USA TST 2024 Solutions

United States of America - Team Selection Test

Andrew Gu, Evan Chen, Gopal Goel, Luke Robitaille $65^{\text {th }}$ IMO 2024 United Kingdom and $13^{\text {th }}$ EGMO 2024 Georgia

Contents

0 Problems 2
1 Solutions to Day 1 3
1.1 USA TST 2024/1, proposed by Merlijn Staps 3
1.2 USA TST 2024/2, proposed by Luke Robitaille 5
1.3 USA TST 2024/3, proposed by Ankan Bhattacharya 9

2 Solutions to Day $2 \quad 11$
2.1 USA TST 2024/4, proposed by Ray Li . 11
2.2 USA TST 2024/5, proposed by Ray Li . 13
2.3 USA TST 2024/6, proposed by Milan Haiman 15

§0 Problems

1. Find the smallest constant $C>1$ such that the following statement holds: for every integer $n \geq 2$ and sequence of non-integer positive real numbers a_{1}, a_{2}, \ldots, a_{n} satisfying

$$
\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}=1,
$$

it's possible to choose positive integers b_{i} such that
(i) for each $i=1,2, \ldots, n$, either $b_{i}=\left\lfloor a_{i}\right\rfloor$ or $b_{i}=\left\lfloor a_{i}\right\rfloor+1$; and
(ii) we have

$$
1<\frac{1}{b_{1}}+\frac{1}{b_{2}}+\cdots+\frac{1}{b_{n}} \leq C
$$

2. Let $A B C$ be a triangle with incenter I. Let segment $A I$ intersect the incircle of triangle $A B C$ at point D. Suppose that line $B D$ is perpendicular to line $A C$. Let P be a point such that $\angle B P A=\angle P A I=90^{\circ}$. Point Q lies on segment $B D$ such that the circumcircle of triangle $A B Q$ is tangent to line $B I$. Point X lies on line $P Q$ such that $\angle I A X=\angle X A C$. Prove that $\angle A X P=45^{\circ}$.
3. Let $n>k \geq 1$ be integers and let p be a prime dividing $\binom{n}{k}$. Prove that the k-element subsets of $\{1, \ldots, n\}$ can be split into p classes of equal size, such that any two subsets with the same sum of elements belong to the same class.
4. Find all integers $n \geq 2$ for which there exists a sequence of $2 n$ pairwise distinct points $\left(P_{1}, \ldots, P_{n}, Q_{1}, \ldots, Q_{n}\right)$ in the plane satisfying the following four conditions:
(i) no three of the $2 n$ points are collinear;
(ii) $P_{i} P_{i+1} \geq 1$ for all $i=1,2, \ldots, n$, where $P_{n+1}=P_{1}$;
(iii) $Q_{i} Q_{i+1} \geq 1$ for all $i=1,2, \ldots, n$, where $Q_{n+1}=Q_{1}$; and
(iv) $P_{i} Q_{j} \leq 1$ for all $i=1,2, \ldots, n$ and $j=1,2, \ldots, n$.
5. Suppose $a_{1}<a_{2}<\cdots<a_{2024}$ is an arithmetic sequence of positive integers, and $b_{1}<b_{2}<\cdots<b_{2024}$ is a geometric sequence of positive integers. Find the maximum possible number of integers that could appear in both sequences, over all possible choices of the two sequences.
6. Solve over \mathbb{R} the functional equation

$$
f(x f(y))+f(y)=f(x+y)+f(x y)
$$

§1 Solutions to Day 1

§1.1 USA TST 2024/1, proposed by Merlijn Staps

Available online at https://aops.com/community/p29409075.

Problem statement

Find the smallest constant $C>1$ such that the following statement holds: for every integer $n \geq 2$ and sequence of non-integer positive real numbers $a_{1}, a_{2}, \ldots, a_{n}$ satisfying

$$
\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}=1,
$$

it's possible to choose positive integers b_{i} such that
(i) for each $i=1,2, \ldots, n$, either $b_{i}=\left\lfloor a_{i}\right\rfloor$ or $b_{i}=\left\lfloor a_{i}\right\rfloor+1$; and
(ii) we have

$$
1<\frac{1}{b_{1}}+\frac{1}{b_{2}}+\cdots+\frac{1}{b_{n}} \leq C
$$

II Answer. The answer is $C=\frac{3}{2}$.

