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§0 Problems
1. Find the smallest constant C > 1 such that the following statement holds: for

every integer n ≥ 2 and sequence of non-integer positive real numbers a1, a2, . . . ,
an satisfying

1

a1
+

1

a2
+ · · ·+ 1

an
= 1,

it’s possible to choose positive integers bi such that
(i) for each i = 1, 2, . . . , n, either bi = baic or bi = baic+ 1; and
(ii) we have

1 <
1

b1
+

1

b2
+ · · ·+ 1

bn
≤ C.

2. Let ABC be a triangle with incenter I. Let segment AI intersect the incircle of
triangle ABC at point D. Suppose that line BD is perpendicular to line AC. Let
P be a point such that ∠BPA = ∠PAI = 90◦. Point Q lies on segment BD such
that the circumcircle of triangle ABQ is tangent to line BI. Point X lies on line
PQ such that ∠IAX = ∠XAC. Prove that ∠AXP = 45◦.

3. Let n > k ≥ 1 be integers and let p be a prime dividing
(
n
k

)
. Prove that the

k-element subsets of {1, . . . , n} can be split into p classes of equal size, such that
any two subsets with the same sum of elements belong to the same class.

4. Find all integers n ≥ 2 for which there exists a sequence of 2n pairwise distinct
points (P1, . . . , Pn, Q1, . . . , Qn) in the plane satisfying the following four conditions:

(i) no three of the 2n points are collinear;
(ii) PiPi+1 ≥ 1 for all i = 1, 2, . . . , n, where Pn+1 = P1;
(iii) QiQi+1 ≥ 1 for all i = 1, 2, . . . , n, where Qn+1 = Q1; and
(iv) PiQj ≤ 1 for all i = 1, 2, . . . , n and j = 1, 2, . . . , n.

5. Suppose a1 < a2 < · · · < a2024 is an arithmetic sequence of positive integers,
and b1 < b2 < · · · < b2024 is a geometric sequence of positive integers. Find the
maximum possible number of integers that could appear in both sequences, over
all possible choices of the two sequences.

6. Solve over R the functional equation

f(xf(y)) + f(y) = f(x+ y) + f(xy).
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§1 Solutions to Day 1
§1.1 USA TST 2024/1, proposed by Merlijn Staps
Available online at https://aops.com/community/p29409075.

Problem statement

Find the smallest constant C > 1 such that the following statement holds: for every
integer n ≥ 2 and sequence of non-integer positive real numbers a1, a2, . . . , an
satisfying

1

a1
+

1

a2
+ · · ·+ 1

an
= 1,

it’s possible to choose positive integers bi such that

(i) for each i = 1, 2, . . . , n, either bi = baic or bi = baic+ 1; and

(ii) we have
1 <

1

b1
+

1

b2
+ · · ·+ 1

bn
≤ C.

¶ Answer. The answer is C = 3
2 .

¶ Lower bound. Note that if a1 = 4n−3
2n−1 and ai =

4n−3
2 for i > 1, then we must have

b1 ∈ {1, 2} and bi ∈ {2n− 2, 2n− 1} for i > 1. If we take b1 = 2 then we obtain

1

b1
+

1

b2
+ · · ·+ 1

bn
≤ 1

2
+ (n− 1) · 1

2n− 2
= 1,

whereas if we take b1 = 1 then we obtain

1

b1
+

1

b2
+ · · ·+ 1

bn
≥ 1 + (n− 1) · 1

2n− 1
=

3n− 2

2n− 1
.

This shows that C ≥ 3n−2
2n−1 , and as n → ∞ this shows that C ≥ 3

2 .

¶ Upper bound. For 0 ≤ k ≤ n, define

ci =
k∑

i=1

1

baic
+

n∑
i=k+1

1

baic+ 1
.

Note that c0 < c1 < · · · < cn and

c0 <
1

a1
+

1

a2
+ · · ·+ 1

an
= 1 < cn.

This means there exists a unique value of k for which ck−1 < 1 < ck. For this k we have

1 < ck = ck−1 +
1

(bakc)(bakc+ 1)
< 1 +

1

1 · 2
=

3

2
.

Therefore we may choose bi = baic for i ≤ k and bi = baic+ 1 for i > k.
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Remark. The solution can be phrased in the following “motion-based” way. Imagine
starting with all floors (corresponding to c0), then changing each floor to a ceiling one by
one until after n steps every floor is a ceiling (arriving at cn). As we saw, c0 < 1 < cn, but
c0 < · · · < cn. Moreover, each discrete step increases the sum by at most

1

baic
− 1

baic+ 1
≤ 1

2

and so the changing sum must be in the interval [1, 3/2] at some point.

