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§0 Problems
1. Let S = {1, . . . , n}. Given a bijection f : S → S an orbit of f is a set of the form

{x, f(x), f(f(x)), . . . } for some x ∈ S. We denote by c(f) the number of distinct
orbits of f . For example, if n = 3 and f(1) = 2, f(2) = 1, f(3) = 3, the two orbits
are {1, 2} and {3}, hence c(f) = 2.
Given k bijections f1, . . . , fk from S to itself, prove that

c(f1) + · · ·+ c(fk) ≤ n(k − 1) + c(f)

where f : S → S is the composed function f1 ◦ · · · ◦ fk.

2. Let ABC be a scalene triangle with circumcircle Ω, and suppose the incircle of
ABC touches BC at D. The angle bisector of ∠A meets BC and Ω at K and M .
The circumcircle of 4DKM intersects the A-excircle at S1, S2, and Ω at T 6= M .
Prove that line AT passes through either S1 or S2.

3. Let p be a prime number. Let Fp denote the integers modulo p, and let Fp[x] be
the set of polynomials with coefficients in Fp. Define Ψ: Fp[x] → Fp[x] by

Ψ

(
n∑

i=0

aix
i

)
=

n∑
i=0

aix
pi .

Prove that for nonzero polynomials F,G ∈ Fp[x],

Ψ(gcd(F,G)) = gcd(Ψ(F ),Ψ(G)).

4. Let
√
3 = 1.b1b2b3 . . .(2) be the binary representation of

√
3. Prove that for any

positive integer n, at least one of the digits bn, bn+1, . . . , b2n equals 1.

5. Let n ≥ 4 be an integer. Find all functions W : {1, . . . , n}2 → R such that for every
partition [n] = A ∪B ∪ C into disjoint sets,∑

a∈A

∑
b∈B

∑
c∈C

W (a, b)W (b, c) = |A||B||C|.

6. Let ABC be an acute scalene triangle and let P be a point in its interior. Let A1,
B1, C1 be projections of P onto triangle sides BC, CA, AB, respectively. Find the
locus of points P such that AA1, BB1, CC1 are concurrent and ∠PAB+∠PBC +
∠PCA = 90◦.
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§1 Solutions to Day 1
§1.1 USA TST 2016/1, proposed by Maria Monks
Available online at https://aops.com/community/p5679356.

Problem statement

Let S = {1, . . . , n}. Given a bijection f : S → S an orbit of f is a set of the form
{x, f(x), f(f(x)), . . . } for some x ∈ S. We denote by c(f) the number of distinct
orbits of f . For example, if n = 3 and f(1) = 2, f(2) = 1, f(3) = 3, the two orbits
are {1, 2} and {3}, hence c(f) = 2.

Given k bijections f1, . . . , fk from S to itself, prove that

c(f1) + · · ·+ c(fk) ≤ n(k − 1) + c(f)

where f : S → S is the composed function f1 ◦ · · · ◦ fk.

Most motivated solution is to consider n−c(f) and show this is the transposition distance.
Dumb graph theory works as well.
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§1.2 USA TST 2016/2, proposed by Evan Chen
Available online at https://aops.com/community/p5679361.

Problem statement

Let ABC be a scalene triangle with circumcircle Ω, and suppose the incircle of ABC
touches BC at D. The angle bisector of ∠A meets BC and Ω at K and M . The
circumcircle of 4DKM intersects the A-excircle at S1, S2, and Ω at T 6= M . Prove
that line AT passes through either S1 or S2.

We present an angle-chasing solution, and then a more advanced alternative finish.

¶ First solution (angle chasing). Assume for simplicity AB < AC. Let E be the
contact point of the A-excircle on BC; also let ray TD meet Ω again at L. From the
fact that ∠MTL = ∠MTD = 180◦ − ∠MKD, we can deduce that ∠MTL = ∠ACM ,
meaning that L is the reflection of A across the perpendicular bisector ` of BC. If we
reflect T , D, L over `, we deduce A, E and the reflection of T across ` are collinear,
which implies that ∠BAT = ∠CAE.

Now, consider the reflection point E across line AI, say S. Since ray AI passes through
the A-excenter, S lies on the A-excircle. Since ∠BAT = ∠CAE, S also lies on ray AT .
But the circumcircles of triangles DKM and KME are congruent (from DM = EM),
so S lies on the circumcircle of 4DKM too. Hence S is the desired intersection point.

A

B C
DK

M

E

IA

S

T
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¶ Second solution (advanced). It’s known that T is the touch-point of the A-mixtilinear
incircle. Let E be contact point of A-excircle on BC. Now the circumcircles of 4DKM
and 4KME are congruent, since DM = ME and the angles at K are supplementary.
Let S be the reflection of E across line KM , which by the above the above comment lies
on the circumcircle of 4DKM . Since KM passes through the A-excenter, S also lies
on the A-excircle. But S also lies on line AT , since lines AT and AE are isogonal (the
mixtilinear cevian is isogonal to the Nagel line). Thus S is the desired intersection point.

