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§0 Problems
1. Let ABC be a triangle and let M and N denote the midpoints of AB and AC,

respectively. Let X be a point such that AX is tangent to the circumcircle of
triangle ABC. Denote by ωB the circle through M and B tangent to MX, and by
ωC the circle through N and C tangent to NX. Show that ωB and ωC intersect
on line BC.

2. Let Z/nZ denote the set of integers considered modulo n (hence Z/nZ has n
elements). Find all positive integers n for which there exists a bijective function
g : Z/nZ → Z/nZ, such that the 101 functions

g(x), g(x) + x, g(x) + 2x, . . . , g(x) + 100x

are all bijections on Z/nZ.

3. A snake of length k is an animal which occupies an ordered k-tuple (s1, . . . , sk) of
cells in an n × n grid of square unit cells. These cells must be pairwise distinct,
and si and si+1 must share a side for i = 1, . . . , k − 1. If the snake is currently
occupying (s1, . . . , sk) and s is an unoccupied cell sharing a side with s1, the snake
can move to occupy (s, s1, . . . , sk−1) instead. The snake has turned around if
it occupied (s1, s2, . . . , sk) at the beginning, but after a finite number of moves
occupies (sk, sk−1, . . . , s1) instead.
Determine whether there exists an integer n > 1 such that one can place some
snake of length at least 0.9n2 in an n× n grid which can turn around.

4. We say a function f : Z≥0 ×Z≥0 → Z is great if for any nonnegative integers m and
n,

f(m+ 1, n+ 1)f(m,n)− f(m+ 1, n)f(m,n+ 1) = 1.

If A = (a0, a1, . . . ) and B = (b0, b1, . . . ) are two sequences of integers, we write
A ∼ B if there exists a great function f satisfying f(n, 0) = an and f(0, n) = bn
for every nonnegative integer n (in particular, a0 = b0).
Prove that if A, B, C, and D are four sequences of integers satisfying A ∼ B,
B ∼ C, and C ∼ D, then D ∼ A.

5. Let n be a positive integer. Tasty and Stacy are given a circular necklace with 3n
sapphire beads and 3n turquoise beads, such that no three consecutive beads have
the same color. They play a cooperative game where they alternate turns removing
three consecutive beads, subject to the following conditions:

• Tasty must remove three consecutive beads which are turquoise, sapphire, and
turquoise, in that order, on each of his turns.

• Stacy must remove three consecutive beads which are sapphire, turquoise, and
sapphire, in that order, on each of her turns.

They win if all the beads are removed in 2n turns. Prove that if they can win with
Tasty going first, they can also win with Stacy going first.

6. Let ABC be a triangle with incenter I, and let D be a point on line BC satisfying
∠AID = 90◦. Let the excircle of triangle ABC opposite the vertex A be tangent
to BC at point A1. Define points B1 on CA and C1 on AB analogously, using the
excircles opposite B and C, respectively.
Prove that if quadrilateral AB1A1C1 is cyclic, then AD is tangent to the circumcircle
of 4DB1C1.
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§1 Solutions to Day 1
§1.1 USA TST 2019/1, proposed by Merlijn Staps
Available online at https://aops.com/community/p11419585.

Problem statement

Let ABC be a triangle and let M and N denote the midpoints of AB and AC,
respectively. Let X be a point such that AX is tangent to the circumcircle of triangle
ABC. Denote by ωB the circle through M and B tangent to MX, and by ωC the
circle through N and C tangent to NX. Show that ωB and ωC intersect on line BC.

We present four solutions, the second of which shows that M and N can be replaced by
any two points on AB and AC satisfying AM/AB +AN/AC = 1.

¶ First solution using symmedians (Merlijn Staps). Let XY be the other tangent
from X to (AMN).

Claim — Line XM is tangent to (BMY ); hence Y lies on ωB.

A

B C

M
N

X
Y

Z

Proof. Let Z be the midpoint of AY . Then MX is the M -symmedian in triangle AMY .
Since MZ ‖ BY , it follows that ]AMX = ]ZMY = ]BYM . We conclude that XM
is tangent to the circumcircle of triangle BMY .

Similarly, ωC is the circumcircle of triangle CNY . As AMYN is cyclic too, it follows
that ωB and ωC intersect on BC, by Miquel’s theorem.

Remark. The converse of Miquel’s theorem is true, which means the problem is equivalent
to showing that the second intersection of the ωB and ωC moves along (AMN). Thus the
construction of Y above is not so unnatural.
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¶ Second solution (Jetze Zoethout). Let ωB intersect BC again at S and let MS
intersect AC again at Y . Angle chasing gives ]XMY = ]XMS = ]MBS = ]ABC =
]XAC = ]XAY , so Y is on the circumcircle of triangle AMX. Furthermore, from
]XMY = ]ABC and ]ACB = ]XAB = ]XYM it follows that 4ABC ∼ 4XMY
and from ]XAY = ]MBS and ]Y XA = ]YMA = ]BMS it follows that 4AXY ∼
4BMS.

