
USA TST 2015 Solution Notes
Evan Chen《陳誼廷》

11 December 2023

This is a compilation of solutions for the 2015 USA TST. Some of the
solutions are my own work, but many are from the official solutions provided
by the organizers (for which they hold any copyrights), and others were found
by users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Let ABC be a scalene triangle with incenter I whose incircle is tangent to BC,

CA, AB at D, E, F , respectively. Denote by M the midpoint of BC and let P be
a point in the interior of 4ABC so that MD = MP and ∠PAB = ∠PAC. Let Q
be a point on the incircle such that ∠AQD = 90◦. Prove that either ∠PQE = 90◦

or ∠PQF = 90◦.

2. Prove that for every positive integer n, there exists a set S of n positive integers
such that for any two distinct a, b ∈ S, a− b divides a and b but none of the other
elements of S.

3. A physicist encounters 2015 atoms called usamons. Each usamon either has one
electron or zero electrons, and the physicist can’t tell the difference. The physicist’s
only tool is a diode. The physicist may connect the diode from any usamon A to
any other usamon B. (This connection is directed.) When she does so, if usamon
A has an electron and usamon B does not, then the electron jumps from A to B.
In any other case, nothing happens. In addition, the physicist cannot tell whether
an electron jumps during any given step. The physicist’s goal is to isolate two
usamons that she is 100% sure are currently in the same state. Is there any series
of diode usage that makes this possible?

4. Let f : Q → Q be a function such that for any x, y ∈ Q, the number f(x + y) −
f(x)− f(y) is an integer. Decide whether there must exist a constant c such that
f(x)− cx is an integer for every rational number x.

5. Fix a positive integer n. A tournament on n vertices has all its edges colored by χ
colors, so that any two directed edges u → v and v → w have different colors. Over
all possible tournaments on n vertices, determine the minimum possible value of χ.

6. Let ABC be a non-equilateral triangle and let Ma, Mb, Mc be the midpoints of the
sides BC, CA, AB, respectively. Let S be a point lying on the Euler line. Denote
by X, Y , Z the second intersections of MaS, MbS, McS with the nine-point circle.
Prove that AX, BY , CZ are concurrent.
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§1 Solutions to Day 1
§1.1 USA TST 2015/1, proposed by Evan Chen
Available online at https://aops.com/community/p3683109.

Problem statement

Let ABC be a scalene triangle with incenter I whose incircle is tangent to BC, CA,
AB at D, E, F , respectively. Denote by M the midpoint of BC and let P be a
point in the interior of 4ABC so that MD = MP and ∠PAB = ∠PAC. Let Q be
a point on the incircle such that ∠AQD = 90◦. Prove that either ∠PQE = 90◦ or
∠PQF = 90◦.

We present two solutions.

¶ Official solution. Assume without loss of generality that AB < AC; we show
∠PQE = 90◦.

A

B C
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Q
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T

S

First, we claim that D, P , E are collinear. Let N be the midpoint of AB. It is
well-known that the three lines MN , DE, AI are concurrent at a point (see for example
problem 6 of USAJMO 2014). Let P ′ be this intersection point, noting that P ′ actually
lies on segment DE. Then P ′ lies inside 4ABC and moreover

4DP ′M ∼ 4DEC

so MP ′ = MD. Hence P ′ = P , proving the claim.
Let S be the point diametrically opposite D on the incircle, which is also the second

intersection of AQ with the incircle. Let T = AQ ∩BC. Then T is the contact point of
the A-excircle; consequently,

MD = MP = MT

and we obtain a circle with diameter DT . Since ∠DQT = ∠DQS = 90◦ we have Q on
this circle as well.
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As SD is tangent to the circle with diameter DT , we obtain

∠PQD = ∠SDP = ∠SDE = ∠SQE.

Since ∠DQS = 90◦, ∠PQE = 90◦ too.

¶ Solution using spiral similarity. We will ignore for now the point P . As before define
S, T and note AQST collinear, as well as DPQT cyclic on circle ω with diameter DT .

