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1 Summary

§1.1 News and commentary
The sixth USEMO was held on October 26 – 27, 2024. A total of 59 students submitted
at least one paper. This year’s USEMO was sponsored by the CoRe Lab, Institute of
Artificial Intelligence, Peking University. We are grateful for their support.

This USEMO came at a time for me when I was personally rather busy, because I was
trying to complete all the calculations and writing for my PhD thesis before my deadline
in December. I am grateful to my team of volunteer graders who worked quickly and
efficiently in preparing the rubrics and marking the papers, even without much oversight
from me. Most of the delay between the grading and the publication of the results is due
to my own unresponsiveness. I am thankful to the volunteers and contestants for their
patience!

§1.1a Expansion of USEMO to non-US students
There has been a lot of requests to consider expanding the USEMO to not be USA-only,
but rather open to all high school students. Because of the sponsorship from CoRe Lab,
I’d like to start doing this from 2025 onwards, but I need to think a bit about exactly how
that would affect the eligibility for volunteers for grading and problem proposals. (Any
suggestions to this end are welcome!) In any case, look for an announcement sometime
in early 2025.

Note that at the moment I still plan to host the competition at a fixed time (12:30pm-
5:00pm in US Eastern time), so de facto I expect most of the contestants to be in the
Americas. But the proposed change is that de jure we won’t have a US requirement
anymore. Again, this is all just a proposal. Expect more details announced later.

§1.1b We finally got burned by a config issue
Finally, it is with a bit of chagrin that I need to remark that problem 3 of the USEMO
as written was not correct in some cases due to a configuration issue that I did not notice
while editing the problem statement from its original form. Thankfully (and maybe to
nobody’s surprise), nobody noticed the issue during the exam either and as far as I can
tell it had no effect on the scores of the problem. In the final published version of the
problems, we added the condition that triangle ABC is acute to avoid the angle equality
issue.

§1.2 Thanks
I am once again grateful to many individuals who helped make this competition possible.

§1.2a Sponsors
We are grateful to be sponsored this year by the CoRe Lab, Institute of Artificial
Intelligence, Peking University.
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§1.2b Proposers of problems
I thank everyone who submitted problems for the USEMO, of which there are many. The
list of authors who had at least one problem in the shortlist were Andrei Chirita, Archit
Manas, Galin Totev, Jinyu Xie, Kornpholkrit Weraarchakul, Kristiyan Vasilev, Matsvei
Zorka, Nikolai Beluhov, Siraphop Khawplad, and TongGeometry.

§1.2c Reviewers
I thank Andrew Gu, Maximus Lu, Nikolai Beluhov, Noah Walsh, and Oleg Kryzhanovsky
for reviewing the proposed problems.

§1.2d Graders
Thanks to everyone who graded at least one paper: Abdullahil Kafi, Adit Aggarwal, Alec
Sun, Alex Chui, Alexandru Bordei, Andrew Shishko, Anmol Tiwari, Arifa, Aryan Das,
Atharv Harlalka, Basil Sousounis, Dinh Quoc Tri, George Nikolov, Hans Yu, Honjar
Xing, Jeeho Byun, Kanav Talwar, Kevin Liu, Kevin Zhao, Kornpholkrit Weraarchakul
(Numton), Krishiv Khandelwal, Lasitha Vishwajith Jayasinghe, Lavish Khariwal, Lee Yiu
Sing, Luca Seiki Pereira Fujii, Luis André, Mandar Kasulkar, Mihir Singhal, Mixtilinear
Graph, Ricky Chen, Sanjana Chacko, Seongjin Shim, Shreeansh Hota, Shreya Mundhada,
Siripurapu Bhuvan, Smochina Vladislav, Tiger Li, Victor Kostadinov, Wietze Koops,
William Liu, Yasser Merabet, Yousif Wameedh, Ziyad Elamrani.

Special thanks to those who served as problem captains (who this year not only had to
design rubrics but also were asked to sign off on every paper for their assigned problems):
Alec Sun, Hans Yu, Kevin Zhao, and Mihir Singhal.

§1.2e Other supporters
I would like to thank the Art of Problem Solving for offering the software and platform
for us to run the competition. Special thanks to Jo Welsh for dealing with all my support
requests.
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2 Results

If you won one of the seven awards, please reach out to usemo@evanchen.cc to claim
your prize!

§2.1 Top Scores
Congratulations to the top three scorers, who win the right to propose problems to future
instances of USEMO.

1st place Alexander Wang (32 points)

2nd place Oron Wang (29 points)

3rd place Feodor Yevtushenko (28 points)

§2.2 Special awards
See the Rules for a description of how these are awarded. (Note in particular that
students already in the top three above aren’t considered for special awards.)

