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§0 Problems
1. Let a, b, c be fixed positive integers. There are a+ b+ c ducks sitting in a circle,

one behind the other. Each duck picks either rock, paper, or scissors, with a ducks
picking rock, b ducks picking paper, and c ducks picking scissors.
A move consists of an operation of one of the following three forms:

• If a duck picking rock sits behind a duck picking scissors, they switch places.
• If a duck picking paper sits behind a duck picking rock, they switch places.
• If a duck picking scissors sits behind a duck picking paper, they switch places.

Determine, in terms of a, b, and c, the maximum number of moves which could
take place, over all possible initial configurations.

2. Let ABC be a scalene triangle with incenter I. The incircle of ABC touches BC,
CA, AB at points D, E, F , respectively. Let P be the foot of the altitude from
D to EF , and let M be the midpoint of BC. The rays AP and IP intersect the
circumcircle of triangle ABC again at points G and Q, respectively. Show that the
incenter of triangle GQM coincides with D.

3. We say a nondegenerate triangle whose angles have measures θ1, θ2, θ3 is quirky if
there exists integers r1, r2, r3, not all zero, such that

r1θ1 + r2θ2 + r3θ3 = 0.

Find all integers n ≥ 3 for which a triangle with side lengths n − 1, n, n + 1 is
quirky.

4. Find all pairs of positive integers (a, b) satisfying the following conditions:
(i) a divides b4 + 1,
(ii) b divides a4 + 1,
(iii) b

√
ac = b

√
bc.

5. Let N2 denote the set of ordered pairs of positive integers. A finite subset S of N2

is stable if whenever (x, y) is in S, then so are all points (x′, y′) of N2 with both
x′ ≤ x and y′ ≤ y.
Prove that if S is a stable set, then among all stable subsets of S (including the
empty set and S itself), at least half of them have an even number of elements.

6. Let A, B, C, D be four points such that no three are collinear and D is not the
orthocenter of triangle ABC. Let P , Q, R be the orthocenters of 4BCD, 4CAD,
4ABD, respectively. Suppose that lines AP , BQ, CR are pairwise distinct and
are concurrent. Show that the four points A, B, C, D lie on a circle.

7. Find all nonconstant polynomials P (z) with complex coefficients for which all
complex roots of the polynomials P (z) and P (z)− 1 have absolute value 1.

8. For every positive integer N , let σ(N) denote the sum of the positive integer divisors
of N . Find all integers m ≥ n ≥ 2 satisfying

σ(m)− 1

m− 1
=

σ(n)− 1

n− 1
=

σ(mn)− 1

mn− 1
.
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9. Ten million fireflies are glowing in R3 at midnight. Some of the fireflies are friends,
and friendship is always mutual. Every second, one firefly moves to a new position
so that its distance from each one of its friends is the same as it was before moving.
This is the only way that the fireflies ever change their positions. No two fireflies
may ever occupy the same point.
Initially, no two fireflies, friends or not, are more than a meter away. Following
some finite number of seconds, all fireflies find themselves at least ten million meters
away from their original positions. Given this information, find the greatest possible
number of friendships between the fireflies.
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§1 Solutions to Day 1
§1.1 TSTST 2020/1, proposed by Ankan Bhattacharya
Available online at https://aops.com/community/p18933796.

Problem statement

Let a, b, c be fixed positive integers. There are a+ b+ c ducks sitting in a circle,
one behind the other. Each duck picks either rock, paper, or scissors, with a ducks
picking rock, b ducks picking paper, and c ducks picking scissors.

A move consists of an operation of one of the following three forms:

• If a duck picking rock sits behind a duck picking scissors, they switch places.

• If a duck picking paper sits behind a duck picking rock, they switch places.

• If a duck picking scissors sits behind a duck picking paper, they switch places.

Determine, in terms of a, b, and c, the maximum number of moves which could take
place, over all possible initial configurations.

The maximum possible number of moves is max(ab, ac, bc).
First, we prove this is best possible. We define a feisty triplet to be an unordered triple

of ducks, one of each of rock, paper, scissors, such that the paper duck is between the
rock and scissors duck and facing the rock duck, as shown. (There may be other ducks
not pictured, but the orders are irrelevant.)

quack

Rock

qu
ac
k

Paper

quack

Scissors
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Claim — The number of feisty triplets decreases by c if a paper duck swaps places
with a rock duck, and so on.

Proof. Clear.