A

B C

M N

X

Y

S

We now find

AN

AX
=

AN/BM

AX/BM
=

AC/AB

MS/XY
=

AB/AB

MS/XM
=

XM

MS
,

which together with ∠XMS = ∠XAN yields 4XMS ∼ 4XAN . From ]XSY =
]XSM = ]XNA = ]XNY we now have that S is on the circumcircle of triangle XNY .
Finally, we have ]XNS = ]XY S = ]XYM = ]ACB = ]NCS so XN is tangent to
the circle through C, N , and S, as desired.

¶ Third solution by moving points method. Fix triangle ABC and animate X along
the tangent at A. We let D denote the second intersection point of ωC with line BC.

Claim — The composed map X 7→ D is a fractional linear transformation (i.e. a
projective map) in terms of a real coordinate on line AA, BC.

Proof. Let ` denote the perpendicular bisector of CN , also equipped with a real coordinate.
We let P denote the intersection of XM with `, S the circumcenter of 4CMD. Let T
denote the midpoint of BD.

We claim that the composed map

AA → ` → ` → BC → BC

by X 7→ P 7→ S 7→ T 7→ D

is projective, by showing each individual map is projective.
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A

B C

M N

X
S

TD

P

• The map X 7→ P is projective since it is a perspectivity through N from AA to `.

• The map P 7→ S is projective since it is equivalent to a negative inversion on ` at
the midpoint of NC with radius 1

2NC. (Note ∠PNS = 90◦ is fixed.)

• The map S 7→ T is projective since it is a perspectivity ` → BC through the point
at infinity perpendicular to BC (in fact, it is linear).

• The map T 7→ D is projective (in fact, linear) since it is a homothety through C
with fixed ratio 2.

Thus the composed map is projective as well.

Similarly, if we define D′ so that XM is tangent to (BMD′), the map X 7→ D′ is
projective as well. We aim to show D = D′, and since the maps correspond to fractional
linear transformations in projective coordinates, it suffices to verify it for three distinct
choices of X. We do so:

• If X = AA ∩MN , then D and D′ satisfy MB = MD′, NC = ND. This means
they are the feet of the A-altitude on BC.

• As X approaches A the points D and D′ approach the infinity point along BC.

• If X is a point at infinity along AA, then D and D′ coincide with the midpoint of
BC.

This completes the solution.

Remark (Anant Mudgal). An alternative (shorter) way to show X 7→ D is projective is to
notice ]XND is a constant angle. I left the longer “original” proof for instructional reasons.

¶ Fourth solution by isogonal conjugates (Anant Mudgal). Let Y be the isogonal
conjugate of X in 4AMN and Z be the reflection of Y in MN . As AX is tangent to
the circumcircle of 4AMN , it follows that AY ‖ MN . Thus Z lies on BC since MN
bisects the strip made by AY and BC.
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A

B C

M
N

X

Y

Z

Finally,

]ZMX = ]ZMN + ]NMX = ]NMY + ]YMA = ]NMA = ]ZBM

so XM is tangent to the circumcircle of 4ZMB, hence Z lies on ωB. Similarly, Z lies
on ωC and we’re done.
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§1.2 USA TST 2019/2, proposed by Ashwin Sah, Yang Liu
Available online at https://aops.com/community/p11419598.

Problem statement

Let Z/nZ denote the set of integers considered modulo n (hence Z/nZ has n
elements). Find all positive integers n for which there exists a bijective function
g : Z/nZ → Z/nZ, such that the 101 functions

g(x), g(x) + x, g(x) + 2x, . . . , g(x) + 100x

are all bijections on Z/nZ.

Call a function g valiant if it obeys this condition. We claim the answer is all numbers
relatively prime to 101!.

The construction is to just let g be the identity function.
Before proceeding to the converse solution, we make a long motivational remark.

Remark (Motivation for both parts). The following solution is dense, and it is easier to
think about some small cases first, to motivate the ideas. We consider the result where 101
is replaced by 2 or 3.

• If we replaced 101 with 2, you can show 2 - n easily: write∑
x

x ≡
∑
x

g(x) ≡
∑
x

(g(x) + x) (mod n)

which implies
0 ≡

∑
x

x =
1

2
n(n+ 1) (mod n)

which means 1
2n(n+ 1) ≡ 0 (mod n), hence n odd.

• If we replaced 101 with 3, then you can try a similar approach using squares, since

0 ≡
∑
x

[
(g(x) + 2x)

2 − 2 (g(x) + x)
2
+ g(x)2

]
(mod n)

=
∑
x

2x2 = 2 · n(n+ 1)(2n+ 1)

6

which is enough to force 3 - n.

