit.
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Thus we have polynomials A,B ∈ Z[x] such that

A(ω) =
p

(1− ω)φ(q)
V (ω)zq/p

B(ω) =
(1− ω)φ(q)

p
U(ω)zq/p

for all ω ∈ Sq.
Given g ∈ Z[x], consider the pth roots of unity filter

S(x) :=

p−1∑
k=0

g(ζkpx) = p · h(xp),

where h ∈ Z[x]. Then
ph(η) = S(ω) =

∑
ωp=η

g(ω)

for all η ∈ Sq/p, so

h(η)

(1− η)zq/p
=

S(ω)

p(1− η)zq/p
=

∑
ωp=η

(1− ω)pzq/p

(1− ωp)zq/p
g(ω)

p(1− ω)pzq/p

=
∑
ωp=η

U(ω)zq/p
(1− ω)φ(q)

p

g(ω)

(1− ω)zq
.

(Implicit in the last line is zq = φ(q) + pzq/p.) Since U(ω) and (1 − ω)φ(q)/p are units,
we can let g = A · f for arbitrary f ∈ Z[x], so that the expression in the summation
simplifies to f(ω)/(1− ω)zq . From this we conclude that for any f ∈ Z[x], there exists
h ∈ Z[x] such that ∑

ω∈Sq

f(ω)

(1− ω)zq
=

∑
η∈Sq/p

∑
ωp=η

f(ω)

(1− ω)zq

=
∑

η∈Sq/p

h(η)

(1− η)zq/p
.

By the inductive hypothesis, this is always an integer.
In the other direction, for η ∈ Sq/p we have∑

ωp=η

B(ω)

(1− ω)1+zq
=

∑
ωp=η

1

p(1− ωp)zq/p(1− ω)

=
1

p(1− η)zq/p

∑
ωp=η

1

1− ω

=
1

p(1− η)zq/p

[
pxp−1

xp − η

]
x=1

=
1

(1− η)1+zq/p
.

Summing over all η ∈ Sq/p, we conclude by the inductive hypothesis that∑
ω∈Sq

B(ω)

(1− ω)1+zq
=

∑
η∈Sq/p

1

(1− η)1+zq/p

is not an integer. This completes the solution.
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¶ Solution 2 (Nikolai Beluhov). Suppose that the complex numbers 1
1−ω for ω ∈ Sq

are the roots of
P (x) = xd − c1x

d−1 + c2x
d−2 − · · · ± cd,

so that ck is their k-th elementary symmetric polynomial and d = φ(q) = (p − 1)pr−1.
Additionally denote

Sn =
∑
ω∈Sq

1

(1− ω)n
.

Then, by Newton’s identities,

S1 = c1,

S2 = c1S1 − 2c2,

S3 = c1S2 − c2S1 + 3c3,

and so on. The general pattern when n ≤ d is

Sn =

n−1∑
j=1

(−1)j+1cjSn−j

+ (−1)n+1ncn.

After that, when n > d, the pattern changes to

Sn =
d∑

j=1

(−1)j+1cjSn−j .

Lemma
All of the ci are integers except for cd. Furthermore, cd is 1/p times an integer.

Proof. The qth cyclotomic polynomial is

Φq(x) = 1 + xp
r−1

+ x2p
r−1

+ · · ·+ x(p−1)pr−1
.

The polynomial

Q(x) = 1 + (1 + x)p
r−1

+ (1 + x)2p
r−1

+ · · ·+ (1 + x)(p−1)pr−1

has roots ω − 1 for ω ∈ Sq, so it is equal to p(−x)dP (−1/x) by comparing constant
coefficients. Comparing the remaining coefficients, we find that cn is 1/p times the xn
coefficient of Q.

Since (x+ y)p ≡ xp + yp (mod p), we conclude that, modulo p,

Q(x) ≡ 1 +
(
1 + xp

r−1)
+

(
1 + xp

r−1)2
+ · · ·+

(
1 + xp

r−1)p−1

≡
[(
1 + xp

r−1)p − 1
]
/xp

r−1
.

Since
(
p
j

)
is a multiple of p when 0 < j < p, it follows that all coefficients of Q(x) are

multiples of p save for the leading one. Therefore, cn is an integer when n < d, while cd
is 1/p times an integer.

By the recurrences above, Sn is an integer for n < d. When r = 1, we get that dcd is
not an integer, so Sd is not an integer, either. Thus the answer for r = 1 is n = p− 1.

Suppose now that r ≥ 2. Then dcd does become an integer, so Sd is an integer as well.
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Lemma
For all n with 1 ≤ n ≤ d, we have νp(ncn) ≥ r − 2. Furthermore, the smallest n
such that νp(ncn) = r − 2 is d− pr−1 + 1.