Let τ be the spiral similarity at Q sending ω to the incircle. We have τ(T ) = D,
τ(D) = S, τ(Q) = Q. Now

I = DD ∩QQ =⇒ τ(I) = SS ∩QQ

and hence we conclude τ(I) is the pole of ASQT with respect to the incircle, which lies
on line EF .

Then since AI ⊥ EF too, we deduce τ sends line AI to line EF , hence τ(P ) must be
either E or F as desired.

¶ Authorship comments. Written April 2014. I found this problem while playing with
GeoGebra. Specifically, I started by drawing in the points A, B, C, I, D, M , T , common
points. I decided to add in the circle with diameter DT , because of the synergy it had
with the rest of the picture. After a while of playing around, I intersected ray AI with the
circle to get P , and was surprised to find that D, P , E were collinear, which I thought
was impossible since the setup should have been symmetric. On further reflection, I
realized it was because AI intersected the circle twice, and set about trying to prove this.
I noticed the relation ∠PQE = 90◦ in my attempts to prove the result, even though this
ended up being a corollary rather than a useful lemma.
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§1.2 USA TST 2015/2, proposed by Iurie Boreico
Available online at https://aops.com/community/p3683110.

Problem statement

Prove that for every positive integer n, there exists a set S of n positive integers
such that for any two distinct a, b ∈ S, a− b divides a and b but none of the other
elements of S.

The idea is to look for a sequence d1, . . . , dn−1 of “differences” such that the following
two conditions hold. Let si = d1 + · · ·+ di−1, and ti,j = di + · · ·+ dj−1 for i ≤ j.

(i) No two of the ti,j divide each other.

(ii) There exists an integer a satisfying the CRT equivalences

a ≡ −si (mod ti,j) ∀i ≤ j

Then the sequence a+ s1, a+ s2, . . . , a+ sn will work. For example, when n = 3 we can
take (d1, d2) = (2, 3) giving

10

5︷ ︸︸ ︷︸︷︷︸
2

12 ︸︷︷︸
3

15

because the only conditions we need satisfy are

a ≡ 0 (mod 2)

a ≡ 0 (mod 5)

a ≡ −2 (mod 3).

But with this setup we can just construct the di inductively. To go from n to n+ 1,
take a d1, . . . , dn−1 and let p be a prime not dividing any of the di. Moreover, let M
be a multiple of

∏
i≤j ti,j coprime to p. Then we claim that d1M,d2M, . . . , dn−1M,p is

such a difference sequence. For example, the previous example extends as follows with
M = 300 and p = 7.

a

1507︷ ︸︸ ︷
︸︷︷︸
600

b

907︷ ︸︸ ︷︸︷︷︸
900

c ︸︷︷︸
7

d

The new numbers p, p+Mtn−1,n, p+Mtn−2,n, . . . are all relatively prime to everything
else. Hence (i) still holds. To see that (ii) still holds, just note that we can still get a
family of solutions for the first n terms, and then the last (n+ 1)st term can be made
to work by Chinese Remainder Theorem since all the new p+Mtn−2,n are coprime to
everything.
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§1.3 USA TST 2015/3, proposed by Linus Hamilton
Available online at https://aops.com/community/p3683111.

Problem statement

A physicist encounters 2015 atoms called usamons. Each usamon either has one
electron or zero electrons, and the physicist can’t tell the difference. The physicist’s
only tool is a diode. The physicist may connect the diode from any usamon A to
any other usamon B. (This connection is directed.) When she does so, if usamon A
has an electron and usamon B does not, then the electron jumps from A to B. In
any other case, nothing happens. In addition, the physicist cannot tell whether an
electron jumps during any given step. The physicist’s goal is to isolate two usamons
that she is 100% sure are currently in the same state. Is there any series of diode
usage that makes this possible?

The answer is no. Call the usamons U1, . . . , Um (here m = 2015). Consider models Mk

of the following form: U1, . . . , Uk are all charged for some 0 ≤ k ≤ m and the other
usamons are not charged. Note that for any pair there’s a model where they are different
states, by construction.

We can consider the physicist as acting on these m + 1 models simultaneously, and
trying to reach a state where there’s a pair in all models which are all the same charge.
(This is a necessary condition for a winning strategy to exist.)

