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§1 Solutions to Day 1

§1.1 Solution to TST 1, by Anthony Wang

Let n be a positive integer. Ana and Banana play a game. Banana thinks of a function
f : Z → Z and a prime number p. He tells Ana that f is nonconstant, p < 100, and
f(x+ p) = f(x) for all integers x. Ana’s goal is to determine the value of p. She writes
down n integers x1, . . . , xn. After seeing this list, Banana writes down f(x1), . . . , f(xn)
in order. Ana wins if she can determine the value of p from this information. Find the
smallest value of n for which Ana has a winning strategy.

The answer is n = 83 + 89− 1 = 171.
In general, if Ana has to decide between periods from the set P := {p1 > p2 > · · · > pr}

of pairwise distinct relatively prime positive integers for r ≥ 3, the answer is p2 + p3 − 1.

Bound

Suppose for the sake of contradiction that Ana has a winning sequence of integers
x1, . . . , xn with n ≤ p2 + p3 − 2. We will generate contradictions by providing two primes
p, q ∈ P and assosciated nonconstant functions fp, fq : Z → Z with periods p and q
respectively such that fp(xi) = fq(xi) for all i.

Claim — There exists a prime r ∈ P such that for all primes p ∈ P \ {r}, the set
of integers {x1, . . . , xn} forms a complete residue class modulo p (i.e. for all t, there
exists i such that xi ≡ t (mod p)).

Claim — Suppose for the sake of contradiction that such r didn’t exist, and there
were in fact two primes p, q ∈ P such that {x1 . . . , xn} did not form a complete
residue class modulo either p or q. Concretely, consider t, s such that there is no i
with xi ≡ t (mod p) and not j with xj ≡ s (mod q).

Construct the functions fp, fq : Z → Z as

fp(x) =

{
0 if x ̸≡ t (mod p)

1 if x ≡ t (mod p)

and

fq(x) =

{
0 if x ̸≡ s (mod q)

1 if x ≡ s (mod q)
.

We have fp(xi) = fq(xi) = 0 for all i, which is the desired contradiction.

Let r be the prime from the above claim. Let p, q be the largest two primes in P \ {r},
so n ≤ p+ q− 2. Construct the graph Gpq with vertex set {x1, . . . , xn} and edge xi ∼ xj
if p | xi − xj or q | xi − xj . The following claim allows us to construct a pair of bad
functions fp, fq.

Claim — The graph Gpq is disconnected.

Proof. Let Gp be the graph on vertex set {x1, . . . , xn} with edge xi ∼ xj if p | xi − xj .
Note that Gp is a collection of p disjoint cliques, one for each residuce class modulo p.
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Prune the graph into G′
p, where each clique Kr is replaced by a path of edge-length r− 1.

Define G′
q similarly, and let G′

pq be the union of G′
p and G′

q.
Note that Gpq and G′

pq have the exact same connectivity properties. We have

|E(G′
pq)| ≤ |E(G′

p)|+ |E(G′
q)| = (n− p) + (n− q) ≤ n− 2,

so G′
pq is disconnected, as desired.

Suppose A ⊔ B = {x1, . . . , xn} are sets of disjoint vertices in Gpq. Construct the
functions fp, fq : Z → Z as

fp(x) =

{
0 if x ≡ a (mod p) for some a ∈ A

1 if x ≡ b (mod p) for some b ∈ B

and

fq(x) =

{
0 if x ≡ a (mod q) for some a ∈ A

1 if x ≡ b (mod q) for some b ∈ B
.

These are well defined due to the fact that p, q ∤ a− b for a ∈ A and b ∈ B, and the fact
that A ⊔B forms a complete residue class modulo p. Again, we have fp(xi) = fq(xi) for
all i, which is the desired contradiction.

Construction

Let n = p2 + p3 − 1. We claim that Ana has a winning strategy with the selection
xi = p1(i− 1). Indeed, suppose that Banana writes down the values y1, . . . , yn in order.
We will show that Ana can always reconstruct p.

Claim — If y1 = · · · = yn, then Ana can correctly guess p = p1.

Proof. Suppose for the sake of contradiction that p < p1. Then, since x1, . . . , xn forms
a complete residue class modulo p, f must be a constant function, which is the desired
contradiction.