We now present several different proofs of the converse, all of which generalize the ideas
contained here. In everything that follows we assume n > 1 for convenience.

¶ First solution (original one). The proof is split into two essentially orthogonal claims,
which we state as lemmas.
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Lemma (Lemma I: elimination of g)
Assume valiant g : Z/nZ → Z/nZ exists. Then

k!
∑

x∈Z/nZ

xk ≡ 0 (mod n)

for k = 0, 1, . . . , 100.

Proof. Define gx(T ) = g(x)+Tx for any integer T . If we view gx(T )
k as a polynomial in

Z[T ] of degree k with leading coefficient xk, then taking the kth finite difference implies
that, for any x,

k!xk =

(
k

0

)
gx(k)

k −
(
k

1

)
gx(k − 1)k +

(
k

2

)
gx(k − 2)k − · · ·+ (−1)k

(
k

k

)
gx(0)

k.

On the other hand, for any 1 ≤ k ≤ 100 we should have∑
x

gx(0)
k ≡

∑
x

gx(1)
k ≡ · · · ≡

∑
x

gx(k)
k

≡ Sk := 0k + · · ·+ (n− 1)k (mod n)

by the hypothesis. Thus we find

k!
∑
x

xk ≡
[(

k

0

)
−

(
k

1

)
+

(
k

2

)
− · · ·

]
Sk ≡ 0 (mod n)

for any 1 ≤ k ≤ 100, but also obviously for k = 0.

We now prove the following self-contained lemma.

Lemma (Lemma II: power sum calculation)
Let p be a prime, and let n, M be positive integers such that

M divides 1k + 2k + · · ·+ nk

for k = 0, 1, . . . , p− 1. If p | n then νp(M) < νp(n).

Proof. The hypothesis means that that any polynomial f(T ) ∈ Z[T ] with deg f ≤ p− 1
will have

∑n
x=1 f(x) ≡ 0 (mod M). In particular, we have

0 ≡
n∑

x=1

(x− 1)(x− 2) · · · (x− (p− 1))

= (p− 1)!

n∑
x=1

(
x− 1

p− 1

)
= (p− 1)!

(
n

p

)
(mod M).

But now νp(M) ≤ νp(
(
n
p

)
) = νp(n)− 1.

Now assume for contradiction that valiant g : Z/nZ → Z/nZ exists, and p ≤ 101
is the smallest prime dividing n. Lemma I implies that k!

∑
x x

k ≡ 0 (mod n) for
k = 1, . . . , p− 1 and hence

∑
x x

k ≡ 0 (mod n) too. Thus M = n holds in the previous
lemma, impossible.
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¶ A second solution. Both lemmas above admit variations where we focus on working
modulo pe rather than working modulo n.

Lemma (Lemma I’)
Assume valiant g : Z/nZ → Z/nZ exists. Let p ≤ 101 be a prime, and e = νp(n).
Then ∑

x∈Z/nZ

xk ≡ 0 (mod pe)

for k = 0, 1, . . . , p− 1.

Proof. This is weaker than Lemma I, but we give an independent specialized proof. Begin
by writing ∑

x

(g(x) + Tx)k ≡
∑
x

xk (mod pe).

Both sides are integer polynomials in T , which vanish at T = 0, 1, . . . , p−1 by hypothesis
(since p− 1 ≤ 100).

We now prove the following more general fact: if f(T ) ∈ Z[T ] is an integer polynomial
with deg f ≤ p− 1, such that f(0) ≡ · · · ≡ f(p− 1) ≡ 0 (mod pe), then all coefficients of
f are divisible by pe. The proof is by induction on e ≥ 1. When e = 1, this is just the
assertion that the polynomial has at most deg f roots modulo p. When e ≥ 2, we note
that the previous result implies all coefficients are divisible by p, and then we divide all
coefficients by p.

Applied here, we have that all coefficients of

f(T ) :=
∑
x

(g(x) + Tx)k −
∑
x

xk

are divisible by pe. The leading T k coefficient is
∑

k x
k as desired.

Lemma (Lemma II’)
If e ≥ 1 is an integer, and p is a prime, then

νp
(
1p−1 + 2p−1 + · · ·+ (pe − 1)p−1

)
= e− 1.

Proof. First, note that the cases where p = 2 or e = 1 are easy; since if p = 2 we have∑2e−1
x=0 x ≡ 2e−1(2e−1) ≡ −2e−1 (mod 2e), while if e = 1 we have 1p−1+· · ·+(p−1)p−1 ≡

−1 (mod p). Henceforth assume that p > 2, e > 1.
Let g be an integer which is a primitive root modulo pe. Then, we can sum the terms

which are relatively prime to p as

S0 :=
∑

gcd(x,p)=1

xp−1 ≡
ϕ(pe)∑
i=1

g(p−1)·i ≡ gp
e−1(p−1)2 − 1

gp−1 − 1
(mod pe)

which implies νp(S0) = e− 1, by lifting the exponent. More generally, for r ≥ 1 we may
set

Sr :=
∑

νp(x)=r

xp−1 ≡ (pr)p−1

ϕ(pe−r)∑
i=1

g(p−1)·i
r (mod pe)

9
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where gr is a primitive root modulo pe−r. Repeating the exponent-lifting calculation
shows that νp(Sr) = r(p− 1) + ((e− r)− 1) > e, as needed.