I Lower bound. Note that if $a_{1}=\frac{4 n-3}{2 n-1}$ and $a_{i}=\frac{4 n-3}{2}$ for $i>1$, then we must have $b_{1} \in\{1,2\}$ and $b_{i} \in\{2 n-2,2 n-1\}$ for $i>1$. If we take $b_{1}=2$ then we obtain

$$
\frac{1}{b_{1}}+\frac{1}{b_{2}}+\cdots+\frac{1}{b_{n}} \leq \frac{1}{2}+(n-1) \cdot \frac{1}{2 n-2}=1
$$

whereas if we take $b_{1}=1$ then we obtain

$$
\frac{1}{b_{1}}+\frac{1}{b_{2}}+\cdots+\frac{1}{b_{n}} \geq 1+(n-1) \cdot \frac{1}{2 n-1}=\frac{3 n-2}{2 n-1} .
$$

This shows that $C \geq \frac{3 n-2}{2 n-1}$, and as $n \rightarrow \infty$ this shows that $C \geq \frac{3}{2}$.

Upper bound. For $0 \leq k \leq n$, define

$$
c_{i}=\sum_{i=1}^{k} \frac{1}{\left\lfloor a_{i}\right\rfloor}+\sum_{i=k+1}^{n} \frac{1}{\left\lfloor a_{i}\right\rfloor+1} .
$$

Note that $c_{0}<c_{1}<\cdots<c_{n}$ and

$$
c_{0}<\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}=1<c_{n} .
$$

This means there exists a unique value of k for which $c_{k-1}<1<c_{k}$. For this k we have

$$
1<c_{k}=c_{k-1}+\frac{1}{\left(\left\lfloor a_{k}\right\rfloor\right)\left(\left\lfloor a_{k}\right\rfloor+1\right)}<1+\frac{1}{1 \cdot 2}=\frac{3}{2} .
$$

Therefore we may choose $b_{i}=\left\lfloor a_{i}\right\rfloor$ for $i \leq k$ and $b_{i}=\left\lfloor a_{i}\right\rfloor+1$ for $i>k$.

Remark. The solution can be phrased in the following "motion-based" way. Imagine starting with all floors (corresponding to c_{0}), then changing each floor to a ceiling one by one until after n steps every floor is a ceiling (arriving at c_{n}). As we saw, $c_{0}<1<c_{n}$, but $c_{0}<\cdots<c_{n}$. Moreover, each discrete step increases the sum by at most

$$
\frac{1}{\left\lfloor a_{i}\right\rfloor}-\frac{1}{\left\lfloor a_{i}\right\rfloor+1} \leq \frac{1}{2}
$$

and so the changing sum must be in the interval $[1,3 / 2]$ at some point.

Upper bound (alternate). First suppose $a_{i}<2$ for some i. Assume without loss of generality $i=1$ here. Let $b_{1}=1$ and $b_{i}=\left\lfloor a_{i}\right\rfloor+1$ for all other i. Then

$$
\begin{aligned}
1 & <\frac{1}{b_{1}}+\cdots+\frac{1}{b_{n}}=1+\frac{1}{\left\lfloor a_{2}\right\rfloor+1}+\cdots+\frac{1}{\left\lfloor a_{n}\right\rfloor+1} \\
& <\left(\frac{1}{2}+\frac{1}{a_{1}}\right)+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}=\frac{3}{2}
\end{aligned}
$$

Now suppose $a_{i}>2$ always. Then $\frac{a_{i}}{\left\lfloor a_{i}\right\rfloor}<\frac{3}{2}$, so

$$
1=\frac{1}{a_{1}}+\cdots+\frac{1}{a_{n}}<\frac{1}{\left\lfloor a_{1}\right\rfloor}+\cdots+\frac{1}{\left\lfloor a_{n}\right\rfloor}<\frac{3}{2}\left(\frac{1}{a_{1}}+\cdots+\frac{1}{a_{n}}\right)=\frac{3}{2}
$$

Therefore we may let $b_{i}=\left\lfloor a_{i}\right\rfloor$ for all i.
Remark. The original proposal asked to find the optimal C for a fixed n. The answer is $\frac{3 n-2}{2 n-1}$, i.e. the lower bound construction in the solution is optimal.

§1.2 USA TST 2024/2, proposed by Luke Robitaille

Available online at https://aops.com/community/p29409083.

