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§0 Problems
1. Let n ≥ 2 be a positive integer, and let σ(n) denote the sum of the positive divisors

of n. Prove that the nth smallest positive integer relatively prime to n is at least
σ(n), and determine for which n equality holds.

2. Find all functions f : Z2 → [0, 1] such that for any integers x and y,

f(x, y) =
f(x− 1, y) + f(x, y − 1)

2
.

3. At a university dinner, there are 2017 mathematicians who each order two distinct
entrées, with no two mathematicians ordering the same pair of entrées. The cost
of each entrée is equal to the number of mathematicians who ordered it, and
the university pays for each mathematician’s less expensive entrée (ties broken
arbitrarily). Over all possible sets of orders, what is the maximum total amount
the university could have paid?

4. Let n be a positive integer and let S ⊆ {0, 1}n be a set of binary strings of length n.
Given an odd number x1, . . . , x2k+1 ∈ S of binary strings (not necessarily distinct),
their majority is defined as the binary string y ∈ {0, 1}n for which the ith bit of
y is the most common bit among the ith bits of x1, . . . , x2k+1. (For example, if
n = 4 the majority of 0000, 0000, 1101, 1100, 0101 is 0100.)
Suppose that for some positive integer k, S has the property Pk that the majority
of any 2k + 1 binary strings in S (possibly with repetition) is also in S. Prove that
S has the same property Pk for all positive integers k.

5. Let ABCD be a convex cyclic quadrilateral which is not a kite, but whose diagonals
are perpendicular and meet at H. Denote by M and N the midpoints of BC and
CD. Rays MH and NH meet AD and AB at S and T , respectively. Prove there
exists a point E, lying outside quadrilateral ABCD, such that

• ray EH bisects both angles ∠BES, ∠TED, and
• ∠BEN = ∠MED.

6. Alice and Bob play a game. First, Alice secretly picks a finite set S of lattice points
in the Cartesian plane. Then, for every line ` in the plane which is horizontal,
vertical, or has slope +1 or −1, she tells Bob the number of points of S that lie on
`. Bob wins if he can then determine the set S.
Prove that if Alice picks S to be of the form

S =
{
(x, y) ∈ Z2 | m ≤ x2 + y2 ≤ n

}
for some positive integers m and n, then Bob can win. (Bob does not know in
advance that S is of this form.)
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§1 Solutions to Day 1
§1.1 USA TST 2018/1, proposed by Ashwin Sah
Available online at https://aops.com/community/p9513094.

Problem statement

Let n ≥ 2 be a positive integer, and let σ(n) denote the sum of the positive divisors
of n. Prove that the nth smallest positive integer relatively prime to n is at least
σ(n), and determine for which n equality holds.

The equality case is n = pe for p prime and a positive integer e. It is easy to check that
this works.

¶ First solution. In what follows, by [a, b] we mean {a, a+ 1, . . . , b}. First, we make
the following easy observation.

Claim — If a and d are positive integers, then precisely ϕ(d) elements of [a, a+d−1]
are relatively prime to d.

Let d1, d2, . . . , dk denote denote the divisors of n in some order. Consider the intervals

I1 = [1, d1],

I2 = [d1 + 1, d1 + d2]

...
Ik = [d1 + · · ·+ dk−1 + 1, d1 + · · ·+ dk].

of length d1, . . . , dk respectively. The jth interval will have exactly ϕ(dj) elements which
are relatively prime dj , hence at most ϕ(dj) which are relatively prime to n. Consequently,
in I =

⋃k
j=1 Ik there are at most

k∑
j=1

ϕ(dj) =
∑
d|n

ϕ(d) = n

integers relatively prime to n. On the other hand I = [1, σ(n)] so this implies the
inequality.

We see that the equality holds for n = pe. Assume now p < q are distinct primes
dividing n. Reorder the divisors di so that d1 = q. Then p, q ∈ I1, and so I1 should
contain strictly fewer than ϕ(d1) = q − 1 elements relatively prime to n, hence the
inequality is strict.

¶ Second solution (Ivan Borsenco and Evan Chen). Let n = pe11 . . . pekk , where
p1 < p2 < . . . . We are going to assume k ≥ 2, since the k = 1 case was resolved in the
very beginning, and prove the strict inequality.