Obviously the number of feisty triples is at most abc to start. Thus at most max(ab, bc, ca)
moves may occur, since the number of feisty triplets should always be nonnegative, at
which point no moves are possible at all.

To see that this many moves is possible, assume WLOG a = min(a, b, c) and suppose
we have a rocks, b papers, and c scissors in that clockwise order.

quack

quack

Rocks

q
u
ac
k

qu
ac
k

qu
ac
k

Papers

quack

quack

quack

q
u
ack

Scissors

Then, allow the scissors to filter through the papers while the rocks stay put. Each of
the b papers swaps with c scissors, for a total of bc = max(ab, ac, bc) swaps.

Remark (Common errors). One small possible mistake: it is not quite kösher to say that
“WLOG a ≤ b ≤ c” because the condition is not symmetric, only cyclic. Therefore in this
solution we only assume a = min(a, b, c).

It is true here that every pair of ducks swaps at most once, and some solutions make use
of this fact. However, this fact implicitly uses the fact that a, b, c > 0 and is false without
this hypothesis.
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§1.2 TSTST 2020/2, proposed by Zack Chroman, Daniel Liu
Available online at https://aops.com/community/p18933557.

Problem statement

Let ABC be a scalene triangle with incenter I. The incircle of ABC touches BC,
CA, AB at points D, E, F , respectively. Let P be the foot of the altitude from
D to EF , and let M be the midpoint of BC. The rays AP and IP intersect the
circumcircle of triangle ABC again at points G and Q, respectively. Show that the
incenter of triangle GQM coincides with D.

Refer to the figure below.

A

B C

I

D

E

F

P

Q

M

G

Claim — The point Q is the Miquel point of BFEC. Also, QD bisects ∠BQC.

Proof. Inversion around the incircle maps line EF to (AIEF ) and the nine-point circle
of 4DEF to the circumcircle of 4ABC (as the midpoint of EF maps to A, etc.). This
implies P maps to Q; that is, Q coincides with the second intersection of (AFIE) with
(ABC). This is the claimed Miquel point.

The spiral similarity mentioned then gives QB
BF = QC

CE , so QD bisects ∠BQC.

Remark. The point Q and its properties mentioned in the first claim have appeared in
other references. See for example Canada 2007/5, ELMO 2010/6, HMMT 2016 T-10, USA
TST 2017/2, USA TST 2019/6 for a few examples.

Claim — We have (QG;BC) = −1, so in particular GD bisects ∠BGC.

Proof. Note that

−1 = (AI;EF )
Q
= (AQ ∩ EF,P ;E,F )

A
= (QG;BC).
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The last statement follows from Apollonian circle, or more bluntly GB
GC = QB

QC = BD
DC .

Hence QD and GD are angle bisectors of ∠BQC and ∠BGC. However, QM and QG
are isogonal in ∠BQC (as median and symmedian), and similarly for ∠BGC, as desired.
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§1.3 TSTST 2020/3, proposed by Evan Chen, Danielle Wang
Available online at https://aops.com/community/p18933954.

Problem statement

We say a nondegenerate triangle whose angles have measures θ1, θ2, θ3 is quirky if
there exists integers r1, r2, r3, not all zero, such that

r1θ1 + r2θ2 + r3θ3 = 0.

Find all integers n ≥ 3 for which a triangle with side lengths n− 1, n, n+1 is quirky.

The answer is n = 3, 4, 5, 7.
We first introduce a variant of the kth Chebyshev polynomials in the following lemma

(which is standard, and easily shown by induction).

Lemma
For each k ≥ 0 there exists Pk(X) ∈ Z[X], monic for k ≥ 1 and with degree k, such
that

Pk(X +X−1) ≡ Xk +X−k.

The first few are P0(X) ≡ 2, P1(X) ≡ X, P2(X) ≡ X2 − 2, P3(X) ≡ X3 − 3X.

Suppose the angles of the triangle are α < β < γ, so the law of cosines implies that

2 cosα =
n+ 4

n+ 1
and 2 cos γ =

n− 4

n− 1
.

Claim — The triangle is quirky iff there exists r, s ∈ Z≥0 not both zero such that

cos(rα) = ± cos(sγ) or equivalently Pr

(
n+ 4

n+ 1

)
= ±Ps

(
n− 4

n− 1

)
.

