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§0 Problems
1. Choose positive integers b1, b2, . . . satisfying

1 =
b1
12

>
b2
22

>
b3
32

>
b4
42

> · · ·

and let r denote the largest real number satisfying bn
n2 ≥ r for all positive integers n.

What are the possible values of r across all possible choices of the sequence (bn)?

2. Two circles Γ1 and Γ2 have common external tangents `1 and `2 meeting at T .
Suppose `1 touches Γ1 at A and `2 touches Γ2 at B. A circle Ω through A and
B intersects Γ1 again at C and Γ2 again at D, such that quadrilateral ABCD is
convex.
Suppose lines AC and BD meet at point X, while lines AD and BC meet at point
Y . Show that T , X, Y are collinear.

3. Let α ≥ 1 be a real number. Hephaestus and Poseidon play a turn-based game on
an infinite grid of unit squares. Before the game starts, Poseidon chooses a finite
number of cells to be flooded. Hephaestus is building a levee, which is a subset of
unit edges of the grid, called walls, forming a connected, non-self-intersecting path
or loop.
The game then begins with Hephaestus moving first. On each of Hephaestus’s
turns, he adds one or more walls to the levee, as long as the total length of the levee
is at most αn after his nth turn. On each of Poseidon’s turns, every cell which is
adjacent to an already flooded cell and with no wall between them becomes flooded
as well.
Hephaestus wins if the levee forms a closed loop such that all flooded cells are
contained in the interior of the loop — hence stopping the flood and saving the
world. For which α can Hephaestus guarantee victory in a finite number of turns
no matter how Poseidon chooses the initial cells to flood?

4. For a finite simple graph G, we define G′ to be the graph on the same vertex set as
G, where for any two vertices u 6= v, the pair {u, v} is an edge of G′ if and only if
u and v have a common neighbor in G. Prove that if G is a finite simple graph
which is isomorphic to (G′)′, then G is also isomorphic to G′.

5. Find all integers n ≥ 2 for which there exists an integer m and a polynomial P (x)
with integer coefficients satisfying the following three conditions:

• m > 1 and gcd(m,n) = 1;
• the numbers P (0), P 2(0), . . . , Pm−1(0) are not divisible by n; and
• Pm(0) is divisible by n.

Here P k means P applied k times, so P 1(0) = P (0), P 2(0) = P (P (0)), etc.

6. Let P1P2 . . . P100 be a cyclic 100-gon, and let Pi = Pi+100 for all i. Define Qi as the
intersection of diagonals Pi−2Pi+1 and Pi−1Pi+2 for all integers i.
Suppose there exists a point P satisfying PPi ⊥ Pi−1Pi+1 for all integers i. Prove
that the points Q1, Q2, . . . , Q100 are concyclic.
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§1 Solutions to Day 1
§1.1 USA TST 2020/1, proposed by Carl Schildkraut, Milan Haiman
Available online at https://aops.com/community/p13654466.

Problem statement

Choose positive integers b1, b2, . . . satisfying

1 =
b1
12

>
b2
22

>
b3
32

>
b4
42

> · · ·

and let r denote the largest real number satisfying bn
n2 ≥ r for all positive integers n.

What are the possible values of r across all possible choices of the sequence (bn)?

The answer is 0 ≤ r ≤ 1/2. Obviously r ≥ 0.
In one direction, we show that

Claim (Greedy bound) — For all integers n, we have

bn
n2

≤ 1

2
+

1

2n
.

Proof. This is by induction on n. For n = 1 it is given. For the inductive step we have

bn < n2 bn−1

(n− 1)2
≤ n2

(
1

2
+

1

2(n− 1)

)
=

n3

2(n− 1)

=
1

2

[
n2 + n+ 1 +

1

n− 1

]
=

n(n+ 1)

2
+

1

2

[
1 +

1

n− 1

]
≤ n(n+ 1)

2
+ 1

So bn < n(n+1)
2 + 1 and since bn is an integer, bn ≤ n(n+1)

2 . This implies the result.

We now give a construction. For r = 1/2 we take bn = 1
2n(n + 1) for r = 0 we take

bn = 1.

Claim (Explicit construction, given by Nikolai Beluhov) — Fix 0 < r < 1/2. Let
N be large enough that

⌈
rn2 + n

⌉
< 1

2n(n+ 1) for all n ≥ N . Then the following
sequence works:

bn =

{⌈
rn2 + n

⌉
n ≥ N

n2+n
2 n < N.

