
TSTST 2011 Solution Notes
Lincoln, Nebraska

Evan Chen《陳誼廷》
8 December 2023

This is a compilation of solutions for the 2011 TSTST. Some of the solutions
are my own work, but many are from the official solutions provided by the
organizers (for which they hold any copyrights), and others were found by
users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Find all real-valued functions f defined on pairs of real numbers, having the

following property: for all real numbers a, b, c, the median of f(a, b), f(b, c), f(c, a)
equals the median of a, b, c.
(The median of three real numbers, not necessarily distinct, is the number that is
in the middle when the three numbers are arranged in nondecreasing order.)

2. Two circles ω1 and ω2 intersect at points A and B. Line ` is tangent to ω1 at P
and to ω2 at Q so that A is closer to ` than B. Let X and Y be points on major
arcs P̃A (on ω1) and ÃQ (on ω2), respectively, such that AX/PX = AY /QY = c.
Extend segments PA and QA through A to R and S, respectively, such that
AR = AS = c · PQ. Given that the circumcenter of triangle ARS lies on line XY ,
prove that ∠XPA = ∠AQY .

3. Prove that there exists a real constant c such that for any pair (x, y) of real numbers,
there exist relatively prime integers m and n satisfying the relation√

(x−m)2 + (y − n)2 < c log(x2 + y2 + 2).

4. Acute triangle ABC is inscribed in circle ω. Let H and O denote its orthocenter
and circumcenter, respectively. Let M and N be the midpoints of sides AB and
AC, respectively. Rays MH and NH meet ω at P and Q, respectively. Lines MN
and PQ meet at R. Prove that OA ⊥ RA.

5. At a certain orphanage, every pair of orphans are either friends or enemies. For
every three of an orphan’s friends, an even number of pairs of them are enemies.
Prove that it’s possible to assign each orphan two parents such that every pair of
friends shares exactly one parent, but no pair of enemies does, and no three parents
are in a love triangle (where each pair of them has a child).

6. Let a, b, c be real numbers in the interval [0, 1] with a+ b, b+ c, c+ a ≥ 1. Prove
that

1 ≤ (1− a)2 + (1− b)2 + (1− c)2 +
2
√
2abc√

a2 + b2 + c2
.

7. Let ABC be a triangle. Its excircles touch sides BC, CA, AB at D, E, F . Prove
that the perimeter of triangle ABC is at most twice that of triangle DEF .

8. Let x0, x1, . . . , xn0−1 be integers, and let d1, d2, . . . , dk be positive integers with
n0 = d1 > d2 > · · · > dk and gcd(d1, d2, . . . , dk) = 1. For every integer n ≥ n0,
define

xn =

⌊
xn−d1 + xn−d2 + · · ·+ xn−dk

k

⌋
.

Show that the sequence (xn) is eventually constant.

9. Let n be a positive integer. Suppose we are given 2n+1 distinct sets, each containing
finitely many objects. Place each set into one of two categories, the red sets and
the blue sets, so that there is at least one set in each category. We define the
symmetric difference of two sets as the set of objects belonging to exactly one of
the two sets. Prove that there are at least 2n different sets which can be obtained
as the symmetric difference of a red set and a blue set.
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§1 Solutions to Day 1
§1.1 TSTST 2011/1
Available online at https://aops.com/community/p2374841.

Problem statement

Find all real-valued functions f defined on pairs of real numbers, having the following
property: for all real numbers a, b, c, the median of f(a, b), f(b, c), f(c, a) equals the
median of a, b, c.

(The median of three real numbers, not necessarily distinct, is the number that is
in the middle when the three numbers are arranged in nondecreasing order.)

The following solution is joint with Andrew He.
We prove the following main claim, from which repeated applications can deduce the

problem.

