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§0 Problems
1. Find all binary operations ♦ : R>0×R>0 → R>0 (meaning ♦ takes pairs of positive

real numbers to positive real numbers) such that for any real numbers a, b, c > 0,
• the equation a♦ (b♦ c) = (a♦ b) · c holds; and
• if a ≥ 1 then a♦ a ≥ 1.

2. Let ABC be an acute triangle with circumcircle Ω and orthocenter H. Points D
and E lie on segments AB and AC respectively, such that AD = AE. The lines
through B and C parallel to DE intersect Ω again at P and Q, respectively. Denote
by ω the circumcircle of 4ADE.
(a) Show that lines PE and QD meet on ω.
(b) Prove that if ω passes through H, then lines PD and QE meet on ω as well.

3. On an infinite square grid we place finitely many cars, which each occupy a single
cell and face in one of the four cardinal directions. Cars may never occupy the
same cell. It is given that the cell immediately in front of each car is empty, and
moreover no two cars face towards each other (no right-facing car is to the left of a
left-facing car within a row, etc.). In a move, one chooses a car and shifts it one
cell forward to a vacant cell. Prove that there exists an infinite sequence of valid
moves using each car infinitely many times.

4. Consider coins with positive real denominations not exceeding 1. Find the smallest
C > 0 such that the following holds: if we are given any 100 such coins with total
value 50, then we can always split them into two stacks of 50 coins each such that
the absolute difference between the total values of the two stacks is at most C.

5. Let ABC be an acute triangle with orthocenter H and circumcircle Γ. A line
through H intersects segments AB and AC at E and F , respectively. Let K be
the circumcenter of 4AEF , and suppose line AK intersects Γ again at a point D.
Prove that line HK and the line through D perpendicular to BC meet on Γ.

6. Suppose P is a polynomial with integer coefficients such that for every positive
integer n, the sum of the decimal digits of |P (n)| is not a Fibonacci number. Must
P be constant?

7. Let f : Z → {1, 2, . . . , 10100} be a function satisfying

gcd(f(x), f(y)) = gcd(f(x), x− y)

for all integers x and y. Show that there exist positive integers m and n such that
f(x) = gcd(m+ x, n) for all integers x.

8. Let S be a set of 16 points in the plane, no three collinear. Let χ(S) denote the
number of ways to draw 8 line segments with endpoints in S, such that no two
drawn segments intersect, even at endpoints. Find the smallest possible value of
χ(S) across all such S.

9. Let ABC be a triangle with incenter I. Points K and L are chosen on segment BC
such that the incircles of 4ABK and 4ABL are tangent at P , and the incircles
of 4ACK and 4ACL are tangent at Q. Prove that IP = IQ.
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§1 Solutions to Day 1
§1.1 TSTST 2019/1, proposed by Evan Chen
Available online at https://aops.com/community/p12608849.

Problem statement

Find all binary operations ♦ : R>0 × R>0 → R>0 (meaning ♦ takes pairs of positive
real numbers to positive real numbers) such that for any real numbers a, b, c > 0,

• the equation a♦ (b♦ c) = (a♦ b) · c holds; and

• if a ≥ 1 then a♦ a ≥ 1.

The answer is only multiplication and division, which both obviously work.
We present two approaches, one appealing to theorems on Cauchy’s functional equation,

and one which avoids it.

¶ First solution using Cauchy FE. We prove:

Claim — We have a♦b = af(b) where f is some involutive and totally multiplicative
function. (In fact, this classifies all functions satisfying the first condition completely.)

Proof. Let P (a, b, c) denote the assertion a♦ (b♦ c) = (a♦ b) · c.

• Note that for any x, the function y 7→ x♦ y is injective, because if x♦ y1 = x♦ y2
then take P (1, x, yi) to get y1 = y2.

• Take P (1, x, 1) and injectivity to get x♦ 1 = x.

• Take P (1, 1, y) to get 1♦ (1♦ y) = y.

• Take P (x, 1, 1♦ y) to get
x♦ y = x · (1♦ y).

Henceforth let us define f(y) = 1♦ y, so f(1) = 1, f is involutive and

x♦ y = xf(y).

Plugging this into the original condition now gives f(bf(c)) = f(b)c, which (since f is
an involution) gives f completely multiplicative.

In particular, f(1) = 1. We are now interested only in the second condition, which
reads f(x) ≥ 1/x for x ≥ 1.

Define the function
g(t) = log f(et)

so that g is additive, and also g(t) ≥ −t for all t ≥ 0. We appeal to the following
theorem:
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Lemma
If h : R → R is an additive function which is not linear, then it is dense in the
plane: for any point (x0, y0) and ε > 0 there exists (x, y) such that h(x) = y and√
(x− x0)2 + (y − y0)2 < ε.

Applying this lemma with the fact that g(t) ≥ −t implies readily that g is linear. In
other words, f is of the form f(x) = xr for some fixed real number r. It is easy to check
r = ±1 which finishes.

¶ Second solution manually. As before we arrive at a♦ b = af(b), with f an involutive
and totally multiplicative function.

We prove that:

Claim — For any a > 0, we have f(a) ∈ {1/a, a}.