¶ Authorship comments. This problem comes from an observation of mine: let ABC
be a triangle, let the ∠A bisector meet BC and (ABC) at E and M . Let W be the
tangency point of the A-mixtilinear excircle with the circumcircle of ABC. Then A-
Nagel line passed through a common intersection of the circumcircle of 4MEW and the
A-mixtilinear incircle.

This problem is the inverted version of this observation.
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§1.3 USA TST 2016/3, proposed by Mark Sellke
Available online at https://aops.com/community/p5679392.

Problem statement

Let p be a prime number. Let Fp denote the integers modulo p, and let Fp[x] be the
set of polynomials with coefficients in Fp. Define Ψ: Fp[x] → Fp[x] by

Ψ

(
n∑

i=0

aix
i

)
=

n∑
i=0

aix
pi .

Prove that for nonzero polynomials F,G ∈ Fp[x],

Ψ(gcd(F,G)) = gcd(Ψ(F ),Ψ(G)).

Observe that Ψ is also a linear map of Fp vector spaces, and that Ψ(xP ) = Ψ(P )p for
any P ∈ Fp[x]. (In particular, Ψ(1) = x, not 1, take caution!)

¶ First solution (Ankan Bhattacharya). We start with:

Claim — If P | Q then Ψ(P ) | Ψ(Q).

Proof. Set Q = PR, where R =
∑k

i=0 rix
i. Then

Ψ(Q) = Ψ

(
P

k∑
i=0

rix
i

)
=

k∑
i=0

Ψ
(
P · rixi

)
=

k∑
i=0

riΨ(P )p
i

which is divisible by Ψ(P ).

This already implies
Ψ(gcd(F,G)) | gcd(Ψ(F ),Ψ(G)).

For the converse, by Bezout there exists A,B ∈ Fp[x] such that AF +BG = gcd(F,G),
so taking Ψ of both sides gives

Ψ(AF ) + Ψ(BG) = Ψ (gcd(F,G)) .

The left-hand side is divisible by gcd(Ψ(F ),Ψ(G)) since the first term is divisible by
Ψ(F ) and the second term is divisible by Ψ(G). So gcd(Ψ(F ),Ψ(G)) | Ψ(gcd(F,G)) and
noting both sides are monic we are done.

¶ Second solution. Here is an alternative (longer but more conceptual) way to finish
without Bezout lemma. Let i ⊆ Fp[x] denote the set of polynomials in the image of Ψ,
thus Ψ: Fp[x] → i is a bijection on the level of sets.

Claim — If A,B ∈ i then gcd(A,B) ∈ i.
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Proof. It suffices to show that if A and B are monic, and degA > degB, then the
remainder when A is divided by B is in i. Suppose degA = pk and B = xp

k−1 −
c2x

pk−2 − · · · − ck. Then

xp
k ≡

(
c2x

pk−2
+ c3x

pk−3
+ · · ·+ ck

)p
(mod B)

≡ c2x
pk−1

+ c3x
pk−2 · · ·+ ck (mod B)

since exponentiation by p commutes with addition in Fp. This is enough to imply the
conclusion. The proof if degB is smaller less than pk−1 is similar.

Thus, if we view Fp[x] and i as partially ordered sets under polynomial division,
then gcd is the “greatest lower bound” or “meet” in both partially ordered sets. We
will now prove that Ψ is an isomorphism of the posets. We have already seen that
P | Q =⇒ Ψ(P ) | Ψ(Q) from the first solution. For the converse:

Claim — If Ψ(P ) | Ψ(Q) then P | Q.

Proof. Suppose Ψ(P ) | Ψ(Q), but Q = PA + B where degB < degP . Thus Ψ(P ) |
Ψ(PA) + Ψ(B), hence Ψ(P ) | Ψ(B), but degΨ(P ) > degΨ(B) hence Ψ(B) = 0 =⇒
B = 0.

This completes the proof.

Remark. In fact Ψ: Fp[x] → i is a ring isomorphism if we equip i with function composition
as the ring multiplication. Indeed in the proof of the first claim (that P | Q =⇒ Ψ(P ) |
Ψ(Q)) we saw that

Ψ(RP ) =

k∑
i=0

riΨ(P )p
i

= Ψ(R) ◦Ψ(P ).
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§2 Solutions to Day 2
§2.1 USA TST 2016/4, proposed by Iurie Boreico
Available online at https://aops.com/community/p6368201.

Problem statement

Let
√
3 = 1.b1b2b3 . . .(2) be the binary representation of

√
3. Prove that for any

positive integer n, at least one of the digits bn, bn+1, . . . , b2n equals 1.

Assume the contrary, so that for some integer k we have

k < 2n−1
√
3 < k +

1

2n+1
.

