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1 Summary

The OTIS Mock AIME aired from December 18, 2025 to January 20, 2026. There
were a total of 153 submissions, of which 108 were under contest conditions.

§1.1 Top scores
Congratulations to the top scores:

14 points Arush Krisp, Carey Li, David Fox, Fagye, Patrick Sun, Ryan Tang, tenth

13 points Brayden Choi, Chenghao Hu, Joey Zheng, Vivdax

12 points Aryan, Hongming Allan Zhao, Kyle Liao, Niranjan, Vihaan Gupta, gouyanei,
stead_axu, vockey

§1.2 Editorial notes
§1.2.1 One problem set
This year, we only chose to run one set of 15 problems. We were lucky last year to have
a bumper crop, but this year I didn’t feel like we had the same kind of explosive output
as last year. I was also generally hosed, and didn’t have time to edit a full 30 problems
(which was a ton of work last year).

§1.2.2 Probase
We continued to use Probase for our solving system.

§1.2.3 Taylor series
The most controversial problem on the test is likely the 11th problem, due to its mandatory
knowledge of the Taylor series

ex =

∞∑
0

xn

n!
.

Including it was a bit of an experiment. Some people hated it. Some people loved it. No
surprise there, actually.

I feel like in general, there is too much fear in the math contest community of venturing
outside what people consider “fair game” (which is not even actually defined anywhere,
and instead just extrapolated from past years as if it’s some sort of oral tradition). In
the words of Jobu Tupaki, “right is a small box invented by people who are afraid”.

§1.2.4 Errata
Much to my annoyance, we gave a set of numbers initially for the 13th problem that
were impossible. In the originally aired version of the problem, the perimeter was given
to be 3000 instead of 2048.
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We updated this at Sun Dec 21 03:57:36 AM UTC 2025 after realizing that for perimeter
3000 the quadrilateral cannot actually exist (solving for a and d will give at least one
negative value). However, in this impossible situation, most contestants still end up with
the same numerical answer after finding the intended solution.

For scoring, we consider both the stale answer and the valid one as correct.

§1.2.5 Links to problems on Art of Problem Solving
Contest collections links:

• OTIS Mock AIME 2026: https://aops.com/community/c4686568

• All years of OTIS Mock AIME: https://aops.com/community/c4180954
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2 Solutions

§2.1 Answer key

P# Description Author Answer

1 3n and 4n Oron Wang 108
2 10 pairwise coprime Vincent Pirozzo 212
3 Product of altitudes James Stewart 324
4 Rectangle counting Neil Kolekar 876
5 Parabola Benjamin Song 448
6

∑
(a!b!c!)−1 James Stewart 041

7 i < 3u Jiahe Liu 701
8 cos3 Tane Park 073
9

∑
n f(n, 100) Tane Park 455

10 ∠B = ∠C = ∠D Joshua Liu 573
11 log sum Aatmik Krishna 325
12 Harry Otter Ashwin Shekhar 757
13 45◦ cyclic Jack Whitney-Epstein 011
14 13-gon labels Tanishq Pauskar 768
15

√
215 mod 1274 Royce Yao 157
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§2.2 Full solutions
Problem 1. Compute the smallest three-digit positive integer n such that the decimal
digits of 3n and 4n are permutations of each other.

¶ Answer. 108

¶ Problem author(s). Oron Wang

¶ First solution. Since 3n and 4n have the same sum of decimal digits, we need to have
3n ≡ 4n (mod 9), or n ≡ 0 (mod 9). The smallest multiple of 9 exceeding 100 is 108 ,
which works since

3× 108 = 324 and 4× 108 = 432.

¶ Second solution. As above, note that 108 works. Now, for all 0 ≤ i < 8,

3(100 + i) = 3(3 · i) and 4(100 + i) = 4(4 · i)

since 3i < 100 and 4i < 100 for small i in this range. Thus, 4i must contain an occurrence
of the digit 3. However, this is clearly impossible for all 0 ≤ i < 8, so no value less than
108 can work.
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Problem 2. Compute the sum of all positive integers n for which lcm(1, . . . , n) can be
written as the product of 10 distinct pairwise coprime positive integers less than or equal
to n.

¶ Answer. 212

¶ Problem author(s). Vincent Pirozzo

In what follows, π(n) is the number of primes in {1, . . . , n}.

Claim — Suppose lcm(1, . . . , n) has been written as the product of a set S of 10
pairwise coprime integers as in the problem statement.

• If 1 ∈ S, there π(n) = 9.

• If 1 /∈ S, there π(n) = 10.

Proof. Let T be S with the element 1 removed, if 1 ∈ S (otherwise, T = S). We will
show π(n) = |T |.

If |T | > π(n), then by the Pigeonhole principle at least two elements of T share a
prime factor, which is impossible.

If |T | < π(n), then some t ∈ T is divisible by two different primes p < q < n. Since t
is the only element of T divisible by either p or q, it follows that t is divisible by both
p
⌊
logp n

⌋
and q

⌊
logq n

⌋
(the largest powers of p and q in {1, . . . , n}). However, we would

then get
t ≥ lcm(p

⌊
logp n

⌋
, q

⌊
logq n

⌋
) > p

⌊
logp n

⌋
· p1 > n

which is also a contradiction.

Conversely, if 9 ≤ π(n) ≤ 10, then such a set S exists:

• If π(n) = 9, then one chooses S to consist of 1 and the largest powers of 2, 3, . . . ,
23 at most n.

• If π(n) = 10, then one chooses S to consist of the largest powers of 2, 3, . . . , 23, 29
at most n.