Proof. We certainly have

bn
n2

=
rn2 + n+O(1)

n2

n→∞−−−→ r.
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Mainly, we contend bnn
−2 is strictly decreasing. We need only check this for n ≥ N ; in

fact
bn
n2

≥ rn2 + n

n2
>

[r(n+ 1)2 + (n+ 1)] + 1

(n+ 1)2
>

bn+1

(n+ 1)2

where the middle inequality is true since it rearranges to 1
n > n+2

(n+1)2
.
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§1.2 USA TST 2020/2, proposed by Merlijn Staps
Available online at https://aops.com/community/p13654481.

Problem statement

Two circles Γ1 and Γ2 have common external tangents `1 and `2 meeting at T .
Suppose `1 touches Γ1 at A and `2 touches Γ2 at B. A circle Ω through A and
B intersects Γ1 again at C and Γ2 again at D, such that quadrilateral ABCD is
convex.

Suppose lines AC and BD meet at point X, while lines AD and BC meet at
point Y . Show that T , X, Y are collinear.

We present four solutions.

¶ First solution, elementary (original). We have 4Y AC ∼ 4Y BD, from which it
follows

d(Y,AC)

d(Y,BD)
=

AC

BD
.

Moreover, if we denote by r1 and r2 the radii of Γ1 and Γ2, then

d(T,AC)

d(T,BD)
=

TA sin∠(AC, `1)

TB sin∠(BD, `2)
=

2r1 sin∠(AC, `1)

2r2 sin∠(BD, `2)
=

AC

BD

the last step by the law of sines.

A

B

C

D

X
Y

T

ℓ1

ℓ2

Γ1

Γ2

This solves the problem up to configuration issues: we claim that Y and T both lie
inside ∠AXB ≡ ∠CXD. WLOG TA < TB.

• The former is since Y lies outside segments BC and AD, since we assumed ABCD
was convex.

• For the latter, we note that X lies inside both Γ1 and Γ2 in fact on the radical axis
of the two circles (since X was an interior point of both chords AC and BD). In
particular, X is contained inside ∠ATB, and moreover ∠ATB < 90◦, and this is
enough to imply the result.
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¶ Second solution, inversive. This is based on the solution posted by kapilpavase on
AoPS. Consider the inversion at T swapping Γ1 and Γ2; we let it send A to E, B to F ,
C to V , D to W , as shown. Draw circles ADWE and BCV F .

A

B

C

D

X
Y

T

ℓ1

ℓ2

Γ1

Γ2

E

F

V

W

Claim — Points T and Y lie on the radical axis of (ADE) and (BCF ).

Proof. Because TF · TB = TA · TE and Y A · Y D = Y C · Y B.

Claim — Point X has equal power to (ADE) and (BCF ).

Proof. Since TV · TC = TA · TE, quadrilateral V CEA is cyclic too, so by radical axis
with Γ1 and Γ2 we find X lies on V E. Similarly, X lies on FW . Thus, X is the center
of negative inversion between (ADE) and (BCF ).

But since AE = BF and moreover

]BCF + ]ADE = (]BCA+ ]ACF ) + (]ADB + ]BDE)

= (]BCA+ ]ADB) + (]ACF + ]BDE) = 0 + 0 = 0

we conclude that (ADE) and (BCF ) are congruent. As X was the center of negative
inversion between them, we’re done.

¶ Third solution, projective (Nikolai Beluhov). We start with some definitions. Let `1
touch Γ2 at E, `2 touch Γ1 at F , K = `1 ∩BD, L = `2 ∩AC, line FX meet Γ1 again at
M , line EX meet Γ2 again at N , and lines AB, AD, and BC meet line TX at Z, Y1,
and Y2. Thus the desired statement is equivalent to Y1 = Y2.

Claim — (EB;ND)Γ2 = (FA;MC)Γ1 .

Proof. Note that AX · XC = BX · XD = EX · XN , so AECN is cyclic. Likewise
BFDM is cyclic.
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Consider the inversion with center T which swaps Γ1 and Γ2; it also swaps the pairs
{A,E} and {B,F}. Since AECN is cyclic, C is on Γ1, and N is on Γ2, it also swaps
{C,N}; similarly it swaps {D,M}.