But we claim that any diode operation Ui → Uj results in the m+ 1 models being an
isomorphic copy of the previous set. If i < j then the diode operation can be interpreted
as just swapping Ui with Uj , which doesn’t change anything. Moreover if i > j the
operation never does anything. The conclusion follows from this.

Remark. This problem is not a “standard” olympiad problem, so I can’t say it’s trivial.
But the idea is pretty natural I think.

You can motivate it as follows: there’s a sequence of diode operations you can do which
forces the situation to be one of the Mk above: first, use the diode into U1 for all other
Ui’s, so that either no electrons exist at all or U1 has an electron. Repeat with the other Ui.
This leaves us at the situation described at the start of the problem. Then you could guess
the answer was “no” just based on the fact that it’s impossible for n = 2, 3 and that there
doesn’t seem to be a reasonable strategy.

In this way it’s possible to give a pretty good description of what it’s possible to do.
One possible phrasing: “the physicist can arrange the usamons in a line such that all the
charged usamons are to the left of the un-charged usamons, but can’t determine the number
of charged usamons”.
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§2 Solutions to Day 2
§2.1 USA TST 2015/4, proposed by Victor Wang
Available online at https://aops.com/community/p4628083.

Problem statement

Let f : Q → Q be a function such that for any x, y ∈ Q, the number f(x + y) −
f(x)− f(y) is an integer. Decide whether there must exist a constant c such that
f(x)− cx is an integer for every rational number x.

No, such a constant need not exist.
One possible solution is as follows: define a sequence by x0 = 1 and

2x1 = x0

2x2 = x1 + 1

2x3 = x2

2x4 = x3 + 1

2x5 = x4

2x6 = x5 + 1

...

Set f(2−k) = xk and f(2k) = 2k for k = 0, 1, . . . . Then, let

f

(
a · 2k + b

c

)
= af

(
2k
)
+

b

c

for odd integers a, b, c. One can verify this works.
A second shorter solution (given by the proposer) is to set, whenever gcd(p, q) = 1 and

q > 0,

f

(
p

q

)
=

p

q
(1! + 2! + · · ·+ q!) .

Remark. Silly note: despite appearances, f(x) = bxc is not a counterexample since one
can take c = 0.
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§2.2 USA TST 2015/5, proposed by Po-Shen Loh
Available online at https://aops.com/community/p4628085.

Problem statement

Fix a positive integer n. A tournament on n vertices has all its edges colored by χ
colors, so that any two directed edges u → v and v → w have different colors. Over
all possible tournaments on n vertices, determine the minimum possible value of χ.

The answer is
χ = dlog2 ne .

First, we prove by induction on n that χ ≥ log2 n for any coloring and any tournament.
The base case n = 1 is obvious. Now given any tournament, consider any used color c.
Then it should be possible to divide the tournament into two subsets A and B such that
all c-colored edges point from A to B (for example by letting A be all vertices which are
the starting point of a c-edge).

A B

all edges colored c

One of A and B has size at least n/2, say A. Since A has no c edges, and uses at least
log2 |A| colors other than c, we get

χ ≥ 1 + log2(n/2) = log2 n

completing the induction.
One can read the construction off from the argument above, but here is a concrete

description. For each integer n, consider the tournament whose vertices are the binary
representations of S = {0, . . . , n− 1}. Instantiate colors c1, c2, . . . . Then for v, w ∈ S,
we look at the smallest order bit for which they differ; say the kth one. If v has a zero in
the kth bit, and w has a one in the kth bit, we draw v → w. Moreover we color the edge
with color ck. This works and uses at most dlog2 ne colors.

Remark (Motivation). The philosophy “combinatorial optimization” applies here. The idea
is given any color c, we can find sets A and B such that all c-edges point A to B. Once you
realize this, the next insight is to realize that you may as well color all the edges from A
to B by c; after all, this doesn’t hurt the condition and makes your life easier. Hence, if f
is the answer, we have already a proof that f(n) = 1 + max (f(|A|), f(|B|)) and we choose
|A| ≈ |B|. This optimization also gives the inductive construction.
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§2.3 USA TST 2015/6
Available online at https://aops.com/community/p4628087.