Proof. If there are integers x, y, z for which xα + yβ + zγ = 0, then we have that
(x− y)α = (y − z)γ − πy, whence it follows that we may take r = |x− y| and s = |y − z|
(noting r = s = 0 implies the absurd x = y = z). Conversely, given such r and s with
cos(rα) = ± cos(sγ), then it follows that rα± sγ = kπ = k(α+ β+ γ) for some k, so the
triangle is quirky.

If r = 0, then by rational root theorem on Ps(X)± 2 it follows n−4
n−1 must be an integer

which occurs only when n = 4 (recall n ≥ 3). Similarly we may discard the case s = 0.
Thus in what follows assume n 6= 4 and r, s > 0. Then, from the fact that Pr and Ps

are nonconstant monic polynomials, we find

Corollary
If n 6= 4 works, then when n+4

n+1 and n−4
n−1 are written as fractions in lowest terms, the

denominators have the same set of prime factors.

8
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But gcd(n+ 1, n− 1) divides 2, and gcd(n+ 4, n+ 1), gcd(n− 4, n− 1) divide 3. So we
only have three possibilities:

• n+ 1 = 2u and n− 1 = 2v for some u, v ≥ 0. This is only possible if n = 3. Here
2 cosα = 7

4 and 2 cos γ = −1
2 , and indeed P2(−1/2) = −7/4.

• n + 1 = 3 · 2u and n − 1 = 2v for some u, v ≥ 0, which implies n = 5. Here
2 cosα = 3

2 and 2 cos γ = 1
4 , and indeed P2(3/2) = 1/4.

• n + 1 = 2u and n − 1 = 3 · 2v for some u, v ≥ 0, which implies n = 7. Here
2 cosα = 11

8 and 2 cos γ = 1
2 , and indeed P3(1/2) = −11/8.

Finally, n = 4 works because the triangle is right, completing the solution.

Remark (Major generalization due to Luke Robitaille). In fact one may find all quirky
triangles whose sides are integers in arithmetic progression.

Indeed, if the side lengths of the triangle are x− y, x, x+ y with gcd(x, y) = 1 then the
problem becomes

Pr

(
x+ 4y

x+ y

)
= ±Ps

(
x− 4y

x− y

)
and so in the same way as before, we ought to have x+ y and x− y are both of the form
3 · 2∗ unless rs = 0. This time, when rs = 0, we get the extra solutions (1, 0) and (5, 2).

For rs 6= 0, by triangle inequality, we have x − y ≤ x + y < 3(x − y), and min(ν2(x −
y), ν2(x+ y)) ≤ 1, so it follows one of x− y or x+ y must be in {1, 2, 3, 6}. An exhaustive
check then leads to

(x, y) ∈ {(3, 1), (5, 1), (7, 1), (11, 5)} ∪ {(1, 0), (5, 2), (4, 1)}

as the solution set. And in fact they all work.
In conclusion the equilateral triangle, 3 − 5 − 7 triangle (which has a 120◦ angle) and

6− 11− 16 triangle (which satisfies B = 3A+ 4C) are exactly the new quirky triangles (up
to similarity) whose sides are integers in arithmetic progression.
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§2 Solutions to Day 2
§2.1 TSTST 2020/4, proposed by Yang Liu
Available online at https://aops.com/community/p19444614.

Problem statement

Find all pairs of positive integers (a, b) satisfying the following conditions:

(i) a divides b4 + 1,

(ii) b divides a4 + 1,

(iii) b
√
ac = b

√
bc.

The only solutions are (1, 1), (1, 2), and (2, 1), which clearly work. Now we show there
are no others.

Obviously, gcd(a, b) = 1, so the problem conditions imply

ab | (a− b)4 + 1

since each of a and b divide the right-hand side. We define

k
def
=

(b− a)4 + 1

ab
.

Claim (Size estimate) — We must have k ≤ 16.

Proof. Let n = b
√
ac = b

√
bc, so that a, b ∈ [n2, n2 + 2n]. We have that

ab ≥ n2(n2 + 1) ≥ n4 + 1

(b− a)4 + 1 ≤ (2n)4 + 1 = 16n4 + 1

which shows k ≤ 16.

Claim (Orders argument) — In fact, k = 1.

Proof. First of all, note that k cannot be even: if it was, then a, b have opposite parity,
but then 4 | (b− a)4 + 1, contradiction.

Thus k is odd. However, every odd prime divisor of (b − a)4 + 1 is congruent to 1
(mod 8) and is thus at least 17, so k = 1 or k ≥ 17. It follows that k = 1.