Hence, the requested n are exactly those n for which 9 ≤ π(n) ≤ 10. Since 23 is the 9th
prime and 31 is the 11th prime, we get

23 + 24 + · · ·+ 30 = 212 .

7



Evan Chen《陳誼廷》 — 2 February 2026 OTIS Mock AIME 2026 Report

Problem 3. A triangle with area 90 is inscribed in a circle of radius 50. Compute the
product of the lengths of the three altitudes of the triangle.

¶ Answer. 324

¶ Problem author(s). James Stewart

Let a = BC, b = CA, c = AB and let ha, hb, hc be the lengths of the three altitudes.
We know the area of ABC obeys the formula

[ABC] =
1

2
aha =

1

2
bhb =

1

2
chc.

Thus,
[ABC]3 =

1

8
(abc)(hahbhc).

ha

hb

hc

a

bc

50

A

B CD

E

F O

However, we also have the formula for [ABC] in terms of the circumradius R = 50:

[ABC] =
abc

4R
.

Hence, dividing the equations gives

[ABC]2 =
1
8(abc)(hahbhc)

abc
4R

=
1

2
R(hahbhc)

=⇒ hahbhc =
2[ABC]2

R
=

2(90)2

50
= 324 .

8



Evan Chen《陳誼廷》 — 2 February 2026 OTIS Mock AIME 2026 Report

Problem 4. Compute the number of rectangles R that can be drawn in the 8× 8 grid
below such that

• the edges of R lie along the gridlines;

• at least one cell of R is labeled with a multiple of 9.

For example, one such rectangle would be formed by taking the cells labeled 9, 10, 11,
17, 18, 19.

56

48

40

32

24

16

8

0

57

49

41

33

25

17

9

1

58

50

42

34

26

18

10

2

59

51

43

35

27

19

11

3

60

52

44

36

28

20

12

4

61

53

45

37

29

21

13

5

62

54

46

38

30

22

14

6

63

55

47

39

31

23

15
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¶ Answer. 876

¶ Problem author(s). Neil Kolekar

¶ Solution (Vincent Pirozzo) We will use complementary counting. Any rectangle is
defined by picking two vertical segments and two horizontal segments both of which span
the whole square, so there are (

9

2

)2

= 362 = 1296

of them. Thus, we need to count how many rectangles do not contain a multiple of 9.
Notice that in the grid given, all multiples of 9 lie on the top-left to bottom-right

diagonal. Coloring them in black as shown below splits the remaining cells into two
staircases each with 1 + 2 + · · ·+ 7 = 28 cells.

56

48

40

32

24

16

8

0

57

49

41

33

25

17

9

1

58

50

42

34

26

18

10

2

59

51

43

35

27

19

11

3

60

52

44

36

28

20

12

4

61

53

45

37

29

21

13

5

62

54

46

38

30

22

14

6

63

55

47

39

31

23

15

7
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We focus on just the bottom staircase to start:

Claim — The number of rectangles contained within the bottom staircase is(
8+2
4

)
= 210.

Proof. Index the cells by coordinates (i, j) with 1 ≤ i, j ≤ 8, with (1, 1) in the bottom
left. Observe that there are i · j rectangles with (i, j) at the top right corner, since the
bottom-left corner has first coordinate in [1, i] and second coordinate in [1, j]. Therefore,
the number of rectangles in this region is

∑
i,j≥1
i+j≤8

ij =

7∑
i=1

8−i∑
j=1

ij

=
7∑

i=1

i · (8− i)(9− i)

2
=

7∑
i=1

i

(
9− i

2

)
= 1 ·

(
8

2

)
+ 2 ·

(
7

2

)
+ 3 ·

(
6

2

)
· · ·+ 7 ·

(
2

2

)
=

8∑
j=2

j∑
i=2

(
i

2

)

=

(
9

3

)
+

(
8

3

)
+ · · ·+

(
3

3

)
=

(
10

4

)
= 210.

Similarly, there are 210 rectangles that lie in the top staircase. This gives us the final
answer of

1296− 210− 210 = 876 .
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Problem 5. Triangle ABC has AB = 65, BC = 70, CA = 75. Let P be a parabola
with focus A and directrix BC, and let P intersect segments AB and AC at D and E
respectively. Compute the area of triangle ADE.

¶ Answer. 448

¶ Problem author(s). Benjamin Song

Since triangle ABC is a multiple of the well-known 13-14-15 triangle, we have
sin∠B = 12

13 and sin∠C = 4
5 (say, by the law of cosines) as well as [ABC] = 52 ·√

21(21− 13)(21− 14)(21− 15) = 52 · 84.
Let X and Y be the feet of the perpendiculars from D and E to BC, and by the

definition of a parabola, we have that DA = DX and EA = EY .

A

B C

D
E

X Y

We compute each of AD and AE separately.

Claim — We have AD = 156
5 .

Proof. Write

AD = XD =
BD

sinB
=

AB −AD

sinB
=

12

13
(65−AD) =⇒ AD =

156

5
.

Claim — We have AE = 100
3 .

Proof. In the same way, write

AE = Y E =
CE

sinC
=

AC −AE

sin∠C
=

4

5
(75− EA) =⇒ AE =

100

3
.
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Then, we can compute the area of [ADE] by noting [ADE]
[ABC] =

AD·AE
AB·AC . We get

[ADE] =
AD ·AE

AB ·AC
· [ABC] =

156
5 · 100

3

65 · 75
· (52 · 84) = 448 .
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Problem 6. Let k, p, q be positive integers such that gcd(pq, 3) = 1 and∑
a+b+c=81
a,b,c≥0

1

a!b!c!
=

3kp

q
.

