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Note that in this solutions file, we present slightly stronger versions of problems 4 and
6 on the January TST than actually appeared on the exams.

§1 Solutions to Day 1

§1.1 Solution to TST 1, by Po-Shen Loh

In a sports league, each team uses a set of at most t signature colors. A set S of teams is

color-identifiable if one can assign each team in S one of their signature colors, such that no team

in S is assigned any signature color of a different team in S. For all positive integers n and t,

determine the maximum integer g(n, t) such that: In any sports league with exactly n distinct

colors present over all teams, one can always find a color-identifiable set of size at least g(n, t).

Answer: dn/te.
To see this is an upper bound, note that one can easily construct a sports league with

that many teams anyways.
Here is a short “minimality” solution. Take the smallest (!) set S of teams such that

every color is a signature color for some team. Then for each team t ∈ S, we can assign
it a color (by minimality). But to be spanning, obviously #S ≥ dn/te.

For an algorithmic approach, the idea is to greedy pick by color (rather than by team),
taking at each step the least used color. Select the color C1 with the fewest teams using
it, and a team T1 using it. Then delete all colors T1 uses, and all teams which use C1.
Note that

• By problem condition, this deletes at most t teams total.

• Any remaining color C still has at least one user. Indeed, if not, then C had the
same set of teams as C1 did (by minimality of C), but then it should have deleted
as a color of T1.

Now repeat this algorithm with C2 and T2, and so on. This operations uses at most t
colors each time, so we select at least dn/te colors.

§1.2 Solution to TST 2, by Evan Chen

Let ABC be an acute scalene triangle with circumcenter O, and let T be on line BC such that
∠TAO = 90◦. The circle with diameter AT intersects the circumcircle of 4BOC at two points
A1 and A2, where OA1 < OA2. Points B1, B2, C1, C2 are defined analogously.

(a) Prove that AA1, BB1, CC1 are concurrent.

(b) Prove that AA2, BB2, CC2 are concurrent on the Euler line of triangle ABC.

Let triangle ABC have circumcircle Γ. Let 4XY Z be the tangential triangle of
4ABC (hence Γ is the incircle of 4XY Z), and denote by Ω its circumcircle. Suppose
the symmedian AX meets Γ again at D, and let M be the midpoint of AD. Finally, let
K be the Miquel point of quadrilateral ZBCY , meaning it is the intersection of Ω and
the circumcircle of 4BOC (other than X).
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We first claim that M and K are A1 and A2. In that case OM < OA < OK, so
M = A1, K = A2.

To see that M = A1, note that ∠OMX = 90◦, and moreover that TA, TD are tangents
to Γ, whence we also have M = TO ∩AD. Thus T lies on both (BOC) and (AT ). This
solves part (a) of the problem: the concurrency point is the symmedian point of 4ABC.

Now, note that since K is the Miquel point,

ZK

YK
=
ZB

Y C
=
ZA

Y A

and hence KA is an angle bisector of ∠ZKY . Thus from (TA;Y Z) = −1 we obtain
∠TKA = 90◦.

It remains to show AK passes through a fixed point on the Euler line. We claim it
is the exsimilicenter of Γ and Ω. Let L be the midpoint of the arc Y Z of 4XY Z not
containing X. Then we know that K, A, L are collinear. Now the positive homothety
sending Γ to Ω maps A to L; this proves the claim. Finally, it is well-known that the
line through O and the circumcenter of 4XY Z coincides with the Euler line of 4ABC;
hence done.

A second approach to (b) presented by many contestants is to take an inversion around
the circumcircle of ABC. In that situation, the part reduces to the following known
lemma: if AHa, BHb, CHc are the altitudes of a triangle, then the circumcircles of
triangles OAHa, BOHb, COHc are coaxial, and the radical axis coincides with the Euler
line. Indeed one simply observes that the orthocenter has equal power to all three circles.

Authorship comments This problem was inspired by the fact that K, A, L are collinear
in the figure, which was produced by one of my students (Ryan Kim) in a solution to a
homework problem. I realized for example that this implied that line AK passed through
the X56 point of 4XY Z (which lies on the Euler line of 4ABC).

This problem was the result of playing around with the resulting very nice picture: all
the power comes from the “magic” point K.
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§1.3 Solution to TST 3, by Alison Miller

Let P,Q ∈ R[x] be relatively prime nonconstant polynomials. Show that there can be at most

three real numbers λ such that P + λQ is the square of a polynomial.