Assume to the contrary that p ≤ 101 is a prime dividing n, and a valiant g : Z/nZ →
Z/nZ exists. Take k = p− 1 in Lemma I’ to contradict Lemma II’

¶ A third remixed solution. We use Lemma I and Lemma II’ from before. As before,
assume g : Z/nZ → Z/nZ is valiant, and n has a prime divisor p ≤ 101. Also, let
e = νp(n).

Then (p− 1)!
∑

x x
p−1 ≡ 0 (mod n) by Lemma I, and now

0 ≡
∑
x

xp−1 (mod pe)

≡ n

pe

pe−1∑
x=1

xp−1 6≡ 0 (mod pe)

by Lemma II’, contradiction.

¶ A fourth remixed solution. We also can combine Lemma I’ and Lemma II. As before,
assume g : Z/nZ → Z/nZ is valiant, and let p be the smallest prime divisor of n.

Assume for contradiction p ≤ 101. By Lemma I’ we have∑
x

xk ≡ 0 (mod pe)

for k = 0, . . . , p− 1. This directly contradicts Lemma II with M = pe.
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§1.3 USA TST 2019/3, proposed by Nikolai Beluhov
Available online at https://aops.com/community/p11419601.

Problem statement

A snake of length k is an animal which occupies an ordered k-tuple (s1, . . . , sk) of
cells in an n × n grid of square unit cells. These cells must be pairwise distinct,
and si and si+1 must share a side for i = 1, . . . , k − 1. If the snake is currently
occupying (s1, . . . , sk) and s is an unoccupied cell sharing a side with s1, the snake
can move to occupy (s, s1, . . . , sk−1) instead. The snake has turned around if it
occupied (s1, s2, . . . , sk) at the beginning, but after a finite number of moves occupies
(sk, sk−1, . . . , s1) instead.

Determine whether there exists an integer n > 1 such that one can place some
snake of length at least 0.9n2 in an n× n grid which can turn around.

The answer is yes (and 0.9 is arbitrary).

¶ First grid-based solution. The following solution is due to Brian Lawrence. For
illustration reasons, we give below a figure of a snake of length 89 turning around in an
11× 11 square (which generalizes readily to odd n). We will see that a snake of length
(n − 1)(n − 2) − 1 can turn around in an n × n square, so this certainly implies the
problem.

Figure 1 Figure 2 Figure 3 Figure 4

Figure 5 Figure 6 Figure 7 Figure 8

Figure 9 Figure 10 Figure 11 Figure 12

Use the obvious coordinate system with (1, 1) in the bottom left. Start with the snake as
shown in Figure 1, then have it move to (2, 1), (2, n), (n, n − 1) as in Figure 2. Then,
have the snake shift to the position in Figure 3; this is possible since the snake can just
walk to (n, n), then start walking to the left and then follow the route; by the time it
reaches the ith row from the top its tail will have vacated by then. Once it achieves
Figure 3, move the head of the snake to (3, n) to achieve Figure 4.

In Figure 5 and 6, the snake begins to “deform” its loop continuously. In general, this
deformation by two squares is possible in the following way. The snake walks first to
(1, n) then retraces the steps left by its tail, except when it reaches (n− 1, 3) it makes a

11
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brief detour to (n− 2, 3), (n− 2, 4), (n− 1, 4) and continues along its way; this gives the
position in Figure 5. Then it retraces the entire loop again, except that when it reaches
(n− 4, 4) it turns directly down, and continues retracing its path; thus at the end of this
second revolution, we arrive at Figure 6.

By repeatedly doing perturbations of two cells, we can move move all the “bumps” in
the path gradually to protrude from the right; Figure 7 shows a partial application of
the procedure, with the final state as shown in Figure 8.

In Figure 9, we stretch the bottom-most bump by two more cells; this shortens the
“tail” by two units, which is fine. Doing this for all (n − 3)/2 bumps arrives at the
situation in Figure 10, with the snake’s head at (3, n). We then begin deforming the
turns on the bottom-right by two steps each as in Figure 11, which visually will increase
the length of the head. Doing this arrives finally at the situation in Figure 12. Thus the
snake has turned around.

¶ Second solution phrased using graph theory (Nikolai Beluhov). Let G be any
undirected graph. Consider a snake of length k lying within G, with each segment of the
snake occupying one vertex, consecutive segments occupying adjacent vertices, and no
two segments occupying the same vertex. One move of the snake consists of the snake’s
head advancing to an adjacent empty vertex and segment i advancing to the vertex of
segment i− 1 for i = 2, 3, . . . , k.