Proof. WLOG b > 1, and suppose f(b) = a ≥ 1/b hence f(a) = b.
Assume that ab > 1; we show a = b. Note that for integers m and n with anbm ≥ 1,

we must have

ambn = f(b)mf(a)n = f(anbm) ≥ 1

anbm
=⇒ (ab)m+n ≥ 1

and thus we have arrived at the proposition

m+ n < 0 =⇒ n logb a+m < 0

for all integers m and n. Due to the density of Q in the real numbers, this can only
happen if logb a = 1 or a = b.

Claim — The function f is continuous.

Proof. Indeed, it’s equivalent to show g(t) = log f(et) is continuous, and we have that

|g(t)− g(s)| =
∣∣log f(et−s)

∣∣ = |t− s|

since f(et−s) = e±|t−s|. Therefore g is Lipschitz. Hence g continuous, and f is too.

Finally, we have from f multiplicative that

f(2q) = f(2)q

for every rational number q, say. As f is continuous this implies f(x) ≡ x or f(x) ≡ 1/x
identically (depending on whether f(2) = 2 or f(2) = 1/2, respectively).

Therefore, a♦ b = ab or a♦ b = a÷ b, as needed.

Remark. The Lipschitz condition is one of several other ways to proceed. The point is
that if f(2) = 2 (say), and x/2q is close to 1, then f(x)/2q = f(x/2q) is close to 1, which is
enough to force f(x) = x rather than f(x) = 1/x.
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Remark. Compare to AMC 10A 2016 #23, where the second condition is a♦ a = 1.
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§1.2 TSTST 2019/2, proposed by Merlijn Staps
Available online at https://aops.com/community/p12608478.

Problem statement

Let ABC be an acute triangle with circumcircle Ω and orthocenter H. Points D
and E lie on segments AB and AC respectively, such that AD = AE. The lines
through B and C parallel to DE intersect Ω again at P and Q, respectively. Denote
by ω the circumcircle of 4ADE.

(a) Show that lines PE and QD meet on ω.

(b) Prove that if ω passes through H, then lines PD and QE meet on ω as well.

We will give one solution to (a), then several solutions to (b).

¶ Solution to (a). Note that ]AQP = ]ABP = ]ADE and ]APQ = ]ACQ =
]AED, so we have a spiral similarity 4ADE ∼ 4AQP . Therefore, lines PE and QD
meet at the second intersection of ω and Ω other than A. Call this point X.

¶ Solution to (b) using angle chasing. Let L be the reflection of H across AB, which
lies on Ω.

Claim — Points L, D, P are collinear.

Proof. This is just angle chasing:

]CLD = ]DHL = ]DHA+ ]AHL = ]DEA+ ]AHC

= ]ADE + ]CBA = ]ABP + ]CBA = ]CBP = ]CLP.

A

B C

H

D

E

P

Q

L K

X

ω

Ω

Now let K ∈ ω such that DHKE is an isosceles trapezoid, i.e. ]BAH = ]KAE.

Claim — Points D, K, P are collinear.
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Proof. Using the previous claim,

]KDE = ]KAE = ]BAH = ]LAB = ]LPB = ]DPB = ]PDE.

By symmetry, QE will then pass through the same K, as needed.

Remark. These two claims imply each other, so guessing one of them allows one to realize
the other. It is likely the latter is easiest to guess from the diagram, since it does not need
any additional points.

¶ Solution to (b) by orthogonal circles (found by contestants). We define K as in
the previous solution, but do not claim that K is the desired intersection. Instead, we
note that:

Claim — Point K is the orthocenter of isosceles triangle APQ.

Proof. Notice that AH = AK and BC = PQ. Moreover from AH ⊥ BC we deduce
AK ⊥ PQ by reflection across the angle bisector.

In light of the formula “AH2 = 4R2 − a2”, this implies the conclusion.

Let M be the midpoint of PQ. Since 4APQ is isosceles,

AKM ⊥ PQ =⇒ MK ·MA = MP 2

by orthocenter properties.
So to summarize

• The circle with diameter PQ is orthogonal to ω. In other words, point P lies on
the polar of Q with respect to ω.

• The point X = QD ∩ PE is on ω.

On the other hand, if we let K ′ = QE ∩ ω, then by Brokard theorem on XDK ′E, the
polar of Q = XD ∩K ′E pass through DK ′ ∩XE; this point must therefore be P and
K ′ = K as desired.

¶ Solution to (b) by complex numbers (Yang Liu and Michael Ma). Let M be the
arc midpoint of B̂C. We use the standard arc midpoint configuration. We have that

A = a2, B = b2, C = c2, M = −bc, H = a2 + b2 + c2, P =
a2c

b
, Q =

a2b

c
,

where M is the arc midpoint of B̂C. By direct angle chasing we can verify that MB ‖ DH .
Also, D ∈ AB. Therefore, we can compute D as follows.

d+ a2b2d̄ = a2 + b2 and d− h

d̄− h̄
= −mb2 = b3c =⇒ d =

a2(a2c+ b2c+ c3 − b3)

c(bc+ a2)
.