Thus (EB;ND)Γ2 = (AF ;CM)Γ1 = (FA;MC)Γ1 as desired.

With this claim, the remainder of the proof is chasing cross-ratios:

(TZ;XY1)
A
= (KB;XD)

E
= (EB;ND)Γ2 = (FA;MC)Γ1

F
= (LA;XC)

B
= (TZ;XY2)

implies Y1 = Y2 as desired.

¶ Fourth solution by untethered moving points. Fix `1, `2, T , Γ1 and Γ2, and let Γ1

and Γ2 meet at U and V . By the radical axis theorem, X lies on UV .
Thus we instead treat X as a variable point on line UV and let C = AX ∩ Γ1,

D = BX ∩ Γ2. By definition, X has degree 1 and T has degree 0.
We apply Zack’s lemma to untethered point Y . Note that C and D move projectively

on conics, and therefore have degree 2. Then, lines AD and BC each have degree at most
deg(A) + deg(D) = 0 + 2 = 2, and so their intersection Y has degree at most 2 + 2 = 4.
But when X ∈ AB, the lines AD and BC are the same, so Zack’s lemma implies that

degY ≤ 4− 1 = 3.

Thus the assertion that T , X, Y are collinear (which for example can be seen as a
certain vanishing determinant) is a statement of degree at most 0 + 1 + 3 = 4. Thus
it suffices to find 5 values of X (other than X ∈ AB, which we used already). This is
remarkably easy:

1. When X = U or X = V , then X = C = D = Y and the statement is obvious.

2. When X ∈ `1, say, then A = C and so Y lies on AC = `1 as well. The case X ∈ `2
is symmetric.

3. Finally, take X at infinity along UV . Then C and D are the other tangency points
of the circles with `1, `2, and so AC = `1, BD = `2, so Y = T .

This finishes the problem.
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§1.3 USA TST 2020/3, proposed by Nikolai Beluhov
Available online at https://aops.com/community/p13654498.

Problem statement

Let α ≥ 1 be a real number. Hephaestus and Poseidon play a turn-based game on
an infinite grid of unit squares. Before the game starts, Poseidon chooses a finite
number of cells to be flooded. Hephaestus is building a levee, which is a subset of
unit edges of the grid, called walls, forming a connected, non-self-intersecting path
or loop.

The game then begins with Hephaestus moving first. On each of Hephaestus’s
turns, he adds one or more walls to the levee, as long as the total length of the levee
is at most αn after his nth turn. On each of Poseidon’s turns, every cell which is
adjacent to an already flooded cell and with no wall between them becomes flooded
as well.

Hephaestus wins if the levee forms a closed loop such that all flooded cells are
contained in the interior of the loop — hence stopping the flood and saving the
world. For which α can Hephaestus guarantee victory in a finite number of turns no
matter how Poseidon chooses the initial cells to flood?

We show that if α > 2 then Hephaestus wins, but when α = 2 (and hence α ≤ 2)
Hephaestus cannot contain even a single-cell flood initially.

Strategy for α > 2: Impose Z2 coordinates on the cells. Adding more flooded
cells does not make our task easier, so let us assume that initially the cells (x, y) with
|x| + |y| ≤ d are flooded for some d ≥ 2; thus on Hephaestus’s kth turn, the water is
contained in |x|+ |y| ≤ d+ k − 1. Our goal is to contain the flood with a large rectangle.

We pick large integers N1 and N2 such that

αN1 > 2N1 + (2d+ 3)

α(N1 +N2) > 2N2 + (6N1 + 8d+ 4).

Mark the points Xi, Yi as shown in the figure for 1 ≤ i ≤ 6. The red figures indicate the
distance between the marked points on the rectangle.
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X1 Y1X2 Y2X3 Y3

X4 Y4

X5 Y5

X6 Y6

1N1 N1d d

d+ 1 d+ 1

N2 N2

N1 + d N1 + d

We follow the following plan.

• Turn 1: place wall X1Y1. This cuts off the flood to the north.

• Turns 2 through N1 + 1: extend the levee to segment X2Y2. This prevents further
flooding to the north.

• Turn N1 + 2: add in broken lines X4X3X2 and Y4Y3Y2 all at once. This cuts off
the flood west and east.