Youth prize Channing Yang

Top female Ekam Kaur

Top day 1 Andrew Brahms, Angela Liu, Evan Fan, Haofang Zhu, Jiahe Liu, Liam
Reddy1, Liran Zhou, Mingyue Yang, Rohan Bodke, Royce Yao

Top day 2 Daniel Ge

§2.3 Honorable mentions
This year we award Honorable Mention to anyone scoring at least 20 points (who is not
in the top three already). The HMs are listed below in alphabetical order.

Channing Yang

Daniel Ge

Ekam Kaur

Evan Fan

Jiahe Liu

Liam Reddy

Rohan Bodke

Royce Yao
1From the output of sort -R, we randomly selected Liam Reddy for the monetary prize.
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§2.4 Distinction
The Distinction award is awarded for either scoring at least 14 points or in the top 25 of
scores, whichever is more inclusive. This year, the 25th place student scored 9 points,
so Distinction awards recognize any student with at least this score. The Distinction
awards are listed below in alphabetical order.

Andrew Brahms

Angela Liu

Atticus Stewart

Benjamin Fu

Benny Wang

Evil Chin

Grant Blitz

Haofang Zhu

Joey Zheng

Liran Zhou

Luka Stopar

Mingyue Yang

Ruilin Wang

Shruti Arun
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3 Solutions and marking schemes

§3.1 USEMO 1 — proposed by Galin Totev

Problem statement

There are 1001 stacks of coins S1, S2, . . . , S1001. Initially, stack Sk has k coins for
each k = 1, 2, . . . , 1001. In an operation, one selects an ordered pair (i, j) of indices
i and j satisfying 1 ≤ i < j ≤ 1001 subject to two conditions:

• The stacks Si and Sj must each have at least one coin.

• The ordered pair (i, j) must not have been selected in any previous operation.

Then, if Si and Sj have a coins and b coins, respectively, one removes gcd(a, b) coins
from each stack.

What is the maximum number of times this operation could be performed?

§3.1a Solution
The answer is 500 · 501 = 250500. Our solution is split into two parts.

¶ Construction. Firstly, we will give a valid construction. We start by performing
operations (1001, 1000), (1001, 999), . . . , (1001, 1), in order. By induction, at each step
(1001, j), S1001 will have j + 1 coins and thus, since gcd(j + 1, j) = 1, one coin will be
removed from each stack. At the end of this process, 1000 operations will have been
performed. Then stack S1001 will have one coin; we discard it. The remaining (nonempty)
stacks will have 1, 2, . . . , 999 coins, and no operation will have been performed between
any of them. Thus we can repeat this process, performing operations with the 999-coin
stack and the rest of the stacks in descending order.

Repeating this process until all the stacks have been discarded, we perform

1000 + 998 + · · ·+ 2 = 500 · 501

operations, as desired.

¶ Proof of bound. To prove this is the maximum number of operations we can perform,
we bound the total number of operations. The stacks S1, . . . , S500 can only participate
in at most

1 + · · ·+ 500 =
500 · 501

2

operations (since each operation removes at least one coin from them). The remaining
501 stacks can only perform

(
501
2

)
= 500·501

2 operations between themselves, since each
pair can only perform the operation once. Thus, in total, we can perform at most 500 ·501
operations.
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§3.1b Marking scheme
The solution is split into two parts: the lower bound (construction), worth 4 points,
and the upper bound, worth 3 points. These parts are completely additive.

In general, minor errors will be worth a deduction, but please message the channel
when you find any that are not included in the rubric so that we can add them to the
rubric for a deduction. Errors purely in arithmetic (even in the final answer), including
incorrect summation of an arithmetic series, will not merit any deduction.

§3.1c Lower bound
The following items are available (here n = 1001):

• 1 point for any construction that achieves Ω(n2) moves.

• 2 points for any construction that achieves n2/4−O(n) moves.

• 4 points for a correct lower bound construction (achieving 500 · 501 = (n2 − 1)/4
moves).

Up to 1 point may be deducted for constructions that are correct as stated but for which
insufficient justification is provided that the construction works. (For example, in the
case of the construction of the official solution, no justification would be required, since
the fact that it works is obvious enough not to require justification.)

§3.1d Upper bound
The following items are available:

• 1 point for any correct upper bound that is strictly less than b1001 · 1002/4c =
250750.

• 3 points for a correct upper bound (of 500 · 501 = (n2 − 1)/4).
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§3.2 USEMO 2 — proposed by Andrei Chirita

Problem statement

Let k be a fixed positive integer. For each integer 1 ≤ i ≤ 4, let xi and yi be positive
integers such that their least common multiple is k. Suppose that the four points
(x1, y1), (x2, y2), (x3, y3), (x4, y4) are the vertices of a non-degenerate rectangle in
the Cartesian plane. Prove that x1x2x3x4 is a perfect square.