By symmetry, we have that

e =
a2(a2b+ bc2 + b3 − c3)

b(bc+ a2)
.
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To finish, we want to show that the angle between DP and EQ is angle A. To show this,
we compute d−p

e−q

/
d−p
e−q . First, we compute

d− p =
a2(a2c+ b2c+ c3 − b3)

c(bc+ a2)
− a2c

b

= a2
(
a2c+ b2c+ c3 − b3

c(bc+ a2)
− c

b

)
=

a2(a2c− b3)(b− c)

bc(bc+ a2)
.

By symmetry,

d− p

e− q
= −a2c− b3

a2b− c3
=⇒ d− p

e− q

/d− p

e− q
=

a2b3c

a2bc3
=

b2

c2

as desired.

¶ Solution to (b) using untethered moving points (Zack Chroman). We work in the
real projective plane RP2, and animate C linearly on a fixed line through A.

Recall:

Lemma (Zack’s lemma)
Suppose points A, B have degree d1, d2, and there are k values of t for which A = B.
Then line AB has degree at most d1 + d2 − k. Similarly, if lines `1, `2 have degrees
d1, d2, and there are k values of t for which `1 = `2, then the intersection `1 ∩ `2 has
degree at most d1 + d2 − k.

Now, note that H moves linearly in C on line BH. Furthermore, angles ∠AHE,
∠AHF are fixed, we get that D and E have degree 2. One way to see this is using the
lemma; D lies on line AB, which is fixed, and line HD passes through a point at infinity
which is a constant rotation of the point at infinity on line AH, and therefore has degree
1. Then D, E have degree at most 1 + 1− 0 = 2.

Now, note that P,Q move linearly in C. Both of these are because the circumcenter
O moves linearly in C, and P , Q are reflections of B, C in a line through O with fixed
direction, which also moves linearly.

So by the lemma, the lines PD, QE have degree at most 3. I claim they actually have
degree 2; to show this it suffices to give an example of a choice of C for which P = D
and one for which Q = E. But an easy angle chase shows that in the unique case when
P = B, we get D = B as well and thus P = D. Similarly when Q = C, E = C. It
follows from the lemma that lines PD, QE have degree at most 2.

Let `∞ denote the line at infinity. I claim that the points P1 = PD∩`∞, P2 = QE∩`∞
are projective in C. Since `∞ is fixed, it suffices to show by the lemma that there exists
some value of C for which QE = `∞ and PD = `∞. But note that as C → ∞, all four
points P,D,Q,E go to infinity. It follows that P1, P2 are projective in C.

Then to finish, recall that we want to show that ∠(PD,QE) is constant. It suffices then
to show that there’s a constant rotation sending P1 to P2. Since P1, P2 are projective, it
suffices to verify this for 3 values of C.

We can take C such that ∠ABC = 90, ∠ACB = 90, or AB = AC, and all three cases
are easy to check.
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§1.3 TSTST 2019/3, proposed by Nikolai Beluhov
Available online at https://aops.com/community/p12608769.

Problem statement

On an infinite square grid we place finitely many cars, which each occupy a single
cell and face in one of the four cardinal directions. Cars may never occupy the same
cell. It is given that the cell immediately in front of each car is empty, and moreover
no two cars face towards each other (no right-facing car is to the left of a left-facing
car within a row, etc.). In a move, one chooses a car and shifts it one cell forward to
a vacant cell. Prove that there exists an infinite sequence of valid moves using each
car infinitely many times.

Let S be any rectangle containing all the cars. Partition S into horizontal strips of height
1, and color them red and green in an alternating fashion. It is enough to prove all the
cars may exit S.

▶ ▽
▶ ▽ ▽ △

▶ ▶△
△ ◀ ◀ ▶

◀

Step 1

▶ ▽
▶

▽ ▽

△

▶ ▶△△
◀ ◀ ▶

◀

Step 2

▶ ▽ △

▽ ▽▶ ▶△△

◀

Step 3

▶

▽

▽ ▽
▶ ▶

△△

◀

Step 4

To do so, we outline a five-stage plan for the cars.

1. All vertical cars in a green cell may advance one cell into a red cell (or exit S
altogether), by the given condition. (This is the only place where the hypothesis
about empty space is used!)

2. All horizontal cars on green cells may exit S, as no vertical cars occupy green cells.

3. All vertical cars in a red cell may advance one cell into a green cell (or exit S
altogether), as all green cells are empty.

4. All horizontal cars within red cells may exit S, as no vertical car occupy red cells.

5. The remaining cars exit S, as they are all vertical. The solution is complete.

9
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Remark (Author’s comments). The solution I’ve given for this problem is so short and
simple that it might appear at first to be about IMO 1 difficulty. I don’t believe that’s true!
There are very many approaches that look perfectly plausible at first, and then fall apart in
this or that twisted special case.

Remark (Higher-dimensional generalization by author). The natural higher-dimensional
generalization is true, and can be proved in largely the same fashion. For example, in three
dimensions, one may let S be a rectangular prism and partition S into horizontal slabs and
color them red and green in an alternating fashion. Stages 1, 3, and 5 generalize immediately,
and stages 2 and 4 reduce to an application of the two-dimensional problem. In the same
way, the general problem is handled by induction on the dimension.