¶ Upper bound (alternate). First suppose ai < 2 for some i. Assume without loss of
generality i = 1 here. Let b1 = 1 and bi = baic+ 1 for all other i. Then

1 <
1

b1
+ · · ·+ 1

bn
= 1 +

1

ba2c+ 1
+ · · ·+ 1

banc+ 1

<

(
1

2
+

1

a1

)
+

1

a2
+ · · ·+ 1

an
=

3

2
.

Now suppose ai > 2 always. Then ai
baic < 3

2 , so

1 =
1

a1
+ · · ·+ 1

an
<

1

ba1c
+ · · ·+ 1

banc
<

3

2

(
1

a1
+ · · ·+ 1

an

)
=

3

2
.

Therefore we may let bi = baic for all i.

Remark. The original proposal asked to find the optimal C for a fixed n. The answer is
3n−2
2n−1 , i.e. the lower bound construction in the solution is optimal.
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§1.2 USA TST 2024/2, proposed by Luke Robitaille
Available online at https://aops.com/community/p29409083.

Problem statement

Let ABC be a triangle with incenter I. Let segment AI intersect the incircle of
triangle ABC at point D. Suppose that line BD is perpendicular to line AC. Let
P be a point such that ∠BPA = ∠PAI = 90◦. Point Q lies on segment BD such
that the circumcircle of triangle ABQ is tangent to line BI. Point X lies on line
PQ such that ∠IAX = ∠XAC. Prove that ∠AXP = 45◦.

We show several approaches.

¶ First solution, by author.

A

D

B

I

E C

P

Q
X

Claim — We have BP = BQ.

Proof. For readability, we split the proof into three unconditional parts.

• We translate the condition BD ⊥ AC. It gives ∠DBA = 90◦ −A, so that

∠DBI =

∣∣∣∣B2 − (90◦ −A)

∣∣∣∣ = |A− C|
2

∠BDI = ∠DBA+ ∠BAD = (90◦ −A) +
A

2
= 90◦ − A

2
.
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Hence, letting r denote the inradius, we can translate BD ⊥ AC into the following
trig condition:

sin B

2
=

r

BI
=

DI

BI
=

sin∠DBI

sin∠BDI
=

sin |A−C|
2

sin
(
90◦ − A

2

) .
• The length of BP is given from right triangle APB as

BP = BA · sin∠PAB = BA · sin
(
90◦ − A

2

)
.

• The length of BQ is given from the law of sines on triangle ABQ. The tangency
gives ∠BAQ = ∠DBI and ∠BQA = 180◦ − ∠ABI = 180◦ − ∠IBE and thus

BQ = BA · sin∠BAQ

sin∠AQB
= BA · sin∠DBI

sin∠ABI
= BA ·

sin |A−C|
2

sin B
2

.

The first bullet implies the expressions in the second and third bullet for BP and BQ
are equal, as needed.

Remark. In the above proof, one dos not actually need to compute ∠DBI = |A−C|
2 . The

proof works equally leaving that expression intact as sin∠DBI in place of sin |A−C|
2 .

Now we can finish by angle chasing. We have

∠PBQ = ∠PBA+ ∠ABD =
A

2
+ 90◦ −A = 90◦ − A

2
.

Then
∠BPQ =

180◦ − ∠PBQ

2
= 45◦ +

A

4
,

so ∠APQ = 90◦ − ∠BPQ = 45◦ − A
4 . Also, if we let J be the incenter of IAC, then

∠PAJ = 90◦ + A
4 , and clearly X lies on line AJ . Then ∠APQ+ ∠PAJ = 135◦ < 180◦,

so X lies on the same side of AP as Q and J (by the parallel postulate). Therefore
∠AXP = 180◦ − 135◦ = 45◦, as desired.

Remark. The problem was basically written backwards by starting from the BD ⊥ AC
condition, turning that into trig, and then contriving P and Q so that the BD ⊥ AC
condition implied BP = BQ.