Compute k. Here the summation is over all triples (a, b, c) of nonnegative integers with
sum 81.

¶ Answer. 041

¶ Problem author(s). James Stewart

Let S be the summation that we wish to evaluate, and note that

81! · S =
∑

a+b+c=81
a,b,c≥0

81!

a!b!c!
.

We give a combinatorial interpretation of the LHS:

Claim — ∑
a+b+c=81
a,b,c≥0

81!

a!b!c!
= 381.

Proof. The main idea is that 81!
a!b!c! is the number of ways to arrange 81 total fruits con-

sisting of a indistinguishable apples, b indistinguishable bananas, and c indistinguishable
pears in a row (such that 81 = a+ b+ c.) Yet the sum counts this over all possible a, b,
c, so this really counts the number of ways to arrange some number of apples, bananas,
and pears in a row without restrictions on the number of apples, bananas, and pears.

We can count this in a different way by noticing that there are 3 choices of fruit for
each position in the row, so the number of ways to make such an arrangement is 381.

This means that
81! · S = 381 =⇒ S =

381

81!
.

Let νp(n) be defined in the usual way. The problem asks for ν3(S), which is

81− ν3(81!) = 81− (27 + 9 + 3 + 1) = 041 .

Remark. The formula for ν3(81!) follows by noting in {1, . . . , 81} there are 27 multiples of
3, 9 multiples of 9, 3 multiples of 27 and 1 multiple of 81. By the same principle, Legendre’s
formula generally states that

νp(n!) =

∞∑
k≥1

⌊
n

pk

⌋
for every prime p and integer n ≥ 1.

13
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Problem 7. A pair of nonnegative integers (i, u) is said to be compatible if i < 3u and
u < 3i. Let N be the number of compatible pairs of integers (i, u) for 0 ≤ i, u < 300.
Compute the remainder when N is divided by 1000.

¶ Answer. 701

¶ Problem author(s). Jiahe Liu

The problem is asking for the number of lattice points strictly inside the quadrilateral
bounded by the lines y = 3x, x = 3y, x = 300, and y = 300 which has vertices A = (0, 0),
B = (100, 300), C = (300, 300), and D = (300, 100), shown below. Note that this
quadrilateral has area 60000.

x

yA

B C

D

Our strategy is to use Pick’s theorem. To that end, we compute the number of lattice
points on the boundary.

Claim — There are 600 lattice points on the boundary of ABCD.

Proof. Consider each of the four sides.

• Note that the lattice points on segment AB are of the form (x, 3x) for 0 ≤ x ≤ 100,
so there are 101 of them.

• Similarly, there are 101 lattice points on segment AD.

• The lattice points on segment BC are of the form (x, 300) for 100 ≤ x ≤ 300, so
there are 201 of them.

• Similarly, there are 201 lattice points on line CD.

Of course, the four vertices A, B, C, and D appear twice in the above count. The number
of lattice points on the border of the quadrilateral is

101 + 201 + 101 + 201− 4 = 600.

14
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By Pick’s Theorem, we have

[ABCD] = N +
B

2
− 1 =⇒ 60000 = N +

600

2
− 1 =⇒ N = 59701.

This yields the answer 701 .
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Problem 8. Let p and q be relatively prime integers (not necessarily positive) satisfying
p

q
= cos3(20◦) cos3(140◦) + cos3(140◦) cos3(260◦) + cos3(260◦) cos3(20◦).

Compute p2 + q2.

¶ Answer. 073

¶ Problem author(s). Tane Park

¶ First solution (author). The basic strategy is to create a cubic polynomial whose
roots are cos3(20◦), cos3(140◦), cos3(260◦). We do this as follows:

Claim — Suppose θ ∈ {20◦, 140◦, 260◦} and x = cos θ. Then

64x9 − 24x6 − 24x3 − 1/8 = 0.

Proof. For these θ, we have

1

2
= cos(3θ) = 4 cos3 θ − 3 cos θ = 4x3 − 3x

by the triple-angle formula. Thus(
4x3 − 1

2

)3

= (3x)3 = 27x3

which rearranges to the cubic claimed.

It follows that the polynomial

p(T ) := 64T 3 − 24T 2 − 24T − 1/8

has roots at each of t1 := cos3(20◦), t2 := cos3(140◦), t3 := cos3(260◦). Since degP = 3
these are in fact all of the roots, and by Vieta’s formulas,

t1t2 + t2t3 + t3t1 = −24

64
= −3

8
.

Hence p2 + q2 = 73.

¶ Alternate solution via complex numbers (Vincent Pirozzo). Notice that by the
cosine product-to-sum formula, we have

cos 20◦ cos 140◦ = cos 160◦ − cos 60◦

2
=

cos 160◦ − 1
2

2

cos 140◦ cos 260◦ = cos 400◦ − cos 60◦

2
=

cos 40◦ − 1
2

2

cos 260◦ cos 20◦ = cos 280◦ − cos 60◦

2
=

cos 280◦ − 1
2

2
.
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Now, we must compute

p

q
=

(
cos 160◦ − 1

2

2

)3

+

(
cos 40◦ − 1

2

2

)3

+

(
cos 280◦ − 1

2

2

)3

.

Let
S := {40◦, 160◦, 280◦}.