Remark (Historical comments). For k > 1, we could consider a variant of the problem
where cars are 1× k rectangles (moving parallel to the longer edge) instead of occupying
single cells. In that case, if there are 2k − 1 empty spaces in front of each car, the above
proof works (with the red and green strips having height k instead). On the other hand, at
least k empty spaces are necessary. We don’t know the best constant in this case.
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§2 Solutions to Day 2
§2.1 TSTST 2019/4, proposed by Merlijn Staps
Available online at https://aops.com/community/p12608513.

Problem statement

Consider coins with positive real denominations not exceeding 1. Find the smallest
C > 0 such that the following holds: if we are given any 100 such coins with total
value 50, then we can always split them into two stacks of 50 coins each such that
the absolute difference between the total values of the two stacks is at most C.

The answer is C = 50
51 . The lower bound is obtained if we have 51 coins of value 1

51 and
49 coins of value 1. (Alternatively, 51 coins of value 1− ε

51 and 49 coins of value ε
49 works

fine for ε > 0.) We now present two (similar) proofs that this C = 50
51 suffices.

¶ First proof (original). Let a1 ≤ · · · ≤ a100 denote the values of the coins in ascending
order. Since the 51 coins a50, . . . , a100 are worth at least 51a50, it follows that a50 ≤ 50

51 ;
likewise a51 ≥ 1

51 .
We claim that choosing the stacks with coin values

a1, a3, . . . , a49, a52, a54, . . . , a100

and
a2, a4, . . . , a50, a51, a53, . . . , a99

works. Let D denote the (possibly negative) difference between the two total values.
Then

D = (a1 − a2) + · · ·+ (a49 − a50)− a51 + (a52 − a53) + · · ·+ (a98 − a99) + a100

≤ 25 · 0− 1

51
+ 24 · 0 + 1 =

50

51
.

Similarly, we have

D = a1 + (a3 − a2) + · · ·+ (a49 − a48)− a50 + (a52 − a51) + · · ·+ (a100 − a99)

≥ 0 + 24 · 0− 50

51
+ 25 · 0 = −50

51
.

It follows that |D| ≤ 50
51 , as required.

¶ Second proof (Evan Chen). Again we sort the coins in increasing order 0 < a1 ≤
a2 ≤ · · · ≤ a100 ≤ 1. A large gap is an index i ≥ 2 such that ai > ai−1 +

50
51 ; obviously

there is at most one such large gap.

Claim — If there is a large gap, it must be a51 > a50 +
50
51 .

Proof. If i < 50 then we get a50, . . . , a100 > 50
51 and the sum

∑100
1 ai > 50 is too large.

Conversely if i > 50 then we get a1, . . . , ai−1 <
1
51 and the sum

∑100
1 ai < 1/51 · 51 + 49

is too small.

11
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Now imagine starting with the coins a1, a3, . . . , a99, which have total value S ≤ 25.
We replace a1 by a2, then a3 by a4, and so on, until we replace a99 by a100. At the end
of the process we have S ≥ 25. Moreover, since we did not cross a large gap at any point,
the quantity S changed by at most C = 50

51 at each step. So at some point in the process
we need to have 25− C/2 ≤ S ≤ 25 + C/2, which proves C works.
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§2.2 TSTST 2019/5, proposed by Gunmay Handa
Available online at https://aops.com/community/p12608496.

Problem statement

Let ABC be an acute triangle with orthocenter H and circumcircle Γ. A line
through H intersects segments AB and AC at E and F , respectively. Let K be
the circumcenter of 4AEF , and suppose line AK intersects Γ again at a point D.
Prove that line HK and the line through D perpendicular to BC meet on Γ.

We present several solutions. (There are more in the official packet; some are omitted
here, which explains the numbering.)

¶ First solution (Andrew Gu). We begin with the following two observations.

Claim — Point K lies on the radical axis of (BEH) and (CFH).

Proof. Actually we claim KE and KF are tangents. Indeed,

]HEK = 90◦ − ]EAF = 90◦ − ]BAC = ]HBE

implying the result. Since KE = KF , this implies the result.

Claim — The second intersection M of (BEH) and (CFH) lies on Γ.

Proof. By Miquel’s theorem on 4AEF with H ∈ EF , B ∈ AE, C ∈ AF .

A

B C

H

D

X

E

F

M

K

In particular, M , H, K are collinear. Let X be on Γ with DX ⊥ BC; we then wish to
show X lies on the line MHK we found. This is angle chasing: compute

]XMB = ]XDB = 90◦ − ]DBC = 90◦ − ]DAC

13
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= 90◦ − ]KAF = ]FEA = ]HEB = ]HMB

as needed.

¶ Second solution (Ankan Bhattacharya). We let D′ be the second intersection of
EF with (BHC) and redefine D as the reflection of D′ across BC. We will first prove
that this point D coincides with the point D given in the problem statement. The idea
is that:

Claim — A is the D-excenter of 4DEF .

Proof. We contend BED′D is cyclic. This follows by angle chasing:

]D′DB = ]BD′D = ]D′BC + 90◦ = ]D′HC + 90◦

= ]D′HC + ](HC,AB) = ](D′H,AB) = ]D′EB.

Now as BD = BD′, we obtain BEA externally bisects ∠DED′ ∼= ∠DEF . Likewise FA
externally bisects ∠DFE, so A is the D-excenter of 4DEF .