• Turns N1 + 2 to N1 + N2 + 1: extend the levee along segments X4X5 and Y4Y5.
This prevents further flooding west and east.

• Turn N1 +N2 + 2: add in the broken line X5X6Y6Y5 all at once and win.

Proof for α = 2: Suppose Hephaestus contains the flood on his (n+ 1)st turn. We
prove that α > 2 by showing that in fact at least 2n+ 4 walls have been constructed.

Let c0, c1, . . . , cn be a path of cells such that c0 is the initial cell flooded, and in
general ci is flooded on Poseidon’s ith turn from ci−1. The levee now forms a closed loop
enclosing all ci.

Claim — If ci and cj are adjacent then |i− j| = 1.

Proof. Assume ci and cj are adjacent but |i − j| > 1. Then the two cells must be
separated by a wall. But the levee forms a closed loop, and now ci and cj are on opposite
sides.

Thus the ci actually form a path. We color green any edge of the unit grid (wall or
not) which is an edge of exactly one ci (i.e. the boundary of the polyomino). It is easy to
see there are exactly 2n+ 4 green edges.

9
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Now, from the center of each cell ci, shine a laser towards each green edge of ci (hence
a total of 2n + 4 lasers are emitted). An example below is shown for n = 6, with the
levee marked in brown.

c0 c1

c2

c3

c4c5c6

Claim — No wall is hit by more than one laser.

Proof. Assume for contradiction that a wall w is hit by lasers from ci and cj . WLOG
that laser is vertical, so ci and cj are in the same column (e.g. (i, j) = (0, 5) in figure).

We consider two cases on the position of w.

• If w is between ci and cj , then we have found a segment intersecting the levee
exactly once. But the endpoints of the segment lie inside the levee. This contradicts
the assumption that the levee is a closed loop.

• Suppose w lies above both ci and cj and assume WLOG i < j. Then we have found
that there is no levee at all between ci and cj .
Let ρ ≥ 1 be the distance between the centers of ci and cj . Then cj is flooded in a
straight line from ci within ρ turns, and this is the unique shortest possible path.
So this situation can only occur if j = i+ ρ and ci, . . . , cj form a column. But then
no vertical lasers from ci and cj may point in the same direction, contradiction.

Since neither case is possible, the proof ends here.

This implies the levee has at least 2n+ 4 walls (the number of lasers) on Hephaestus’s
(n+ 1)st turn. So α ≥ 2n+4

n+1 > 2.

Remark (Author comments). The author provides the following remarks.

• Even though the flood can be stopped when α = 2+ ε, it takes a very long time to do
that. Starting from a single flooded cell, the strategy I have outlined requires Θ(1/ε2)
days. Starting from several flooded cells contained within an area of diameter D, it
takes Θ(D/ε2) days. I do not know any strategies that require fewer days than that.

• There is a gaping chasm between α ≤ 2 and α > 2. Since α ≤ 2 does not suffice
even when only one cell is flooded in the beginning, there are in fact no initial
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configurations at all for which it is sufficient. On the other hand, α > 2 works for all
initial configurations.

• The second half of the solution essentially estimates the perimeter of a polyomino in
terms of its diameter (where diameter is measured entirely within the polyomino).
It appears that this has not been done before, or at least I was unable to find any
reference for it. I did find tons of references where the perimeter of a polyomino is
estimated in terms of its area, but nothing concerning the diameter.
My argument is a formalisation of the intuition that if P is any shortest path within
some weirdly-shaped polyomino, then the boundary of that polyomino must hug P
rather closely so that P cannot be shortened.
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§2 Solutions to Day 2
§2.1 USA TST 2020/4, proposed by Zack Chroman, Mehtaab Sawhney
Available online at https://aops.com/community/p13913804.

Problem statement

For a finite simple graph G, we define G′ to be the graph on the same vertex set as
G, where for any two vertices u 6= v, the pair {u, v} is an edge of G′ if and only if u
and v have a common neighbor in G. Prove that if G is a finite simple graph which
is isomorphic to (G′)′, then G is also isomorphic to G′.

We say a vertex of a graph is fatal if it has degree at least 3, and some two of its neighbors
are not adjacent.

Claim — The graph G′ has at least as many triangles as G, and has strictly more
if G has any fatal vertices.

