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§0 Problems
1. Let ABC be a triangle with circumcircle Γ, circumcenter O, and orthocenter H.

Assume that AB 6= AC and ∠A 6= 90◦. Let M and N be the midpoints of AB
and AC, respectively, and let E and F be the feet of the altitudes from B and
C in 4ABC, respectively. Let P be the intersection point of line MN with the
tangent line to Γ at A. Let Q be the intersection point, other than A, of Γ with
the circumcircle of 4AEF . Let R be the intersection point of lines AQ and EF .
Prove that PR ⊥ OH.

2. Ana and Banana are playing a game. First Ana picks a word, which is defined to be
a nonempty sequence of capital English letters. Then Banana picks a nonnegative
integer k and challenges Ana to supply a word with exactly k subsequences which
are equal to Ana’s word. Ana wins if she is able to supply such a word, otherwise
she loses. For example, if Ana picks the word “TST”, and Banana chooses k = 4,
then Ana can supply the word “TSTST” which has 4 subsequences which are equal
to Ana’s word. Which words can Ana pick so that she can win no matter what
value of k Banana chooses?

3. Consider solutions to the equation

x2 − cx+ 1 =
f(x)

g(x)

where f and g are nonzero polynomials with nonnegative real coefficients. For each
c > 0, determine the minimum possible degree of f , or show that no such f , g exist.

4. Find all nonnegative integer solutions to

2a + 3b + 5c = n!.

5. Let ABC be a triangle with incenter I. Let D be a point on side BC and let ωB

and ωC be the incircles of 4ABD and 4ACD, respectively. Suppose that ωB and
ωC are tangent to segment BC at points E and F , respectively. Let P be the
intersection of segment AD with the line joining the centers of ωB and ωC . Let X
be the intersection point of lines BI and CP and let Y be the intersection point of
lines CI and BP . Prove that lines EX and FY meet on the incircle of 4ABC.

6. A sequence of positive integers (an)n≥1 is of Fibonacci type if it satisfies the recursive
relation an+2 = an+1+an for all n ≥ 1. Is it possible to partition the set of positive
integers into an infinite number of Fibonacci type sequences?
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§1 Solutions to Day 1
§1.1 TSTST 2017/1, proposed by Ray Li
Available online at https://aops.com/community/p8526098.

Problem statement

Let ABC be a triangle with circumcircle Γ, circumcenter O, and orthocenter H.
Assume that AB 6= AC and ∠A 6= 90◦. Let M and N be the midpoints of AB
and AC, respectively, and let E and F be the feet of the altitudes from B and
C in 4ABC, respectively. Let P be the intersection point of line MN with the
tangent line to Γ at A. Let Q be the intersection point, other than A, of Γ with the
circumcircle of 4AEF . Let R be the intersection point of lines AQ and EF . Prove
that PR ⊥ OH.

¶ First solution (power of a point). Let γ denote the nine-point circle of ABC.

A

B C

M N

O
H

E

F

R

Q
P

Note that

• PA2 = PM · PN , so P lies on the radical axis of Γ and γ.

• RA ·RQ = RE ·RF , so R lies on the radical axis of Γ and γ.

Thus PR is the radical axis of Γ and γ, which is evidently perpendicular to OH.

Remark. In fact, by power of a point one may also observe that R lies on BC, since it is
on the radical axis of (AQFHE), (BFEC), (ABC). Ironically, this fact is not used in the
solution.

¶ Second solution (barycentric coordinates). Again note first R ∈ BC (although this
can be avoided too). We compute the points in much the same way as before. Since
AP ∩BC = (0 : b2 : −c2) we have

P =
(
b2 − c2 : b2 : −c2

)
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(since x = y + z is the equation of line MN). Now in Conway notation we have

R = EF ∩BC = (0 : SC : −SB) =
(
0 : a2 + b2 − c2 : −a2 + b2 − c2

)
.