For a general N , the number of relatively prime integers in [1, N ] is given exactly by

f(N) = N −
∑
i

⌊
N

pi

⌋
+
∑
i<j

⌊
N

pipj

⌋
− . . .
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according to the inclusion-exclusion principle. So, we wish to show that f(σ(n)) < n (as
k ≥ 2). Discarding the error terms from the floors (noting that we get at most 1 from
the negative floors) gives

f(N) < 2k−1 +N −
∑
i

N

pi
+
∑
i<j

N

pipj
− . . .

= 2k−1 +N
∏
i

(
1− p−1

i

)
= 2k−1 +

∏
i

(
1− p−1

i

) (
1 + pi + p2i + · · ·+ peii

)
= 2k−1 +

∏
i

(
peii − p−1

i

)
.

The proof is now divided into two cases. If k = 2 we have

f(N) < 2 +
(
pe11 − p−1

1

) (
pe22 − p−1

2

)
= 2 + n− pe22

p1
− pe11

p2
+

1

p1p2

≤ 2 + n− p2
p1

− p1
p2

+
1

p1p2

= n+
1− (p1 − p2)

2

p1p2
≤ n.

On the other hand if k ≥ 3 we may now write

f(N) < 2k−1 +

[
k−1∏
i=2

(peii )

] (
pe11 − p−1

1

)
= 2k−1 + n−

pe22 . . . pekk
p1

≤ 2k−1 + n− p2p3 . . . pk
p1

.

If p1 = 2, then one can show by induction that p2p3 . . . pk ≥ 2k+1 − 1, which implies the
result. If p1 > 2, then one can again show by induction p3 . . . pk ≥ 2k − 1 (since p3 ≥ 7),
which also implies the result.

4



USA IMO TST 2018 Solutions Evan Chen《陳誼廷》

§1.2 USA TST 2018/2, proposed by Michael Kural, Yang Liu
Available online at https://aops.com/community/p9513099.

Problem statement

Find all functions f : Z2 → [0, 1] such that for any integers x and y,

f(x, y) =
f(x− 1, y) + f(x, y − 1)

2
.

We claim that the only functions f are constant functions. (It is easy to see that they
work.)

¶ First solution (hands-on). First, iterating the functional equation relation to the
nth level shows that

f(x, y) =
1

2n

n∑
i=0

(
n

i

)
f(x− i, y − (n− i)).

In particular,

|f(x, y)− f(x− 1, y + 1)| = 1

2n

∣∣∣∣∣
n+1∑
i=0

f(x− i, y − (n− i)) ·
((

n

i

)
−
(

n

i− 1

))∣∣∣∣∣
≤ 1

2n

n+1∑
i=0

∣∣∣∣(ni
)
−

(
n

i− 1

)∣∣∣∣
=

1

2n
· 2
(

n

bn/2c

)
where we define

(
n

n+1

)
=

(
n
−1

)
= 0 for convenience. Since(

n

bn/2c

)
= o(2n)

it follows that f must be constant.

Remark. A very similar proof extends to d dimensions.

¶ Second solution (random walks, Mark Sellke). We show that if x + y = x′ + y′

then f(x, y) = f(x′, y′). Let Zn, Z ′
n be random walks starting at (x, y) and (x′, y′) and

moving down/left. Then f(Zn) is a martingale so we have

E[f(Zn)] = f(x, y), E[f(Z ′
n)] = f(x′, y′).

We’ll take Zn, Z ′
n to be independent until they hit each other, after which they will stay

together. Then
|E[f(Zn)− f(Z ′

n)]| ≤ E[|f(Zn)− f(Z ′
n)|] ≤ pn

where pn is the probability that Zn, Z ′
n never collide. But the distance between Zn, Z ′

n is
essentially a 1-dimensional random walk, so they will collide with probability 1, meaning
limn→∞ pn = 0. Hence

|f(x, y)− f(x′, y′)| = |E[f(Zn)− f(Z ′
n)]| = o(1)

as desired.
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Remark. If the problem were in Zd for large d, this solution wouldn’t work as written
because the independent random walks wouldn’t hit each other. However, this isn’t a
serious problem because Zn, Z ′

n don’t have to be independent before hitting each other.
Indeed, if every time Zn, Z

′
n agree on a new coordinate we force them to agree on that

coordinate forever, we can make the two walks individually have the distribution of a
coordinate-decreasing random walk but make them intersect eventually with probability 1.
The difference in each coordinate will be a 1-dimensional random walk which gets stuck at 0.