Proof. Obviously any triangle in G persists in G′. Moreover, suppose v is a fatal vertex
of G. Then the neighbors of G will form a clique in G′ which was not there already, so
there are more triangles.

Thus we only need to consider graphs G with no fatal vertices. Looking at the
connected components, the only possibilities are cliques (including single vertices), cycles,
and paths. So in what follows we restrict our attention to graphs G only consisting of
such components.

Remark (Warning). Beware: assuming G is connected loses generality. For example, it
could be that G = G1 tG2, where G′

1
∼= G2 and G′

2
∼= G1.

First, note that the following are stable under the operation:

• an isolated vertex,

• a cycle of odd length, or

• a clique with at least three vertices.

In particular, G ∼= G′′ holds for such graphs.
On the other hand, cycles of even length or paths of nonzero length will break into

more connected components. For this reason, a graph G with any of these components
will not satisfy G ∼= G′′ because G′ will have strictly more connected components than
G, and G′′ will have at least as many as G′.

Therefore G ∼= G′′ if and only if G is a disjoint union of the three types of connected
components named earlier. Since G ∼= G′ holds for such graphs as well, the problem
statement follows right away.

Remark. Note that the same proof works equally well for an arbitrary number of iterations
G

′′...′′ ∼= G, rather than just G′′ ∼= G.
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Remark. The proposers included a variant of the problem where given any graph G, the
operation stabilized after at most O(logn) operations, where n was the number of vertices
of G.
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§2.2 USA TST 2020/5, proposed by Carl Schildkraut
Available online at https://aops.com/community/p13913769.

Problem statement

Find all integers n ≥ 2 for which there exists an integer m and a polynomial P (x)
with integer coefficients satisfying the following three conditions:

• m > 1 and gcd(m,n) = 1;

• the numbers P (0), P 2(0), . . . , Pm−1(0) are not divisible by n; and

• Pm(0) is divisible by n.

Here P k means P applied k times, so P 1(0) = P (0), P 2(0) = P (P (0)), etc.

The answer is that this is possible if and only if there exists primes p′ < p such that p | n
and p′ - n. (Equivalently, the radical rad(n) must not be the product of the first several
primes.)

For a polynomial P , and an integer N , we introduce the notation

zord(P mod N) := min {e > 0 | P e(0) ≡ 0 mod N}

where we set min∅ = 0 by convention. Note that in general we have

zord(P mod N) = lcm
q|N

(zord(P mod q)) (†)

where the index runs over all prime powers q | N (by Chinese remainder theorem). This
will be used in both directions.

Construction: First, we begin by giving a construction. The idea is to first use the
following prime power case.

Claim — Let pe be a prime power, and 1 ≤ k < p. Then

f(X) = X + 1− k · X(X − 1)(X − 2) . . . (X − (k − 2))

(k − 1)!

viewed as a polynomial in (Z/pe)[X] satisfies zord(f mod pe) = k.

Proof. Note f(0) = 1, f(1) = 2, . . . , f(k − 2) = k − 1, f(k − 1) = 0 as needed.

This gives us a way to do the construction now. For the prime power pe | n, we choose
1 ≤ p′ < p and require zord(P mod pe) = p′ and zord(P mod q) = 1 for every other
prime power q dividing n. Then by (†) we are done.

Remark. The claim can be viewed as a special case of Lagrange interpolation adapted to
work over Z/pe rather than Z/p. Thus the construction of the polynomial f above is quite
natural.

Necessity: by (†) again, it will be sufficient to prove the following claim.

14
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Claim — For any prime power q = pe, and any polynomial f(x) ∈ Z[x], if the
quantity zord(f mod q) is nonzero then it has all prime factors at most p.

Proof. This is by induction on e ≥ 1. For e = 1, the pigeonhole principle immediately
implies that zord(P mod p) ≤ p.

Now assume e ≥ 2. Let us define

k := zord(P mod pe−1), Q := P k.

Since being periodic modulo pe requires periodic modulo pe−1, it follows that

zord(P mod pe) = k · zord(Q mod pe).

However since Q(0) ≡ 0 mod pe−1, it follows {Q(0), Q2(0), . . . } are actually all multiples
of pe−1. There are only p residues modulo pe which are also multiples of pe−1, so
zord(Q mod pe) ≤ p, as needed.