Hence
−→
PR =

1

2(b2 − c2)

(
b2 − c2, c2 − a2, a2 − b2

)
.

On the other hand, we have
−−→
OH = ~A+ ~B + ~C. So it suffices to check that∑

cyc
a2

(
(a2 − b2) + (c2 − a2)

)
= 0

which is immediate.

¶ Third solution (complex numbers). Let ABC be the unit circle. We first compute
P as the midpoint of A and AA ∩BC:

p =
1

2

(
a+

a2(b+ c)− bc · 2a
a2 − bc

)
=

a(a2 − bc) + a2(b+ c)− 2abc

2(a2 − bc)
.

Using the remark above, R is the inverse of D with respect to the circle with diameter
BC, which has radius

∣∣1
2(b− c)

∣∣. Thus

r − b+ c

2
=

1
4(b− c)

(
1
b −

1
c

)
1
2

(
a− bc

a

)
r =

b+ c

2
+

−1
2
(b−c)2

bc
1
a − a

bc

=
b+ c

2
+

a(b− c)2

2(a2 − bc)

=
a(b− c)2 + (b+ c)(a2 − bc)

2(a2 − bc)
.

Expanding and subtracting gives

p− r =
a3 − abc− ab2 − ac2 + b2c+ bc2

2(a2 − bc)
=

(a+ b+ c)(a− b)(a− c)

2(a2 − bc)

which is visibly equal to the negation of its conjugate once the factor of a + b + c is
deleted.

(Actually, one can guess this factorization ahead of time by noting that if A = B, then
P = B = R, so a− b must be a factor; analogously a− c must be as well.)
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§1.2 TSTST 2017/2, proposed by Kevin Sun
Available online at https://aops.com/community/p8526115.

Problem statement

Ana and Banana are playing a game. First Ana picks a word, which is defined to be
a nonempty sequence of capital English letters. Then Banana picks a nonnegative
integer k and challenges Ana to supply a word with exactly k subsequences which
are equal to Ana’s word. Ana wins if she is able to supply such a word, otherwise
she loses. For example, if Ana picks the word “TST”, and Banana chooses k = 4,
then Ana can supply the word “TSTST” which has 4 subsequences which are equal
to Ana’s word. Which words can Ana pick so that she can win no matter what value
of k Banana chooses?

First we introduce some notation. Define a block of letters to be a maximal contiguous
subsequence of consecutive letters. For example, the word AABBBCAAA has four
blocks, namely AA, BBB, C, AAA. Throughout the solution, we fix the word A that
Ana picks, and introduce the following notation for its m blocks:

A = A1A2 . . . Am = a1 . . . a1︸ ︷︷ ︸
x1

a2 . . . a2︸ ︷︷ ︸
x2

. . . am . . . am︸ ︷︷ ︸
xm

.

A rainbow will be a subsequence equal to Ana’s initial word A (meaning Ana seeks words
with exactly k rainbows). Finally, for brevity, let Ai = ai . . . ai︸ ︷︷ ︸

xi

, so A = A1 . . . Am.

We prove two claims that resolve the problem.

Claim — If xi = 1 for some i, then for any k ≥ 1, the word

W = A1 . . . Ai−1 ai . . . ai︸ ︷︷ ︸
k

Ai+1 . . . Am

obtained by repeating the ith letter k times has exactly k rainbows.

Proof. Obviously there are at least
(

k
k−1

)
= k rainbows, obtained by deleting k−1 choices

of the letter ai in the repeated block. We show they are the only ones.
Given a rainbow, consider the location of this singleton block in W . It cannot occur

within the first |A1|+· · ·+|Ai−1| letters, nor can it occur within the final |Ai+1|+· · ·+|Am|
letters. So it must appear in the ith block of W . That implies that all the other ai’s in
the ith block of W must be deleted, as desired. (This last argument is actually nontrivial,
and has some substance; many students failed to realize that the upper bound requires
care.)