At this point, we have reduced to solving

ab = (b− a)4 + 1

and we need to prove the claimed solutions are the only ones. Write b = a + d, and
assume WLOG that d ≥ 0: then we have a(a+ d) = d4 + 1, or

a2 − da− (d4 + 1) = 0.

The discriminant d2 + 4(d4 + 1) = 4d4 + d2 + 4 must be a perfect square.

10
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• The cases d = 0 and d = 1 lead to pairs (1, 1) and (1, 2).

• If d ≥ 2, then we can sandwich

(2d2)2 < 4d4 + d2 + 4 < 4d4 + 4d2 + 1 = (2d2 + 1)2,

so the discriminant is not a square.

The solution is complete.

Remark (Author remarks on origin). This comes from the problem of the existence of
a pair of elliptic curves over Fa, Fb respectively, such that the number of points on one
is the field size of the other. The bound n2 ≤ a, b < (n + 1)2 is the Hasse bound. The
divisibility conditions correspond to asserting that the embedding degree of each curve is 8,
so that they are pairing friendly. In this way, the problem is essentially the key result of
https://arxiv.org/pdf/1803.02067.pdf, shown in Proposition 3.

11
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§2.2 TSTST 2020/5, proposed by Ashwin Sah, Mehtaab Sawhney
Available online at https://aops.com/community/p19444403.

Problem statement

Let N2 denote the set of ordered pairs of positive integers. A finite subset S of N2 is
stable if whenever (x, y) is in S, then so are all points (x′, y′) of N2 with both x′ ≤ x
and y′ ≤ y.

Prove that if S is a stable set, then among all stable subsets of S (including the
empty set and S itself), at least half of them have an even number of elements.

The following inductive solution was given by Nikolai Beluhov. We proceed by induction
on |S|, with |S| ≤ 1 clear.

Suppose |S| ≥ 2. For any p ∈ S, let R(p) denote the stable rectangle with upper-right
corner p. We say such p is pivotal if p+ (1, 1) /∈ S and |R(p)| is even.

p

Claim — If |S| ≥ 2, then a pivotal p always exists.

Proof. Consider the top row of S.

• If it has length at least 2, one of the two rightmost points in it is pivotal.

• Otherwise, the top row has length 1. Now either the top point or the point below
it (which exists as |S| ≥ 2) is pivotal.

We describe how to complete the induction, given some pivotal p ∈ S. There is a
partition

S = R(p) t S1 t S2

where S1 and S2 are the sets of points in S above and to the right of p (possibly empty).

Claim — The desired inequality holds for stable subsets containing p.

Proof. Let E1 denote the number of even stable subsets of S1; denote E2, O1, O2

analogously. The stable subsets containing p are exactly R(p) t T1 t T2, where T1 ⊆ S1

and T2 ⊆ S2 are stable.
Since |R(p)| is even, exactly E1E2 +O1O2 stable subsets containing p are even, and

exactly E1O2 + E2O1 are odd. As E1 ≥ O1 and E2 ≥ O2 by inductive hypothesis, we
obtain E1E2 +O1O2 ≥ E1O2 + E2O1 as desired.

12
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By the inductive hypothesis, the desired inequality also holds for stable subsets not
containing p, so we are done.
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§2.3 TSTST 2020/6, proposed by Andrew Gu
Available online at https://aops.com/community/p19444197.

Problem statement

Let A, B, C, D be four points such that no three are collinear and D is not the
orthocenter of triangle ABC. Let P , Q, R be the orthocenters of 4BCD, 4CAD,
4ABD, respectively. Suppose that lines AP , BQ, CR are pairwise distinct and are
concurrent. Show that the four points A, B, C, D lie on a circle.

Let T be the concurrency point, and let H be the orthocenter of 4ABC.

A

B C

D

P

QR

T

S

O
H

Claim (Key claim) — T is the midpoint of AP , BQ, CR, DH, and D is the
orthocenter of 4PQR.

Proof. Note that AQ ‖ BP , as both are perpendicular to CD. Since lines AP and BQ
are distinct, lines AQ and BP are distinct.

By symmetric reasoning, we get that AQCPBR is a hexagon with opposite sides
parallel and concurrent diagonals as AP , BQ, CR meet at T . This implies that the
hexagon is centrally symmetric about T ; indeed

AT

TP
=

TQ

BT
=

CT

TR
=

TP

AT

so all the ratios are equal to +1.
Next, PD ⊥ BC ‖ QR, so by symmetry we get D is the orthocenter of 4PQR. This

means that T is the midpoint of DH as well.