Hence, by the so-called “Fact 5”, point K lies on DA, so this point D is the one given in
the problem statement.

A

B C

D

D′
H

E

F

K

X

Now choose point X on (ABC) satisfying DX ⊥ BC.

Claim — Point K lies on line HX.

Proof. Clearly AHD′X is a parallelogram. By Ptolemy on DEKF ,

KD

KA
=

KD

KE
=

DE +DF

EF
.

On the other hand, if we let rD denote the D-exradius of 4DEF then

XD

XD′ =
[DEX] + [DFX]

[XEF ]
=

[DEX] + [DFX]

[AEF ]
=

DE · rD +DF · rD
EF · rD

=
DE +DF

EF
.

14
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Thus
[AKX] =

KA

KD
· [DKX] =

KA

KD
· XD

XD′ · [KD′X] = [D′KX].

This is sufficient to prove K lies on HX.

The solution is complete: X is the desired concurrency point.

¶ Fourth solution, complex numbers with spiral similarity (Evan Chen). First if
AD ⊥ BC there is nothing to prove, so we assume this is not the case. Let W be the
antipode of D. Let S denote the second intersection of (AEF ) and (ABC). Consider
the spiral similarity sending 4SEF to 4SBC:

• It maps H to a point G on line BC,

• It maps K to O.

• It maps the A-antipode of 4AEF to D.

• Hence (by previous two observations) it maps A to W .

• Also, the image of line AD is line WO, which does not coincide with line BC (as
O does not lie on line BC).

Therefore, K is the unique point on line AD for one can get a direct similarity

4AKH ∼ 4WOG (♥)

for some point G lying on line BC.

A

B C

D

H

X

K

O

E

F

S

W

G

On the other hand, let us re-define K as XH∩AD. We will show that the corresponding
G making (♥) true lies on line BC.

We apply complex numbers with Γ the unit circle, with a, b, c, d taking their usual
meanings, H = a+ b+ c, X = −bc/d, and W = −d. Then point K is supposed to satisfy

k + adk = a+ d
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k + bc
d

a+ b+ c+ bc
d

=
k + d

bc
1
a + 1

b +
1
c +

d
bc

⇐⇒
1
a + 1

b +
1
c +

d
bc

a+ b+ c+ bc
d

(
k +

bc

d

)
= k +

d

bc

Adding ad times the last line to the first line and cancelling adk now gives(
ad ·

1
a + 1

b +
1
c +

d
bc

a+ b+ c+ bc
d

+ 1

)
k = a+ d+

ad2

bc
− abc ·

1
a + 1

b +
1
c +

d
bc

a+ b+ c+ bc
d

or (
ad

(
1

a
+

1

b
+

1

c
+

d

bc

)
+ a+ b+ c+

bc

d

)
k =

(
a+ b+ c+

bc

d

)(
a+ d+

ad2

bc

)
− abc ·

(
1

a
+

1

b
+

1

c
+

d

bc

)
.

We begin by simplifying the coefficient of k:

ad

(
1

a
+

1

b
+

1

c
+

d

bc

)
+ a+ b+ c+

bc

d
= a+ b+ c+ d+

bc

d
+

ad

b
+

ad

c
+

ad2

bc

= a+
bc

d
+

(
1 +

ad

bc

)
(b+ c+ d)

=
ad+ bc

bcd
[bc+ d(b+ c+ d)]

=
(ad+ bc)(d+ b)(d+ c)

bcd
.

Meanwhile, the right-hand side expands to

RHS =

(
a+ b+ c+

bc

d

)(
a+ d+

ad2

bc

)
− abc ·

(
1

a
+

1

b
+

1

c
+

d

bc

)
=

(
a2 + ab+ ac+

abc

d

)
+ (da+ db+ dc+ bc)

+

(
a2d2

bc
+

ad2

c
+

ad2

b
+ ad

)
− (ab+ bc+ ca+ ad)

= a2 + d(a+ b+ c) +
abc

d
+

a2d2

bc
+

ad2

b
+

ad2

c

= a2 +
abc

d
+ d(a+ b+ c) · ad+ bc

bc

=
ad+ bc

bcd

[
abc+ d2(a+ b+ c)

]
.

Therefore, we get

k =
abc+ d2(a+ b+ c)

(d+ b)(d+ c)
.

In particular,

k − a =
abc+ d2(a+ b+ c)− a(d+ b)(d+ c)

(d+ b)(d+ c)

=
d2(b+ c)− da(b+ c)

(d+ b)(d+ c)
=

d(b+ c)(d− a)

(d+ b)(d+ c)
.
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Now the corresponding point G obeying (♥) satisfies

g − (−d)

0− (−d)
=

(a+ b+ c)− a

k − a

=⇒ g = −d+
d(b+ c)

k − a

= −d+
(d+ b)(d+ c)

d− a
=

db+ dc+ bc+ ad

d− a
.

=⇒ bcg =
bc · ac+ab+ad+bc

abcd
a−d
ad

= −ab+ ac+ ad+ bc

d− a
.

=⇒ g + bcg =
(d− a)(b+ c)

d− a
= b+ c.