We can now assume that y1, . . . , yn are not all equal, which means p ≠ p1. Suppose for
the sake of contradiction that there are two primes q, r < p1 with assosciated nonconstant
functions fp, fq : Z → Z with periods q and r respectively, such that fq(xi) = fr(xi) = yi
for all i.
The following claim shows that y1, . . . , yn must all be equal, which is the desired

contradiction.

Claim — Let G be the graph on vertex set {0, . . . , q + r − 2} with edge i ∼ j if
|i− j| ∈ {q, r}. The graph G is connected.

Proof. Note that G has q + r − 2 edges, so it suffices to show that it has no cycles.
Suppose for the sake of contradiction it had a cycle c1, . . . , ck with k ≥ 3 and indices
taken mod k.
Suppose first that ci+1 − ci = q. Then, ci+2 − ci+1 cannot be −q (else ci = ci+2), it

cannot be r (else ci+2 > q + r − 2), so ci+2 − ci+1 ∈ {q,−r}.
The same logic shows the following collated results:

ci+1 − ci = q =⇒ ci+2 − ci+1 ∈ {q,−r}
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ci+1 − ci = −q =⇒ ci+2 − ci+1 ∈ {−q, r}
ci+1 − ci = r =⇒ ci+2 − ci+1 ∈ {−q, r}

ci+1 − ci = −r =⇒ ci+2 − ci+1 ∈ {q,−r}.

Thus, either all consecutive differences of vertices in the cycle are in {q,−r}, or all in
{−q, r}. Assume the first case, proof is similar for second case.
Let a be the number of consecutive differences that are q, and b be the number that

are −r. We see that a+ b = k and qa− rb = 0. The second condition implies that a ≥ r
and b ≥ q, so we have k ≥ q + r, which is the desired contradiction since G has only
q + r − 1 vertices.
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§1.2 Solution to TST 2, by Holden Mui

Let a1, a2, . . . and b1, b2, . . . be sequences of real numbers for which a1 > b1 and

an+1 = a2n − 2bn

bn+1 = b2n − 2an

for all positive integers n. Prove that a1, a2, . . . is eventually increasing (that is, there
exists a positive integer N for which ak < ak+1 for all k > N).

Let r, s, and t be the complex roots of the polynomial p(λ) = λ3 − a1λ
2 + b1λ− 1. By

Vieta’s formulas,

a1 = r + s+ t

b1 = 1/r + 1/s+ 1/t

1 = rst.

Claim — For every positive integer n,

an = r2
n−1

+ s2
n−1

+ t2
n−1

and
bn = (1/r)2

n−1
+ (1/s)2

n−1
+ (1/t)2

n−1
.

Proof. The base case follows from Vieta’s formulas above. For the inductive step, observe
that rst = 1, so

an+1 = a2n − 2bn

=
(
r2

n−1
+ s2

n−1
+ t2

n−1
)2

− 2
(
(1/r)2

n−1
+ (1/s)2

n−1
+ (1/t)2

n−1
)

=
(
r2

n−1
+ s2

n−1
+ t2

n−1
)2

− 2
(
(st)2

n−1
+ (tr)2

n−1
+ (rs)2

n−1
)

= r2
n
+ s2

n
+ t2

n

and similarly for bn+1.

Since p(1) = b1 − a1 < 0, p has a real root greater than 1; let r be the largest such root.

• If s and t are real, let m = max(|r|, |s|, |t|) > 1 be the largest magnitude of the roots
and k ∈ {1, 2, 3} be the number of roots with that magnitude. Then asymptotically

an = r2
n−1

+ s2
n−1

+ t2
n−1 ≈ km2n−1

which implies that {an} is eventually increasing.

• If s and t are not real, they must be complex conjugates of each other, each with
magnitude 1√

r
< 1. Therefore

r2
n−1 − 2 < an < r2

n−1
+ 2,

so {an} is eventually increasing.
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§1.3 Solution to TST 3, by Ruben Carpenter

Let A1A2 · · ·A2025 be a convex 2025-gon, and let Ai = Ai+2025 for all integers i. Distinct
points P and Q lie in its interior such that ∠Ai−1AiP = ∠QAiAi+1 for all i. Define
points P j

i and Qj
i for integers i and positive integers j as follows:

• For all i, P 1
i = Q1

i = Ai.