Problem statement

Let $A B C$ be a triangle with incenter I. Let segment $A I$ intersect the incircle of triangle $A B C$ at point D. Suppose that line $B D$ is perpendicular to line $A C$. Let P be a point such that $\angle B P A=\angle P A I=90^{\circ}$. Point Q lies on segment $B D$ such that the circumcircle of triangle $A B Q$ is tangent to line $B I$. Point X lies on line $P Q$ such that $\angle I A X=\angle X A C$. Prove that $\angle A X P=45^{\circ}$.

We show several approaches.

【 First solution, by author.

Claim - We have $B P=B Q$.
Proof. For readability, we split the proof into three unconditional parts.

- We translate the condition $\overline{B D} \perp \overline{A C}$. It gives $\angle D B A=90^{\circ}-A$, so that

$$
\begin{aligned}
& \angle D B I=\left|\frac{B}{2}-\left(90^{\circ}-A\right)\right|=\frac{|A-C|}{2} \\
& \angle B D I=\angle D B A+\angle B A D=\left(90^{\circ}-A\right)+\frac{A}{2}=90^{\circ}-\frac{A}{2} .
\end{aligned}
$$

Hence, letting r denote the inradius, we can translate $\overline{B D} \perp \overline{A C}$ into the following trig condition:

$$
\sin \frac{B}{2}=\frac{r}{B I}=\frac{D I}{B I}=\frac{\sin \angle D B I}{\sin \angle B D I}=\frac{\sin \frac{|A-C|}{2}}{\sin \left(90^{\circ}-\frac{A}{2}\right)} .
$$

- The length of $B P$ is given from right triangle $A P B$ as

$$
B P=B A \cdot \sin \angle P A B=B A \cdot \sin \left(90^{\circ}-\frac{A}{2}\right) .
$$

- The length of $B Q$ is given from the law of sines on triangle $A B Q$. The tangency gives $\angle B A Q=\angle D B I$ and $\angle B Q A=180^{\circ}-\angle A B I=180^{\circ}-\angle I B E$ and thus

$$
B Q=B A \cdot \frac{\sin \angle B A Q}{\sin \angle A Q B}=B A \cdot \frac{\sin \angle D B I}{\sin \angle A B I}=B A \cdot \frac{\sin \frac{|A-C|}{2}}{\sin \frac{B}{2}}
$$

The first bullet implies the expressions in the second and third bullet for $B P$ and $B Q$ are equal, as needed.

Remark. In the above proof, one dos not actually need to compute $\angle D B I=\frac{|A-C|}{2}$. The proof works equally leaving that expression intact as $\sin \angle D B I$ in place of $\sin \frac{|A-C|}{2}$.

Now we can finish by angle chasing. We have

$$
\angle P B Q=\angle P B A+\angle A B D=\frac{A}{2}+90^{\circ}-A=90^{\circ}-\frac{A}{2} .
$$

Then

$$
\angle B P Q=\frac{180^{\circ}-\angle P B Q}{2}=45^{\circ}+\frac{A}{4},
$$

so $\angle A P Q=90^{\circ}-\angle B P Q=45^{\circ}-\frac{A}{4}$. Also, if we let J be the incenter of $I A C$, then $\angle P A J=90^{\circ}+\frac{A}{4}$, and clearly X lies on line $A J$. Then $\angle A P Q+\angle P A J=135^{\circ}<180^{\circ}$, so X lies on the same side of $A P$ as Q and J (by the parallel postulate). Therefore $\angle A X P=180^{\circ}-135^{\circ}=45^{\circ}$, as desired.

Remark. The problem was basically written backwards by starting from the $B D \perp A C$ condition, turning that into trig, and then contriving P and Q so that the $B D \perp A C$ condition implied $B P=B Q$.

【 Second solution, by Jeffrey Kwan. We prove the following restatement:

Consider isosceles triangle $A E F$ with $A E=A F$ and incenter D. Let B be the point on ray $A E$ such that $B D \perp A F$, and let P be the projection of B onto the line through A parallel to $E F$. Let I be the point diametrically opposite A in the circumcircle of $A E F$, and let Q be the point on line $B D$ such that $B I$ is tangent to the circumcircle of $A Q B$. Then $\angle A P Q=45^{\circ}-\angle A / 4$.