Hence G lies on BC and this completes the proof.

¶ Seventh solution using moving points (Zack Chroman). We state the converse of
the problem as follows:

Take a point D on Γ, and let G ∈ Γ such that DG ⊥ BC. Then define K to
lie on GH,AD, and take L ∈ AD such that K is the midpoint of AL. Then
if we define E and F as the projections of L onto AB and AC we want to
show that E, H, F are collinear.

It’s clear that solving this problem will solve the original. In fact we will show later
that each line EF through H corresponds bijectively to the point D.

We animate D projectively on Γ (hence degD = 2). Since D 7→ G is a projective
map Γ → Γ, it follows degG = 2. By Zack’s lemma, deg(AD) ≤ 0 + 2 − 1 = 1 (since
D can coincide with A), and deg(HG) ≤ 0 + 2 − 0 = 2. So again by Zack’s lemma,
degK ≤ 1 + 2− 1 = 2, since lines AD and GH can coincide once if D is the reflection
of H over BC. It follows degL = 2, since it is obtained by dilating K by a factor of 2
across the fixed point A.

Let ∞C be the point at infinity on the line perpendicular to AC, and similarly ∞B.
Then

F = AC ∩∞CL, E = AB ∩∞BL.

We want to use Zack’s lemma again on line ∞BL. Consider the case G = B; we get
HG ‖ AD, so ADGH is a parallelogram, and then K = L = ∞B. Thus there is at least
one t where L = ∞B and by Zack’s lemma we get deg

(
∞BL

)
≤ 0+ 2− 1 = 1. Again by

Zack’s lemma, we conclude degE ≤ 0 + 1− 0 = 1. Similarly, degF ≤ 1.
We were aiming to show E, F , H collinear which is a condition of degree at most

1 + 1 + 0 = 2. So it suffices to verify the problem for three distinct choices of D.

• If D = A, then line GH is line AH, and L = AD ∩AH = A. So E = F = A and
the statement is true.

• If D = B, G is the antipode of C on Γ. Then K = HG ∩ AD is the midpoint of
AB, so L = B. Then E = B and F is the projection of B onto AC, so E, H, F
collinear.

• We finish similarly when D = C.

This completes the proof.
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Remark. Less careful approaches are possible which give a worse bound on the degrees,
requiring to check (say) five choices of D instead. We present the most careful one showing
degD = 2 for instructional reasons, but the others may be easier to find.
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§2.3 TSTST 2019/6, proposed by Nikolai Beluhov
Available online at https://aops.com/community/p12608536.

Problem statement

Suppose P is a polynomial with integer coefficients such that for every positive
integer n, the sum of the decimal digits of |P (n)| is not a Fibonacci number. Must
P be constant?

The answer is yes, P must be constant. By S(n) we mean the sum of the decimal digits
of |n|.

We need two claims.

Claim — If P (x) ∈ Z[x] is nonconstant with positive leading coefficient, then there
exists an integer polynomial F (x) such that all coefficients of P ◦ F are positive
except for the second one, which is negative.

Proof. We will actually construct a cubic F . We call a polynomial good if it has the
property.

First, consider T0(x) = x3 + x+ 1. Observe that in T degP
0 , every coefficient is strictly

positive, except for the second one, which is zero.
Then, let T1(x) = x3 − 1

Dx2 + x + 1. Using continuity as D → ∞, it follows that if
D is large enough (in terms of degP ), then T degP

1 is good, with − 3
Dx3 degP−1 being the

only negative coefficient.
Finally, we can let F (x) = CT1(x) where C is a sufficiently large multiple of D (in

terms of the coefficients of P ); thus the coefficients of (CT1(x))
degP dominate (and are

integers), as needed.

Claim — There are infinitely many Fibonacci numbers in each residue class modulo
9.

Proof. Note the Fibonacci sequence is periodic modulo 9 (indeed it is periodic modulo
any integer). Moreover (allowing negative indices),

F0 = 0 ≡ 0 (mod 9)

F1 = 1 ≡ 1 (mod 9)

F3 = 2 ≡ 2 (mod 9)

F4 = 3 ≡ 3 (mod 9)

F7 = 13 ≡ 4 (mod 9)

F5 = 5 ≡ 5 (mod 9)

F−4 = −3 ≡ 6 (mod 9)

F9 = 34 ≡ 7 (mod 9)

F6 = 8 ≡ 8 (mod 9).

We now show how to solve the problem with the two claims. WLOG P satisfies the
conditions of the first claim, and choose F as above. Let

P (F (x)) = cNxN − cN−1x
N−1 + cN−2x

N−2 + · · ·+ c0

19

https://aops.com/community/p12608536


USA TSTST 2019 Solutions Ankan Bhattacharya and Evan Chen

where ci > 0 (and N = 3 degP ). Then if we select x = 10e for e large enough (say
x > 10maxi ci), the decimal representation P (F (10e)) consists of the concatenation of

• the decimal representation of cN − 1,

• the decimal representation of 10e − cN−1

• the decimal representation of cN−2, with several leading zeros,

• the decimal representation of cN−3, with several leading zeros,

• . . .

• the decimal representation of c0, with several leading zeros.