• For all i and j, P j+1
i and Qj+1

i are the circumcenters of PP j
i P

j
i+1 and QQj

iQ
j
i+1,

respectively.

Let P and Q be the polygons P 2025
1 P 2025

2 · · ·P 2025
2025 and Q2025

1 Q2025
2 · · ·Q2025

2025, respec-
tively.

(a) Prove that P and Q are cyclic.

(b) Let OP and OQ be the circumcenters of P and Q, respectively. Assuming that
OP ̸= OQ, show that OPOQ is parallel to PQ.

Let n = 2025. Let Pi and Qi denote the polygons P i
1 · · ·P i

n and Qi
1 · · ·Qi

n. In this
notation, P = Pn, Q = Qn, and P1 = Q1 = A1 · · ·An.

The angle condition for P and Q just says that they are isogonal conjugates in P1. We
will first find some properties that do not depend on P having an isogonal conjugate.

Note that P j+1
i−1 P

j+1
i is the perpendicular bisector of PP j

i+1, so we can go backwards
from Pj to Pj−1 by reflecting over the sides. Use this to extend the points backwards to
P0, i.e. define P 0

i to be the reflection of P over P 1
i−1P

1
i .

Lemma 1.1

For integers j ≥ 0 and i,

∡PP j
i P

j
i+1 = ∡PP j+1

i P j+1
i+1 and

∡PP j
i+1P

j
i = ∡PP j+1

i P j+1
i−1 .

Proof. This is a standard circumcenter fact in disguise but we will prove it here for
completeness. If X is the antipode of P on (PP j

i P
j
i+1) (equivalently, the reflection of P

over PP j+1
i ) and M is the midpoint of PP j

i+1 then

∡PP j
i P

j
i+1 = ∡PXP j

i+1 = ∡PP j+1
i M = ∡PP j+1

i P j+1
i+1 .

The second equality is analogous.
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P

P j
i

P j
i+1

P j
i+2

P j
i+3

P j
i+4

P j+1
i

P j+1
i+1

P j+1
i+2

P j+1
i+3P j+2

i

P j+2
i+1

P j+2
i+2

Lemma

The following similarity holds: Pn ∪ P
+∼ P0 ∪ P .

Proof. By Lemma 1.1,

∡PP 0
i P

0
i+1 = ∡PP 1

i P
1
i+1 = · · · = ∡Pn

i P
n
i+1 and

∡PP 0
i+1P

0
i = ∡PP 1

i P
1
i−1 = · · · = ∡Pn

i−n+1P
n
i−n = ∡Pn

i+1P
n
i .

Therefore PPn
i P

n
i+1

+∼ PP 0
i P

0
i+1. Combining these similarities for all i shows that

Pn ∪ P
+∼ P0 ∪ P .

To solve part (a), we just need to show that P0 and Q0 are cyclic. This is where we
need the isogonal conjugate property, and we can generalize from analogous facts for the
n = 3 case.

Ai

Ai−1 Ai+1

P 0
i

P 0
i+1

P
Q

7
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We have
∡PP 0

i+1P
0
i = ∡PAiAi−1 = ∡Ai+1AiQ

so
90◦ = ∡(PP 0

i+1, AiAi+1) = ∡(P 0
i+1P

0
i , AQ).

Since AiP
0
i = AiP

0
i+1, it follows that AiQ is the perpendicular bisector of P 0

i P
0
i+1 and

QP 0
i = QP 0

i+1. By applying this equality for all i, it follows that P0 is cyclic with
circumcenter Q. This completes the solution for part (a).
For part (b), we will analyze the angle of rotation and scale factor for the similarity

Pn ∪ P
+∼ P0 ∪ P . Assume without loss of generality that A1A2 · · ·An is labeled in

clockwise order as in the earlier diagrams.

Claim — The spiral similarity at P sending P0 ∪Q to Pn ∪OP is the composition
of a clockwise rotation by θP and a dilation with factor rP , where

θP =
nπ

2
−

n∑
i=1

∠PAiAi−1 and rP =

n∏
i=1

1

2 sin∠PAiAi−1
.

Analogously, the spiral similarity at Q sending Q0∪P to Qn∪OQ is the composition
of a clockwise rotation by θQ and a dilation with factor rQ, where

θQ =
nπ

2
−

n∑
i=1

∠QAiAi−1 and rQ =
n∏

i=1

1

2 sin∠QAiAi+1
.