Squaring gives

k2 < 3 · 22n−2 < k2 +
k

2n
+

1

22n+2

≤ k2 +
2n−1

√
3

2n
+

1

22n+2

= k2 +

√
3

2
+

1

22n+2

≤ k2 +

√
3

2
+

1

16
< k2 + 1

and this is a contradiction.
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§2.2 USA TST 2016/5, proposed by Zilin Jiang
Available online at https://aops.com/community/p6368185.

Problem statement

Let n ≥ 4 be an integer. Find all functions W : {1, . . . , n}2 → R such that for every
partition [n] = A ∪B ∪ C into disjoint sets,∑

a∈A

∑
b∈B

∑
c∈C

W (a, b)W (b, c) = |A||B||C|.

Of course, W (k, k) is arbitrary for k ∈ [n]. We claim that W (a, b) = ±1 for any a 6= b,
with the sign fixed. (These evidently work.)

First, let Xabc = W (a, b)W (b, c) for all distinct a, b, c, so the given condition is∑
a,b,c∈A×B×C

Xabc = |A||B||C|.

Consider the given equation with the particular choices

• A = {1}, B = {2}, C = {3, 4, . . . , n}.

• A = {1}, B = {3}, C = {2, 4, . . . , n}.

• A = {1}, B = {2, 3}, C = {4, . . . , n}.

This gives

X123 +X124 + · · ·+X12n = n− 2

X132 +X134 + · · ·+X13n = n− 2

(X124 + · · ·+X12n) + (X134 + · · ·+X13n) = 2(n− 3).

Adding the first two and subtracting the last one gives X123 + X132 = 2. Similarly,
X123 + X321 = 2, and in this way we have X321 = X132. Thus W (3, 2)W (2, 1) =
W (1, 3)W (3, 2), and since W (3, 2) 6= 0 (clearly) we get W (2, 1) = W (3, 2).

Analogously, for any distinct a, b, c we have W (a, b) = W (b, c). For n ≥ 4 this is
enough to imply W (a, b) = ±1 for a 6= b where the choice of sign is the same for all a
and b.

Remark. Surprisingly, the n = 3 case has “extra” solutions for W (1, 2) = W (2, 3) =
W (3, 1) = ±1, W (2, 1) = W (3, 2) = W (1, 3) = ∓1.

Remark (Intuition). It should still be possible to solve the problem with Xabc in place of
W (a, b)W (b, c), because we have about far more equations than variables Xa,b,c so linear
algebra assures us we almost certainly have a unique solution.
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§2.3 USA TST 2016/6, proposed by Ivan Borsenco
Available online at https://aops.com/community/p6368189.

Problem statement

Let ABC be an acute scalene triangle and let P be a point in its interior. Let A1, B1,
C1 be projections of P onto triangle sides BC, CA, AB, respectively. Find the locus
of points P such that AA1, BB1, CC1 are concurrent and ∠PAB+∠PBC+∠PCA =
90◦.

In complex numbers with ABC the unit circle, it is equivalent to solving the following
two cubic equations in p and q = p:

(p− a)(p− b)(p− c) = (abc)2(q − 1/a)(q − 1/b)(q − 1/c)

0 =
∏
cyc

(p+ c− b− bcq) +
∏
cyc

(p+ b− c− bcq).

Viewing this as two cubic curves in (p, q) ∈ C2, by Bézout’s Theorem it follows there
are at most nine solutions (unless both curves are not irreducible, but it’s easy to check
the first one cannot be factored). Moreover it is easy to name nine solutions (for ABC
scalene): the three vertices, the three excenters, and I, O, H. Hence the answer is just
those three triangle centers I, O and H.

Remark. On the other hand it is not easy to solve the cubics by hand; I tried for an
hour without success. So I think this solution is only feasible with knowledge of algebraic
geometry.

Remark. These two cubics have names:

• The locus of ∠PAB + ∠PBC + ∠PCA = 90◦ is the McCay cubic, which is the
locus of points P for which P , P ∗, O are collinear.

• The locus of the pedal condition is the Darboux cubic, which is the locus of points
P for which P , P ∗, L are collinear, L denoting the de Longchamps point.

Assuming P 6= P ∗, this implies P and P ∗ both lie on the Euler line of 4ABC, which is
possible only if P = O or P = H.

Some other synthetic solutions are posted at https://aops.com/community/c6h1243902p6368189.

10

https://aops.com/community/p6368189
https://aops.com/community/c6h1243902p6368189

	Problems
	Solutions to Day 1
	USA TST 2016/1, proposed by Maria Monks
	USA TST 2016/2, proposed by Evan Chen
	USA TST 2016/3, proposed by Mark Sellke

	Solutions to Day 2
	USA TST 2016/4, proposed by Iurie Boreico
	USA TST 2016/5, proposed by Zilin Jiang
	USA TST 2016/6, proposed by Ivan Borsenco