First note that $\angle D F E=45^{\circ}-\angle A / 4$, so it suffices to show that $\overline{P Q} \| \overline{D F}$. Let $U=\overline{B D} \cap \overline{E F}$, and let $V=B I \cap(A E F)$. Observe that:

- P and V both lie on the circle with diameter $A B$, so $\angle B V P=\angle P A B=90^{\circ}-\angle A / 2$.
- We have $\angle E V B=\angle E V I=\angle A / 2=\angle D U F=\angle B U E$. Hence $B E U V$ is cyclic.

Now $\angle B V U=\angle A E U=90^{\circ}-\angle A / 2=\angle B V P$, so $\overline{P U V}$ are collinear.

From the tangency condition, we have that $\angle A Q B=180^{\circ}-\angle A B I$, which implies that

$$
\angle A Q U+\angle A P U=\angle A Q B+\angle A P V=\left(180^{\circ}-\angle A B I\right)+\angle A B I=180^{\circ}
$$

and so $A P U Q$ is cyclic. Finally, note that D is the orthocenter of $\triangle A U F$, which implies that

$$
\angle A P Q=\angle A U Q=\angle A U D=\angle A F D=\angle D F E
$$

This forces $\overline{P Q} \| \overline{D F}$, as desired.

ब Third solution by Pitchayut Saengrungkongka and Maxim Li. We provide yet another proof that $B P=B Q$.

Let the incircle be ω and touch $B C$ and $A B$ at point U and W. Let the tangent to ω at D meet $U W$ at T. Notice that T is the pole of $B D$ with respect to ω, so $I T \perp B D$. Now, we make the following critical claim, which in particular implies $B P=B Q$.

Claim - Quadrilaterals $D I W T$ and $P B Q A$ are inversely similar.

Proof. This follows from four angle relations.

- $\measuredangle I D T=\measuredangle B P A=90^{\circ}$.
- $\measuredangle T I W=\measuredangle A B Q$.
- $\measuredangle D I T=\measuredangle I A C=\measuredangle B A I=\measuredangle A B P$.
- $\measuredangle I T W=\measuredangle Q B I=\measuredangle Q A B$.

With $B P=B Q$ obtained, one finishes with the same angle chasing as in the first solution.

§1.3 USA TST 2024/3, proposed by Ankan Bhattacharya

Available online at https://aops.com/community/p29409068.

Problem statement

Let $n>k \geq 1$ be integers and let p be a prime dividing $\binom{n}{k}$. Prove that the k-element subsets of $\{1, \ldots, n\}$ can be split into p classes of equal size, such that any two subsets with the same sum of elements belong to the same class.

Let $\sigma(S)$ denote the sum of the elements of S, so that

$$
P(x):=\sum_{\substack{S \subseteq\{1, \ldots, n\} \\|S|=k}} x^{\sigma(S)}
$$

is the generating function for the sums of k-element subsets of $\{1, \ldots, n\}$.
By Legendre's formula,

$$
\nu_{p}\left(\binom{n}{k}\right)=\sum_{r=1}^{\infty}\left(\left\lfloor\frac{n}{p^{r}}\right\rfloor-\left\lfloor\frac{k}{p^{r}}\right\rfloor-\left\lfloor\frac{n-k}{p^{r}}\right\rfloor\right)
$$

so there exists a positive integer r with

$$
\left\lfloor\frac{n}{p^{r}}\right\rfloor-\left\lfloor\frac{k}{p^{r}}\right\rfloor-\left\lfloor\frac{n-k}{p^{r}}\right\rfloor>0 .
$$

The main claim is the following:
Claim - $P(x)$ is divisible by

$$
\Phi_{p^{r}}(x)=x^{(p-1) p^{r-1}}+\cdots+x^{p^{r-1}}+1 .
$$

Before proving this claim, we will show how it solves the problem. It implies that there exists a polynomial Q with integer coefficients satisfying

$$
\begin{aligned}
P(x) & =\Phi_{p^{r}}(x) Q(x) \\
& =\left(x^{(p-1) p^{r-1}}+\cdots+x^{p^{r-1}}+1\right) Q(x) .
\end{aligned}
$$

Let c_{0}, c_{1}, \ldots denote the coefficients of P, and define

$$
s_{i}=\sum_{j \equiv i} c_{\left(\bmod p^{r}\right)} .
$$

Then it's easy to see that

$$
\begin{gathered}
s_{0}=s_{p^{r-1}} \quad=\cdots=s_{(p-1) p^{r-1}} \\
s_{1}=s_{p^{r-1}+1}=\cdots=s_{(p-1) p^{r-1}+1} \\
\vdots \\
s_{p^{r-1}-1}=s_{2 p^{r-1}-1}=\cdots=s_{p^{r-1}} .
\end{gathered}
$$

This means we can construct the p classes by placing a set with sum z in class $\left\lfloor\frac{z \bmod p^{r}}{p^{r-1}}\right\rfloor$.
Now we present two ways to prove the claim.