Proof. Note that

∠PP i
0PP i+1

0 =
π

2
− ∠PP i

1P
i
0 =

π

2
− ∠PP 1

i P
1
i−1 =

π

2
− ∠PAiAi−1

by circumcenter properties and Lemma 1.1. Summing over 0 ≤ i < n yields the claimed
formula for θP , since the left hand side adds up to the rotation angle from PP 0

0 to PPn
0 .

By the law of sines,

n∏
i=1

PP j+1
i

P j
i

=

n∏
i=1

1

2 sin∠PP j
i+1P

j
i

=

n∏
i=1

1

2 sin∠PAiAi−1

where in the last equality we use Lemma 1.1 again. Multiply over 0 ≤ j < n and raise to
the power 1

n to obtain (
n∏

i=1

PPn
i

P 0
i

) 1
n

=
n∏

i=1

1

2 sin∠PAiAi−1
.

This proves the formula for rP because the left hand side gives the scale factor. The
argument for Q is similar. Note that we reversed the angle in the formula for rQ but not
θQ because θQ depends on orientation.

By the given angle conditions on P and Q we have rP = rQ. Meanwhile,

θP + θQ = nπ −
n∑

i=1

(∠PAiAi−1 + ∠QAiAi−1) = nπ −
n∑

i=1

∠Ai−1AiAi+1 = 2π.

This means that clockwise rotation by θQ is just counterclockwise rotation by θP . The
combination of these two implies that PQOQOP is an isosceles trapezoid with OPOQ

parallel to PQ, which proves part (b).
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§2 Solutions to Day 2

§2.1 Solution to TST 4, by Michael Ren

Let ABC be a triangle, and let X, Y , and Z be collinear points such that AY = AZ,
BZ = BX, and CX = CY . Points X ′, Y ′, and Z ′ are the reflections of X, Y , and Z
over BC, CA, and AB, respectively. Prove that if X ′Y ′Z ′ is a nondegenerate triangle,
then its circumcenter lies on the circumcircle of ABC.

¶ Solution 1 (Pitchayut Saengrungkongka)

A

B

C

X YZ

X ′

Y ′Z ′ S

Let S denote the circumcenter of △X ′Y ′Z ′. Observe that AY = AZ = AY ′ = AZ ′, so
Y ZY ′Z ′ is cyclic and AS ⊥ Y ′Z ′. Similarly, BS ⊥ Z ′X ′ and CS ⊥ X ′Y ′.
The rest is angle chasing. Let ∡ℓ denote the angle between line ℓ and a fixed line.

Then, we have

∡AS = 90◦ + ∡Y ′Z ′ = 90◦ + ∡Y Y ′ + ∡ZZ ′ − ∡Y Z

= 90◦ + ∡CA+ ∡AB − ∡Y Z.

Analogously, we get
∡BS = 90◦ + ∡AB + ∡BC − ∡XZ,

so subtracting these gives ∡ASB = ∡ACB, as desired.

Remark. There are some other angle chasing solutions that use the fact that XX ′, Y Y ′,
and ZZ ′ meet at a point on (X ′Y ′Z ′). This one is featured as it does not require any
additional points.
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¶ Solution 2 (author) Let A′B′C ′ be the anticomplimentary triangle of ABC. Note
that X, Y , and Z are the projections of A′, B′, and C ′ onto line XY Z. Let A0, B0,
and C0 be the reflections of A′, B′, and C ′ over BC, CA, and AB, respectively. If
we take A′B′C ′ as our reference triangle, we see that A0B0C0 is the orthic triangle so
(ABCA0B0C0) is the nine-point circle of A′B′C ′.

Let A0X
′ meet (ABC) again at P . Then

∡BB0P = ∡AA0P + ∡BCA

= ∡AA0X + ∡BCA

= ∡(A′X,BC) + ∡BCA

= ∡(B′Y,CA)

= ∡BB0Y
′.

Therefore P lies on B0Y
′, and likewise C0Z

′ by symmetry.