(For example, if P (F (x)) = 15x3 − 7x2 + 4x+ 19, then P (F (1000)) = 14,993,004,019.)
Thus, the sum of the digits of this expression is equal to

S(P (F (10e))) = 9e+ k

for some constant k depending only on P and F , independent of e. But this will eventually
hit a Fibonacci number by the second claim, contradiction.

Remark. It is important to control the number of negative coefficients in the created
polynomial. If one tries to use this approach on a polynomial P with m > 0 negative
coefficients, then one would require that the Fibonacci sequence is surjective modulo 9m
for any m > 1, which is not true: for example the Fibonacci sequence avoids all numbers
congruent to 4 mod 11 (and thus 4 mod 99).

In bases b for which surjectivity modulo b − 1 fails, the problem is false. For example,
P (x) = 11x+ 4 will avoid all Fibonacci numbers if we take sum of digits in base 12, since
that base-12 sum is necessarily 4 (mod 11), hence not a Fibonacci number.
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§3 Solutions to Day 3
§3.1 TSTST 2019/7, proposed by Ankan Bhattacharya
Available online at https://aops.com/community/p12608512.

Problem statement

Let f : Z → {1, 2, . . . , 10100} be a function satisfying

gcd(f(x), f(y)) = gcd(f(x), x− y)

for all integers x and y. Show that there exist positive integers m and n such that
f(x) = gcd(m+ x, n) for all integers x.

Let P be the set of primes not exceeding 10100. For each p ∈ P, let ep = maxx νp(f(x))
and let cp ∈ argmaxx νp(f(x)).

We show that this is good enough to compute all values of x, by looking at the exponent
at each individual prime.

Claim — For any p ∈ P, we have

νp(f(x)) = min(νp(x− cp), ep).

Proof. Note that for any x, we have

gcd(f(cp), f(x)) = gcd(f(cp), x− cp).

We then take νp of both sides and recall νp(f(x)) ≤ νp(f(cp)) = ep; this implies the
result.

This essentially determines f , and so now we just follow through. Choose n and m
such that

n =
∏
p∈P

pep

m ≡ −cp (mod pep) ∀p ∈ P

the latter being possible by Chinese remainder theorem. Then, from the claim we have

f(x) =
∏
p∈P

pνp(f(x)) =
∏
p|n

pmin(νp(x−cp),ep)

=
∏
p|n

pmin(νp(x+m),νp(n)) = gcd (x+m,n)

for every x ∈ Z, as desired.

Remark. The functions f(x) = x and f(x) = |2x − 1| are examples satisfying the gcd
equation (the latter always being strictly positive). Hence the hypothesis f bounded cannot
be dropped.

21

https://aops.com/community/p12608512


USA TSTST 2019 Solutions Ankan Bhattacharya and Evan Chen

Remark. The pair (m,n) is essentially unique: every other pair is obtained by shifting m
by a multiple of n. Hence there is not really any choice in choosing m and n.
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§3.2 TSTST 2019/8, proposed by Ankan Bhattacharya
Available online at https://aops.com/community/p12608780.

Problem statement

Let S be a set of 16 points in the plane, no three collinear. Let χ(S) denote the
number of ways to draw 8 line segments with endpoints in S, such that no two
drawn segments intersect, even at endpoints. Find the smallest possible value of
χ(S) across all such S.

The answer is 1430. In general, we prove that with 2n points the answer is the nth

Catalan number Cn = 1
n+1

(
2n
n

)
.

First of all, it is well-known that if S is a convex 2n-gon, then χ(S) = Cn.
It remains to prove the lower bound. We proceed by (strong) induction on n, with

the base case n = 0 and n = 1 clear. Suppose the statement is proven for 0, 1, . . . , n and
consider a set S with 2(n+ 1) points.

Let P be a point on the convex hull of S, and label the other 2n+1 points A1, . . . , A2n+1

in order of angle from P .
Consider drawing a segment PA2k+1. This splits the 2n remaining points into two

halves U and V, with 2k and 2(n− k) points respectively.

P

A1

A2

A3

A4 A5

A6 A7

A8
A9

A10

A11

Note that by choice of P , no segment in U can intersect a segment in V. By the
inductive hypothesis,

χ(U) ≥ Ck and χ(V) ≥ Cn−k.

Thus, drawing PA2k+1, we have at least CkCn−k ways to complete the drawing. Over all
choices of k, we obtain

χ(S) ≥ C0Cn + · · ·+ CnC0 = Cn+1

as desired.

Remark. It is possible to show directly from the lower bound proof that convex 2n-gons
achieve the minimum: indeed, every inequality is sharp, and no segment PA2k can be drawn
(since this splits the rest of the points into two halves with an odd number of points, and no
crossing segment can be drawn).
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Bobby Shen points out that in the case of 6 points, a regular pentagon with its center
also achieves equality, so this is not the only equality case.

Remark. The result that χ(S) ≥ 1 for all S is known (consider the choice of 8 segments
with smallest sum), and appeared on Putnam 1979. However, it does not seem that knowing
this gives an advantage for this problem, since the answer is much larger than 1.
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§3.3 TSTST 2019/9, proposed by Ankan Bhattacharya
Available online at https://aops.com/community/p12608472.