ब First proof of claim. There's a natural bijection between k-element subsets of $\{1, \ldots, n\}$ and binary strings consisting of k zeroes and ℓ ones: the set $\left\{a_{1}, \ldots, a_{k}\right\}$ corresponds to the string which has zeroes at positions a_{1}, \ldots, a_{k}. Moreover, the inversion count of this string is simply $\left(a_{1}+\cdots+a_{k}\right)-\frac{1}{2} k(k+1)$, so we only deal with these inversion counts (equivalently, we are factoring $x^{\frac{k(k+1)}{2}}$ out of P).

Recall that the generating function for these inversion counts is given by the q-binomial coefficient

$$
P(x)=\frac{(x-1) \cdots\left(x^{k+\ell}-1\right)}{\left[(x-1) \cdots\left(x^{k}-1\right)\right] \times\left[(x-1) \cdots\left(x^{\ell}-1\right)\right]}
$$

By choice of r, the numerator of $P(x)$ has more factors of $\Phi_{p^{r}}(x)$ than the denominator, so $\Phi_{p^{r}}(x)$ divides $P(x)$.

Remark. Here is a proof that $P(x)$ is divisible by $\Phi_{p^{r}}(x)$ for some r using the q-binomial formula, without explicitly identifying r. We know that $P(x)$ is the product of several cyclotomic polynomials, and that $P(1)$ is a multiple of p. Thus there is a factor $\Phi_{q}(x)$ for which $\Phi_{q}(1)$ is a multiple of p, which is equivalent to q being a power of p.

IT Second proof of claim. Note that $P(x)$ is the coefficient of y^{k} in the polynomial

$$
Q(x, y):=(1+x y)\left(1+x^{2} y\right) \cdots\left(1+x^{n} y\right)
$$

Let a be the remainder when n is divided by p^{r}, and let b be the remainder when k is divided by p^{r}; then we have $a<b$ by the choice of r. Let $q=\left\lfloor n / p^{r}\right\rfloor$ so $n=p^{r} q+a$. Consider taking x to be a primitive p^{r} th root of unity, say ω. Then

$$
Q(\omega, y)=\left[(1+\omega y)\left(1+\omega^{2} y\right) \cdots\left(1+\omega^{p^{r}} y\right)\right]^{q}(1+\omega y)\left(1+\omega^{2} y\right) \ldots\left(1+\omega^{a} y\right)
$$

Now $\omega, \omega^{2}, \ldots, \omega^{p^{r}}$ are all the p^{r} th roots of unity, each exactly once; then we can see that

$$
\begin{aligned}
& (1+\omega y)\left(1+\omega^{2} y\right) \cdots\left(1+\omega^{p^{r}} y\right) \\
& =(1-\omega(-y))\left(1-\omega^{2}(-y)\right) \cdots\left(1-\omega^{p^{r}}(-y)\right) \\
& =1-(-y)^{p^{r}}
\end{aligned}
$$

so

$$
Q(\omega, y)=\left(1-(-y)^{p^{r}}\right)^{q}(1+\omega y)\left(1+\omega^{2} y\right) \ldots\left(1+\omega^{a} y\right)
$$

In particular, for any m, if the coefficient of y^{m} in $Q(w, x)$ is nonzero, then m must be congruent to one of $0,1, \ldots, a\left(\bmod p^{r}\right)$. Therefore the coefficient of y^{k} in $Q(\omega, y)$ is zero. This means that $P(\omega)=0$ whenever ω is a primitive p^{r} th root of unity, which proves the claim.

§2 Solutions to Day 2

§2.1 USA TST 2024/4, proposed by Ray Li

Available online at https://aops.com/community/p29643081.