The solution proceeds in two stages. First we construct a planar graph G such that it
is possible for a snake that occupies nearly all of G to turn around inside G. Then we
construct a subgraph H of a grid adjacency graph such that H is isomorphic to G and
H occupies nearly all of the grid.

For the first stage of the solution, we construct G as follows.
Let r and ` be positive integers. Start with r disjoint main paths p1, p2, . . . , pr, each of

length at least `, with pi leading from Ai to Bi for i = 1, 2, . . . , r. Add to those r linking
paths, one leading from Bi to Ai+1 for each i = 1, 2, . . . , r − 1, and one leading from
Br to A1. Finally, add to those two families of transit paths, with one family containing
one transit path joining A1 to each of A2, A3, . . . , Ar and the other containing one
path joining Br to each of B1, B2, . . . , Br−1. We require that all paths specified in the
construction have no interior vertices in common, with the exception of transit paths in
the same family.

We claim that a snake of length (r − 1)` can turn around inside G.
To this end, let the concatenation A1B1A2B2 . . . ArBr of all main and linking paths

be the great cycle. We refer to A1B1A2B2 . . . ArBr as the counterclockwise orientation
of the great cycle, and to BrArBr−1Ar−1 . . . B1A1 as its clockwise orientation.

Place the snake so that its tail is at A1 and its body extends counterclockwise along
the great cycle. Then let the snake manoeuvre as follows. (We track only the snake’s
head, as its movement uniquely determines the movement of the complete body of the
snake.)

At phase 1, advance counterclockwise along the great cycle to Br−1, take a detour
along a transit path to Br, and advance clockwise along the great cycle to Ar.

For i = 2, 3, . . . , r − 1, at phase i, take a detour along a transit path to A1, advance
counterclockwise along the great cycle to Br−i, take a detour along a transit path to Br,
and advance clockwise along the great cycle to Ar−i+1.

At phase r, simply advance clockwise along the great cycle to A1.
For the second stage of the solution, let n be a sufficiently large positive integer.

Consider an n× n grid S. Number the columns of S from 1 to n from left to right, and
its rows from 1 to n from bottom to top.

12
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Let a1, a2, . . . , ar+1 be cells of S such that all of a1, a2, . . . , ar+1 lie in column 2,
a1 lies in row 2, ar+1 lies in row n− 1, and a1, a2, . . . , ar+1 are approximately equally
spaced. Let b1, b2, . . . , br be cells of S such that all of b1, b2, . . . , br lie in column n− 2
and bi lies in the row of ai+1 for i = 1, 2, . . . , r.

Construct H as follows. For i = 1, 2, . . . , r, let the main path from ai to bi fill up the
rectangle bounded by the rows and columns of ai and bi nearly completely. Then every
main path is of length approximately 1

rn
2.

For i = 1, 2, . . . , r− 1, let the linking path that leads from bi to ai+1 lie inside the row
of bi and ai+1 and let the linking path that leads from br to a1 lie inside row n, column
n, and row 1.

Lastly, let the union of the first family of transit paths be column 1 and let the union of
the second family of transit paths be column n−1, with the exception of their bottommost
and topmost squares.

As in the first stage of the solution, by this construction a snake of length k approxi-
mately equal to r−1

r n2 can turn around inside an n× n grid S. When r is fixed and n

tends to infinity, k
n2 tends to r−1

r . Furthermore, when r tends to infinity, r−1
r tends to 1.

This gives the answer.
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§2 Solutions to Day 2
§2.1 USA TST 2019/4, proposed by Ankan Bhattacharya
Available online at https://aops.com/community/p11625808.

Problem statement

We say a function f : Z≥0 × Z≥0 → Z is great if for any nonnegative integers m and
n,

f(m+ 1, n+ 1)f(m,n)− f(m+ 1, n)f(m,n+ 1) = 1.

If A = (a0, a1, . . . ) and B = (b0, b1, . . . ) are two sequences of integers, we write
A ∼ B if there exists a great function f satisfying f(n, 0) = an and f(0, n) = bn for
every nonnegative integer n (in particular, a0 = b0).

Prove that if A, B, C, and D are four sequences of integers satisfying A ∼ B,
B ∼ C, and C ∼ D, then D ∼ A.

We present two solutions. In what follows, we say (A,B) form a great pair if A ∼ B.

¶ First solution (Nikolai Beluhov). Let k = a0 = b0 = c0 = d0. We let f , g, h be great
functions for (A,B), (B,C), (C,D) and write the following infinite array:

...
... b3

...
...

· · · g(2, 2) g(2, 1) b2 f(1, 2) f(2, 2) · · ·
· · · g(1, 2) g(1, 1) b1 f(1, 1) f(2, 1) · · ·
c3 c2 c1 k a1 a2 a3

· · · h(2, 1) h(1, 1) d1

· · · h(2, 2) h(1, 2) d2

...
... d3

. . .