A

B
C

A′

B′ C ′
A0

B0

C0

X
Y

Z

X ′

Y ′

Z ′

P

H
X0

Y0

Z0

Let X0, Y0, and Z0 be the reflections of P across BC, CA, and AB respectively. By
reflection, X0 lies on A′X and PX ′ = X0X. We also know that if H is the orthocenter
of ABC, then X0Y0Z0H is the Steiner line of P . Let D be the reflection of H across
BC, which is also the antipode of A0 on (ABC). Then ∠A′X0H = ∠A0PD = 90◦, so
X0Y0Z0H is perpendicular to A′X0X and parallel to XY Z.
This means that XX0 = Y Y0 = ZZ0. Combined with PX ′ = XX0 and analogous

statements, we have PX ′ = PY ′ = PZ ′ so P is the circumcenter of X ′Y ′Z ′. This solves
the problem.

Remark. If the condition that X, Y , and Z are collinear is removed, then in general the
circumcenters of XY Z and X ′Y ′Z ′ are isogonal conjugates with respect to ABC.
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§2.2 Solution to TST 5, by Linus Tang

A pond has 2025 lily pads arranged in a circle. Two frogs, Alice and Bob, begin on
different lily pads. A frog jump is a jump which travels 2, 3, or 5 positions clockwise.
Alice and Bob each make a series of frog jumps, and each frog ends on the same lily
pad that it started from. Given that each lily pad is the destination of exactly one
jump, prove that each frog completes exactly two laps around the pond (i.e. travels 4050
positions in total).

Let π : Z/2025Z → Z/2025Z be the permutation where the jump with source i has
destination π(i). We know that π has exactly two cycles, corresponding to the paths of
each frog.

Suppose that the frogs complete a total of ℓ laps around the circle, so the sum of the
lengths of all the jumps made is 2025ℓ. Thus the average jump moves ℓ positions, so
ℓ ∈ {2, 3, 4, 5}. We now split into cases.

¶ Case 1: ℓ ∈ {2, 5} If ℓ = 2, then every jump travels 2 positions, so π(i) = i+ 2 for
all i. This permutation has exactly one cycle, contradiction. If ℓ = 5, then every jump
travels 5 positions, so π(i) = i + 5 for all i. This permutation has exactly five cycles,
contradiction.

¶ Case 2: ℓ = 3 The key idea is to consider the cycle decomposition of the auxillary
permutation π′ : Z/2025Z → Z/2025Z by π′(i) = π(i)− 3. The average jump in π′ (i.e.
the distance from i to π′(i) traveling clockwise) travels 0 positions. Thus, either each
cycle of π′ either travels net zero positions, or there is some cycle that travels net negative
positions. Since π′(i) ∈ {i− 1, i, i+ 2}, the latter case can only happen if π′(i) = i− 1
for al i, which has average jump −1, not 0, contradiction. Thus, each cycle travels net 0
positions. It is easy to see that the only such cycles are i 7→ i and i 7→ i+ 2 7→ i+ 1 7→ i.
Say that i is a unicycle start if i 7→ i is a cycle in π′, a tricycle start if i 7→ i+ 2 7→

i + 1 7→ i is a cycle in π′, and a cycle start if it is either a unicycle start or a tricycle
start. It is easy to see that if i is a unicycle start, then i+ 1 must be a cycle start, and if
i is a tricycle start, then i+ 3 must be a cycle start.
Given this structural classification of π′, we will now generate a contradiction by