¶ Third solution (martingales). Imagine starting at (x, y) and taking a random walk
down and to the left. This is a martingale. As f is bounded, this martingale converges
with probability 1. Let X1, X2, . . . each be random variables that represent either down
moves or left moves with equal probability. Note that by the Hewitt-Savage 0-1 law, we
have that for any real numbers a < b,

Pr
[

lim
n→∞

f((x, y) +X1 +X2 + · · ·+Xn) ∈ [a, b]
]
∈ {0, 1}.

Hence, there exists a single value v such that with probability 1,

Pr
[

lim
n→∞

f((x, y) +X1 +X2 + · · ·+Xn) = v
]
= 1.

Obviously, this value v must equal f(x, y). Now, we show this value v is the same for all
(x, y). Note that any two starting points have a positive chance of meeting. Therefore,
we are done.
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§1.3 USA TST 2018/3, proposed by Evan Chen
Available online at https://aops.com/community/p9513105.

Problem statement

At a university dinner, there are 2017 mathematicians who each order two distinct
entrées, with no two mathematicians ordering the same pair of entrées. The cost
of each entrée is equal to the number of mathematicians who ordered it, and
the university pays for each mathematician’s less expensive entrée (ties broken
arbitrarily). Over all possible sets of orders, what is the maximum total amount the
university could have paid?

In graph theoretic terms: we wish to determine the maximum possible value of

S(G) :=
∑
e=vw

min (deg v, degw)

across all graphs G with 2017 edges. We claim the answer is 63 ·
(
64
2

)
+ 1 = 127009.

¶ First solution (combinatorial, Evan Chen). First define Lk to consist of a clique on
k vertices, plus a single vertex connected to exactly one vertex of the clique. Hence Lk

has k+ 1 vertices,
(
k
2

)
+ 1 edges, and S(Lk) = (k− 1)

(
k
2

)
+ 1. In particular, L64 achieves

the claimed maximum, so it suffices to prove the upper bound.

Lemma
Let G be a graph such that either

• G has
(
k
2

)
edges for some k ≥ 3 or

• G has
(
k
2

)
+ 1 edges for some k ≥ 4.

Then there exists a graph G∗ with the same number of edges such that S(G∗) ≥ S(G),
and moreover G∗ has a universal vertex (i.e. a vertex adjacent to every other vertex).

Proof. Fix k and the number m of edges. We prove the result by induction on the number
n of vertices in G. Since the lemma has two parts, we will need two different base cases:

1. Suppose n = k and m =
(
k
2

)
. Then G must be a clique so pick G∗ = G.

2. Suppose n = k+1 and m =
(
k
2

)
+1. If G has no universal vertex, we claim we may

take G∗ = Lk. Indeed each vertex of G has degree at most k − 1, and the average
degree is

2m

n
=

k2 − k + 2

k + 1
< k − 1

using here k ≥ 4. Thus there exists a vertex w of degree 1 ≤ d ≤ k − 2. The edges
touching w will have label at most d and hence

S(G) ≤ (k − 1)(m− d) + d2 = (k − 1)m− d(k − 1− d)

≤ (k − 1)m− (k − 2) = (k − 1)

(
k

2

)
+ 1 = S(G∗).
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Now we settle the inductive step. Let w be a vertex with minimal degree 0 ≤ d < k − 1,
with neighbors w1, . . . , wd. By our assumption, for each wi there exists a vertex vi for
which viwi /∈ E. Now, we may delete all edges wwi and in their place put viwi, and then
delete the vertex w. This gives a graph G′, possibly with multiple edges (if vi = wj and
wj = vi), and with one fewer vertex.

w

G G′ G′′

We then construct a graph G′′ by taking any pair of double edges, deleting one of
them, and adding any missing edge of G′′ in its place. (This is always possible, since
when m =

(
k
2

)
we have n− 1 ≥ k and when m =

(
k
2

)
+ 1 we have n− 1 ≥ k + 1.)