The greatness condition is then equivalent to saying that any 2×2 sub-grid has determinant
±1 (the sign is +1 in two quadrants and −1 in the other two), and we wish to fill in the
lower-right quadrant. To this end, it suffices to prove the following.

Lemma
Suppose we have a 3× 3 sub-grid a b c

x y z
p q


satisfying the determinant conditions. Then we can fill in the ninth entry in the
lower right with an integer while retaining greatness.

Proof. We consider only the case where the 3 × 3 is completely contained inside the
bottom-right quadrant, since the other cases are exactly the same (or even by flipping
the signs of the top row or left column appropriately).

14

https://aops.com/community/p11625808


USA IMO TST 2019 Solutions Evan Chen《陳誼廷》

If y = 0 we have −1 = bz = bx = xq, hence qz = −1, and we can fill in the entry
arbitrarily.

Otherwise, we have bx ≡ xq ≡ bz ≡ −1 (mod y). This is enough to imply qz ≡ −1
(mod y), and so we can fill in the integer qz+1

y .

Remark. In this case (of all +1 determinants), I think it turns out the bottom entry is
exactly equal to qza− cyp− c− p, which is obviously an integer.

¶ Second solution (Ankan Bhattacharya). We will give an explicit classification of
great sequences:

Lemma
The pair (A,B) is great if and only if a0 = b0, a0 | a1b1 + 1, and an | an−1 + an+1

and bn | bn−1 + bn+1 for all n.

Proof of necessity. It is clear that a0 = b0. Then a0f(1, 1)− a1b1 = 1, i.e. a0 | a1b1 + 1.
Now, focus on six entries f(x, y) with x ∈ {n − 1, n, n + 1} and y ∈ {0, 1}. Let

f(n− 1, 1) = u, f(n, 1) = v, and f(n+ 1, 1) = w, so

van−1 − uan = 1,

wan − van+1 = 1.

Then
u+ w =

v(an−1 + an+1)

an

and from above gcd(v, an) = 1, so an | an−1 + an+1; similarly for bn. (If an = 0, we have
van−1 = 1 and van+1 = −1, so this is OK.)

Proof of sufficiency. Now consider two sequences a0, a1, . . . and b0, b1, . . . satisfying our
criteria. We build a great function f by induction on (x, y). More strongly, we will
assume as part of the inductive hypothesis that any two adjacent entries of f are relatively
prime and that for any three consecutive entries horizontally or vertically, the middle
one divides the sum of the other two.

First we set f(1, 1) so that a0f(1, 1) = a1b1 + 1, which is possible.
Consider an uninitialized f(s, t); without loss of generality suppose s ≥ 2. Then we

know five values of f and wish to set a sixth one z, as in the matrix below:

u x
v y
w z

(We imagine a-indices to increase southwards and b-indices to increase eastwards.) If
v 6= 0, then the choice y · u+w

v − x works as uy − vx = 1. If v = 0, it easily follows that
{u,w} = {1,−1} and y = w as yw = 1. Then we set the uninitialized entry to anything.

Now we verify that this is compatible with the inductive hypothesis. From the
determinant 1 condition, it easily follows that gcd(w, z) = gcd(v, z) = 1. The proof that
y | x+ z is almost identical to a step performed in the “necessary” part of the lemma
and we do not repeat it here. By induction, a desired great function f exists.

15
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We complete the solution. Let A, B, C, and D be integer sequences for which (A,B),
(B,C), and (C,D) are great. Then a0 = b0 = c0 = d0, and each term in each sequence
(after the zeroth term) divides the sum of its neighbors. Since a0 divides all three of
a1b1 + 1, b1c1 + 1, and c1d1 + 1, it follows a0 divides d1a1 + 1, and thus (D,A) is great
as desired.

Remark. To simplify the problem, we may restrict the codomain of great functions and
elements in great pairs of sequences to Z>0. This allows the parts of the solution dealing
with zero entries to be ignored.

Remark. Of course, this solution also shows that any odd path (in the graph induced by the
great relation on sequences) completes to an even cycle. If we stipulate that great functions
must have f(0, 0) = ±1, then even paths complete to cycles as well. Alternatively, we could
change the great functional equation to

f(x+ 1, y + 1)f(x, y)− f(x+ 1, y)f(x, y + 1) = −1.

A quick counterexample to transitivity of ∼ as is without the condition f(0, 0) = 1, for
concreteness: let an = cn = 3 + n and bn = 3 + 2n for n ≥ 0.

16
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§2.2 USA TST 2019/5, proposed by Yannick Yao
Available online at https://aops.com/community/p11625809.