Claim — If xi ≥ 2 for all i, then no word W has exactly two rainbows.

Proof. We prove if there are two rainbows of W , then we can construct at least three
rainbows.

Let W = w1 . . . wn and consider the two rainbows of W . Since they are not the same,
there must be a block Ap of the rainbow, of length ` ≥ 2, which do not occupy the same
locations in W .
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Assume the first rainbow uses wi1 , . . . , wi` for this block and the second rainbow uses
wj1 , . . . , wj` for this block. Then among the letters wq for min(i1, j1) ≤ q ≤ max(i`, j`),
there must be at least `+ 1 copies of the letter ap. Moreover, given a choice of ` copies
of the letter ap in this range, one can complete the subsequence to a rainbow. So the
number of rainbows is at least

(
`+1
`

)
≥ `+ 1.

Since ` ≥ 2, this proves W has at least three rainbows.

In summary, Ana wins if and only if xi = 1 for some i, since she can duplicate the
isolated letter k times; but if xi ≥ 2 for all i then Banana only needs to supply k = 2.
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§1.3 TSTST 2017/3, proposed by Calvin Deng, Linus Hamilton
Available online at https://aops.com/community/p8526130.

Problem statement

Consider solutions to the equation

x2 − cx+ 1 =
f(x)

g(x)

where f and g are nonzero polynomials with nonnegative real coefficients. For each
c > 0, determine the minimum possible degree of f , or show that no such f , g exist.

First, if c ≥ 2 then we claim no such f and g exist. Indeed, one simply takes x = 1 to
get f(1)/g(1) ≤ 0, impossible.

For c < 2, let c = 2 cos θ, where 0 < θ < π. We claim that f exists and has minimum
degree equal to n, where n is defined as the smallest integer satisfying sinnθ ≤ 0. In
other words

n =

⌈
π

arccos(c/2)

⌉
.

First we show that this is necessary. To see it, write explicitly

g(x) = a0 + a1x+ a2x
2 + · · ·+ an−2x

n−2

with each ai ≥ 0, and an−2 6= 0. Assume that n is such that sin(kθ) ≥ 0 for k = 1, . . . , n−1.
Then, we have the following system of inequalities:

a1 ≥ 2 cos θ · a0
a0 + a2 ≥ 2 cos θ · a1
a1 + a3 ≥ 2 cos θ · a2

...
an−5 + an−3 ≥ 2 cos θ · an−4

an−4 + an−2 ≥ 2 cos θ · an−3

an−3 ≥ 2 cos θ · an−2.

Now, multiply the first equation by sin θ, the second equation by sin 2θ, et cetera, up to
sin ((n− 1)θ). This choice of weights is selected since we have

sin (kθ) + sin ((k + 2)θ) = 2 sin ((k + 1)θ) cos θ

so that summing the entire expression cancels nearly all terms and leaves only

sin ((n− 2)θ) an−2 ≥ sin ((n− 1)θ) · 2 cos θ · an−2

and so by dividing by an−2 and using the same identity gives us sin(nθ) ≤ 0, as claimed.
This bound is best possible, because the example

ak = sin ((k + 1)θ) ≥ 0

makes all inequalities above sharp, hence giving a working pair (f, g).
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Remark. Calvin Deng points out that a cleaner proof of the lower bound is to take
α = cos θ+ i sin θ. Then f(α) = 0, but by condition the imaginary part of f(α) is apparently
strictly positive, contradiction.

Remark. Guessing that c < 2 works at all (and realizing c ≥ 2 fails) is the first part of the
problem.

The introduction of trigonometry into the solution may seem magical, but is motivated
in one of two ways:

• Calvin Deng points out that it’s possible to guess the answer from small cases: For
c ≤ 1 we have n = 3, tight at x3+1

x+1 = x2 − x+ 1, and essentially the “sharpest n = 3

example”. A similar example exists at n = 4 with x4+1
x2+

√
2x+1

= x2 −
√
2x+ 1 by the

Sophie-Germain identity. In general, one can do long division to extract an optimal
value of c for any given n, although c will be the root of some polynomial.
The thresholds c ≤ 1 for n = 3, c ≤

√
2 for n = 4, c ≤ 1+

√
5

2 for n = 5, and c ≤ 2 for
n < ∞ suggest the unusual form of the answer via trigonometry.