Thus we have arrived at a simple graph G′′ with one fewer vertex. We also observe
that we have S(G′′) ≥ S(G); after all every vertex in G′′ has degree at least as large as
it did in G, and the d edges we deleted have been replaced with new edges which will
have labels at least d. Hence we may apply the inductive hypothesis to the graph G′′ to
obtain G∗ with S(G∗) ≥ S(G′′) ≥ S(G).

The problem then is completed once we prove the following:

Claim — For any graph G,

• If G has
(
k
2

)
edges for k ≥ 3, then S(G) ≤

(
k
2

)
· (k − 1).

• If G has
(
k
2

)
+ 1 edges for k ≥ 4, then S(G) ≤

(
k
2

)
· (k − 1) + 1.

Proof. We prove both parts at once by induction on k, with the base case k = 3 being
plain (there is nothing to prove in the second part for k = 3). Thus assume k ≥ 4. By the
earlier lemma, we may assume G has a universal vertex v. For notational convenience,
we say G has

(
k
2

)
+ ε edges for ε ∈ {0, 1}, and G has p+ 1 vertices, where p ≥ k − 1 + ε.

Let H be the subgraph obtained when v is deleted. Then m =
(
k
2

)
+ ε − p is the

number of edges in H; from p ≥ k − 1 + ε we have m ≤
(
k−1
2

)
and so we may apply the

inductive hypothesis to H to deduce S(H) ≤
(
k−1
2

)
· (k − 2).

. . .
w1 w2 wp

v

H

Now the labels of edges vwi have sum

p∑
i=1

min (degG v, degGwi) =

p∑
i=1

degGwi =

p∑
i=1

(degH wi + 1) = 2m+ p.

8
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For each of the edges contained in H, the label on that edge has increased by exactly 1,
so those edges contribute S(H) +m. In total,

S(G) = 2m+ p+ (S(H) +m) = (m+ p) + 2m+ S(H)

≤
(
k

2

)
+ ε+ 2

(
k − 1

2

)
+

(
k − 1

2

)
(k − 2) =

(
k

2

)
(k − 1) + ε.

¶ Second solution (algebraic, submitted by contestant James Lin). We give a different
proof of S(G) ≤ 127009. The proof proceeds using the following two claims, which will
show that S(G) ≤ 127010 for all graphs G. Then a careful analysis of the equality cases
will show that this bound is not achieved for any graph G. Since the example L64 earlier
has S(L64) = 127009, this will solve the problem.

Lemma (Combinatorial bound)
Let G be a graph with 2017 edges and let d1 ≥ d2 ≥ · · · ≥ dn be the degree sequence
of the graph (thus n ≥ 65). Then

S(G) ≤ d2 + 2d3 + 3d4 + · · ·+ 63d64 + d65.

Proof. Let v1, . . . , vn be the corresponding vertices. For any edge e = {vi, vj} with i < j,
we consider associating each edge e with vj , and computing the sum S(G) indexing over
associated vertices. To be precise, if we let ai denote the number of edges associated to
vi, we now have ai ≤ i− 1,

∑
ai = 2017, and

S(G) =

n∑
i=1

aidi.

The inequality
∑

aidi ≤ d2 + 2d3 + 3d4 + · · ·+ 63d64 + d65 then follows for smoothing
reasons (by “smoothing” the ai), since the di are monotone. This proves the given
inequality.

Once we have this property, we handle the bounding completely algebraically.

Lemma (Algebraic bound)
Let x1 ≥ x2 ≥ · · · ≥ x65 be any nonnegative integers such that

∑65
i=1 xi ≤ 4034.

Then
x2 + 2x3 + · · ·+ 63x64 + x65 ≤ 127010.

Moreover, equality occurs if and only if x1 = x2 = x3 = · · · = x64 = 63 and x65 = 2.

Proof. Let A denote the left-hand side of the inequality. We begin with a smoothing
argument.