Problem statement

Let n be a positive integer. Tasty and Stacy are given a circular necklace with 3n
sapphire beads and 3n turquoise beads, such that no three consecutive beads have
the same color. They play a cooperative game where they alternate turns removing
three consecutive beads, subject to the following conditions:

• Tasty must remove three consecutive beads which are turquoise, sapphire, and
turquoise, in that order, on each of his turns.

• Stacy must remove three consecutive beads which are sapphire, turquoise, and
sapphire, in that order, on each of her turns.

They win if all the beads are removed in 2n turns. Prove that if they can win with
Tasty going first, they can also win with Stacy going first.

In the necklace, we draw a divider between any two beads of the same color. Unless
there are no dividers, this divides the necklace into several zigzags in which the beads in
each zigzag alternate. Each zigzag has two endpoints (adjacent to dividers).

Observe that the condition about not having three consecutive matching beads is
equivalent to saying there are no zigzags of lengths 1.

T

S

S

T

T
S T T

S

T

T

S

S

T

S

T

S
STS

S

T

S

T

The main claim is that the game is winnable (for either player going first) if and only
if there are at most 2n dividers. We prove this in two parts, the first part not using the
hypothesis about three consecutive letters.

Claim — The game cannot be won with Tasty going first if there are more than 2n
dividers.

Proof. We claim each move removes at most one divider, which proves the result.
Consider removing a TST in some zigzag (necessarily of length at least 3). We illustrate

the three possibilities in the following table, with Tasty’s move shown in red.
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Before After Change
. . . ST | TST | TS . . . . . . ST | TS . . . One less divider; two zigzags merge
. . . ST | TSTST . . . . . . STST . . . One less divider; two zigzags merge
. . . STSTS . . . . . . S | S . . . One more divider; a zigzag splits in two

The analysis for Stacy’s move is identical.

Claim — If there are at most 2n dividers and there are no zigzags of length 1 then
the game can be won (with either player going first).

Proof. By symmetry it is enough to prove Tasty wins going first.
At any point if there are no dividers at all, then the necklace alternates TSTST . . .

and the game can be won. So we will prove that on each of Tasty’s turns, if there exists
at least one divider, then Tasty and Stacy can each make a move at an endpoint of
some zigzag (i.e. the first two cases above). As we saw in the previous proof, such moves
will (a) decrease the number of dividers by exactly one, (b) not introduce any singleton
zigzags (because the old zigzags merge, rather than split). Since there are fewer than 2n
dividers, our duo can eliminate all dividers and then win.

Note that as the number of S and T ’s are equal, there must be an equal number of

• zigzags of odd length (≥ 3) with T at the endpoints (i.e. one more T than S), and

• zigzags of odd length (≥ 3) with S at the endpoints (i.e. one more S than T ).

Now iff there is at least one of each, then Tasty removes a TST from the end of such a
zigzag while Stacy removes an STS from the end of such a zigzag.

Otherwise suppose all zigzags have even size. Then Tasty finds any zigzag of length
≥ 4 (which must exist since the average zigzag length is 3) and removes TST from the
end containing T . The resulting merged zigzag is odd and hence S endpoints, hence
Stacy can move as well.

Remark. There are many equivalent ways to phrase the solution. For example, the number
of dividers is equal to the number of pairs of two consecutive letters (rather than singleton
letters). So the win condition can also be phrased in terms of the number of adjacent pairs
of letters being at least 2n, or equivalently the number of differing pairs being at least 4n.

If one thinks about the game as a process, this is a natural “monovariant” to consider
anyways, so the solution is not so unmotivated.

Remark. The constraint of no three consecutive identical beads is actually needed: a
counterexample without this constraint is TTSTSTSTTSSS. (They win if Tasty goes first and
lose if Stacy goes first.)

Remark (Why induction is unlikely to work). Many contestants attempted induction.
However, in doing so they often implicitly proved a different problem: “prove that if they
can win with Tasty going first without ever creating a triplet, they can also win in such a
way with Stacy going first”. This essentially means nearly all induction attempts fail.

Amusingly, even the modified problem (which is much more amenable to induction) sill
seems difficult without some sort of global argument. Consider a position in which Tasty
wins going first, with the sequence of winning moves being Tasty’s first move in red below
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and Stacy’s second move in blue below:

. . . TTSSTT S
Tasty︷︸︸︷
TST TS︸ ︷︷ ︸
Stacy

STTSST . . . .

There is no “nearby” STS that Stacy can remove instead on her first turn, without introduc-
ing a triple-T and also preventing Tasty from taking a TST . So it does not seem possible
to easily change a Tasty-first winning sequence to a Stacy-first one, even in the modified
version.
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§2.3 USA TST 2019/6, proposed by Ankan Bhattachrya
Available online at https://aops.com/community/p11625814.