Then the requested quantity is

p

q
=
∑
θ∈S

(
cos θ − 1

2

2

)3

=
∑
θ∈S

1

8

(
cos3 θ − 3

2
cos2 θ + 3

4
cos θ − 1

8

)
=

1

8

∑
θ∈S

cos3 θ − 3

16

∑
θ∈S

cos2 θ + 3

32

∑
θ∈S

cos θ − 3

64

=
1

8

∑
θ∈S

cos(3θ) + 3 cos θ
4

− 3

16

∑
θ∈S

cos(2θ) + 1

2
+

3

32

∑
θ∈S

cos θ − 3

64

=
1

32

∑
θ∈S

cos(3θ)− 3

32

∑
θ∈S

cos(2θ) + 3

16

∑
θ∈S

cos θ − 21

64

due to the double and triple angle formulas.
On the other hand, for all angles t we have the identity

cos(t) + cos(t+ 120◦) + cos(t+ 240◦) = 0. (2.1)

(Indeed, (2.1) follows by taking the real part of eit(1+ω+ω2) = 0 for ω = e2πi/3.) From
(2.1) we deduce ∑

θ∈S
cos θ = 0

∑
θ∈S

cos 2θ = 0

while ∑
θ∈S

cos 3θ = −1

2
− 1

2
− 1

2
= −3

2
.

Hence, the sum above collapses into simply

p

q
=

1

32
·
(
−3

2

)
− 21

64
= −3

8
.

So p2 + q2 = 73.
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Problem 9. A function f taking pairs of nonnegative integers to nonnegative integers
satisfies f(0, 0) = 0 and

f(x, y) = f(y, x) = f(x+ y, y) and f(x, x) = f(x2 − 1, x3 − 1) + x

for all integers x ≥ 1 and y ≥ 0. Compute the remainder when

f(1, 100) + f(2, 100) + · · ·+ f(100, 100)

is divided by 1000.

¶ Answer. 455

¶ Problem author(s). Tane Park

We begin by characterizing the function f .

Claim — For all pairs of positive integers x and y,

f(x, y) =

(
gcd(x, y) + 1

2

)

Proof. We first establish the key identity

f(x, y) = f(gcd(x, y), gcd(x, y)). (2.2)

Indeed, the recursion f(x, y) = f(y, x) = f(x + y, y) is the Euclidean algorithm. Put
another way, when x > y we have f(x − y, y) = f(x, y) and gcd(x − y, y) = gcd(x, y).
Hence, by applying the Euclidean algorithm inductively, (2.2) follows.

Now, observe that since gcd(n2 − 1, n3 − 1) = n− 1 for all positive integers n,

f(n, n) = f(n2 − 1, n3 − 1) + n = f(n− 1, n− 1) + n

which together with f(0, 0) = 0 implies

f(n, n) =

(
n+ 1

2

)
for all positive integers n. Combining with (2.2), the claim is proved.

To compute the requested sum, we note that 100 = 4 · 25 while 4 and 25 are relatively
prime. Since gcd(i, 100) = gcd(i, 4) gcd(i, 25), by Chinese Remainder Theorem we get
the identities

100∑
i=1

gcd(i, 100) =
4∑

i=1

gcd(i, 4) ·
25∑
i=1

gcd(i, 25)

100∑
i=1

gcd(i, 100)2 =
4∑

i=1

gcd(i, 4)2 ·
25∑
i=1

gcd(i, 25)2.

18
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We may now compute:

100∑
i=1

f(i, 100) =

100∑
i=1

(
gcd(i, 100) + 1

2

)

=
1

2

(
100∑
i=1

gcd(i, 100)2 +
100∑
i=1

gcd(i, 100)

)

=
1

2

(
4∑

i=1

gcd(i, 4)2 ·
25∑
i=1

gcd(i, 25)2 +
4∑

i=1

gcd(i, 4) ·
25∑
i=1

gcd(i, 25)

)

=
1

2
((2 · 12 + 1 · 22 + 1 · 42) · (20 · 12 + 4 · 52 + 1 · 252)

+ (2 · 1 + 1 · 2 + 1 · 4) · (20 · 1 + 4 · 5 + 1 · 25))

=
1

2
(22 · 745 + 8 · 65)

= 8455

so the answer is 455 .
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Problem 10. Quadrilateral ABCD with area k satisfies ∠B = ∠C = ∠D. Suppose
BC = 29, AD = 41, and the distance from A to CD is 40. Compute bkc.

¶ Answer. 573

¶ Problem author(s). Joshua Liu

Denote by M the foot of the altitude from A to side CD, and by D′ the reflection of
D over M . Observe that 4AD′M ∼= 4ADM due to reflection, and in fact both right
triangles have side lengths 9, 40, 41 (by Pythagoras).

Claim — Quadrilateral ABCD′ is an isosceles trapezoid with AB = CD′.

Proof. Note that
]DD′A = ]ADD′ = ]CBA = ]DCB

implying both that ABCD′ is cyclic and AD′ ‖ BC. This is enough to show ABCD′ is
an isosceles trapezoid with AB = CD′.

We will now compute [ABCD′].

4141

29

40

9

6

A

B

C D′

N

MD

Claim — We have [ABCD′] = 2800
3 .
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Proof. Denote by N the foot of the altitude from C to line AD′. Observe that if N ′

is the foot of the altitude from B to AD′ then 4BAN ′ ∼= 4CD′N and BCNN ′ is a
rectangle which implies that,

D′N =
AD′ −BC

2
=

41− 29

2
= 6.

Furthermore, 4NCD′ ∼ 4MAD′. This allows us to compute

CN =
40

9
·ND′ =

40

9
· 6 =

80

3
.

Thus, the area of the trapezoid is,

[ABCD′] =
CN(AD′ +BC)

2
=

80

3
· 70
2

=
2800

3
.