• Suppose there are indices 1 ≤ i < j ≤ 64 such that xi > xi+1 ≥ xj−1 > xj . Then
replacing (xi, xj) by (xi − 1, xj + 1) strictly increases A preserving all conditions.
Thus we may assume all numbers in {x1, . . . , x64} differ by at most 1.

• Suppose x65 ≥ 4. Then we can replace (x1, x2, x3, x4, x65) by (x1 + 1, x2 + 1, x3 +
1, x4 + 1, x65 − 4) and strictly increase A. Hence we may assume x65 ≤ 3.

9
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We will also tacitly assume
∑

xi = 4034, since otherwise we can increase x1. These two
properties leave only four sequences to examine:

• x1 = x2 = x3 = · · · = x63 = 63, x64 = 62, and x65 = 3, which gives A = 126948.

• x1 = x2 = x3 = · · · = x63 = x64 = 63 and x65 = 2, which gives A = 127010.

• x1 = 64, x2 = x3 = · · · = x63 = x64 = 63 and x65 = 1, which gives A = 127009.

• x1 = x2 = 64, x3 = · · · = x63 = x64 = 63 and x65 = 0, which gives A = 127009.

This proves that A ≤ 127010. To see that equality occurs only in the second case above,
note that all the smoothing operations other than incrementing x1 were strict, and that
x1 could not have been incremented in this way as x1 = x2 = 63.

This shows that S(G) ≤ 127010 for all graphs G, so it remains to show equality never
occurs. Retain the notation di and ai of the combinatorial bound now; we would need to
have d1 = · · · = d64 = 63 and d65 = 2 (in particular, deleting isolated vertices from G,
we may assume n = 65). In that case, we have ai ≤ i− 1 but also a65 = 2 by definition
(the last vertex gets all edges associated to it). Finally,

S(G) =

n∑
i=1

aidi = 63(a1 + · · ·+ a64) + a65

= 63(2017− a65) + a65 ≤ 63 · 2015 + 2 = 126947

completing the proof.

Remark. Another way to finish once S(G) ≤ 127010 is note there is a unique graph (up
to isomorphism and deletion of universal vertices) with degree sequence (d1, . . . , d65) =
(63, . . . , 63, 2). Indeed, the complement of the graph has degree sequence (1, . . . , 1, 63), and
so it must be a 63-star plus a single edge. One can then compute S(G) explicitly for this
graph.

¶ Some further remarks.

Remark. Interestingly, the graph C4 has
(
3
2

)
+1 = 4 edges and S(C4) = 8, while S(L3) = 7.

This boundary case is visible in the combinatorial solution in the base case of the first claim.
It also explains why we end up with the bound S(G) ≤ 127010 in the second algebraic
solution, and why it is necessary to analyze the equality cases so carefully; observe in k = 3
the situation d1 = d2 = d3 = d4 = 2.

Remark. Some comments about further context for this problem:

• The obvious generalization of 2017 to any constant was resolved in September 2018
by Mehtaab Sawhney and Ashwin Sah. The relevant paper is On the discrepancy
between two Zagreb indices, published in Discrete Mathematics, Volume 341, Issue 9,
pages 2575-2589. The arXiv link is https://arxiv.org/pdf/1801.02532.pdf.

• The quantity
S(G) =

∑
e=vw

min (deg v, degw)

in the problem has an interpretation: it can be used to provide a bound on the number
of triangles in a graph G. To be precise, #E(G) ≤ 1

3S(G), since an edge e = vw is
part of at most min(deg v, degw) triangles.

• For planar graphs it is known S(G) ≤ 18n− 36 and it is conjectured that for n large

10
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enough, S(G) ≤ 18n− 72. See https://mathoverflow.net/a/273694/70654.

¶ Authorship comments. I came up with the quantity S(G) in a failed attempt to
provide a bound on the number of triangles in a graph, since this is natural to consider
when you do a standard double-counting via the edges of the triangle. I think the problem
was actually APMO 1989, and I ended up not solving the problem (the solution is much
simpler), but the quantity S(G) stuck in my head for a while after that.