• One may imagine trying to construct a polynomial recursively / greedily by making all
inequalities above hold (again the “sharpest situation” in which f has few coefficients).
If one sets c = 2t, then we have

a0 = 1, a1 = 2t, a2 = 4t2 − 1, a3 = 8t3 − 4t, . . .

which are the Chebyshev polynomials of the second type. This means that trigonometry
is essentially mandatory. (One may also run into this when by using standard linear
recursion techniques, and noting that the characteristic polynomial has two conjugate
complex roots.)

Remark. Mitchell Lee notes that an IMO longlist problem from 1997 shows that if P (x) is
any polynomial satisfying P (x) > 0 for x > 0, then (x+1)nP (x) has nonnegative coefficients
for large enough n. This show that f and g at least exist for c ≤ 2, but provides no way of
finding the best possible deg f .

Meghal Gupta also points out that showing f and g exist is possible in the following way:(
x2 − 1.99x+ 1

) (
x2 + 1.99x+ 1

)
=

(
x4 − 1.9601x2 + 1

)
and so on, repeatedly multiplying by the “conjugate” until all coefficients become positive.
To my best knowledge, this also does not give any way of actually minimizing deg f , although
Ankan Bhattacharya points out that this construction is actually optimal in the case where
n is a power of 2.

Remark. It’s pointed out that Matematicheskoe Prosveshchenie, issue 1, 1997, page 194
contains a nearly analogous result, available at https://mccme.ru/free-books/matpros/
pdf/mp-01.pdf with solutions presented in https://mccme.ru/free-books/matpros/pdf/
mp-05.pdf, pages 221–223; and https://mccme.ru/free-books/matpros/pdf/mp-10.pdf,
page 274.
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§2 Solutions to Day 2
§2.1 TSTST 2017/4, proposed by Mark Sellke
Available online at https://aops.com/community/p8526131.

Problem statement

Find all nonnegative integer solutions to

2a + 3b + 5c = n!.

For n ≤ 4, one can check the only solutions are:

22 + 30 + 50 = 3!

21 + 31 + 50 = 3!

24 + 31 + 51 = 4!.

Now we prove there are no solutions for n ≥ 5.
A tricky way to do this is to take modulo 120, since

2a (mod 120) ∈ {1, 2, 4, 8, 16, 32, 64}
3b (mod 120) ∈ {1, 3, 9, 27, 81}
5c (mod 120) ∈ {1, 5, 25}

and by inspection one notes that no three elements have vanishing sum modulo 120.
I expect most solutions to instead use casework. Here is one possible approach with

cases (with n ≥ 5). First, we analyze the cases where a < 3:

• a = 0: No solutions for parity reasons.

• a = 1: since 3b + 5c ≡ 6 (mod 8), we find b even and c odd (hence c 6= 0). Now
looking modulo 5 gives that 3b + 5c ≡ 3 (mod 5),

• a = 2: From 3b + 5c ≡ 4 (mod 8), we find b is odd and c is even. Now looking
modulo 5 gives a contradiction, even if c = 0, since 3b ∈ {2, 3 (mod 5)} but
3b + 5c ≡ 1 (mod 5).

Henceforth assume a ≥ 3. Next, by taking modulo 8 we have 3b +5c ≡ 0 (mod 8), which
forces both b and c to be odd (in particular, b, c > 0). We now have

2a + 5c ≡ 0 (mod 3)

2a + 3b ≡ 0 (mod 5).

The first equation implies a is even, but the second equation requires a to be odd,
contradiction. Hence no solutions with n ≥ 5.