This is true even with R replaced by C, and it will be necessary to work in this
generality. We will prove the claim in the following form:

Claim — Assume P,Q ∈ C[x] are relatively prime. If αP + βQ is a square for four
different choices of the ratio [α : β] then P and Q must be constant.

Call pairs (P,Q) as in the claim bad ; so we wish to show the only bad pairs are pairs
of constant polynomials. Assume not, and take a bad pair with degP + degQ minimal.

By a suitable Möbius transformation, we may transform (P,Q) so that the four ratios
are [1 : 0], [0 : 1], [1 : −1] and [1 : −k], so we find there are polynomials A and B such
that

A2 −B2 = C2

A2 − kB2 = D2

where A2 = P + λ1Q, B2 = P + λ2Q, say. Of course gcd(A,B) = 1.
Consequently, we have C2 = (A + B)(A − B) and D2 = (A + µB)(A − µB) where

µ2 = k. Now gcd(A,B) = 1, so A+B, A−B, A+ µB and A− µB are squares; id est
(A,B) is bad. This is a contradiction, since degA+ degB < degP + degQ.
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§2 Solutions to Day 2

§2.1 Solution to TST 4, by Linus Hamilton

You are cheating at a trivia contest. For each question, you can peek at each of the n > 1 other

contestant’s guesses before writing your own. For each question, after all guesses are submitted,

the emcee announces the correct answer. A correct guess is worth 0 points. An incorrect guess is

worth −2 points for other contestants, but only −1 point for you, because you hacked the scoring

system. After announcing the correct answer, the emcee proceeds to read out the next question.

Show that if you are leading by 2n−1 points at any time, then you can surely win first place.

We will prove the result with 2n−1 replaced even by 2n−2 + 1.
We first make the following reductions. First, change the weights to be +1, −1, 0

respectively (rather than 0, −2, −1); this clearly has no effect. Also, WLOG that all
contestants except you initially have score zero (and that your score exceeds 2n−2).
WLOG ignore rounds in which all answers are the same. Finally, ignore rounds in which
you get the correct answer, since that leaves you at least as well off as before — in other
words, we’ll assume your score is always fixed, but you can pick any group of people with
the same answers and ensure they lose 1 point, while some other group gains 1 point.

The key observation is the following. Consider two rounds R1 and R2 such that:

• In round R1, some set S of contestants gains a point.

• In round R2, the set S of contestants all have the same answer.

Then, if we copy the answers of contestants in S during R2, then the sum of the scorings
in R1 and R2 cancel each other out. In other words we can then ignore R1 and R2

forever.
We thus consider the following strategy. We keep a list L of subsets of {1, . . . , n},

initially empty. Now do the following strategy:

• On a round, suppose there exists a set S of people with the same answer such that
S ∈ L. Then, copy the answer of S, causing them to lose a point. Delete S from L.
(Importantly, we do not add any new sets to L.)

• Otherwise, copy any set T of contestants, selecting |T | ≥ n/2 if possible. Let S be
the set of contestants who answer correctly (if any), and add S to the list L. Note
that |S| ≤ n/2, since S is disjoint from T .

By construction, L has no duplicate sets. So the score of any contestant c is bounded
above by the number of times that c appears among sets in L. The number of such sets
is clearly at most 1

2 · 2
n−1. So, if you lead by 2n−2 + 1 then you ensure victory. This

completes the proof!

Remark. Several remarks are in order. First, we comment on the bound 2n−2 + 1 itself.
The most natural solution using only the list idea gives an upper bound of (2n−2)+1, which
is the number of nonempty proper subsets of {1, . . . , n}. Then, there are two optimizations
one can observe:

• In fact we can improve to the number of times any particular contestant c appears in
some set, rather than the total number of sets.

• When adding new sets S to L, one can ensure |S| ≤ n/2.

Either observation alone improves the bound from 2n − 1 to 2n−1, but both together give
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the bound 2n−2 + 1. Additionally, when n is odd the calculation of subsets actually gives
2n−2− 1

2

(n−1
n−1
2

)
+1. This gives the best possible value at both n = 2 and n = 3. It seems likely

some further improvements are possible, and the true bound is suspected to be polynomial
in n.