Corollary
The configuration is now symmetric: we have four points A, B, C, D, and their
reflections in T are four orthocenters P , Q, R, H.

Let S be the centroid of {A,B,C,D}, and let O be the reflection of T in S. We are
ready to conclude:

14
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Claim — A, B, C, D are equidistant from O.

Proof. Let A′, O′, S′, T ′, D′ be the projections of A, O, S, T , D onto line BC.
Then T ′ is the midpoint of A′D′, so S′ = 1

4(A
′ + D′ + B + C) gives that O′ is the

midpoint of BC.
Thus OB = OC and we’re done.
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§3 Solutions to Day 3
§3.1 TSTST 2020/7, proposed by Ankan Bhattacharya
Available online at https://aops.com/community/p20020202.

Problem statement

Find all nonconstant polynomials P (z) with complex coefficients for which all
complex roots of the polynomials P (z) and P (z)− 1 have absolute value 1.

The answer is P (x) should be a polynomial of the form P (x) = λxn − µ where |λ| = |µ|
and Reµ = −1

2 . One may check these all work; let’s prove they are the only solutions.

¶ First approach (Evan Chen). We introduce the following notations:

P (x) = cnx
n + cn−1x

n−1 + · · ·+ c1x+ c0

= cn(x+ α1) . . . (x+ αn)

P (x)− 1 = cn(x+ β1) . . . (x+ βn)

By taking conjugates,

(x+ α1) · · · (x+ αn) = (x+ β1) · · · (x+ βn) + c−1
n

=⇒
(
x+

1

α1

)
· · ·

(
x+

1

αn

)
=

(
x+

1

β1

)
· · ·

(
x+

1

βn

)
+ (cn)

−1 (♠)

The equation (♠) is the main player:

Claim — We have ck = 0 for all k = 1, . . . , n− 1.

Proof. By comparing coefficients of xk in (♠) we obtain
cn−k∏

i αi
=

cn−k∏
i βi

but
∏

i αi −
∏

i βi =
1
cn

6= 0. Hence ck = 0.

It follows that P (x) must be of the form P (x) = λxn−µ, so that P (x) = λxn− (µ+1).
This requires |µ| = |µ+ 1| = |λ| which is equivalent to the stated part.

¶ Second approach (from the author). We let A = P and B = P − 1 to make the
notation more symmetric. We will as before show that A and B have all coefficients
equal to zero other than the leading and constant coefficient; the finish is the same.

First, we rule out double roots.

Claim — Neither A nor B have double roots.

Proof. Suppose that b is a double root of B. By differentiating, we obtain A′ = B′, so
A′(b) = 0. However, by Gauss-Lucas, this forces A(b) = 0, contradiction.

Let ω = e2πi/n, let a1, . . . , an be the roots of A, and let b1, . . . , bn be the roots of B.
For each k, let Ak and Bk be the points in the complex plane corresponding to ak and
bk.

16
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Claim (Main claim) — For any i and j, ai
aj

is a power of ω.

Proof. Note that

ai − b1
aj − b1

· · · ai − bn
aj − bn

=
B(ai)

B(aj)
=

A(ai)− 1

A(aj)− 1
=

0− 1

0− 1
= 1.

Since the points Ai, Aj , Bk all lie on the unit circle, interpreting the left-hand side
geometrically gives

]AiB1Aj + · · ·+ ]AiBnAj = 0 =⇒ n’AiAj = 0,

where angles are directed modulo 180◦ and arcs are directed modulo 360◦. This implies
that ai

aj
is a power of ω.

Now the finish is easy: since a1, . . . , an are all different, they must be a1ω
0, . . . , a1ωn−1

in some order; this shows that A is a multiple of xn − an1 , as needed.

17
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§3.2 TSTST 2020/8, proposed by Ankan Bhattacharya
Available online at https://aops.com/community/p20020195.

Problem statement

For every positive integer N , let σ(N) denote the sum of the positive integer divisors
of N . Find all integers m ≥ n ≥ 2 satisfying

σ(m)− 1

m− 1
=

σ(n)− 1

n− 1
=

σ(mn)− 1

mn− 1
.