9
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§2.2 TSTST 2017/5, proposed by Ray Li
Available online at https://aops.com/community/p8526136.

Problem statement

Let ABC be a triangle with incenter I. Let D be a point on side BC and let ωB

and ωC be the incircles of 4ABD and 4ACD, respectively. Suppose that ωB and
ωC are tangent to segment BC at points E and F , respectively. Let P be the
intersection of segment AD with the line joining the centers of ωB and ωC . Let X
be the intersection point of lines BI and CP and let Y be the intersection point of
lines CI and BP . Prove that lines EX and FY meet on the incircle of 4ABC.

¶ First solution (homothety). Let Z be the diametrically opposite point on the incircle.
We claim this is the desired intersection.

A

B CD

IB
IC

E F

I

P

X

Y

Z

TW

Note that:

• P is the insimilicenter of ωB and ωC

• C is the exsimilicenter of ω and ωC .

Thus by Monge theorem, the insimilicenter of ωB and ω lies on line CP .
This insimilicenter should also lie on the line joining the centers of ω and ωB, which is

BI, hence it coincides with the point X. So X ∈ EZ as desired.

¶ Second solution (harmonic). Let T = IBIC ∩ BC, and W the foot from I to BC.
Define Z = FY ∩ IW . Because ∠IBDIC = 90◦, we have

−1 = (IBIC ;PT )
B
= (IIC ;Y C)

F
= (I∞;ZW )

So I is the midpoint of ZW as desired.

¶ Third solution (outline, barycentric, Andrew Gu). Let AD = t, BD = x, CD = y,
so a = x+ y and by Stewart’s theorem we have

(x+ y)(xy + t2) = b2x+ c2y. (1)

10
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We then have D = (0 : y : x) and so

AIB ∩BC =

(
0 : y +

tx

c+ t
:

cx

c+ t

)
hence intersection with BI gives

IB = (ax : cy + at : cx).

Similarly,

IC = (ay : by : bx+ at).

Then, we can compute

P = (2axy : y(at+ bx+ cy) : x(at+ bx+ cy))

since P ∈ IBIC , and clearly P ∈ AD. Intersection now gives

X = (2ax : at+ bx+ cy : 2cx)

Y = (2ay : 2by : at+ bx+ cy) .

Finally, we have BE = 1
2(c + x − t), and similarly for CF . Now if we reflect D =

(0, s−c
a , s−b

a ) over I = ( a
2s ,

b
2s ,

c
2s), we get the antipode

Q :=
(
4a2 : −a2 + 2ab− b2 + c2 : −a2 + 2ac− c2 + b2

)
.

We may then check Q lies on each of lines EX and FY (by checking det(Q,E,X) = 0
using the equation (1)).
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§2.3 TSTST 2017/6, proposed by Ivan Borsenco
Available online at https://aops.com/community/p8526142.

Problem statement

A sequence of positive integers (an)n≥1 is of Fibonacci type if it satisfies the recursive
relation an+2 = an+1 + an for all n ≥ 1. Is it possible to partition the set of positive
integers into an infinite number of Fibonacci type sequences?

Yes, it is possible. The following solutions were written for me by Kevin Sun and Mark
Sellke. We let F1 = F2 = 1, F3 = 2, F4 = 3, F5 = 5, . . .denote the Fibonacci numbers.

¶ First solution (Kevin Sun). We are going to appeal to the so-called Zeckendorf
theorem:

Theorem (Zeckendorf)
Every positive integer can be uniquely expressed as the sum of nonconsecutive
Fibonacci numbers.

This means every positive integer has a Zeckendorf (“Fibonacci-binary”) representation
where we put 1 in the ith digit from the right if Fi+1 is used. The idea is then to take
the following so-called Wythoff array:

• Row 1: 1, 2, 3, 5, . . .

• Row 101: 1 + 3, 2 + 5, 3 + 8, . . .

• Row 1001: 1 + 5, 2 + 8, 3 + 13, . . .