Problem statement

Let ABC be a triangle with incenter I, and let D be a point on line BC satisfying
∠AID = 90◦. Let the excircle of triangle ABC opposite the vertex A be tangent
to BC at point A1. Define points B1 on CA and C1 on AB analogously, using the
excircles opposite B and C, respectively.

Prove that if quadrilateral AB1A1C1 is cyclic, then AD is tangent to the circum-
circle of 4DB1C1.

We present two solutions.

¶ First solution using spiral similarity (Ankan Bhattacharya). First, we prove the
part of the problem which does not depend on the condition AB1A1C1 is cyclic.

Lemma
Let ABC be a triangle and define I, D, B1, C1 as in the problem. Moreover, let
M denote the midpoint of AD. Then AD is tangent to (AB1C1), and moreover
B1C1 ‖ IM .

Proof. Let E and F be the tangency points of the incircle. Denote by Z the Miquel point
of BFEC, i.e. the second intersection of the circle with diameter AI and the circumcircle.

Note that A, Z, D are collinear, by radical axis on (ABC), (AFIE), (BIC).

A

B C

I

E

B1
F

C1

Z

D

M

Then the spiral similarity gives us

ZF

ZE
=

BF

CE
=

AC1

AB1
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which together with ]FZE = ]FAE = ]BAC implies that 4ZFE and 4AC1B1

are (directly) similar. (See IMO Shortlist 2006 G9 for a similar application of spiral
similarity.)

Now the remainder of the proof is just angle chasing. First, since

]DAC1 = ]ZAF = ]ZEF = ]AB1C1

we have AD is tangent to (AB1C1). Moreover, to see that IM ‖ B1C1, write

](AI,B1C1) = ]IAC + ]AB1C1 = ]BAI + ]ZEF = ]FAI + ]ZAF

= ]ZAI = ]MAI = ]AIM

the last step since 4AID is right with hypotenuse AD, and median IM .

Now we return to the present problem with the additional condition.

A

B C

I

A1 = V

B1

C1

D

E

FM

Z

Claim — Given the condition, we actually have ∠AB1A1 = ∠AC1A1 = 90◦.

Proof. Let IA, IB and IC be the excenters of 4ABC. Then the perpendiculars to BC,
CA, AB from A1, B1, C1 respectively meet at the so-called Bevan point V (which is the
circumcenter of 4IAIBIC).

Now 4AB1C1 has circumdiameter AV . We are given A1 lies on this circle, so if V 6= A1

then AA1 ⊥ A1V . But A1V ⊥ BC by definition, which would imply AA1 ‖ BC, which
is absurd.

Claim — Given the condition the points B1, I, C1 are collinear (hence with M).

Proof. By Pappus theorem on IBAIC and BA1C after the previous claim.

To finish, since DMA was tangent to the circumcircle of 4AB1C1, we have MD2 =
MA2 = MC1 ·MB1, implying the required tangency.

Remark. The triangles satisfying the problem hypothesis are exactly the ones satisfying
rA = 2R, where R and rA denote the circumradius and A-exradius.

Remark. If P is the foot of the A-altitude then this should also imply AB1PC1 is harmonic.
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¶ Second solution by inversion and mixtilinears (Anant Mudgal). As in the end of
the preceding solution, we have ∠AB1A1 = ∠AC1A1 = 90◦ and I ∈ B1C1. Let M be
the midpoint of minor arc BC and N be the midpoint of arc ’BAC. Let L be the intouch
point on BC. Let O be the circumcenter of 4ABC. Let K = AI ∩BC.

B

O

M

I

A

D L

B1C1

G

V

N

Z

T A′

X

CK

Claim — We have ∠(AI,B1C1) = ∠IAD.

Proof. Let Z lie on (ABC) with ∠AZI = 90◦. By radical axis theorem on (AIZ), (BIC),
and (ABC), we conclude that D lies on AZ. Let NI meet (ABC) again at T 6= N .

Inversion in (BIC) maps AI to KI and (ABC) to BC. Thus, Z maps to L, so Z,L,M
are collinear. Since BL = CV and OI = OV , we see that MLIN is a trapezoid with
IL ‖ MN . Thus, ZT ‖ MN .

It is known that AT and AA1 are isogonal in angle BAC. Since AV is a circumdiameter
in (AB1C1), so AT ⊥ B1C1. So ]ZAI = ]NMT = 90◦ − ]TAI = ](AI,B1C1).

Let X be the midpoint of AD and G be the reflection of I in X. Since AIDG is
a rectangle, we have ]AIG = ]ZAI = ](AI,B1C1), by the previous claim. So IG
coincides with B1C1. Now AI bisects ∠B1AC1 and ∠IAG = 90◦, so (IG;B1C1) = −1.

Since ∠IDG = 90◦, we see that DI and DG are bisectors of angle B1DC1. Now
∠XDI = ∠XID =⇒ ∠XDC1 = ∠XID − ∠IDB1 = ∠DB1C1, so XD is tangent to
(DB1C1).
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