The answer is that m and n should be powers of the same prime number. These all work
because for a prime power we have

σ(pe)− 1

pe − 1
=

(1 + p+ · · ·+ pe)− 1

pe − 1
=

p(1 + · · ·+ pe−1)

pe − 1
=

p

p− 1
.

So we now prove these are the only ones. Let λ be the common value of the three
fractions.

Claim — Any solution (m,n) should satisfy d(mn) = d(m) + d(n)− 1.

Proof. The divisors of mn include the divisors of m, plus m times the divisors of n
(counting m only once). Let λ be the common value; then this gives

σ(mn) ≥ σ(m) +mσ(n)−m

= (λm− λ+ 1) +m(λn− λ+ 1)−m

= λmn− λ+ 1

and so equality holds. Thus these are all the divisors of mn, for a count of d(m)+ d(n)−
1.

Claim — If d(mn) = d(m)+ d(n)− 1 and min(m,n) ≥ 2, then m and n are powers
of the same prime.

Proof. Let A denote the set of divisors of m and B denote the set of divisors of n. Then
|A ·B| = |A|+ |B| − 1 and min(|A|, |B|) > 1, so |A| and |B| are geometric progressions
with the same ratio. It follows that m and n are powers of the same prime.

Remark (Nikolai Beluhov). Here is a completion not relying on |A ·B| = |A|+ |B| − 1. By
the above arguments, we see that every divisor of mn is either a divisor of n, or n times a
divisor of m.

Now suppose that some prime p | m but p - n. Then p | mn but p does not appear in the
above classification, a contradiction. By symmetry, it follows that m and n have the same
prime divisors.

Now suppose we have different primes p | m and q | n. Write νp(m) = α and νp(n) = β.
Then pα+β | mn, but it does not appear in the above characterization, a contradiction.
Thus, m and n are powers of the same prime.
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Remark (Comments on the function in the problem). Let f(n) = σ(n)−1
n−1 . Then f is not

really injective even outside the above solution; for example, we have f(6 · 11k) = 11
5 for all

k, plus sporadic equivalences like f(14) = f(404), as pointed out by one reviewer during
test-solving. This means that both relations should be used at once, not independently.

Remark (Authorship remarks). Ankan gave the following story for how he came up with
the problem while thinking about so-called almost perfect numbers.

I was in some boring talk when I recalled a conjecture that if σ(n) = 2n− 1,
then n is a power of 2. For some reason (divine intervention, maybe) I had
the double idea of (1) seeing whether m, n, mn all almost perfect implies m, n
powers of 2, and (2) trying the naive divisor bound to resolve this. Through
sheer dumb luck this happened to work out perfectly. I thought this was kinda
cool but I felt that I hadn’t really unlocked a lot of the potential this idea
had: then I basically tried to find the “general situation” which allows for this
manipulation, and was amazed that it led to such a striking statement.

19



USA TSTST 2020 Solutions Ankan Bhattacharya and Evan Chen

§3.3 TSTST 2020/9, proposed by Nikolai Beluhov
Available online at https://aops.com/community/p20020206.

Problem statement

Ten million fireflies are glowing in R3 at midnight. Some of the fireflies are friends,
and friendship is always mutual. Every second, one firefly moves to a new position
so that its distance from each one of its friends is the same as it was before moving.
This is the only way that the fireflies ever change their positions. No two fireflies
may ever occupy the same point.

Initially, no two fireflies, friends or not, are more than a meter away. Following
some finite number of seconds, all fireflies find themselves at least ten million meters
away from their original positions. Given this information, find the greatest possible
number of friendships between the fireflies.

In general, we show that when n ≥ 70, the answer is f(n) = bn2

3 c.

Construction: Choose three pairwise parallel lines `A, `B, `C forming an infinite
equilateral triangle prism (with side larger than 1). Split the n fireflies among the lines
as equally as possible, and say that two fireflies are friends iff they lie on different lines.

To see this works:

1. Reflect `A and all fireflies on `A in the plane containing `B and `C .

2. Reflect `B and all fireflies on `B in the plane containing `C and `A.

3. Reflect `C and all fireflies on `C in the plane containing `A and `B.

...

Proof: Consider a valid configuration of fireflies. If there is no 4-clique of friends, then
by Turán’s theorem, there are at most f(n) pairs of friends.

Let g(n) be the answer, given that there exist four pairwise friends (say a, b, c, d).
Note that for a firefly to move, all its friends must be coplanar.

Claim (No coplanar K4) — We can’t have four coplanar fireflies which are pairwise
friends.