Remark. One reviewer submitted the following test-solving comments:
This is one of these problems where you can make many useful natural observations, and

if you make enough of them eventually they cohere into a solution. For example, here are
some things I noticed while solving:

• The polynomial 1− x shows that m = 2 works for any odd n.

• In general, if ζ is a primitive mth root of unity modulo n, then ζ(x+ 1)− 1 has the
desired property (assuming gcd(m,n) = 1). We can extend this using the Chinese
remainder theorem to find that if p | n, m | p− 1, and gcd(m,n) = 1, then n works.
So by this point I already have something about the prime factors of n being sort-of
closed downwards.

• By iterating P we see it is enough to consider m prime.

• In the case where n = 2k, it is not too difficult to show that no odd prime m works.

15
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§2.3 USA TST 2020/6, proposed by Michael Ren
Available online at https://aops.com/community/p13913742.

Problem statement

Let P1P2 . . . P100 be a cyclic 100-gon, and let Pi = Pi+100 for all i. Define Qi as the
intersection of diagonals Pi−2Pi+1 and Pi−1Pi+2 for all integers i.

Suppose there exists a point P satisfying PPi ⊥ Pi−1Pi+1 for all integers i. Prove
that the points Q1, Q2, . . . , Q100 are concyclic.

We show two solutions. In addition, Luke Robitaille has a reasonable complex numbers
solution posted at https://aops.com/community/p26795631.

¶ Solution to proposed problem. We let PP2 and P1P3 intersect (perpendicularly) at
point K2, and define K• cyclically.
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P1

P2

P3

P4

K2

K3

P

K4

P5K5
K1

H1

H2

H3

H4

Q2

Q3

Q4

E

E2

E3

E4

Claim — The points K• are concyclic say with circumcircle γ.

Proof. Note that PP1 × PK1 = PP2 × PK2 = . . . so the result follows by inversion at
P .

Let Ei be the second intersection of line Pi−1KiPi+1 with γ; then it follows that the
perpendiculars to Pi−1Pi+1 at Ei all concur at a point E, which is the reflection of P
across the center of γ.

We let H2 = P1P3 ∩ P2P4 denote the orthocenter of 4PP2P3 and define H• cycli-
cally.

Claim — We have

EH2 ⊥ P1P4 ‖ K2K3 and PH2 ⊥ E2E3 ‖ P2P3.
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Proof. Both parallelisms follow by Reim’s theorem through ∠E2H2E3 = ∠K2H2K3, So
we need to show the perpendicularities.

Note that H2P and H2E are respectively circum-diameters of 4H2K2K3 and 4H2E2E3.
As K2K3 and E2E3 are anti-parallel, it follows H2P and H2E are isogonal and we derive
both perpendicularities.

Claim — The points E, Q3, E3 are collinear.

Proof. We use the previous claim. The parallelisms imply that

E3H2

E3P2
=

E2H2

E2P3
=

E4H3

E4P3
=

E3H3

E3P4
.

Now consider a homothety centered at E3 sending H2 to P2 and H3 to P4. Then it should
send the orthocenter of 4EH2H3 to Q3, proving the result.

From all this it follows that 4EQ2Q3 ∼ 4PK2K3 as the opposite sides are all parallel.
Repeating this we actually find a homothety of 100-gons

Q1Q2Q3 · · · ∼ K1K2K3 . . .

and that concludes the proof.

Remark. The proposer remarks that in fact, if one lets s be an integer and instead defines
Ri = PiPi+s∩Pi+1Pi+s+1, then the R• are concyclic. The present problem is the case s = 3.
We comment on a few special cases:

• There is nothing to prove for s = 1.

• If s = 0, this amounts to proving that poles of PiPi+1 are concyclic; by inversion this
is equivalent to showing the midpoints of the sides are concyclic. This is an interesting
problem but not as difficult.

• The problem for s = 2 is to show that our H• are concyclic, which uses the s = 0 case
as a lemma.

¶ Solution to generalization (Nikolai Beluhov). We are going to need some well-known
lemmas.

Lemma
Suppose that ABCD is inscribed in a circle Γ. Let the tangents to Γ at A and B
meet at E, let the tangents to Γ at C and D meet at F , and let diagonals AC and
BD meet at P . Then points E, F , and P are collinear.