Later on that month I was keeping Danielle company while she was working on art
project (flower necklace), and with not much to do except doodle on tables I began
thinking about S(G) again. I did have the sense that S(G) should be maximized at a
graph close to a complete graph. But to my frustration I could not prove it for a long
time. Finally after many hours of trying various approaches I was able to at least show
that S(G) was maximized for complete graphs if the number of edges was a triangular
number.

I had come up with this in March 2016, which would have been perfect since 2016 is
a triangular number, but it was too late to submit it to any contest (the USAMO and
IMO deadlines were long past). So on December 31, 2016 I finally sat down and solved it
for the case 2017, which took another few hours of thought, then submitted it to that
year’s IMO. To my dismay it was rejected, but I passed it along to the USA TST after
that, thus making it just in time for the close of the calendar year.

11
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§2 Solutions to Day 2
§2.1 USA TST 2018/4, proposed by Josh Brakensiek
Available online at https://aops.com/community/p9735607.

Problem statement

Let n be a positive integer and let S ⊆ {0, 1}n be a set of binary strings of length n.
Given an odd number x1, . . . , x2k+1 ∈ S of binary strings (not necessarily distinct),
their majority is defined as the binary string y ∈ {0, 1}n for which the ith bit of y is
the most common bit among the ith bits of x1, . . . , x2k+1. (For example, if n = 4
the majority of 0000, 0000, 1101, 1100, 0101 is 0100.)

Suppose that for some positive integer k, S has the property Pk that the majority
of any 2k + 1 binary strings in S (possibly with repetition) is also in S. Prove that
S has the same property Pk for all positive integers k.

Let M denote the majority function (of any length).

¶ First solution (induction). We prove all Pk are equivalent by induction on n ≥ 2,
with the base case n = 2 being easy to check by hand. (The case n = 1 is also vacuous;
however, the inductive step is not able to go from n = 1 to n = 2.)

For the inductive step, we proceed by contradiction; assume S satisfies P`, but not
Pk, so there exist x1, . . . , x2k+1 ∈ S whose majority y = M(x1, . . . , xk) is not in S. We
contend that:

Claim — Let yi be the string which differs from y only in the ith bit. Then yi ∈ S.

Proof. For a string s ∈ S we let ŝ denote the string s with the ith bit deleted (hence with
n− 1 bits). Now let

T = {ŝ | s ∈ S} .

Since S satisfies P`, so does T ; thus by the induction hypothesis on n, T satisfies Pk.
Consequently, T 3 M(x̂1, . . . , x̂2k+1) = ŷ. Thus there exists s ∈ S such that ŝ = ŷ.

This implies s = y or s = yi. But since we assumed y /∈ S it follows yi ∈ S instead.

Now take any 2` + 1 copies of the yi, about equally often (i.e. the number of times
any two yi are taken differs by at most 1). We see the majority of these is y itself,
contradiction.

¶ Second solution (circuit construction). Note that Pk =⇒ P1 for any k, since

M(a, . . . , a︸ ︷︷ ︸
k

, b, . . . , b︸ ︷︷ ︸
k

, c) = M(a, b, c)

for any a, b, c.
We will now prove P1 + Pk =⇒ Pk+1 for any k, which will prove the result. Actually,

we will show that the majority of any 2k + 3 strings x1, . . . , x2k+3 can be expressed by
3 and (2k + 1)-majorities. WLOG assume that M(x1, . . . , x2k+3) = 0 . . . 0, and let �
denote binary AND.

12
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Claim — We have M(x1, x2,M(x3, . . . , x2k+3)) = x1 � x2.

Proof. Consider any particular bit. The result is clear if the bits are equal. Otherwise, if
they differ, the result follows from the original hypothesis that M(x1, . . . , x2k+3) = 0 . . . 0
(removing two differing bits does not change the majority).

By analogy we can construct any xi � xj . Finally, note that

M(x1 � x2, x2 � x3, . . . , x2k+1 � x2k+2) = 0 . . . 0,

as desired. (Indeed, if we look at any index, there were at most k+1 1’s in the xi strings,
and hence there will be at most k 1’s among xi � xi+1 for i = 1, . . . , 2k + 1.)