• Row 10001: 1 + 8, 2 + 13, 3 + 21, . . .

• Row 10101: 1 + 3 + 8, 2 + 5 + 13, 3 + 8 + 21, . . .

• . . .et cetera.

More concretely, the array has the following rows to start:

1 2 3 5 8 13 21 · · ·
4 7 11 18 29 47 76 · · ·
6 10 16 26 42 68 110 · · ·
9 15 24 39 63 102 165 · · ·
12 20 32 52 84 136 220 · · ·
14 23 37 60 97 157 254 · · ·
17 28 45 73 118 191 309 · · ·
...

...
...

...
...

...
... . . .

.

Here are the full details.
We begin by outlining a proof of Zeckendorf’s theorem, which implies the representation

above is unique. Note that if Fk is the greatest Fibonacci number at most n, then

n− Fk < Fk+1 − Fk = Fk−1.

12
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In particular, repeatedly subtracting off the largest Fk from n will produce one such
representation with no two consecutive Fibonacci numbers. On the other hand, this Fk

must be used, as
n ≥ Fk > Fk−1 + Fk−3 + Fk−5 + · · ·

This shows, by a simple inductive argument, that such a representation exists and unique.
We write n = ak . . . a1Fib for the Zeckendorf representation as we described (where

ai = 1 if Fi+1 is used). Now for each ak . . . a1Fib with a1 = 1, consider the sequence

ak . . . a1Fib, ak . . . a10Fib, ak . . . a100Fib, . . .

These sequences are Fibonacci-type by definition, and partition the positive integers since
each positive integer has exactly one Fibonacci base representation.

¶ Second solution. Call an infinite set of integers S sandwiched if there exist increasing
sequences {ai}∞i=0, {bi}∞i=0 such that the following are true:

• ai + ai+1 = ai+2 and bi + bi+1 = bi+2.

• The intervals [ai + 1, bi − 1] are disjoint and are nondecreasing in length.

• S =

∞⋃
i=0

[ai + 1, bi − 1].

We claim that if S is any nonempty sandwiched set, then S can be partitioned
into a Fibonacci-type sequence (involving the smallest element of S) and two smaller
sandwiched sets. If this claim is proven, then we can start with N \ {1, 2, 3, 5, . . . }, which
is a sandwiched set, and repeatedly perform this partition, which will eventually sort
each natural number into a Fibonacci-type sequence.

Let S be a sandwiched set given by {ai}∞i=0, {bi}∞i=0, so the smallest element in S is
x = a0 + 1. Note that y = a1 + 1 is also in S and x < y. Then consider the Fibonacci-
type sequence given by f0 = x, f1 = y, and fk+2 = fk+1 + fk. We can then see that
fi ∈ [ai+1, bi−1], as the sum of numbers in the intervals [ak+1, bk−1], [ak+1+1, bk+1−1]
lies in the interval

[ak + ak+1 + 2, bk + bk+1 − 2] = [ak+2 + 2, bk+2 − 2] ⊂ [ak+2 + 1, bk+2 − 1].

Therefore, this gives a natural partition of S into this sequence and two sets:

S1 =
∞⋃
i=0

[ai + 1, fi − 1]

and S2 =
∞⋃
i=0

[fi + 1, bi − 1].

(For convenience, [x, x− 1] will be treated as the empty set.)
We now show that S1 and S2 are sandwiched. Since {ai}, {fi}, and {bi} satisfy the

Fibonacci recurrence, it is enough to check that the intervals have nondecreasing lengths.
For S1, that is equivalent to fk+1 − ak+1 ≥ fk − ak for each k. Fortunately, for k ≥ 1,
the difference is fk−1 − ak−1 ≥ 0, and for k = 0, f1 − a1 = 1 = f0 − a0. Similarly for S2,
checking bk+1 − fk+1 ≥ bk − fk is easy for k ≥ 1 as bk−1 − fk−1 ≥ 0, and

(b1 − f1)− (b0 − f0) = (b1 − a1)− (b0 − a0),

13
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which is nonnegative since the lengths of intervals in S are nondecreasing.
Therefore we have shown that S1 and S2 are sandwiched. (Note that some of the

[ai + 1, fi − 1] may be empty, which would shift some indices back.) Since this gives us
a procedure to take a set S and produce a Fibonacci-type sequence with its smallest
element, along which two other sandwiched types, we can partition N into an infinite
number of Fibonacci-type sequences.