Claim — Let a < b < c be arbitrary. On {a, b, c}2, f takes one of the following two
forms, where the column indicates the x-value and the row indicates the y-value.

f a b c

a a b ≥ c
b ≤ a b ≥ c
c ≤ a b c

or

f a b c

a a ≤ a ≤ a
b b b b
c ≥ c ≥ c c

Proof. First, we of course have f(x, x) = x for all x. Now:

• By considering the assertion for (a, a, c) and (a, c, c) we see that one of f(a, c) and
f(c, a) is ≥ c and the other is ≤ a.

• Hence, by considering (a, b, c) we find that one of f(a, b) and f(b, c) must be b, and
similarly for f(b, a) and f(c, b).

• Now, WLOG f(b, a) = b; we prove we get the first case.

• By considering (a, a, b) we deduce f(a, b) ≤ a, so f(b, c) = b and then f(c, b) ≥ c.

• Finally, considering (c, b, a) once again in conjunction with the first bullet, we arrive
at the conclusion that f(a, c) ≤ a; similarly f(c, a) ≥ c.

From this it’s easy to obtain that f(x, y) ≡ x or f(x, y) ≡ y are the only solutions.

3

https://aops.com/community/p2374841


TSTST 2011 Solution Notes Evan Chen《陳誼廷》

§1.2 TSTST 2011/2
Available online at https://aops.com/community/p2374843.

Problem statement

Two circles ω1 and ω2 intersect at points A and B. Line ` is tangent to ω1 at P
and to ω2 at Q so that A is closer to ` than B. Let X and Y be points on major
arcs P̃A (on ω1) and ÃQ (on ω2), respectively, such that AX/PX = AY /QY = c.
Extend segments PA and QA through A to R and S, respectively, such that
AR = AS = c · PQ. Given that the circumcenter of triangle ARS lies on line XY ,
prove that ∠XPA = ∠AQY .

We begin as follows:

Claim — There is a spiral similarity centered at X mapping AR to PQ. Similarly
there is a spiral similarity centered at Y mapping SA to PQ.

Proof. Since ]XAR = ]XAP = ]XPQ, and AR/AX = PQ/PX is given.

Now the composition of the two spiral similarities

AR
X7−→ PQ

Y7−→ SA

must be a rotation, since AR = AS. The center of this rotation must coincide with the
circumcenter O of 4ARS, which is known to lie on line XY .

A

Q

P

X

Y

R

S
O

O′

As O is a fixed-point of the composed map above, we may let O′ be the image of O
under the rotation at X, so that

4XPA
+∼ 4XO′O, 4Y QA

+∼ 4Y O′O.

Because
XO

XO′ =
XA

XP
= c

Y Q

Y A
=

Y O

Y O′
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it follows O′O bisects ∠XO′Y . Finally, we have

]XPA = ]XO′O = ]OO′Y = ]AQY.

Remark. Indeed, this also shows XP ‖ Y Q; so the positive homothety from ω1 to ω2 maps
P to Q and X to Y .
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§1.3 TSTST 2011/3
Available online at https://aops.com/community/p2374845.

Problem statement

Prove that there exists a real constant c such that for any pair (x, y) of real numbers,
there exist relatively prime integers m and n satisfying the relation√

(x−m)2 + (y − n)2 < c log(x2 + y2 + 2).

This is actually the same problem as USAMO 2014/6. Surprise!
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§2 Solutions to Day 2
§2.1 TSTST 2011/4
Available online at https://aops.com/community/p2374848.

Problem statement

Acute triangle ABC is inscribed in circle ω. Let H and O denote its orthocenter
and circumcenter, respectively. Let M and N be the midpoints of sides AB and
AC, respectively. Rays MH and NH meet ω at P and Q, respectively. Lines MN
and PQ meet at R. Prove that OA ⊥ RA.

Let MH and NH meet the nine-point circle again at P ′ and Q′, respectively. Recall
that H is the center of the homothety between the circumcircle and the nine-point circle.
From this we can see that P and Q are the images of this homothety, meaning that

HQ = 2HQ′ and HP = 2HP ′.