Problem statement

Find all integers $n \geq 2$ for which there exists a sequence of $2 n$ pairwise distinct points ($P_{1}, \ldots, P_{n}, Q_{1}, \ldots, Q_{n}$) in the plane satisfying the following four conditions:
(i) no three of the $2 n$ points are collinear;
(ii) $P_{i} P_{i+1} \geq 1$ for all $i=1,2, \ldots, n$, where $P_{n+1}=P_{1}$;
(iii) $Q_{i} Q_{i+1} \geq 1$ for all $i=1,2, \ldots, n$, where $Q_{n+1}=Q_{1}$; and
(iv) $P_{i} Q_{j} \leq 1$ for all $i=1,2, \ldots, n$ and $j=1,2, \ldots, n$.
đ Answer. Even integers only.

- Proof that even n work. If we ignore the conditions that the points are pairwise distinct and form no collinear triples, we may take

$$
P_{2 i+1}=(0.51,0), \quad P_{2 i}=(-0.51,0), \quad Q_{2 i+1}=(0,0.51), \quad Q_{2 i}=(0,-0.51) .
$$

The distances $P_{i} P_{i+1}$ and $Q_{i} Q_{i+1}$ are $1.02>1$, while the distances $P_{i} Q_{j}$ are $0.51 \sqrt{2}<1$. We may then perturb each point by a small amount to ensure that the distance inequalities still hold and have the points in general position.

- \int Proof that odd n do not work. The main claim is the following.

Claim - For $1 \leq i \leq n$, points Q_{i} and Q_{i+1} must lie on opposite sides of line $P_{1} P_{2}$.
To isolate the geometry component of the problem, we rewrite the claim in the following contrapositive form, without referencing the points Q_{i} and Q_{i+1} :

Lemma

Suppose A and B are two points such that $\max \left(P_{1} A, P_{1} B, P_{2} A, P_{2} B\right) \leq 1$, and moreover A and B lie on the same side of line $P_{1} P_{2}$. Further assume no three of $\left\{P_{1}, P_{2}, A, B\right\}$ are collinear. Then $A B<1$.

Proof of lemma. Suppose for the sake of contradiction that A and B lie on the same side of $P_{1} P_{2}$. The convex hull of these four points is either a quadrilateral or a triangle.

- If the convex hull is a quadrilateral, assume WLOG that the vertices are $P_{1} P_{2} A B$ in order. Let X denote the intersection of segments $P_{1} A$ and $P_{2} B$. Then

$$
1+A B=P_{1} P_{2}+A B<P_{1} X+X P_{2}+A X+X B=P_{1} A+P_{2} B \leq 2
$$

- Otherwise, assume WLOG that B is in the interior of triangle $P_{1} P_{2} A$. Since $\angle P_{1} B A+\angle P_{2} B A=360^{\circ}-\angle P_{1} B P_{2}>180^{\circ}$, at least one of $\angle P_{1} B A$ and $\angle P_{2} B A$ is obtuse. Assume WLOG the former angle is obtuse; then $A B<P_{1} A \leq 1$.

Remark. Another proof of the lemma can be found by replacing segment $A B$ with the intersection of this line on the boundary of the blue region above, which does not decrease the distance. In other words, one can assume WLOG that A and B lie on either segment $A B$ or one of the two circular arcs. One then proves that $A B \leq 1$, and that for equality to occur, one of A and B must lie on segment $P_{1} P_{2}$ However, this approach seems to involve a fair bit more calculation.

Yet another clever approach uses the trivia-fact that a Reuleaux triangle happens to have constant width.

In any case, it's important to realize that this claim is not trivial; while it looks like it is easy to prove, it is not, owing to the two near-equality cases.

It follows from the claim that Q_{i} is on the same side of line $P_{1} P_{2}$ as Q_{1} if i is odd, and on the opposite side if i is even. Since $Q_{1}=Q_{n+1}$, this means the construction is not possible when n is odd.

Remark. The fact that n cannot be odd follows from Theorem 3 of EPTAS for Max Clique on Disks and Unit Balls. In the language of that paper, if G is a unit ball graph, then the induced odd cycle parking number of \bar{G} is at most 1 .

In earlier versions of the proposed problem, the points were not necessarily distinct to make the even n case nicer, but this resulted in annoying boundary conditions for the odd n case.

§2.2 USA TST 2024/5, proposed by Ray Li

Available online at https://aops.com/community/p29642892.