¶ Second solution, by Jeffrey Kwan. We prove the following restatement:

Consider isosceles triangle AEF with AE = AF and incenter D. Let B be the
point on ray AE such that BD ⊥ AF , and let P be the projection of B onto
the line through A parallel to EF . Let I be the point diametrically opposite
A in the circumcircle of AEF , and let Q be the point on line BD such that
BI is tangent to the circumcircle of AQB. Then ∠APQ = 45◦ − ∠A/4.

First note that ∠DFE = 45◦ − ∠A/4, so it suffices to show that PQ ‖ DF . Let
U = BD ∩ EF , and let V = BI ∩ (AEF ). Observe that:

6
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• P and V both lie on the circle with diameter AB, so ∠BV P = ∠PAB = 90◦−∠A/2.

• We have ∠EV B = ∠EV I = ∠A/2 = ∠DUF = ∠BUE. Hence BEUV is cyclic.

Now ∠BV U = ∠AEU = 90◦ − ∠A/2 = ∠BV P , so PUV are collinear.

A

B

E F

D

I

P

Q

U

V

From the tangency condition, we have that ∠AQB = 180◦ − ∠ABI, which implies
that

∠AQU + ∠APU = ∠AQB + ∠APV = (180◦ − ∠ABI) + ∠ABI = 180◦,

and so APUQ is cyclic. Finally, note that D is the orthocenter of 4AUF , which implies
that

∠APQ = ∠AUQ = ∠AUD = ∠AFD = ∠DFE.

This forces PQ ‖ DF , as desired.

¶ Third solution by Pitchayut Saengrungkongka and Maxim Li. We provide yet
another proof that BP = BQ.

V

W

A

D

B

I

U C

P

Q X
T

Let the incircle be ω and touch BC and AB at point U and W . Let the tangent to ω
at D meet UW at T . Notice that T is the pole of BD with respect to ω, so IT ⊥ BD.
Now, we make the following critical claim, which in particular implies BP = BQ.

Claim — Quadrilaterals DIWT and PBQA are inversely similar.
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Proof. This follows from four angle relations.

• ]IDT = ]BPA = 90◦.

• ]TIW = ]ABQ.

• ]DIT = ]IAC = ]BAI = ]ABP .

• ]ITW = ]QBI = ]QAB.

With BP = BQ obtained, one finishes with the same angle chasing as in the first solution.
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§1.3 USA TST 2024/3, proposed by Ankan Bhattacharya
Available online at https://aops.com/community/p29409068.

Problem statement

Let n > k ≥ 1 be integers and let p be a prime dividing
(
n
k

)
. Prove that the k-element

subsets of {1, . . . , n} can be split into p classes of equal size, such that any two
subsets with the same sum of elements belong to the same class.

Let σ(S) denote the sum of the elements of S, so that

P (x) :=
∑

S⊆{1,...,n}
|S|=k

xσ(S)

is the generating function for the sums of k-element subsets of {1, . . . , n}.
By Legendre’s formula,

νp

((
n

k

))
=

∞∑
r=1

(⌊
n

pr

⌋
−

⌊
k

pr

⌋
−
⌊
n− k

pr

⌋)
so there exists a positive integer r with⌊

n

pr

⌋
−

⌊
k

pr

⌋
−

⌊
n− k

pr

⌋
> 0.

The main claim is the following:

Claim — P (x) is divisible by

Φpr(x) = x(p−1)pr−1
+ · · ·+ xp

r−1
+ 1.

Before proving this claim, we will show how it solves the problem. It implies that there
exists a polynomial Q with integer coefficients satisfying

P (x) = Φpr(x)Q(x)

= (x(p−1)pr−1
+ · · ·+ xp

r−1
+ 1)Q(x).

Let c0, c1, . . . denote the coefficients of P , and define

si =
∑

j≡i (mod pr)

cj .

Then it’s easy to see that

s0 = spr−1 = · · · = s(p−1)pr−1

s1 = spr−1+1 = · · · = s(p−1)pr−1+1

...
spr−1−1 = s2pr−1−1 = · · · = spr−1.

This means we can construct the p classes by placing a set with sum z in class
⌊
z mod pr

pr−1

⌋
.

Now we present two ways to prove the claim.

9
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¶ First proof of claim. There’s a natural bijection between k-element subsets of
{1, . . . , n} and binary strings consisting of k zeroes and ` ones: the set {a1, . . . , ak}
corresponds to the string which has zeroes at positions a1, . . . , ak. Moreover, the
inversion count of this string is simply (a1 + · · ·+ ak)− 1

2k(k + 1), so we only deal with
these inversion counts (equivalently, we are factoring x

k(k+1)
2 out of P ).