Since M , P ′, Q′, N are cyclic, Power of a Point gives us

MH ·HP ′ = HN ·HQ′.

Multiplying both sides by two, we thus derive

HM ·HP = HN ·HQ.

It follows that the points M , N , P , Q are concyclic.

A

B C

H
O

M N

P

Q

R

Q′

P ′

Let ω1, ω2, ω3 denote the circumcircles of MNPQ, AMN , and ABC, respectively.
The radical axis of ω1 and ω2 is line MN , while the radical axis of ω1 and ω3 is line PQ.
Hence the line R lies on the radical axis of ω2 and ω3.

But we claim that ω2 and ω3 are internally tangent at A. This follows by noting the
homothety at A with ratio 2 sends M to B and N to C. Hence the radical axis of ω2

and ω3 is a line tangent to both circles at A.
Hence RA is tangent to ω3. Therefore, RA ⊥ OA.
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§2.2 TSTST 2011/5
Available online at https://aops.com/community/p2374849.

Problem statement

At a certain orphanage, every pair of orphans are either friends or enemies. For
every three of an orphan’s friends, an even number of pairs of them are enemies.
Prove that it’s possible to assign each orphan two parents such that every pair of
friends shares exactly one parent, but no pair of enemies does, and no three parents
are in a love triangle (where each pair of them has a child).

Of course, we consider the graph with vertices as children and edges as friendships.
Consider all the maximal cliques in the graph (i.e. repeatedly remove maximal cliques
until no edges remain; thus all edges are in some clique).

Claim — Every vertex is in at most two maximal cliques.

Proof. Indeed, consider a vertex v adjacent to w1 and w2, but with w1 not adjacent to
w2. Then by condition, any third vertex u must be adjacent to exactly one of w1 and
w2. Moreover, given vertices u and u′ adjacent to w1, vertices u and u′ are adjacent too.
This proves the claim.

Now, for every maximal clique we assign a particular parent to all vertices in that
clique, adding in additional distinct parents if there are any deficient children. This
satisfies the friendship/enemy condition. Moreover, one can readily check that there are
no love triangles: given children a, b, c such that a and b share a parent while a and c
share another parent, according to the claim b and c can’t share a third parent. This
completes the problem.

Remark. This solution is highly motivated for the following reason: by experimenting
with small cases, one quickly finds that given some vertices which form a clique, one must
assign some particular parent to all vertices in that clique. That is, the requirements of the
problem are sufficiently rigid that there is no room for freedom on our part, so we know
a priori that an assignment based on cliques (as above) must work. From there we know
exactly what to prove, and everything else follows through.

Ironically, the condition that there be no love triangle actually makes the problem easier,
because it tells us exactly what to do!
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§2.3 TSTST 2011/6
Available online at https://aops.com/community/p2374852.

Problem statement

Let a, b, c be real numbers in the interval [0, 1] with a+ b, b+ c, c+a ≥ 1. Prove that

1 ≤ (1− a)2 + (1− b)2 + (1− c)2 +
2
√
2abc√

a2 + b2 + c2
.

The following approach is due to Ashwin Sah.
We will prove the inequality for any a, b, c the sides of a possibly degenerate triangle

(which is implied by the condition), ignoring the particular constant 1. Homogenizing,
we instead prove the problem in the following form:

Claim — We have

k2 ≤ (k − a)2 + (k − b)2 + (k − c)2 +
2
√
2abc√

a2 + b2 + c2

for any a, b, c, k with (a, b, c) the sides of a possibly degenerate triangle.

Proof. For any particular (a, b, c) this is a quadratic in k of the form 2k2− 2(a+ b+ c)k+
C ≥ 0; thus we will verify it holds for k = 1

2(a+ b+ c).
Letting x = 1

2(b+c−a) as is usual, the problem rearranges to In that case, the problem
amounts to

(x+ y + z)2 ≤ x2 + y2 + z2 +
2(x+ y)(y + z)(z + x)√

x2 + y2 + z2 + xy + yz + zx

or equivalently

x2 + y2 + z2 + xy + yz + zx ≤
(
(x+ y)(y + z)(z + x)

xy + yz + zx

)2

.