To finish, write

[ABCD] = [ABCD′]− 2[ADD′] =
2800

3
− 40 · 9 =

1720

3

so the answer is
⌊
1720
3

⌋
= 573 .
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Problem 11. Let e ≈ 2.718 denote the base of the natural logarithm ln. Compute the
remainder when

1

e

∑
i≥1

∑
j≥1

2026∑
k=1

(
i−1
j−1

)
ln(k)j

j(i− 1)!

is divided by 1000.

¶ Answer. 325

¶ Problem author(s). Aatmik Krishna

¶ First solution (author). For any positive integer n, set

Sn =
∑
i≥1

∑
j≥1

n∑
k=1

(
i−1
j−1

)
ln(k)j

j (i− 1)!

we wish to evaluate 1
e · S2026. We know that 1

j

(
i−1
j−1

)
= 1

i

(
i
j

)
. Hence,

S =
∑
i≥1

∑
j≥1

n∑
k=1

(
i
j

)
ln(k)j

i!
=

n∑
k=1

∑
i≥1

∑
j≥1

(
i
j

)
ln(k)j

i!
.

Now, we know that ∑
j≥1

(
i

j

)
ln(k)j = (1 + ln(k))i − 1

so

Sn =

n∑
k=1

∑
i≥1

∑
j≥1

(
i
j

)
ln(k)j

i!
=

n∑
k=1

∑
i≥1

(1 + ln(k))i − 1

i!

=

n∑
k=1

∑
i≥1

(1 + ln(k))i

i!
−

n∑
k=1

∑
i≥1

1

i!

=
n∑

k=1

eln(e·k) −
n∑

k=1

e

=

(
n∑

k=1

ek

)
− en

= e · n(n− 1)

2
.

For n = 2026, we get 2025 · 1013 ≡ 25 · 13 ≡ 325 (mod 1000).
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¶ Second solution via swapping the order of summation (Vincent Pirozzo). We give
another way to evaluate Sn. Rewrite the inner expression as

(i−1)!
(j−1)!(i−j)! ln(k)j

j(i− 1)!
=

ln(k)j

(i− j)!(j)!
.

Swapping the order of summation gives

1

e

2026∑
k=1

∑
j≥1

∑
i≥j

ln(k)j

(i− j)!(j)!

 =
1

e

2026∑
k=1

∑
j≥1

e
ln(k)j

j!

=

2026∑
k=1

(eln k − 1)

=

2026∑
k=1

(k − 1)

which is equivalent to 0 + 1 + 2 + · · ·+ 2025, congruent to 325 modulo 1000.
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Problem 12. Oscar the otter is reading the seven volumes of his favorite book series,
Harry Otter. He has them all in a row in his bookshelf, but he wants to put them in
chronological order. He wishes to do this by making swaps, where in one swap he will
switch the positions of any two books in the row (these two books do not necessarily have
to be adjacent). If the books in the row are in a random permutation of the chronological
ordering, then the expected number of swaps Oscar needs for the books in the row to
be in chronological order is m

n , where m and n are relatively prime positive integers.
Compute m+ n.

¶ Answer. 757

¶ Problem author(s). Ashwin Shekhar

The solution given here is from Isaac Chan-Osborn.
Let n = 7 and let Sn denote the set of n! possible permutations of {1, . . . , n}. Given a

permutation σ ∈ Sn, we use the following characterization.

Lemma
The minimum number of swaps needed is n − c(σ), where c(σ) is the number of
cycles of σ.

Remark. A more intuitive way to state this lemma is that, if a cycle has length `, it takes
`− 1 swaps to sort it out. More generally, if σ consists of a cycle decomposition with lengths
`1, . . . , `c(σ), the total number of moves needed will be

(`1 − 1) + (`2 − 1) + · · ·+ (`c(σ) − 1) = n− c(σ)

since
∑

i `i = n by definition.

Idea of proof. It is clear that 0 ≤ c(σ) ≤ n. One may check that applying a transposition
changes c(σ) by either +1 or −1. Meanwhile, σ is the identity if and only if c(σ) = n.
This shows that at least n− c(σ) moves are necessary; but they are also sufficient because
a cycle of length ` can be made into the identity with `− 1 transpositions.

Remark. This lemma is far from new; see for example USA TST 2016 Problem 1. In
modern language, it is phrased as saying that n− c(σ) is the transposition distance of σ.

Claim — We have
E[c(σ)] =

1

1
+

1

2
+ · · ·+ 1

n

across σ ∈ Sn.

Proof. The idea is to use linearity of expectation as follows. Pick an integer k ≥ 1 and
distinct integers t1, . . . , tk ∈ {1, . . . , n}. We will calculate the probability that σ contains
the cycle

t1 7→ t2 7→ · · · 7→ tk 7→ t1
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that is, ti = σ(ti−1) for all i with indices modulo k.
Indeed this is actually straightforward: fix an arbitrary book t1. The probability that

σ(t1) = t2 is 1
n ; the probability that σ(t2) = t3 is 1

n−1 , and so on, getting the probability
that σ(tk) = t1 as 1

n−k+1 . So the probability that our cycle is present is exactly

1

(n)(n− 1) . . . (n− k + 1)
.

On the other hand, the number of possible cycles of length k is
(
n
k

)
· (k − 1)!. So by

linearity of expectation, the total contribution to c(σ) from all the cycles of length k is(
n

k

)
· (k − 1)! · 1

(n)(n− 1) . . . (n− k + 1)
=

n!

k!(n− k)!
· (k − 1)! · (n− k)!

n!

=
(n!)(n− k)!(k − 1)!