Recall that the generating function for these inversion counts is given by the q-binomial
coefficient

P (x) =
(x− 1) · · · (xk+` − 1)[

(x− 1) · · · (xk − 1)
]
×
[
(x− 1) · · · (x` − 1)

] .
By choice of r, the numerator of P (x) has more factors of Φpr(x) than the denominator,
so Φpr(x) divides P (x).

Remark. Here is a proof that P (x) is divisible by Φpr (x) for some r using the q-binomial
formula, without explicitly identifying r. We know that P (x) is the product of several
cyclotomic polynomials, and that P (1) is a multiple of p. Thus there is a factor Φq(x) for
which Φq(1) is a multiple of p, which is equivalent to q being a power of p.

¶ Second proof of claim. Note that P (x) is the coefficient of yk in the polynomial

Q(x, y) := (1 + xy)(1 + x2y) · · · (1 + xny).

Let a be the remainder when n is divided by pr, and let b be the remainder when k
is divided by pr; then we have a < b by the choice of r. Let q = bn/prc so n = prq + a.
Consider taking x to be a primitive prth root of unity, say ω. Then

Q(ω, y) =
[
(1 + ωy)(1 + ω2y) · · · (1 + ωpry)

]q
(1 + ωy)(1 + ω2y) . . . (1 + ωay).

Now ω, ω2, . . . , ωpr are all the prth roots of unity, each exactly once; then we can see
that

(1 + ωy)(1 + ω2y) · · · (1 + ωpry)

= (1− ω(−y))(1− ω2(−y)) · · · (1− ωpr(−y))

= 1− (−y)p
r
,

so
Q(ω, y) = (1− (−y)p

r
)q(1 + ωy)(1 + ω2y) . . . (1 + ωay).

In particular, for any m, if the coefficient of ym in Q(w, x) is nonzero, then m must be
congruent to one of 0, 1, . . . , a (mod pr). Therefore the coefficient of yk in Q(ω, y) is zero.
This means that P (ω) = 0 whenever ω is a primitive prth root of unity, which proves the
claim.
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§2 Solutions to Day 2
§2.1 USA TST 2024/4, proposed by Ray Li
Available online at https://aops.com/community/p29643081.

Problem statement

Find all integers n ≥ 2 for which there exists a sequence of 2n pairwise distinct
points (P1, . . . , Pn, Q1, . . . , Qn) in the plane satisfying the following four conditions:

(i) no three of the 2n points are collinear;

(ii) PiPi+1 ≥ 1 for all i = 1, 2, . . . , n, where Pn+1 = P1;

(iii) QiQi+1 ≥ 1 for all i = 1, 2, . . . , n, where Qn+1 = Q1; and

(iv) PiQj ≤ 1 for all i = 1, 2, . . . , n and j = 1, 2, . . . , n.

¶ Answer. Even integers only.

¶ Proof that even n work. If we ignore the conditions that the points are pairwise
distinct and form no collinear triples, we may take

P2i+1 = (0.51, 0), P2i = (−0.51, 0), Q2i+1 = (0, 0.51), Q2i = (0,−0.51).

The distances PiPi+1 and QiQi+1 are 1.02 > 1, while the distances PiQj are 0.51
√
2 < 1.

We may then perturb each point by a small amount to ensure that the distance inequalities
still hold and have the points in general position.

¶ Proof that odd n do not work. The main claim is the following.

Claim — For 1 ≤ i ≤ n, points Qi and Qi+1 must lie on opposite sides of line P1P2.

To isolate the geometry component of the problem, we rewrite the claim in the following
contrapositive form, without referencing the points Qi and Qi+1:

Lemma
Suppose A and B are two points such that max(P1A,P1B,P2A,P2B) ≤ 1, and
moreover A and B lie on the same side of line P1P2. Further assume no three of
{P1, P2, A,B} are collinear. Then AB < 1.

11
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X

P1 P2

A

B

P1 P2

A

B

Proof of lemma. Suppose for the sake of contradiction that A and B lie on the same side
of P1P2. The convex hull of these four points is either a quadrilateral or a triangle.

• If the convex hull is a quadrilateral, assume WLOG that the vertices are P1P2AB
in order. Let X denote the intersection of segments P1A and P2B. Then

1 +AB = P1P2 +AB < P1X +XP2 +AX +XB = P1A+ P2B ≤ 2.