Proof. Let the circle of center E and radius EA = EB meet lines AC and BD for the
second time at points U and V . By a simple angle chase, triangles EUV and FCD are
homothetic.
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Lemma
Suppose that points X and Y are isogonal conjugates in polygon A = A1A2 . . . An.
(This means that lines AiX and AiY are symmetric with respect to the interior
angle bisector of ∠Ai−1AiAi+1 for all i, where An+j ≡ Aj for all j.) Then the 2n
projections of X and Y on the sides of A are concyclic.

Proof. By a simple angle chase, for all i we have that the four projections on sides Ai−1Ai

and AiAi+1 are concyclic. Say that they lie on circle Γi. Consider the midpoint M of
segment XY . For every side s of A, we have that M is equidistant from the projections
of X and Y on s. Therefore, M is the center of Γi for all i, and thus all of the Γi

coincide.

Lemma
Let Γ′ and Γ′′ be two circles and let r be some fixed real number. Then the locus of
points X satisfying Pow(X,Γ′) : Pow(X,Γ′′) = r is a circle.

Proof. This is a classical result in circle geometry. A full proof is given, for example, in
item 115 of Roger Johnson’s Advanced Euclidean Geometry.

We are ready to solve the problem. Let P be our polygon, let O be its the circumcenter,
and let Γ be its circumcircle.

Fix any index i. In triangle Pi−1PiPi+1, we have that line PiP contains the altitude
through Pi and line PiO contains the circumradius through Pi. Therefore, these two
lines are symmetric with respect to the interior angle bisector of ∠Pi−1PiPi+1.

Thus points P and O are isogonal conjugates in P. By Lemma 2, it follows that the
projections of O onto the sides of P are concyclic. In other words, the midpoints of the
sides of P lie on some circle ω.

Let Mi be the midpoint of segment PiPi+1 and let the tangents to Γ at points Pi and
Pi+1 meet at Ti. Since inversion with respect to Γ swaps Mi and Ti for all i, and also
since all of the Mi lie on the same circle ω, we obtain that all of the Ti lie on the same
circle Ω.
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Pi−2

Pi−1

Pi

Pi+1

Pi+2

Pi+3

Qi

Qi+1

Ti−2

Ti−1

Ti

Ti+1

Ti+2

Again, fix any index i. By Lemma 1 applied to cyclic quadrilateral Pi−2Pi−1Pi+1Pi+2,
we have that point Qi lies on line Ti−2Ti+1. Similarly, point Qi+1 lies on line Ti−1Ti+2.

Define
fi =

Pow(Qi,Γ)

Pow(Qi,Ω)
.

Claim — We have fi = fi+1 for all i.

Proof. Note that

Pow(Qi,Γ) = QiPi−1 ·QiPi+2

Pow(Qi+1,Γ) = Qi+1Pi−1 ·Qi+1Pi+2.

Pow(Qi,Ω) = QiTi−2 ·QiTi+1

Pow(Qi+1,Ω) = Qi+1Ti−1 ·Qi+1Ti+2.

Consider cyclic quadrilateral Ti−2Ti−1Ti+1Ti+2. Since Γ touches its opposite sides
Ti−2Ti−1 and Ti+1Ti+2 at points Pi−1 and Pi+2, we have that line Pi−1Pi+2 makes equal
angles with these opposite sides. From here, a simple angle chase shows that triangles
Pi−1QiTi−2 and Pi+2Qi+1Ti+2 are similar. Thus

QiPi−1

QiTi−2
=

Qi+1Pi+2

Qi+1Ti+2
.

Similarly,
QiPi+2

QiTi+1
=

Qi+1Pi−1

Qi+1Ti−1
.

From these, the desired identity fi = fi+1 follows.

Therefore, the power ratio fi is the same for all i. By Lemma 3 for circles Γ and Ω,
the solution is complete.
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Remark. This solution applies to the full generalization (from 3 to s) mentioned in the end
of the previous solution, essentially with no change.

Remark. Polygon T1T2 . . . T100 is both circumscribed about a circle and inscribed inside
a circle. Polygons like that are known as Poncelet polygons. See, for example, https:
//en.wikipedia.org/wiki/Poncelet's_closure_theorem. This solution borrows a lot
from the discussion of Poncelet’s closure theorem in Advanced Euclidean Geometry, referenced
above for Lemma 3.
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