Problem statement

Let ABC be a non-equilateral triangle and let Ma, Mb, Mc be the midpoints of the
sides BC, CA, AB, respectively. Let S be a point lying on the Euler line. Denote
by X, Y , Z the second intersections of MaS, MbS, McS with the nine-point circle.
Prove that AX, BY , CZ are concurrent.

We assume now and forever that ABC is scalene since the problem follows by symmetry
in the isosceles case. We present four solutions.

¶ First solution by barycentric coordinates (Evan Chen). Let AX meet MbMc at D,
and let X reflected over MbMc’s midpoint be X ′. Let Y ′, Z ′, E, F be similarly defined.

X

Y

Z

Ma

Mb Mc

A

BC

S

D D′

E

E′
F

F ′

By Cevian Nest Theorem it suffices to prove that MaD, MbE, McF are concurrent.
Taking the isotomic conjugate and recalling that MaMbAMc is a parallelogram, we see
that it suffices to prove MaX

′, MbY
′, McZ

′ are concurrent.
We now use barycentric coordinates on 4MaMbMc. Let

S =
(
a2SA + t : b2SB + t : c2SC + t

)
(possibly t = ∞ if S is the centroid). Let v = b2SB + t, w = c2SC + t. Hence

X =
(
−a2vw : (b2w + c2v)v : (b2w + c2v)w

)
.

Consequently,

X ′ =
(
a2vw : −a2vw + (b2w + c2v)w : −a2vw + (b2w + c2v)v

)
We can compute

b2w + c2v = (bc)2(SB + SC) + (b2 + c2)t = (abc)2 + (b2 + c2)t.
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Thus

−a2v + b2w + c2v = (b2 + c2)t+ (abc)2 − (ab)2SB − a2t = SA((ab)
2 + t).

Finally

X ′ =
(
a2vw : SA(c

2SC + t)
(
(ab)2 + 2t

)
: SA(b

2SB + t)
(
(ac)2 + 2t

))
and from this it’s evident that AX ′, BY ′, CZ ′ are concurrent.

¶ Second solution by moving points (Anant Mudgal). Let Ha, Hb, Hc be feet of
altitudes, and let γ denote the nine-point circle. The main claim is that:

Claim — Lines XHa, Y Hb, ZHc are concurrent,

Proof. In fact, we claim that the concurrence point lies on the Euler line `. This gives us
a way to apply the moving points method: fix triangle ABC and animate S ∈ `; then
the map

` → γ → `

S 7→ X 7→ Sa := ` ∩HaX

is projective, because it consists of two perspectivities. So we want the analogous maps
S 7→ Sb, S 7→ Sc to coincide. For this it suffices to check three positions of S; since you’re
such a good customer here are four.

• If S is the orthocenter of 4MaMbMc (equivalently the circumcenter of 4ABC)
then Sa coincides with the circumcenter of MaMbMc (equivalently the nine-point
center of 4ABC). By symmetry Sb and Sc are too.

• If S is the circumcenter of 4MaMbMc (equivalently the nine-point center of 4ABC)
then Sa coincides with the de Longchamps point of 4MaMbMc (equivalently
orthocenter of 4ABC). By symmetry Sb and Sc are too.

• If S is either of the intersections of the Euler line with γ, then S = Sa = Sb = Sc

(as S = X = Y = Z).

This concludes the proof.

X

Y

Z

Ma

Mb Mc

A

BC

S

Ha

Hb

Hc
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We now use Trig Ceva to carry over the concurrence. By sine law,

sin∠McAX

sin∠AMcX
=

McX

AX

and a similar relation for Mb gives that

sin∠McAX

sin∠MbAX
=

sin∠AMcX

sin∠AMbX
· McX

MbX
=

sin∠AMcX

sin∠AMbX
· sin∠XMaMc

sin∠XMaMb
.

Thus multiplying cyclically gives∏
cyc

sin∠McAX

sin∠MbAX
=

∏
cyc

sin∠AMcX

sin∠AMbX

∏
cyc

sin∠XMaMc

sin∠XMaMb
.