• Otherwise, assume WLOG that B is in the interior of triangle P1P2A. Since
∠P1BA+ ∠P2BA = 360◦ − ∠P1BP2 > 180◦, at least one of ∠P1BA and ∠P2BA
is obtuse. Assume WLOG the former angle is obtuse; then AB < P1A ≤ 1.

Remark. Another proof of the lemma can be found by replacing segment AB with the
intersection of this line on the boundary of the blue region above, which does not decrease
the distance. In other words, one can assume WLOG that A and B lie on either segment
AB or one of the two circular arcs. One then proves that AB ≤ 1, and that for equality to
occur, one of A and B must lie on segment P1P2 However, this approach seems to involve a
fair bit more calculation.

Yet another clever approach uses the trivia-fact that a Reuleaux triangle happens to have
constant width.

In any case, it’s important to realize that this claim is not trivial; while it looks like it is
easy to prove, it is not, owing to the two near-equality cases.

It follows from the claim that Qi is on the same side of line P1P2 as Q1 if i is odd, and
on the opposite side if i is even. Since Q1 = Qn+1, this means the construction is not
possible when n is odd.

Remark. The fact that n cannot be odd follows from Theorem 3 of EPTAS for Max Clique
on Disks and Unit Balls. In the language of that paper, if G is a unit ball graph, then the
induced odd cycle parking number of Ḡ is at most 1.

In earlier versions of the proposed problem, the points were not necessarily distinct to
make the even n case nicer, but this resulted in annoying boundary conditions for the odd
n case.

12
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§2.2 USA TST 2024/5, proposed by Ray Li
Available online at https://aops.com/community/p29642892.

Problem statement

Suppose a1 < a2 < · · · < a2024 is an arithmetic sequence of positive integers, and
b1 < b2 < · · · < b2024 is a geometric sequence of positive integers. Find the maximum
possible number of integers that could appear in both sequences, over all possible
choices of the two sequences.

¶ Answer. 11 terms.

¶ Construction. Let ai = i and bi = 2i−1.

¶ Bound. We show a νp-based approach communicated by Derek Liu, which seems to
be the shortest one. At first, we completely ignore the geometric sequence bi and focus
only on the arithmetic sequence.

Claim — Let p be any prime, and consider the sequence

νp(a1), νp(a2), . . . , νp(a2024).

Set C :=
⌊
logp(2023)

⌋
. Then there are at most C+2 different values in this sequence.

Proof. By scaling, assume the ai do not have a common factor, so that ai = a+ di where
gcd(a, d) = 1.

• If p | d, then p - a and νp(ai) is constant.

• Otherwise, assume p - d. We will in fact prove that every term in the sequence is
contained in {0, 1, . . . , C} with at most one exception.
Define M := maxi νp(ai). If M ≤ C, there is nothing to prove. Otherwise, fix some
index m such that νp(am) = M . We know νp(i−m) ≤ C since |i−m| ≤ 2023. But
now for any other index i 6= m;

νp(d(i−m)) = νp(i−m) ≤ C < M = νp(am)

=⇒ νp(ai) = νp(am + d(i−m)) = νp(i−m) ≤ C.

so νp(am) is the unique exceptional term of the sequence exceeding C.

Remark. The bound in the claim is best possible by taking ai = pM + (i − 1) for any
M > C. Then indeed, the sequence νp(ai) takes on values in {0, 1, . . . , C} for i > 1 while
νp(a1) = M .

Back to the original problem with (bi). Consider the common ratio r ∈ Q of the
geometric sequence (bi). If p is any prime with νp(r) 6= 0, then every term of (bi) has a
different νp. So there are two cases to think about.

13
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• Suppose any p ≥ 3 has νp(r) 6= 0. Then there are at most

2 + logp(2023) = 2 + log3(2023) ≈ 8.929 < 11

overlapping terms, as needed.

• Otherwise, suppose r is a power of 2 (in particular, r ≥ 2 is an integer). We already
have an upper bound of 12; we need to improve it to 11.
As in the proof before, we may assume WLOG by scaling down by a power of
2 that the common difference of ai is odd. (This may cause some bi to become
rational non-integers, but that’s OK. However, unless ν2(ai) is constant, the ai will
still be integers.)
Then in order for the bound of 12 to be achieved, the sequence ν2(ai) must be
contained in {0, 1, . . . , 10,M} for some M ≥ 11. In particular, we only need to
work with r = 2.
Denote by b the unique odd-integer term in the geometric sequence, which must
appear among (ai). Then 2b appears too, so the common difference of ai is at most
b.
But if (ai) is an arithmetic progression of integers that contains b and has common
difference at most b, then no term of the sequence can ever exceed b+2023·b = 2024b.
Hence 2Mb cannot appear for any M ≥ 11. This completes the proof.