Remark. The second solution can be interpreted in circuit language as showing that all
“2k + 1-majority gates” are equivalent. See also https://cstheory.stackexchange.com/
a/21399/48303, in which Valiant gives a probabilistic construction to prove that one can
construct (2k+1)-majority gates from a polynomial number of 3-majority gates. No explicit
construction is known for this.
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§2.2 USA TST 2018/5, proposed by Evan Chen
Available online at https://aops.com/community/p9735608.

Problem statement

Let ABCD be a convex cyclic quadrilateral which is not a kite, but whose diagonals
are perpendicular and meet at H. Denote by M and N the midpoints of BC and
CD. Rays MH and NH meet AD and AB at S and T , respectively. Prove there
exists a point E, lying outside quadrilateral ABCD, such that

• ray EH bisects both angles ∠BES, ∠TED, and

• ∠BEN = ∠MED.

The main claim is that E is the intersection of (ABCD) with the circle with diameter
AH.

A

B D

F

H

E

C

M N

S

T

P

The following observation can be quickly made without reference to E.

Lemma
We have ∠HSA = ∠HTA = 90◦. Consequently, quadrilateral BTSD is cyclic.

Proof. This is direct angle chasing. In fact, HM passes through the circumcenter of
4BHC and 4HAD ∼ 4HCB, so HS ought to be the altitude of 4HAD.

From here it follows that E is the Miquel point of cyclic quadrilateral BTSD. Define
F to be the point diametrically opposite A, so that E, H, F are collinear, CF ‖ BD. By
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now we already have

]BEH = ]BEF = ]BAF = ]CAD = ]HAS = ]HES

so EH bisects ∠BES, and ∠TED. Hence it only remains to show ∠BEM = ∠NED;
we present several proofs below.

¶ First proof (original solution). Let P be the circumcenter of BTSD. The properties
of the Miquel point imply P lies on the common bisector EH already, and it also lies on
the perpendicular bisector of BD, hence it must be the midpoint of HF .

We now contend quadrilaterals BMPS and DNPT are cyclic. Obviously MP is the
external angle bisector of ∠BMS, and PB = PS, so P is the arc midpoint of (BMS).
The proof for DNPT is analogous.

It remains to show ∠BEN = ∠MED, or equivalently ∠BEM = ∠NED. By proper-
ties of Miquel point we have E ∈ (BMPS) ∩ (TPND), so

]BEM = ]BPM = ]PBD = ]BDP = ]NPD = ]NED

as desired.

¶ Second proof (2011 G4). By 2011 G4, the circumcircle of 4EMN is tangent to the
circumcircle of ABCD. Hence if we extend EM and EN to meet (ABCD) again at X
and Y , we get XY ‖ MN ‖ BD. Thus ]BEM = ]BEX = ]Y ED = ]NED.

¶ Third proof (involutions, submitted by Daniel Liu). Let G = BN ∩MD denote the
centroid of 4BCD, and note that it lies on EHF .

Now consider the dual of Desargues involution theorem on complete quadrilateral
BMDNCG at point E. We get

(EB,ED), (EM,EN), (EC,EG)

form an involutive pairing.
However, the bisector of ∠BED, say `, is also the angle bisector of ∠CEF (since

CF ‖ BD). So the involution we found must coincide with reflection across `. This
means ∠MEN is bisected by ` as well, as desired.

¶ Authorship comments. This diagram actually comes from the inverted picture in
IMO 2014/3 (which I attended). I had heard for many years that one could solve this
problem quickly by inversion at H afterwards. But when I actually tried to do it during
an OTIS class years later, I ended up with the picture in the TST problem, and couldn’t
see why it was true! In the process of trying to reconstruct this rumored solution, I ended
up finding most of the properties that ended up in the January TST problem (but were
overkill for the original IMO problem).

Let us make the equivalence explicit by deducing the IMO problem from our work.
Let rays EM and EN meet the circumcircles of 4BHC and 4BNC again at X and

Y , with EM < EX and EN < EY . As above we concluded EM/EX = EN/EY and
so MN ‖ XY =⇒ XY ⊥ AHC.