Problem statement

Suppose $a_{1}<a_{2}<\cdots<a_{2024}$ is an arithmetic sequence of positive integers, and $b_{1}<b_{2}<\cdots<b_{2024}$ is a geometric sequence of positive integers. Find the maximum possible number of integers that could appear in both sequences, over all possible choices of the two sequences.

T Answer. 11 terms.

ๆ Construction. Let $a_{i}=i$ and $b_{i}=2^{i-1}$.

II Bound. We show a ν_{p}-based approach communicated by Derek Liu, which seems to be the shortest one. At first, we completely ignore the geometric sequence b_{i} and focus only on the arithmetic sequence.

Claim - Let p be any prime, and consider the sequence

$$
\nu_{p}\left(a_{1}\right), \nu_{p}\left(a_{2}\right), \ldots, \nu_{p}\left(a_{2024}\right)
$$

Set $C:=\left\lfloor\log _{p}(2023)\right\rfloor$. Then there are at most $C+2$ different values in this sequence.

Proof. By scaling, assume the a_{i} do not have a common factor, so that $a_{i}=a+d i$ where $\operatorname{gcd}(a, d)=1$.

- If $p \mid d$, then $p \nmid a$ and $\nu_{p}\left(a_{i}\right)$ is constant.
- Otherwise, assume $p \nmid d$. We will in fact prove that every term in the sequence is contained in $\{0,1, \ldots, C\}$ with at most one exception.
Define $M:=\max _{i} \nu_{p}\left(a_{i}\right)$. If $M \leq C$, there is nothing to prove. Otherwise, fix some index m such that $\nu_{p}\left(a_{m}\right)=M$. We know $\nu_{p}(i-m) \leq C$ since $|i-m| \leq 2023$. But now for any other index $i \neq m$;

$$
\begin{aligned}
\nu_{p}(d(i-m)) & =\nu_{p}(i-m) \leq C<M=\nu_{p}\left(a_{m}\right) \\
\Longrightarrow \nu_{p}\left(a_{i}\right) & =\nu_{p}\left(a_{m}+d(i-m)\right)=\nu_{p}(i-m) \leq C .
\end{aligned}
$$

so $\nu_{p}\left(a_{m}\right)$ is the unique exceptional term of the sequence exceeding C.

Remark. The bound in the claim is best possible by taking $a_{i}=p^{M}+(i-1)$ for any $M>C$. Then indeed, the sequence $\nu_{p}\left(a_{i}\right)$ takes on values in $\{0,1, \ldots, C\}$ for $i>1$ while $\nu_{p}\left(a_{1}\right)=M$.

Back to the original problem with $\left(b_{i}\right)$. Consider the common ratio $r \in \mathbb{Q}$ of the geometric sequence $\left(b_{i}\right)$. If p is any prime with $\nu_{p}(r) \neq 0$, then every term of $\left(b_{i}\right)$ has a different ν_{p}. So there are two cases to think about.

- Suppose any $p \geq 3$ has $\nu_{p}(r) \neq 0$. Then there are at most

$$
2+\log _{p}(2023)=2+\log _{3}(2023) \approx 8.929<11
$$

overlapping terms, as needed.

- Otherwise, suppose r is a power of 2 (in particular, $r \geq 2$ is an integer). We already have an upper bound of 12 ; we need to improve it to 11 .
As in the proof before, we may assume WLOG by scaling down by a power of 2 that the common difference of a_{i} is odd. (This may cause some b_{i} to become rational non-integers, but that's OK. However, unless $\nu_{2}\left(a_{i}\right)$ is constant, the a_{i} will still be integers.)
Then in order for the bound of 12 to be achieved, the sequence $\nu_{2}\left(a_{i}\right)$ must be contained in $\{0,1, \ldots, 10, M\}$ for some $M \geq 11$. In particular, we only need to work with $r=2$.
Denote by b the unique odd-integer term in the geometric sequence, which must appear among $\left(a_{i}\right)$. Then $2 b$ appears too, so the common difference of a_{i} is at most b.

But if $\left(a_{i}\right)$ is an arithmetic progression of integers that contains b and has common difference at most b, then no term of the sequence can ever exceed $b+2023 \cdot b=2024 b$. Hence $2^{M} b$ cannot appear for any $M \geq 11$. This completes the proof.

Remark. There are several other approaches to the problem, but most take some time to execute. The primary issue is that the common difference of the a_{i} 's could share prime factors with the common ratio in the b_{i} 's, which means that merely trying to write out a lot of modular arithmetic equations leads to a lot of potential technical traps that are not pleasant to defuse.