Remark. There are several other approaches to the problem, but most take some time to
execute. The primary issue is that the common difference of the ai’s could share prime
factors with the common ratio in the bi’s, which means that merely trying to write out a
lot of modular arithmetic equations leads to a lot of potential technical traps that are not
pleasant to defuse.

One unusual thing is that many solutions end up proving a bound of 12 (in the case the
common ratio is 2) and then having to adjust it to 11 later.
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§2.3 USA TST 2024/6, proposed by Milan Haiman
Available online at https://aops.com/community/p29642897.

Problem statement

Solve over R the functional equation

f(xf(y)) + f(y) = f(x+ y) + f(xy).

In addition to all constant functions, f(x) ≡ x+ 1 clearly works too. We prove these are
the only solutions. The solution that follows is by the original proposer.

Let P (x, y) denote the given assertion.

Claim 2.1 — If f is periodic, then f is constant.

Proof. Let f have period d 6= 0. From P (x, y + d), we have

f(x(y + d)) = f(x+ y + d)− f(y + d)− f(xf(y + d)) = f(x+ y)− f(y)− f(xf(y)).

Applying P (x, y) gives
f(x(y + d)) = f(xy).

In particular, taking y = 0 yields that f(dx) = f(0). Thus f is constant, as d 6= 0.

Claim 2.2 — For all real numbers x and y, we have f(f(x) + y) = f(f(y) + x).

Proof. Applying P (f(x), y) and then P (y, x) gives us

f(f(x)f(y)) = f(f(x) + y) + f(f(x)y)− f(y)

= f(f(x) + y) + f(x+ y) + f(xy)− f(x)− f(y).

Now swapping x and y gives us f(f(x) + y) = f(f(y) + x).

Claim 2.3 — If f is nonconstant, then f(f(x) + y) = f(x) + f(y) for all reals x, y.

Proof. Let x, y ∈ R and let d := f(f(x) + y) − f(x) − f(y). Let z be an arbitrary real
number. By repeatedly applying Claim 2.2, we have

f(z + f(f(x) + y)) = f(f(z) + f(x) + y)

= f(f(x) + f(z) + y)

= f(x+ f(f(z) + y))

= f(x+ f(f(y) + z))

= f(f(x) + f(y) + z)

= f(z + f(x) + f(y)).

If d 6= 0, then f is periodic with period d, contradicting Claim 2.1.
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Claim 2.4 — If f is nonconstant, then f(0) = 1 and f(x+ 1) = f(x) + 1.

Proof. From P (z, 0) we have f(zf(0)) = f(z) for all real z. Then P (xf(0), y) and P (x, y)
give us

f(xf(0) + y) = f(y) + f(xf(0)f(y))− f(xf(0)y)

= f(y) + f(xf(y))− f(xy) = f(x+ y).

If f(0) 6= 1, then xf(0)− x is a period of f for all x, violating Claim 2.1. So we must
have f(0) = 1.

Now putting x = 0 in Claim 2.3 gives f(x+ 1) = f(x) + 1.

Claim 2.5 — If f is nonconstant, then f(x) + f(y) = f(x+ y) + 1.

Proof. From P (x+ 1, y) and Claim 2.4, we have

f((x+ 1)f(y)) = f(x+ y + 1) + f(xy + y)− f(y) = f(x+ y) + f(xy + y)− f(y) + 1.

Also, from Claim 2.3 and P (x, y), we have

f((x+ 1)f(y)) = f(xf(y)) + f(y) = f(x+ y) + f(xy).

Thus f(xy) = f(xy + y) − f(y) + 1. Replacing x with x
y gives the claim for all y 6= 0

(whereas y = 0 follows from Claim 2.4).

Claim 2.6 — If f is nonconstant, then f(x) ≡ x+ 1.

Proof. We apply Claim 2.3, Claim 2.5, and Claim 2.4:

f(f(x) + y) = f(x) + f(y) = f(x+ y) + 1 = f(x+ y + 1).

If f(x) 6= x+ 1 for some x, then Claim 2.1 again gives a contradiction.
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