showing that π can’t have exactly two cycles. Place auxillary frogs C, D, and E on lily
pads i, i+ 1, and i+ 2 respectively, where i is a cycle start. If i is a unicycle start, then
have C jump to π(i) = i + 3. If i is a tricycle start, then have C, D, and E jump to
π(i) = i+ 5, π(i+ 1) = i+ 3, and π(i+ 2) = i+ 4, respectively. Note that C, D, and
E are still on consecutive lily pads in some order, with the first lily pad number being
a cycle start. We can repeat this process, having either the first frog or all three frogs
jump according to permutation π, depending on whether the first lily pad number is a
unicycle start or a tricycle start. When all of the cycles of π′ have been exhausted in this
manner, C, D, and E are back to positions i, i+ 1, and i+ 2, in some order. Note that
each step of the above process permutes C, D, and E with an even permutation, so the
final permutation of C, D, and E must be CDE, DEC, or ECD. The first case implies
that π has three cycles, while the other two cases imply that π has only one cycle, a
contradiction.
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¶ Case 3: ℓ = 4 Now consider the auxillary permutation π′′ : Z/2025Z → Z/2025Z
given by π′′(i) = π(i)− 4. Note that π′′(i) ∈ {i− 2, i− 1, i+ 1}, so a similar analysis as
the ℓ = 3 case shows that the only two possible types of cycles in π′′ are i → i+ 1 → i
and i → i+1 → i+2 → i. Again, define i to be a bicycle start if i 7→ i+1 7→ i is a cycle
in π′′ a tricycle start if i 7→ i+ 1 7→ i+ 2 7→ i is a cycle in π′′, and a cycle start if it is
either a bicycle or tricycle start. It is easy to see that if i is a bicycle start, then i+ 2
must be a cycle start, and if i is a tricycle start, then i+ 3 must be a cycle start.
Now, place auxillary frogs C, D, E, and F on lily pads i, i + 1, i + 2, and i + 3

respectively, where i is a cycle start. If i is a bicycle start, have C jump to π(i) = i+ 5
and D jump to π(i+ 1) = i+ 4, and if i is a tricycle start, have C jump to π(i) = i+ 5,
D jump to π(i + 1) = i + 6, and E jump to π(i + 2) = i + 4. Note that C, D, E,
and F are still on consecutive lily pads in some order, with the first lily pad number
being a cycle start. If i is a bicycle start, then it causes the frogs to permute according
to CDEF 7→ EFDC, and if i is a tricycle start, then it causes the frogs to permute
according to CDEF 7→ FECD.

Thus, when all of the cycles of π′′ have been exhausted in this manner, C, D, E, and
F are back to positions i, i + 1, i + 2, and i + 3, in one of the permutations CDEF ,
EFDC, DCFE, or FECD. The first case implies that π has four cycles, while the
second and fourth cases imply that π has only one cycle, a contradiction, so we must be
in the third case, i.e. the frogs end up on lily pads i, i+ 1, i+ 2, and i+ 3 in the order
DCFE. Therefore, one of Alice or Bob travels the combined path of C and D, while the
other travels the combined path of E and F , each of which completes two laps around
the circle, as desired.

Remark. 2025 can be replaced with any odd number (sufficiently large as to avoid confusion
about what a “lap” is), and the problem statement will still be true. If 2025 is replaced
with an even number, then the problem statement is false only due to the ℓ = 2 case.

Remark. Here are some variations of the problem (not checked thoroughly):
If 2025 is replaced by any odd number and the allowed distances are changed from 2, 3, 5

to 1, 2, 4, then you can conclude that one frog completes one lap and the other completes
two laps.

If 2025 is replaced by any number and the allowed distances are changed to 1, 3, 4, then
you can conclude that each frog completes only one lap.

12
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§2.3 Solution to TST 6, by Pitchayut Saengrungkongka

Prove that there exists a real number ε > 0 such that there are infinitely many sequences
of integers 0 < a1 < a2 < . . . < a2025 satisfying

gcd(a21 + 1, a22 + 1, . . . , a22025 + 1) > a1+ε
2025.

¶ Solution 1 (Alexander Wang) By the Chinese Remainder Theorem for Q[x], for any
choice of 212 signs there exists a unique polynomial fi of degree at most 23 such that

fi ≡ ±cx (mod c2x2 + 1)

for c = 1, 2, . . ., 12. Furthermore, these polynomials are multiples of x and come in pairs
which sum to zero, so we can pick 2048 of these polynomials which have positive leading
coefficients and label them f1, f2, . . ., f2048.

Let N be a positive integer such that any coefficient of the polynomials is 1
N times an

integer. For a suffiiently large positive integer x, take ai = fi(Nx) for i = 1, 2, . . ., 2025,
which will be positive integers. Then,

gcd(a21 + 1, a22 + 1, . . . , a22025 + 1) ≥
12∏
c=1

(c2x2 + 1)

because a2i + 1 ≡ 0 (mod c2x2 + 1) for any i by construction. The right hand side is
asymptotically x24 while a2025 is x23 up to constant factors, so any ε < 1

23 works.