The latter product on the right-hand side equals 1 by Trig Ceva on 4MaMbMc with
cevians MaX, MbY , McZ. The former product also equals 1 by Trig Ceva for the
concurrence in the previous claim (and the fact that ∠AMcX = ∠HcHaX). Hence the
left-hand side equals 1, implying the result.

¶ Third solution by moving points (Gopal Goel). In this solution, we will instead use
barycentric coordinates with resect to 4ABC to bound the degrees suitably, and then
verify for seven distinct choices of S.

We let R denote the radius of 4ABC, and N the nine-point center.
First, imagine solving for X in the following way. Suppose ~X = (1 − ta) ~Ma + ta~S.

Then, using the dot product (with |~v|2 = ~v · ~v in general)

1

4
R2 =

∣∣∣ ~X − ~N
∣∣∣2

=
∣∣∣ta(~S − ~Ma) + ~Ma − ~N

∣∣∣2
=

∣∣∣ta(~S − ~Ma)
∣∣∣2 + 2ta

(
~S − ~Ma

)
·
(
~Ma − ~N

)
+
∣∣∣ ~Ma − ~N

∣∣∣2
= t2a

∣∣∣(~S − ~Ma)
∣∣∣2 + 2ta

(
~S − ~Ma

)
·
(
~Ma − ~N

)
+

1

4
R2

Since ta 6= 0 we may solve to obtain

ta = −2( ~Ma − ~N) · (~S − ~Ma)∣∣∣~S − ~Ma

∣∣∣2 .

Now imagine S varies along the Euler line, meaning there should exist linear functions
α, β, γ : R → R such that

S = (α(s), β(s), γ(s)) s ∈ R

with α(s) + β(s) + γ(s) = 1. Thus ta = fa
ga

= fa(s)
ga(s)

is the quotient of a linear function
fa(s) and a quadratic function ga(s).

So we may write:

X = (1− ta)

(
0,

1

2
,
1

2

)
+ ta (α, β, γ)

=

(
taα,

1

2
(1− ta) + taβ,

1

2
(1− ta) + taγ

)
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= (2faα : ga − fa + 2faβ : ga − fa + 2faγ) .

Thus the coordinates of X are quadratic polynomials in s when written in this way.
In a similar way, the coordinates of Y and Z should be quadratic polynomials in s.

The Ceva concurrence condition∏
cyc

ga − fa + 2faβ

ga − fa + 2faγ
= 1

is thus a polynomial in s of degree at most six. Our goal is to verify it is identically zero,
thus it suffices to check seven positions of S.

• If S is the circumcenter of 4MaMbMc (equivalently the nine-point center of 4ABC)
then AX, BY , CZ are altitudes of 4ABC.

• If S is the centroid of 4MaMbMc (equivalently the centroid of 4ABC), then AX,
BY , CZ are medians of 4ABC.

• If S is either of the intersections of the Euler line with γ, then S = X = Y = Z
and all cevians concur at S.

• If S lies on the MaMb, then Y = Ma, X = Mc, and thus AX ∩BY = C, which is
of course concurrent with CZ (regardless of Z). Similarly if S lies on the other
sides of 4MaMbMc.

Thus we are also done.

¶ Fourth solution using Pascal (official one). We give a different proof of the claim
that XHa, Y Hb, ZHc are concurrent (and then proceed as in the end of the second
solution).

Let H denote the orthocenter, N the nine-point center, and moreover let Na, Nb, Nc

denote the midpoints of AH, BH, CH, which also lie on the nine-point circle (and are
the antipodes of Ma, Mb, Mc).

• By Pascal’s theorem on MbNbHbMcNcHc, the point P = McHb ∩MbHc is collinear
with N = MbNb ∩McNc, and H = NbHb ∩NcHc. So P lies on the Euler line.

• By Pascal’s theorem on MbY HbMcZHc, the point Y Hb ∩ ZHc is collinear with
S = MbY ∩McZ and P = MbHc ∩McHb. Hence Y Hb and ZHc meet on the Euler
line, as needed.
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