To show this, one may let t = xy + yz + zx, then using (x + y)(x + z) = x2 + B this
becomes

t2(x2 + y2 + z2 + t) ≤ (x2 + t)(y2 + t)(z2 + t)

which is obvious upon expansion.

Remark. The inequality holds actually for all real numbers a, b, c, with very disgusting
proofs.
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§3 Solutions to Day 3
§3.1 TSTST 2011/7
Available online at https://aops.com/community/p2374855.

Problem statement

Let ABC be a triangle. Its excircles touch sides BC, CA, AB at D, E, F . Prove
that the perimeter of triangle ABC is at most twice that of triangle DEF .

Solution by August Chen: It turns out that it is enough to take the orthogonal projection
of EF onto side BC (which has length a− (s− a)(cosB + cosC)) and sum cyclically:

−s+
∑
cyc

EF ≥ −s+
∑
cyc

[a− (s− a) (cosB + cosC)]

= s−
∑
cyc

a cosA =
∑
cyc

a

(
1

2
− cosA

)
= R

∑
cyc

sinA(1− 2 cosA)

= R
∑
cyc

(sinA− sin 2A) .

Thus we’re done upon noting that

sin 2B + sin 2C

2
= sin(B + C) cos(B − C) = sinA cos(B − C) ≤ sinA.

(Alternatively, one can avoid trigonometry by substituting cosA = b2+c2−a2

2bc and doing
some routine but long calculation.)
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§3.2 TSTST 2011/8
Available online at https://aops.com/community/p2374856.

Problem statement

Let x0, x1, . . . , xn0−1 be integers, and let d1, d2, . . . , dk be positive integers with
n0 = d1 > d2 > · · · > dk and gcd(d1, d2, . . . , dk) = 1. For every integer n ≥ n0,
define

xn =

⌊
xn−d1 + xn−d2 + · · ·+ xn−dk

k

⌋
.

Show that the sequence (xn) is eventually constant.

Note that if the initial terms are contained in some interval [A,B] then they will remain
in that interval. Thus the sequence is eventually periodic. Discard initial terms and let
the period be T ; we will consider all indices modulo T from now on.

Let M be the maximal term in the sequence (which makes sense since the sequence
is periodic). Note that if xn = M , we must have xn−di = M for all i as well. By
taking a linear combination

∑
cidi ≡ 1 (mod T ) (possibly be Bezout’s theorem, since

gcdi(di) = 1), we conclude xn−1 = M , as desired.
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§3.3 TSTST 2011/9
Available online at https://aops.com/community/p2374857.

Problem statement

Let n be a positive integer. Suppose we are given 2n+1 distinct sets, each containing
finitely many objects. Place each set into one of two categories, the red sets and the
blue sets, so that there is at least one set in each category. We define the symmetric
difference of two sets as the set of objects belonging to exactly one of the two sets.
Prove that there are at least 2n different sets which can be obtained as the symmetric
difference of a red set and a blue set.

We can interpret the problem as working with binary strings of length ` ≥ n+ 1, with `
the number of elements across all sets.

Let F be a field of cardinality 2`, hence F ∼= F⊕`
2 .

Then, we can think of red/blue as elements of F , so we have some B ⊆ F , and an
R ⊆ F . We wish to prove that |B +R| ≥ 2n. Want |B +R| ≥ 2n.

Equivalently, any element of a set X with |X| = 2n − 1 should omit some element of
|B +R|. To prove this: we know |B|+ |R| = 2n + 1, and define

P (b, r) =
∏
x∈X

(b+ r − x).

Consider b|B|−1r|R|−1. The coefficient of is
(
2n−1
|B|−1

)
, which is odd (say by Lucas theorem),

so the nullstellensatz applies.
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