(k!)(n− k)!(n!)

=
(k − 1)!

k!

=
1

k
.

Summing over 1 ≤ k ≤ n yields the result.

Remark. The special case k = 1 is more well-known in the math competition commu-
nity; it states that the expected number of fixed points of a permutation is given by
1. See the first example of https://web.evanchen.cc/handouts/ProbabilisticMethod/
ProbabilisticMethod.pdf.

Returning to the problem, when n = 7 this yields the answer

7−
(
1

1
+

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7

)
=

617

140
.

Therefore, the desired answer is 617 + 140 = 757 .
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Problem 13. Let ABCD be a cyclic quadrilateral whose perimeter is 2048 and area is
2026(1 +

√
2). Assume ∠C = 45◦. Given that the lengths BC and DC are both integers,

compute min(BC,DC).

¶ Answer. 011

¶ Problem author(s). Jack Whitney-Epstein

Let AB = a,BC = b, CD = c,DA = d. We are going to prove the following formula
for the area of ABCD:

Claim — We have

[ABCD] =
1 +

√
2

4

(
(a+ d)2 − (b− c)2

)
.

First proof, by author. WLOG assume c ≥ b. We make eight congruent copies AiBiCiDi

for 1 ≤ i ≤ 8. Paste the copies AiBiCiDi around each other, each rotated by 45◦,
with each quadrilateral’s vertex Di coinciding with the previous Bi−1. Notice that Ai,
Bi = Di+1, and Ai+1 are collinear. This creates a regular octagon with an octagonal
hole in the middle, as shown in the figure below.

A1

C1

a+ d

b− c

D1
B1

The area of a regular octagon with side length s is s2 · 2(1 +
√
2). Hence, we get

8[ABCD] = 2(1 +
√
2) · ((a+ d)2 − (c− b)2)

which gives the desired formula.

Second proof, Vincent Pirozzo. By the law of cosines we have

BD2 = a2 + d2 +
√
2ad = b2 + c2 −

√
2bc

=⇒ (a2 + d2)− (b2 + c2) = −
√
2[ad+ bc]
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=⇒ (a+ d)2 − (b− c)2 = (2−
√
2)(ad+ bc).

Then

[ABCD] = [BAD] + [BCD]

=
1

2
·
√
2

2
· (ad+ bc)

=

√
2/4

2−
√
2
· [(a+ d)2 − (b− c)2]

=

√
2 + 1

4
[(a+ d)2 − (b− c)2].

To extract min(b, c), we now use the specific numbers given. Writing (a+d)2− (b− c)2

as a difference of squares, we have

23 · 1013 = 4 · 2026 = (a+ d+ b− c)(a+ d+ c− b) = (2048− 2b)(2048− 2c).

By quadrilateral inequality, each factor on the right-hand side should be nonnegative
(and at most 2048). Since 1013 is prime; this can only occur if

{2048− 2b, 2048− 2c} = {4, 2026}.

Hence {b, c} = {11, 1022} and the answer is 011 .

Remark. In the originally aired version of the problem, the perimeter was given to be 3000
instead of 2048. We updated this at Sun Dec 21 03:57:36 AM UTC 2025 after realizing that
for perimeter 3000 the quadrilateral cannot actually exist (solving for a and d will give at
least one negative value). The intended answer was 487 = 3000−2026

2 for the wrong version
of the problem.
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Problem 14. Let N be the number of ways to label the vertices of a regular 13-gon, each
with an integer from 1 through 14 (repetitions allowed), so that no set of consecutive
labels has a sum divisible by 15. Compute the remainder when N is divided by 1000.

¶ Answer. 768

¶ Problem author(s). Tanishq Pauskar

Let 0 6= vi ∈ Z/15Z denotes the label of the ith vertex, viewed modulo 15. Confusingly,
although the labels are always modulo 15, in this solution we break symmetry and do
not take indices modulo 13.

For any (i, j) ∈ {1, . . . , 13}2 we define

Si,j =

{
vi + vi+1 + · · ·+ vj if i ≤ j

vi + vi+1 + · · ·+ v15 + v1 + · · ·+ vj if i > j
∈ Z/15Z.

Then the problem statement requires Si,j is always nonzero across all 132 choices of
(i, j) ∈ {1, . . . , 13}2. (In particular, Si,i 6= 0 is the requirement vi 6= 0.) For each
1 ≤ k ≤ 13, we also define the prefix sum

Pk := v1 + · · ·+ vk ∈ Z/15Z.

Let’s now rewrite the condition in terms of prefix sums:

Claim — The following are equivalent:

• The assignment is valid, i.e. it satisfies Si,j 6= 0 for all (i, j) ∈ {1, . . . , 13}2.

• We have P13 6= 0 and for all 1 ≤ k < ` ≤ 13, we have Pk 6= P` and P`−Pk 6= P13.

Proof. We first rewrite all the conditions on Si,j in terms of Pi,j . When i ≤ j, we have

Si,j 6= 0 ⇐⇒ Pj − Pi−1 6= 0

where P0 = 0 for convenience. When i > j, we instead have

Si,j 6= 0 (mod 15) ⇐⇒ P13 − Pi−1 + Pj 6= 0 (mod 15)

⇐⇒ Pi−1 − Pj 6= P13 (mod 15).

We now carefully tally these 132 = 169 into the conclusion of the claim:

• For the 12 pairs (i, j) with i = 1 and 1 ≤ j ≤ 12, we get Pj 6= 0, which is
P` − Pk 6= P13 for 1 ≤ k ≤ 12 and ` = 13.

• For the 1 pair (i, j) = (1, 13), we get P13 6= 0.