¶ Third solution. We add Fibonacci-type sequences one-by-one. At each step, let x be
the smallest number that has not been used in any previous sequence. We generate a
new Fibonacci-type sequence as follows. Set a0 = x and for i ≥ 1, set

ai =

⌊
ϕai−1 +

1

2

⌋
.

Equivalently, ai is the closest integer to ϕai−1.
It suffices to show that this sequence is Fibonacci-type and that no two sequences
generated in this way overlap. We first show that for a positive integer n,⌊

ϕ

⌊
ϕn+

1

2

⌋
+

1

2

⌋
= n+

⌊
ϕn+

1

2

⌋
.

Indeed, ⌊
ϕ

⌊
ϕn+

1

2

⌋
+

1

2

⌋
=

⌊
(1 + ϕ−1)

⌊
ϕn+

1

2

⌋
+

1

2

⌋
=

⌊
ϕn+

1

2

⌋
+

⌊
ϕ−1

⌊
ϕn+

1

2

⌋
+

1

2

⌋
.

Note that
⌊
ϕn+ 1

2

⌋
= ϕn+ c for some |c| ≤ 1

2 ; this implies that ϕ−1
⌊
ϕn+ 1

2

⌋
is within

ϕ−1 · 1
2 < 1

2 of n, so its closest integer is n, proving the claim.
Therefore these sequences are Fibonacci-type. Additionally, if a 6= b, then |ϕa− ϕb| ≥

ϕ > 1. Then

a 6= b =⇒
⌊
ϕa+

1

2

⌋
6=

⌊
ϕb+

1

2

⌋
,

and since the first term of each sequence is chosen to not overlap with any previous
sequences, these sequences are disjoint.

Remark. Ankan Bhattacharya points out that the same sequence essentially appears in
IMO 1993, Problem 5 — in other words, a strictly increasing function f : Z>0 → Z>0 with
f(1) = 2, and f(f(n)) = f(n) + n.

Nikolai Beluhov sent us an older reference from March 1977, where Martin Gardner wrote
in his column about Wythoff’s Nim. The relevant excerpt goes:

“Imagine that we go through the infinite sequence of safe pairs (in the manner
of Eratosthenes’ sieve for sifting out primes) and cross out the infinite set of all
safe pairs that are pairs in the Fibonacci sequence. The smallest pair that is
not crossed out is 4/7. We can now cross out a second infinite set of safe pairs,
starting with 4/7, that are pairs in the Lucas sequence. An infinite number
of safe pairs, of which the lowest is now 6/10, remain. This pair too begins
another infinite Fibonacci sequence, all of whose pairs are safe. The process
continues forever. Robert Silber, a mathematician at North Carolina State
University, calls a safe pair “primitive” if it is the first safe pair that generates
a Fibonacci sequence.”
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The relevant article by Robert Silber is A Fibonacci Property of Wythoff Pairs, from The
Fibonacci Quarterly 11/1976.

¶ Fourth solution (Mark Sellke). For later reference let

f1 = 0, f2 = 1, f3 = 1, . . .

denote the ordinary Fibonacci numbers. We will denote the Fibonacci-like sequences by
F i and the elements with subscripts; hence F 2

1 is the first element of the second sequence.
Our construction amounts to just iteratively add new sequences; hence the following
claim is the whole problem.