Remark. In terms of n = 2025, this solution achieves ε = Ω
(

1
logn

)
which is the best that

we know of. Solution 2 achieves ε = Ω
(

1
nlog2(3)

)
while solutions 3 and 4 achieve ε = Ω

(
1
n

)
.

¶ Solution 2 (Luke Robitaille) Define the sequence of polynomials Pi by

P1(x) = x2 + 1,

Pn(x) =

(
n−1∏
i=1

Pi(x)

)2

+ 1 for n > 1.

Due to the recurrence, we have gcd(Pi(x), Pj(x)) = 1 for i ̸= j. Let

P (x) = P1(x)P2(x) . . . Pm(x),

which is a polynomial of degree 2 · 3m. For i ≥ 2 we have

(
P (x)

Pi(x)

)2

=

(
n−1∏
i=1

Pi(x)

)2

× (Pi+1(x))
2 × · · · × (Pm(x))2

≡ −1× 1× · · · × 1 ≡ −1 (mod Pi(x)).

13
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and additionally (
xP (x)

P1(x)

)2

= x2 ×

(
m∏
i=2

Pi(x)

)2

≡ −1 (mod P1(x)).

Now consider all 2m−1 polynomials of the form

Q(x) =
xP (x)

P1(x)
± P (x)

P2(x)
± P (x)

P3(x)
± . . .± P (x)

Pm(x)
.

Each such polynomial has leading coefficient 1 and degree 2 · 3m − 1, and they are all
distinct (the terms are in decreasing order of degree from left to right). Furthermore,
each Q(x) satisfies Q(x)2 ≡ −1 (mod P (x)) by the Chinese Remainder Theorem.

Now we can construct the solution. Let m = 12 (so 2m−1 > 2025), ε < 1
2·3m−1−1

, x be
a (large) positive integer and take a1, . . . , a2025 to be distinct values of Q(x) as described
above. Then gcd(a21 + 1, a22 + 1, . . . , a22025 + 1) ≥ P (x) and

a1+ε
2025 < a

2·3m
2·3m−1

2025 < x2·3
m
< P (x)

for sufficiently large x. Since there are infinitely many such x, we are done.

Remark. This solution takes some inspiration from the other solutions that follow, but
stands out for not having to deal with any polynomials outside of Z[x].

¶ Solution 3 (author) We first explain the general idea of the construction. The idea
is to work in polynomial ring Q[x]. Suppose that the target gcd is g(x), which will have
a lot of factors. Then, the equation f(x)2 ≡ −1 (mod g(x)) will have multiple solutions
f1, f2, . . . , fn, and we will have deg fi < deg g. Thus, we may take ε = 1

deg g . However,
one also needs to find x for which f1(x), . . . , fn(x) are integers. The way we get around
this is to find some explicit choice of fi and g as described above, and then pick x
manually to ensure integrality.
Let p1, p2, . . . , pn ≡ 1 (mod 4) be distinct primes that we will constrain later. Let

N = p1p2 . . . pn. Our g will be
g(x) = x2N + 1.

Then, we claim that

Claim — the polynomial

fi(x) =
2pi
N

· x
pi(x2N + 1)

x2pi + 1
− xN

satisfies f2
i ≡ −1 (mod g).

Proof. A direct computation shows that

fi ≡ xpi (mod x2pi + 1)

fi ≡ −xN (mod x2N+1
x2pi+1

)

14
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In the next claim, we will show that one may choose p1, . . . , pn so that f1(2), . . . , fn(2)
are all integers. This will imply that if a ≡ 2 (mod N), then f1(a), . . . , fn(a) are integers

all divisible by g(a)
N . By taking a large, this gives a construction for ε < 1

2N .
To finish the problem, we prove the claim.

Claim — There exists n distinct primes p1, p2, . . . , pn ≡ 1 (mod 4) such that for
any indices i ̸= j,

pj |
4p1p2...pn + 1

4pi + 1
.

Proof. First, we will establish a prime sequence which p1p2 . . . pn | 4p1p2...pn + 1. This is
essentially IMO 2000 P5: begin with p1 = 5 and for each i, assign (by Zsigmondy) pi a
primitive prime divisor of 4p1p2...pi−1 + 1; it’s easy to see that this works as advertised.

Now, for each i, j, the divisiblity relation is verified unless pj | 4pi +1, in which case we
can apply Lifting the Exponent lemma to complete the proof. Finally, note that pi ≡ 1
(mod 4) because each divide 4p1p2...pn + 1, a perfect square plus one.