Proof. The value of ncn is 1/p times the coefficient of xn−1 in the derivative Q′(x). This
derivative is

pr−1(1 + x)p
r−1−1

[
p−1∑
k=1

k(1 + x)(k−1)pr−1

]
.

What we want to prove reduces to showing that all coefficients of the polynomial in
the square brackets are multiples of p except for the leading one.

Using the same trick (x+y)p ≡ xp+yp (mod p) as before and also writing w for xpr−1 ,
modulo p the polynomial in the square brackets becomes

1 + 2(1 + w) + 3(1 + w)2 + · · ·+ (p− 1)(1 + w)p−2.

This is the derivative of

1 + (1 + w) + (1 + w)2 + · · ·+ (1 + w)p−1 = [(1 + w)p − 1]/w

and so, since
(
p
j

)
is a multiple of p when 0 < j < p, we are done.

Finally, we finish the problem with the following claim.

Claim — Let m = d− pr−1. Then for all k ≥ 0 and 1 ≤ j ≤ d, we have

νp(Skd+m+1) = r − 2− k

νp(Skd+m+j) ≥ r − 2− k.

Proof. First, S1, S2, . . . , Sm are all divisible by pr−1 by Newton’s identities and the second
lemma. Then νp(Sm+1) = r − 2 because

νp((m+ 1)cm+1) = r − 2,

and all other terms in the recurrence relation are divisible by pr−1. We can similarly
check that νp(Sn) ≥ r− 2 for m+1 ≤ n ≤ d. Newton’s identities combined with the first
lemma now imply the following for n > d:

• If νp(Sn−j) ≥ ` for all 1 ≤ j ≤ d and νp(Sn−d) ≥ `+ 1, then νp(Sn) ≥ `.

• If νp(Sn−j) ≥ ` for all 1 ≤ j ≤ d and νp(Sn−d) = `, then νp(Sn) = `− 1.

Together, these prove the claim by induction.

By the claim, the smallest n for which νp(Sn) < 0 (equivalent to Sn not being an
integer, by the recurrences) is

n = (r − 1)d+m+ 1 = ((p− 1)r − 1)pr−1 + 1.
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Remark. The original proposal was the following more general version:

Let n be an integer with prime power factorization q1 · · · qm. Let Sn denote
the set of primitive nth roots of unity. Find all tuples of nonnegative integers
(z1, . . . , zm) such that∑

ω∈Sn

f(ω)

(1− ωn/q1)z1 · · · (1− ωn/qm)zm
∈ Z

for all polynomials f ∈ Z[x].

The maximal zi are exponents in the prime ideal factorization of the different ideal of the
cyclotomic extension Q(ζn)/Q.

Remark. Let F = (xp − 1)/(x − 1) be the minimal polynomial of ζp = e2πi/p over Q. A
calculation of Euler shows that

(Z[ζp])∗ := {α = g(ζp) ∈ Q[ζp] :
∑
ω∈Sp

f(ω)g(ω) ∈ Z ∀f ∈ Z[x]} =
1

F ′(ζp)
· Z[ζp],

where
F ′(ζp) =

pζp−1
p − [1 + ζp + · · ·+ ζp−1

p ]

1− ζp
= p(1− ζp)

−1ζp−1
p

is (1 − ζp)
[p−1]−1 = (1 − ζp)

p−2 times a unit of Z[ζp]. Here, (Z[ζp])∗ is the dual lattice of
Z[ζp].

Remark. Let K = Q(ω), so (p) factors as (1− ω)p−1 in the ring of integers OK (which, for
cyclotomic fields, can be shown to be Z[ω]). In particular, the ramification index e of (1−ω)
over p is the exponent, p− 1. Since e = p− 1 is not divisible by p, we have so-called tame
ramification. Now by the ramification theory of Dedekind’s different ideal, the exponent z1
that works when n = p is e− 1 = p− 2.

Higher prime powers are more interesting because of wild ramification: p divides φ(pr) =
pr−1(p− 1) if and only if r > 1. (This is a similar phenomena to how Hensel’s lemma for
x2 − c is more interesting mod powers of 2 than mod odd prime powers.)

Remark. Let F = (xq − 1)/(xq/p − 1) be the minimal polynomial of ζq = e2πi/q over Q.
The aforementioned calculation of Euler shows that

(Z[ζq])∗ := {α = g(ζq) ∈ Q[ζq] :
∑
ω∈Sq

f(ω)g(ω) ∈ Z ∀f ∈ Z[x]} =
1

F ′(ζq)
· Z[ζq],

where the chain rule implies (using the computation from the prime case)

F ′(ζq) = [p(1− ζp)
−1ζp−1

p ] · q
p
ζ(q/p)−1
q = q(1− ζp)

−1ζ−1
q .

is (1− ζq)
rφ(q)−q/p = (1− ζq)

zq times a unit of Z[ζq].
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