Problem statement

Let ABC be a triangle with incenter I. Points K and L are chosen on segment BC
such that the incircles of 4ABK and 4ABL are tangent at P , and the incircles of
4ACK and 4ACL are tangent at Q. Prove that IP = IQ.

We present two solutions.

¶ First solution, mostly elementary (original). Let IB, JB, IC , JC be the incenters of
4ABK, 4ABL, 4ACK, 4ACL respectively.

A

B C

I

K L

P
Q

R

IB

ICJB

JC

We begin with the following claim which does not depend on the existence of tangency
points P and Q.

Claim — Lines BC, IBJC , JBIC meet at a point R (possibly at infinity).

Proof. By rotating by 1
2∠A we have the equality

A(BI; IBJB) = A(IC; ICJC).

It follows (BI; IBJB) = (IC; ICJC) = (CI; JCIC). (One could also check directly that
both cross ratios equal sin∠BAK/2

sin∠CAK/2 ÷ sin∠BAL/2
sin∠CAL/2 , rather than using rotation.)

Therefore, the concurrence follows from the so-called prism lemma on IBIBJB and
ICJCIC .

Remark (Nikolai Beluhov). This result is known; it appears as 4.5.32 in Akopyan’s Geometry
in Figures. The cross ratio is not necessary to prove this claim: it can be proven by length
chasing with circumscribed quadrilaterals. (The generalization mentioned later also admits
a trig-free proof for the analogous step.)

We now bring P and Q into the problem.

Claim — Line PQ also passes through R.
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Proof. Note (BP ; IBJB) = −1 = (CQ; JCIC), so the conclusion again follows by prism
lemma.

We are now ready to complete the proof. Point R is the exsimilicenter of the incircles
of 4ABK and 4ACL, so PIB

RIB
= QJC

RJC
. Now by Menelaus,

IBP

PI
· IQ

QJC
· JCR
RIB

= −1 =⇒ IP = IQ.

Remark (Author’s comments on drawing the diagram). Drawing the diagram directly is
quite difficult. If one draws 4ABC first, they must locate both K and L, which likely
involves some trial and error due to the complex interplay between the two points.

There are alternative simpler ways. For example, one may draw 4AKL first; then the
remaining points B and C are not related and the task is much simpler (though some trial
and error is still required).

In fact, by breaking symmetry, we may only require one application of guesswork. Start
by drawing 4ABK and its incircle; then the incircle of 4ABL may be constructed, and so
point L may be drawn. Thus only the location of point C needs to be guessed. I would be
interested in a method to create a general diagram without any trial and error.

¶ Second solution, inversion (Nikolai Beluhov). As above, the lines BC, IBJC , JBIC
meet at some point R (possibly at infinity). Let ω1, ω2, ω3, ω4 be the incircles of 4ABK,
4ACL, 4ABL, and 4ACK.

Claim — There exists an inversion ι at R swapping {ω1, ω2} and {ω3, ω4}.

Proof. Consider the inversion at R swapping ω1 and ω2. Since ω1 and ω3 are tangent,
the image of ω3 is tangent to ω2 and is also tangent to BC. The circle ω4 is on the
correct side of ω3 to be this image.

Claim — Circles ω1, ω2, ω3, ω4 share a common radical center.

Proof. Let Ω be the circle with center R fixed under ι, and let k be the circle through P
centered at the radical center of Ω, ω1, ω3.

Then k is actually orthogonal to Ω, ω1, ω3, so k is fixed under ι and k is also orthogonal
to ω2 and ω4. Thus the center of k is the desired radical center.

The desired statement immediately follows. Indeed, letting S be the radical center, it
follows that SP and SQ are the common internal tangents to {ω1, ω3} and {ω2, ω4}.

Since S is the radical center, SP = SQ. In light of ∠SPI = ∠SQI = 90◦, it follows
that IP = IQ, as desired.

Remark (Nikolai Beluhov). There exists a circle tangent to all four incircles, because circle
k is orthogonal to all four, and line BC is tangent to all four; thus the inverse of line BC in
k is a circle tangent to all four incircles.

The amusing thing here is that Casey’s theorem is completely unhelpful for proving this
fact: all it can tell us is that there is a line or circle tangent to these incircles, and line BC
already satisfies this property.
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Remark (Generalization by Nikolai Beluhov). The following generalization holds:

Let ABCD be a quadrilateral circumscribed about a circle with center I. A
line through A meets

−−→
BC and

−−→
DC at K and L; another line through A meets−−→

BC and
−−→
DC at M and N . Suppose that the incircles of 4ABK and 4ABM

are tangent at P , and the incircles of 4ACL and 4ACN are tangent at Q.
Prove that IP = IQ.

The first approach can be modified to the generalization. There is an extra initial step
required: by Monge, the exsimilicenter of the incircles of 4ABK and 4ADN lies on line
BD; likewise for the incircles of 4ABL and 4ADM . Now one may prove using the same
trig approach that these pairs of incircles have a common exsimilicenter, and the rest of the
solution plays out similarly. The second approach can also be modified in the same way,
once we obtain that a common exsimilicenter exists. (Thus in the generalization, it seems
we also get there exists a circle tangent to all four incircles.)
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