• For the 12 pairs (i, j) with i = j + 1 we get P13 6= 0 again.

• For the 78 pairs (i, j) with 2 ≤ i ≤ j ≤ 13, we Pk 6= P` for (k, `) = (i− 1, j), which
spans 1 ≤ k < ` ≤ 13.
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• For the 66 pairs (i, j) with i ≥ j + 2, we get P` − Pk 6= P13 for (k, `) = (j, i − 1),
which spans 1 ≤ k < ` ≤ 12.

The translation thus gives precisely the 1+12+78+66 = 1+2
(
13
2

)
statements claimed.

Hence from now on we only work with the sequence of prefix sums (P1, P2, . . . , P13).
From here on, we consider cases based on whether

X := P13

is coprime to 15.

• Case 1: X is relatively prime to 15.
Consider the 14 nonzero multiples of X:

X, 2X, . . . , 14X (mod 15).

We know we have 13 distinct prefix sums in the sequence (P1, . . . , P13). So exactly
one of the nonzero multiples is omitted in this set, say tX.
We further subdivide our cases based on t. For a fixed t, the remaining condition is
now that X, 2X, . . . , (t− 1)X must appear in decreasing order, as do the indices of
(t+ 1)X, . . . , 14X. Hence, the valid assignments correspond to just choosing which
subset of indices i satisfy Pi ∈ {X, . . . , (t− 1)X}. There are

(
12
t−2

)
ways to do this.

Hence, for each X, the total number of arrangements is

14∑
t=2

(
12

t− 2

)
= 212.

Finally, since there are ϕ(15) = 8 choices of X, the total number of labellings in
this case is ϕ(15) · 212.

• Case 2: X is not relatively prime to 15.
We contend this case cannot occur. Let m = gcd(15, X) ≥ 3. We consider the
m− 1 arithmetic progressions (modulo 15, each with 15

m elements):

{1, 1 +X, 1 + 2X, . . . , 1−X},
{2, 2 +X, 1 + 2X, . . . , 2−X},

...
{m− 1,m− 1 +X, 1 + 2X, . . . , (m− 1)−X}.

Since the sequence (P1, . . . , P13) omits exactly one nonzero residue, at least one
of these arithmetic progressions must appear entirely. However, in that case the
condition that P` − Pk 6= X for k < ` is plainly impossible to satisfy.

So, only the first case can occur and we obtain N = ϕ(15) · 212 = 32768, hence the
remainder is 768 .
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Problem 15. Let a be the smallest positive integer such that a2 − 215 is divisible by
1274. Compute the remainder when a is divided by 1000.

¶ Answer. 157

¶ Problem author(s). Royce Yao

Let p = 127 be a prime: we need to find a square root of

215 = 256(p+ 1) = 256p+ 256 (mod p4).

The basic motivation is to try to think of
√
215 = 16

√
127 + 1 as a Taylor series.

Specifically, if one knows the identity

√
1 + x = 1 +

1

2
x− 1

8
x2 +

1

16
x3 − . . .

then 16
√
1 + p = 16 + 8p− 2p2 + p3 +O(p4) should be the desired value of a. To make

this into a real proof would require working over p-adic numbers; hence we are content
to give the following identity and a self-contained elementary derivation:

Claim — Let F := 16 + 8p− 2p2 + p3, where p = 127. Then we have

F 2 ≡ 256(p+ 1) (mod p4).

Proof. We need to guess a quadruple (c0, c1, c2, c3) of integers, say with c0 > 0 such that
F = c0+ c1p+ c2p

2+ c3p
2 satisfies F 2 = 256(p+1) (mod p4). Viewing F 2 as polynomial

in p, it would be sufficient (not necessary) for the coefficients of 1, p, p2, p3 to match.
We can thus recursively compute a working (c0, c1, c2, c3):

c20 = 256 ⇐⇒ c0 = 16

2 · 8 · 16 · c1 = 256 ⇐⇒ c1 = 8

2 · 16c2 + 82 = 0 ⇐⇒ c2 = −2

2 · 16c3 + 2 · 8(−2) = 0 ⇐⇒ c3 = 1.

These are the coefficients in the claim.

All that remains is to note that 16 + 8 · p− 2 · p2 + p3 < p4

2 , so

a = 16 + 8p− 2p2 + p3 = 2017157.

(That’s because the equation x2 ≡ 215 (mod p4) always has exactly one solution in
(0, p4/2); actually in Z/p4Z the solutions are ±a). The requested remainder is thus 157 .
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3 Statistics

§3.1 Total score statistics

Score Freq

Total score = 0 1
Total score = 1 1
Total score = 2 1
Total score = 3 3
Total score = 4 5
Total score = 5 8
Total score = 6 10
Total score = 7 4
Total score = 8 5
Total score = 9 18
Total score = 10 14
Total score = 11 18
Total score = 12 9
Total score = 13 4
Total score = 14 7
Total score = 15 0

§3.2 Number of correct answers per problem

P# #Correct % Correct Description

1 100 92.59% 3n and 4n
2 71 65.74% 10 pairwise coprime
3 102 94.44% Product of altitudes
4 79 73.15% Rectangle counting
5 93 86.11% Parabola
6 96 88.89%

∑
(a!b!c!)−1

7 64 59.26% i < 3u
8 73 67.59% cos3
9 73 67.59%

∑
n f(n, 100)

10 54 50.00% ∠B = ∠C = ∠D
11 42 38.89% log sum
12 54 50.00% Harry Otter
13 31 28.70% 45◦ cyclic
14 6 5.56% 13-gon labels
15 20 18.52%

√
215 mod 1274
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4 Behind the scenes

§4.1 Testsolving statistics
Serious testsolvers had a time limit and unlimited answer checks. We record

• the fastest solve time (in seconds) among testsolvers who got the answer in one try;

• the median solve time among testsolvers who got the answer in one try (if the
number of such solves is even, we take the larger of the two times);

• the number of testsolvers that got the correct answer on the first try;

• the number that eventually got the correct answer before the timer expired (but
may have required multiple tries). The timer was set as follows: the author was
asked to estimate the difficulty of each problem on a scale of one light bulb to
five light bulbs, where n light bulbs was a problem suitable for problem 3n on the
AIME. Then solvers got 5(n+ 1) minutes for their testsolving session. (However,
they could give up early if they didn’t want to wait for the full time.)