Lemma
For any disjoint collection of Fibonacci-like sequences F 1, . . . , F k and any integer m
contained in none of them, there is a new Fibonacci-like sequence F k+1 beginning
with F k+1

1 = m which is disjoint from the previous sequences.

Observe first that for each sequence F j there is cj ∈ Rn such that

F j
n = cjφn + o(1)

where
φ =

1 +
√
5

2
.

Collapse the group (R+,×) into the half-open interval J = {x | 1 ≤ x < φ} by defining
T (x) = y for the unique y ∈ J with x = yφn for some integer n.

Fix an interval I = [a, b] ⊆ [1.2, 1.3] (the last condition is to avoid wrap-around issues)
which contains none of the cj , and take ε < 0.001 to be small enough that in fact each cj

has distance at least 10ε from I; this means any cj and element of I differ by at least a
(1 + 10ε) factor. The idea will be to take F k+1

1 = m and F k+1
2 to be a large such that

the induced values of F k+1
j grow like kφj for j ∈ T−1(I), so that F k+1

n is separated from
the cj after applying T . What’s left to check is the convergence.

Now let
c = lim

n→∞

fn
φn

and take M large enough that for n > M we have∣∣∣∣ fncφn
− 1

∣∣∣∣ < ε.

Now T−1(I)
c contains arbitrarily large integers, so there are infinitely many N with

cN ∈ T−1(I) with N > 10m
ε . We claim that for any such N , the sequence F (N) defined

by
F

(N)
1 = m,F

(N)
2 = N

will be very multiplicatively similar to the normal Fibonacci numbers up to rescaling;
indeed for j = 2, j = 3 we have F

(N)
2
f2

= N,
F

(N)
3
f3

= N +m and so by induction we will
have

F
(N)
j

fj
∈ [N,N +m] ⊆ [N,N(1 + ε)]

15
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for j ≥ 2. Therefore, up to small multiplicative errors, we have

F
(N)
j ≈ Nfj ≈ cNφj .

From this we see that for j > M we have

T (F
(N)
j ) ∈ T (cN) · [1− 2ε, 1 + 2ε].

In particular, since T (cN) ∈ I and I is separated from each cj by a factor of (1 + 10ε),
we get that F

(N)
j is not in any of F 1, F 2, . . . , F k.

Finishing is easy, since we now have a uniform estimate on how many terms we need
to check for a new element before the exponential growth takes over. We will just use
pigeonhole to argue that there are few possible collisions among those early terms, so we
can easily pick a value of N which avoids them all. We write it out below.

For large L, the set
SL = (I · φL) ∩ Z

contains at least kIφ
L elements. As N ranges over SL, for each fixed j, the value of F (N)

j

varies by at most a factor of 1.1 because we imposed I ⊆ [1.2, 1.3] and so this is true for
the first two terms, hence for all subsequent terms by induction. Now suppose L is very
large, and consider a fixed pair (i, j) with i ≤ k and j ≤ M . We claim there is at most 1

possible value k such that the term F i
k could equal F (N)

j for some N ∈ SL; indeed, the
terms of F i are growing at exponential rate with factor φ > 1.1, so at most one will be
in a given interval of multiplicative width at most 1.1.

Hence, of these kIφ
L values of N , at most kM could cause problems, one for each pair

(i, j). However by monotonicity of F (N)
j in N , at most 1 value of N causes a collision for

each pair (i, j). Hence for large L so that kIφ
L > 10kM we can find a suitable N ∈ SL

by pigeonhole and the sequence F (N) defined by (m,N,N +m, . . . ) works.

16


	Problems
	Solutions to Day 1
	TSTST 2017/1, proposed by Ray Li
	TSTST 2017/2, proposed by Kevin Sun
	TSTST 2017/3, proposed by Calvin Deng, Linus Hamilton

	Solutions to Day 2
	TSTST 2017/4, proposed by Mark Sellke
	TSTST 2017/5, proposed by Ray Li
	TSTST 2017/6, proposed by Ivan Borsenco