¶ Solution 4 (Carl Schildkraut, Mihir Singhal, Brandon Wang) We show the result
for each n = 2m−1. For positive integers i, define polynomials hi(x) = x2

i−1
and

fi(x) = hi(x)
2 + 1 = x2

i
+ 1. The main claim is the following:

Claim — For every positive integer m, there exist polynomials g1, . . . , gm ∈ Z[x]
satisfying

m∑
i=1

gi(x)

fi(x)
=

2m−1

f1(x) · · · fm(x)
.

Proof. We prove the result by induction on m. In the base case of m = 1, we may simply
take g1(x) = 1.

For the inductive step, suppose m ≥ 2, and the result holds for m−1. Let p1, . . . , pm−1

be polynomials for which

m−1∑
i=1

pi(x)

fi(x)
=

2m−2

f1(x) · · · fm−1(x)
.

Write p0(x) = pm(x) for notational simplicity. Since fi+1(x) = fi(x
2), we also have

m−1∑
i=1

pi(x
2)

fi+1(x)
=

2m−2

f2(x) · · · fm(x)
.

Defining gi(x) = pi(x)− pi−1(x
2) · x2m−1

x2+1
, we have

m∑
i=1

gi(x)

fi(x)
=

m∑
i=1

pi(x)

fi(x)
− x2

m − 1

x2 + 1

m∑
i=1

pi−1(x
2)

fi(x)

=
2m−2

f1 · · · fm−1
− fm − 2

f1
· 2m−2

f2 · · · fm
=

2m−2(fm − (fm − 2))

f1 · · · fm
=

2m−1

f1 · · · fm
,

as desired.
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Fix m, and let g1, . . . , gm be as guaranteed by the lemma. Now, for each θ ∈ {−1, 1}m,
define a polynomial qθ(x) by

qθ(x) =
m∑
i=1

θigi(x)hi(x)
m∏
j=1
j ̸=i

fi(x).

For each i, we have

qθ(x) ≡ θihi(x)

gi(x)
m∏
j=1
j ̸=i

fi(x)

 ≡ 2m−1θihi(x) (mod fi(x)).

As a result, since h2i ≡ −1 (mod fi), we have

qθ(x)
2 + 22m−2 ≡ 22m−2

(
θ2i hi(x)

2 + 1
)
= 22m−2fi(x) ≡ 0 (mod fi)

for each i. The polynomials fi are relatively prime, so we conclude in fact that

f1 · · · fm | q2θ + 22m−2. (⋆)

Let pθ be the remainder when qθ is divided by the product f1 · · · fm, so that deg pθ <
deg(f1 · · · fm); since f1 · · · fm is monic, pθ has integer coefficients. Moreover, there exists
a polynomial sθ so that

pθ = sθ · f1 · · · fm +
m∑
i=1

θigihi

m∏
j=1
j ̸=i

fi.

In particular, since fi(X) is even for any i and any odd integer X, pθ(X) is a multiple of
2m−1. Let X be an odd integer, and define aθ,X = pθ(X)/2m−1 ∈ Z. Since (⋆) holds for
pθ as well as qθ, there is a monic polynomial tθ for which

p2θ + 22m−2 = tθf1 · · · fm,

whence

a2θ,X + 1 =
1

22m−2

(
pθ(X)2 + 1

)
= tθ(x)

m∏
i=1

fi(X)

2
.

Therefore
m∏
i=1

fi(X)

2
divides gcd

({
aθ,X : θ ∈ {−1, 1}m

})
.

As X grows, the gcd above is at least 2−mXdeg f1···fm . But each pθ has degree at
most (deg f1 · · · fm)− 1, so each aθ,X is at most some constant C times Xdeg(f1···fm)−1.
Therefore, for any 0 < ε < 1

deg(f1+···fm)−1 , we have for large enough X that

gcd
({

aθ,X : θ ∈ {−1, 1}m
})

≥ max
({

|aθ,X | : θ ∈ {−1, 1}m
})1+ε

.

As aθ,X = −a−θ,X , at least half of the aθ,X are nonnegative. We conclude the result for
n = 2m−1 and any ε < 1

2m+1−3
.
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