P# Description Fastest Median Correct Finished

1 3n and 4n 0:18 1:32 24 27
2 10 pairwise coprime 0:55 1:25 7 16
3 Product of altitudes 0:20 1:11 31 37
4 Rectangle counting 1:36 2:29 8 16
5 Parabola 1:16 2:28 16 19
6

∑
(a!b!c!)−1 0:29 1:23 18 28

7 i < 3u 1:09 3:30 8 13
8 cos3 0:56 3:19 13 19
9

∑
n f(n, 100) 0:35 1:51 20 24

10 ∠B = ∠C = ∠D 2:45 12:01 6 6
11 log sum 2:25 11:23 6 9
12 Harry Otter 1:31 9:08 5 5
13 45◦ cyclic 2:18 17:39 3 3
14 13-gon labels — — 0 1
15

√
215 mod 1274 5:57 7:08 4 5

This data is mostly for comedic value than anything else (e.g., “holy crap someone
got this in x seconds WTF??”). You shouldn’t take it too seriously because, e.g., the
version the testsolvers worked on may not even look remotely like the final version, etc.
Problems went through a lot of changes and so on.

§4.2 “Raw” versions of problems (pre-editing)
1. Let n be the smallest four-digit number such that 3n and 4n are permutations of

each other. Find the remainder when n is divided by 1000.
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2. For any positive integers n ≥ i, say n is i-nteresting if lcm(1, 2, 3, . . . n) can be
written as the product of exactly i distinct relatively prime positive integers less
than or equal to n.
Find the sum of all 10-nteresting positive integers.

3. Triangle 4ABC inscribed in the unit circle has area 1
20 . The product of the lengths

of its altitudes can be expressed as m
n , where m and n are relatively prime positive

integers. Compute the value of m+ n.

4. Let G be a 6× 6 grid of unit square cells. Find the number of subrectangles R of G
such that R contains at least one cell on the diagonal of G containing the top-left
and bottom-right cells of G.

5. Let triangle ABC have side lengths AB = 13, BC = 14, and CA = 15. Let P be a
parabola with focus A and directrix BC, and let P intersect segments AB and AC
at D and E respectively. If AD + AE can be represented as m

n in lowest terms,
find m.

6. Compute

ν3

( ∑
a+b+c=81

1

a!b!c!

)
,

where the summation is over nonnegative integers a, b, c summing to 81. Note that
0! = 1.

7. A pair of nonnegative integers (i, u) is said to be compatible if i < 3u and u < 3i.
Let N be the number of compatible pairs of integers (i, u) for 0 ≤ i, u < 300 (note
the strictly less than 300). Find the remainder when N is divided by 1000.

8. Let N be equal to,

cos3(20◦) cos3(140◦) + cos3(140◦) cos3(260◦) + cos3(260◦) cos3(20◦).

Given that |N | can be represented in form p
q where p and q are relatively prime

positive integers, find the value of p+ q

9. Otis the otter is marking every lattice point with an integer. Let P (x, y) denote
the number that he assigned for the point (x, y). It is known that for all integers x
and y,

P (x+ y, y) = P (y, x) = P (x, y),

P (x, x) = |x|.

Find the remainder when the sum of all positive integers n < 2026 such that
P (n, 2026) = 2 is divided by 1000.

10. Quadrilateral ABCD satsifies ∠B = ∠C = ∠D. If BC = 29, AD = 41, and the
distance from A to CD is 40, find the largest integer less than [ABCD].

11. Calculate the remainder of the sum 1

2001

∑
i>1

∑
j>1

2001∑
k=1

(
i−1
j−1

)
ln(k)j

j(i− 1)!


when divided by 1000.
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12. Oscar the otter is reading the seven volumes of his favorite book series, Harry Otter.
He has them all in a row in his bookshelf, but he wants to put them in chronological
order. He wishes to do this by making swaps, where in one swap he will switch
the positions of any two books in the row (these two books do not necessarily
have to be adjacent). If the books in the row are in a random permutation of the
chronological ordering, then the expected number of swaps Oscar needs for the
books in the row to be in chronological order is m

n , where m and n are relatively
prime positive integers. Find m+ n.

13. In cyclic quadrilateral ABCD, ∠BCD = 45◦, CD = BC + 6, and AB +AD = 40.
If the area of ABCD can be expressed as m+ n

√
p, where m and n are positive

integers and p is not divisible by the square of any prime, compute m+ n+ p.

14. Let n be the number of ways to label the vertices of a regular 13-gon, each with an
integer from 1-14 (repetitions allowed), so that no substring of consecutive vertices
has a sum divisible by 15. Find the remainder when n is divided by 1000.

15. Let p = 127. Let a be the smallest positive integer such that a2 − 215 is divisible
by p4. Compute the remainder when a is divided by 1000.
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