Secondly, the solution is highly motivated by considering a true/false contest in which
only two distinct answers are given per question. However, a very natural mistake (which
graders assessed as a two-point deduction) is to try and prove that in fact one can “WLOG”
we are in the two-question case. The proof of this requires substantially more care than
expected. For instance, set n = 3. If L = {{1}, {2}, {3}} then it becomes impossible to
prevent a duplicate set from appearing in L if all contestants give distinct answers. One
might attempt to fix this by instead adding to L the complement of the set T described
above. The example L = {{1, 2}, {2, 3}, {3, 1}} (followed again by a round with all distinct
answers) shows that this proposed fix does not work either. This issue affects all variations
of the above approach.

Remark. Here are some motivations for the solution:

1. The exponential bound 2n suggests looking at subsets.

2. The n = 2 case suggests the idea of “repeated rounds”.

3. The “two distinct answers” case suggests looking at rounds as partitions (even though
the WLOG does not work, at least not without further thought).

4. There’s something weird about this problem: it’s a finite bound over unbounded time.
This is a hint to not worry excessively about the actual scores, which turn out to be
almost irrelevant.

§2.2 Solution to TST 5, by Danielle Wang

Let ABC be a triangle with altitude AE. The A-excircle touches BC at D, and intersects the

circumcircle at two points F and G. Prove that one can select points V and N on lines DG and

DF such that quadrilateral EV AN is a rhombus.

Let I denote the incenter, J the A-excenter, and L the midpoint of AE. Denote by IY ,
IZ the tangents from I to the A-excircle. Note that lines BC, GF , Y Z then concur at
H (unless AB = AC, but this case is obvious), as it’s the radical center of cyclic hexagon
BICY JZ, the circumcircle and the A-excircle.
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Now let HD and HT be the tangents from H to the A-excircle. It follows that DT is
the symmedian of 4DZY , hence passes through I = Y Y ∩ZZ. Moreover, it’s well known
that DI passes through L, the midpoint of the A-altitude (for example by homothety).
Finally, (DT ;FG) = −1, hence project through D onto the line through L parallel to
BC to obtain (∞L;V N) = −1 as desired.

Authorship comments This is a joint proposal with Danielle Wang (mostly by her).
The formulation given was that the tangents to the A-excircle at F and G was on line
DI; I solved this formulation using the radical axis argument above. I then got the
idea to involve the point L, already knowing it was on DI. Observing the harmonic
quadrilateral, I took perspectivity through M onto the line through L parallel to BC
(before this I had tried to use the A-altitude with little luck). This yields the rhombus in
the problem.

§2.3 Solution to TST 6, by Noam Elkies

Prove that there are infinitely many triples (a, b, p) of integers, with p prime and 0 < a ≤ b < p,

for which p5 divides (a+ b)p − ap − bp.

The key claim is that if p ≡ 1 (mod 3), then

p(x2 + xy + y2)2 divides (x+ y)p − xp − yp

as polynomials in x and y. Since it’s known that one can select a and b such that
p2 | a2 +ab+ b2, the conclusion follows. (The theory of quadratic forms tells us we can do
it with p2 = a2 + ab+ b2; Thue’s lemma lets us do it by solving x2 +x+ 1 ≡ 0 (mod p2).)

To prove this, it is the same to show that

(x2 + x+ 1)2 divides F (x)
def
= (x+ 1)p − xp − 1.

since the binomial coefficients
(
p
k

)
are clearly divisible by p. Let ζ be a third root of unity.

Then F (ζ) = (1 + ζ)p− ζp− 1 = −ζ2− ζ− 1 = 0. Moreover, F ′(x) = p(x+ 1)p−1−pxp−1,
so F ′(ζ) = p− p = 0. Hence ζ is a double root of F as needed.

(Incidentally, p = 2017 works!)
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Remark. One possible motivation for this solution is the case p = 7. It is nontrivial even to
prove that p2 can divide the expression if we exclude the situation a+ b = p (which provably
never achieves p3). As p = 3, 5 fails considering the p = 7 polynomial gives

(x+ 1)7 − x7 − 1 = 7x(x+ 1)
(
x4 + 2x3 + 3x2 + 2x+ 1

)
.

The key is now to notice that the last factor is (x2 + x + 1)2, which suggests the entire
solution.
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