One unusual thing is that many solutions end up proving a bound of 12 (in the case the common ratio is 2) and then having to adjust it to 11 later.

§2.3 USA TST 2024/6, proposed by Milan Haiman

Available online at https://aops.com/community/p29642897.

Problem statement

Solve over \mathbb{R} the functional equation

$$
f(x f(y))+f(y)=f(x+y)+f(x y) .
$$

In addition to all constant functions, $f(x) \equiv x+1$ clearly works too. We prove these are the only solutions. The solution that follows is by the original proposer.

Let $P(x, y)$ denote the given assertion.
Claim 2.1 - If f is periodic, then f is constant.
Proof. Let f have period $d \neq 0$. From $P(x, y+d)$, we have

$$
f(x(y+d))=f(x+y+d)-f(y+d)-f(x f(y+d))=f(x+y)-f(y)-f(x f(y)) .
$$

Applying $P(x, y)$ gives

$$
f(x(y+d))=f(x y) .
$$

In particular, taking $y=0$ yields that $f(d x)=f(0)$. Thus f is constant, as $d \neq 0$.

Claim 2.2 - For all real numbers x and y, we have $f(f(x)+y)=f(f(y)+x)$.

Proof. Applying $P(f(x), y)$ and then $P(y, x)$ gives us

$$
\begin{aligned}
f(f(x) f(y)) & =f(f(x)+y)+f(f(x) y)-f(y) \\
& =f(f(x)+y)+f(x+y)+f(x y)-f(x)-f(y) .
\end{aligned}
$$

Now swapping x and y gives us $f(f(x)+y)=f(f(y)+x)$.

Claim 2.3- If f is nonconstant, then $f(f(x)+y)=f(x)+f(y)$ for all reals x, y.

Proof. Let $x, y \in \mathbb{R}$ and let $d:=f(f(x)+y)-f(x)-f(y)$. Let z be an arbitrary real number. By repeatedly applying Claim 2.2, we have

$$
\begin{aligned}
f(z+f(f(x)+y)) & =f(f(z)+f(x)+y) \\
& =f(f(x)+f(z)+y) \\
& =f(x+f(f(z)+y)) \\
& =f(x+f(f(y)+z)) \\
& =f(f(x)+f(y)+z) \\
& =f(z+f(x)+f(y)) .
\end{aligned}
$$

If $d \neq 0$, then f is periodic with period d, contradicting Claim 2.1.

Claim 2.4 - If f is nonconstant, then $f(0)=1$ and $f(x+1)=f(x)+1$.

Proof. From $P(z, 0)$ we have $f(z f(0))=f(z)$ for all real z. Then $P(x f(0), y)$ and $P(x, y)$ give us

$$
\begin{aligned}
f(x f(0)+y) & =f(y)+f(x f(0) f(y))-f(x f(0) y) \\
& =f(y)+f(x f(y))-f(x y)=f(x+y)
\end{aligned}
$$

If $f(0) \neq 1$, then $x f(0)-x$ is a period of f for all x, violating Claim 2.1. So we must have $f(0)=1$.

Now putting $x=0$ in Claim 2.3 gives $f(x+1)=f(x)+1$.

Claim 2.5 - If f is nonconstant, then $f(x)+f(y)=f(x+y)+1$.

Proof. From $P(x+1, y)$ and Claim 2.4, we have

$$
f((x+1) f(y))=f(x+y+1)+f(x y+y)-f(y)=f(x+y)+f(x y+y)-f(y)+1
$$

Also, from Claim 2.3 and $P(x, y)$, we have

$$
f((x+1) f(y))=f(x f(y))+f(y)=f(x+y)+f(x y)
$$

Thus $f(x y)=f(x y+y)-f(y)+1$. Replacing x with $\frac{x}{y}$ gives the claim for all $y \neq 0$ (whereas $y=0$ follows from Claim 2.4).

Claim 2.6 - If f is nonconstant, then $f(x) \equiv x+1$.

Proof. We apply Claim 2.3, Claim 2.5, and Claim 2.4:

$$
f(f(x)+y)=f(x)+f(y)=f(x+y)+1=f(x+y+1)
$$

If $f(x) \neq x+1$ for some x, then Claim 2.1 again gives a contradiction.