Proof. If we did, none of them could move (unless three are collinear, in which case they
can’t move).

Claim (Key claim — tetrahedrons don’t share faces often) — There are at most 12
fireflies e which are friends with at least three of a, b, c, d.

Proof. First denote by A, B, C, D the locations of fireflies a, b, c, d. These four positions
change over time as fireflies move, but the tetrahedron ABCD always has a fixed shape,
and we will take this tetrahedron as our reference frame for the remainder of the proof.

WLOG, will assume that e is friends with a, b, c. Then e will always be located at
one of two points E1 and E2 relative to ABC, such that E1ABC and E2ABC are two
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congruent tetrahedrons with fixed shape. We note that points D, E1, and E2 are all
different: clearly D 6= E1 and E1 6= E2. (If D = E2, then some fireflies won’t be able to
move.)

Consider the moment where firefly a moves. Its friends must be coplanar at that time,
so one of E1, E2 lies in plane BCD. Similar reasoning holds for planes ACD and ABD.

So, WLOG E1 lies on both planes BCD and ACD. Then E1 lies on line CD, and E2

lies in plane ABD. This uniquely determines (E1, E2) relative to ABCD:

• E1 is the intersection of line CD with the reflection of plane ABD in plane ABC.

• E2 is the intersection of plane ABD with the reflection of line CD in plane ABC.

Accounting for WLOGs, there are at most 12 possibilities for the set {E1, E2}, and thus
at most 12 possibilities for E. (It’s not possible for both elements of one pair {E1, E2}
to be occupied, because then they couldn’t move.)

Thus, the number of friendships involving exactly one of a, b, c, d is at most (n− 16) ·
2 + 12 · 3 = 2n+ 4, so removing these four fireflies gives

g(n) ≤ 6 + (2n+ 4) + max{f(n− 4), g(n− 4)}.

The rest of the solution is bounding. When n ≥ 24, we have (2n+10)+f(n−4) ≤ f(n),
so

g(n) ≤ max{f(n), (2n+ 10) + g(n− 4)} ∀n ≥ 24.

By iterating the above inequality, we get

g(n) ≤ max
{
f(n), (2n+ 10) + (2(n− 4) + 10)

+ · · ·+ (2(n− 4r) + 10) + g(n− 4r − 4)
}
,

where r satisfies n− 4r − 4 < 24 ≤ n− 4r.
Now

(2n+ 10) + (2(n− 4) + 10) + · · ·+ (2(n− 4r) + 10) + g(n− 4r − 4)

= (r + 1)(2n− 4r + 10) + g(n− 4r − 4)

≤
(n
4
− 5

)
(n+ 37) +

(
24

2

)
.

This is less than f(n) for n ≥ 70, which concludes the solution.

Remark. There are positive integers n such that it is possible to do better than f(n)
friendships. For instance, f(5) = 8, whereas five fireflies a, b, c, d, and e as in the proof of
the Lemma (E1 being the intersection point of line CD with the reflection of plane (ABD)
in plane (ABC), E2 being the intersection point of plane (ABD) with the reflection of line
CD in plane (ABC), and tetrahedron ABCD being sufficiently arbitrary that points E1

and E2 exist and points D, E1, and E2 are pairwise distinct) give a total of nine friendships.

Remark (Author comments). It is natural to approach the problem by looking at the
two-dimensional version first. In two dimensions, the following arrangement suggests itself
almost immediately: We distribute all fireflies as equally as possible among two parallel
lines, and two fireflies are friends if and only if they are on different lines.

Similarly to the three-dimensional version, this attains the greatest possible number
of friendships for all sufficiently large n, though not for all n. For instance, at least one
friendlier arrangements exists for n = 4, similarly to the above friendlier arrangement for
n = 5 in three dimensions.
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This observation strongly suggests that in three dimensions we should distribute the
fireflies as equally as possible among two parallel planes, and that two fireflies should be
friends if and only if they are on different planes. It was a great surprise for me to discover
that this arrangement does not in fact give the correct answer!

Remark. On the other hand, Ankan Bhattacharya gives the following reasoning as to why
the answer should not be that surprising:

I think the answer (1014 − 1)/3 is quite natural if you realize that (n/2)2 is
probably optimal in 2D and

(
n
2

)
is optimal in super high dimensions (i.e. around

n). So going from dimension 2 to 3 should increase the answer (and indeed it
does).
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