Now consider an inversion at H which swaps B ↔ D and A ↔ C. The point E goes to
E∗ diametrically opposite A. Points X and Y go to points on X∗ ∈ AD and Y ∗ ∈ AB.
Since the reflection of E across PX is supposed to lie on (BAE), it follows that the
circumcenter of 4HX∗E∗ lies on AD. Consequently X∗ plays the role of point “T” in
the IMO problem. Then Y ∗ plays the role of point “S” in the IMO problem.

Now the fact that (HX∗Y ∗) is tangent to BD is equivalent to XY ⊥ AHC which we
already knew.
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§2.3 USA TST 2018/6, proposed by Mark Sellke
Available online at https://aops.com/community/p9735613.

Problem statement

Alice and Bob play a game. First, Alice secretly picks a finite set S of lattice points
in the Cartesian plane. Then, for every line ` in the plane which is horizontal,
vertical, or has slope +1 or −1, she tells Bob the number of points of S that lie on `.
Bob wins if he can then determine the set S.

Prove that if Alice picks S to be of the form

S =
{
(x, y) ∈ Z2 | m ≤ x2 + y2 ≤ n

}
for some positive integers m and n, then Bob can win. (Bob does not know in
advance that S is of this form.)

Clearly Bob can compute the number N of points.
The main claim is that:

Claim — Fix m and n as in the problem statement. Among all sets T ⊆ Z2 with
N points, the set S is the unique one which maximizes the value of

F (T ) :=
∑

(x,y)∈T

(x2 + y2)(m+ n− (x2 + y2)).

Proof. Indeed, the different points in T do not interact in this sum, so we simply want the
points (x, y) with x2 + y2 as close as possible to m+n

2 which is exactly what S does.

As a result of this observation, it suffices to show that Bob has enough information to
compute F (S) from the data given. (There is no issue with fixing m and n, since Bob
can find an upper bound on the magnitude of the points and then check all pairs (m,n)
smaller than that.) The idea is that he knows the full distribution of each of X, Y ,
X + Y , X − Y and hence can compute sums over T of any power of a single one of those
linear functions. By taking linear combinations we can hence compute F (S).

Let us make the relations explicit. For ease of exposition we take Z = (X,Y ) to be
a uniformly random point from the set S. The information is precisely the individual
distributions of X, Y , X + Y , and X − Y . Now compute

F (S)

N
= E

[
(m+ n)(X2 + Y 2)− (X2 + Y 2)2

]
= (m+ n)

(
E[X2] + E[Y 2]

)
− E[X4]− E[Y 4]− 2E[X2Y 2].

On the other hand,

E[X2Y 2] =
E[(X + Y )4] + E[(X − Y )4]− 2E[X4]− 2E[Y 4]

12
.

Thus we have written F (S) in terms of the distributions of X, Y , X − Y , X + Y which
completes the proof.
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Remark (Mark Sellke). • This proof would have worked just as well if we allowed
arbitrary [0, 1]-valued weights on points with finitely many weights non-zero. There
is an obvious continuum generalization one can make concerning the indicator func-
tion for an annulus. It’s a simpler but fun problem to characterize when just the
vertical/horizontal directions determine the distribution.

• An obstruction to purely combinatorial arguments is that if you take an octagon
with points (±a,±b) and (±b,±a) then the two ways to pick every other point (going
around clockwise) are indistinguishable by Bob. This at least shows that Bob’s task
is far from possible in general, and hints at proving an inequality.

• A related and more standard fact (among a certain type of person) is that given a
probability distribution µ on Rn, if I tell you the distribution of all 1-dimensional
projections of µ, that determines µ uniquely. This works because this information
gives me the Fourier transform µ̂, and Fourier transforms are injective.
For the continuum version of this problem, this connection gives a much larger family
of counterexamples to any proposed extension to arbitrary non-annular shapes. Indeed,
take a fast-decaying smooth function f : R2 → R which vanishes on the four lines

x = 0, y = 0, x+ y = 0, x− y = 0.

Then the Fourier transform f̂ will have mean 0 on each line ` as in the problem
statement. Hence the positive and negative parts of f̂ will not be distinguishable by
Bob.
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