§3.2a Solution
It suffices to prove that vp(x1x2x3x4) is even for each prime p | k. Since the four points
form a rectangle, we have

x1 + x3 = x2 + x4 (3.1)
y1 + y3 = y2 + y4 (3.2)

(x1 − x3)
2 + (y1 − y3)

2 = (x2 − x4)
2 + (y2 − y4)

2 (3.3)
x2x4 − x1x3 = y1y3 − y2y4 (3.4)

Let vp(k) = m. For each 1 ≤ i ≤ 4, we have

max (vp(xi), vp(yi)) = m.

We split into cases.

• Case 1. If vp(xi) = m for three i then vp(xi) = m for the fourth by (3.1), so
2 | vp(x1x2x3x4) = 4m.

• Case 2. If vp(yi) = m for three i then vp(yi) = m for the fourth by (3.2). By (3.4)
we have p2m | x2x4 − x1x3. We now use the fact that vp(x± y) = min(vp(x), vp(y))
whenever vp(x) 6= vp(y). Using the contrapositive, vp(x1x3), vp(x2x4) ≤ 2m implies
vp(x1x3) = vp(x2x4) and hence 2 | vp(x1x2x3x4).

• Case 3. Otherwise, vp(xi) = m for exactly two i. If these i are consecutive
(cyclically), for example i = 1, 2 without loss of generality, then from (3.1) we
have pm | x3 − x4. Since vp(x3), vp(x4) ≤ m, we have vp(x3) = vp(x4) and hence
2 | vp(x1x2x3x4). If these i are not consecutive, for example i = 1, 3 without loss of
generality, then from (3.1) we have pm | x2 + x4, and we can finish using the same
argument as in the consecutive case.

Remark. There are rectangles which satisfy the hypothesis, for instance (a, b), (a, ab),
(ab, ab), (ab, b) where gcd(a, b) = 1.

§3.2b Marking scheme
Recall the four equations

x1 + x3 = x2 + x4

y1 + y3 = y2 + y4
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(x1 − x3)
2 + (y1 − y3)

2 = (x2 − x4)
2 + (y2 − y4)

2

x2x4 − x1x3 = y1y3 − y2y4

which were numbered (3.1), (3.2), (3.3) and (3.4) in the provided solution.
The following are awarded marks, with items being non-additive:

• 2 points for writing down (3.1), (3.2), and (3.4). The condition (y2−y1)(y4−y1) =
−(x2 − x1)(x4 − x1) or similar in lieu of (3.4) is accepted but (3.3) or similar is not.

• 2 points for solving the problem in at least one of Case 2 and Case 3, irrespective
of whether the conditions (3.1), (3.2), and (3.4) are written down.

• 5 points for both of the above items.

• 7 points for a complete solution.
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§3.3 USEMO 3 — proposed by Matsvei Zorka

Problem statement

Let ABC be an acute triangle with incenter I. Two distinct points P and Q are
chosen on the circumcircle of ABC such that

∠API = ∠AQI = 45◦.

Lines PQ and BC meet at S. Let H denote the foot of the altitude from A to BC.
Prove that ∠AHI = ∠ISH.

§3.3a Solution
We give three solutions.

¶ Solution via Tebault circles from the author. Construct the Tebault circles ω1 and
ω2 which are tangent to (ABC), side BC, and cevian AH.

45◦

45◦

A

B C

W

H

P

T

I

D

D′K

S

Q

L

The key claim is that P and Q coincide with the tangency points of the circles we just
drew:

Claim — Points P and Q are the tangency points of ωi and (ABC).

Proof. Let ω1 touch BC at T and (ABC) at P ′. We will show that ∠AP ′I = 45◦.
Let W be the arc midpoint of BC not containing A and let L = AW ∩BC. It is well

known that W , T , P are collinear and (by “shooting lemma”)

WT ·WP = WL ·WA = WI2 = WB2.
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Hence we get
]ITH = ]ITW − ]LTW = −]P ′IW − ]LTW.

From AP ′TL concyclic we also have

−]P ′IW − ]LTW = −]P ′IW − ]IAP ′ = ]AP ′I.

It is left to remember that ]ITH = ±45◦ because IT must be parallel to an angle
bisector of ]AHB by the properties of Tebault circles.

Similarly, ∠AQ′I = 45◦. So P and Q coincide with P ′ and Q′ in some order.

Claim — Point S is the center of the positive homothety which maps ω1 to ω2.

Proof. This follows by Monge theorem on ω1, ω2 and (ABC).

Let D be the tangency point of incircle ω of triangle ABC with BC with antipode D′

and let ` be another tangent form S to ω1, ω2 (which is a tangent to ω as well because
of the Tebault circles properties). Let K = ` ∩AH.

Claim — SHIK is cyclic.

Proof. Because of the Tebault circles property, the intersection of cevian and the second
tangent lies on the tangent to ω at D′. In our case, it follows KD′ is tangent to ω and
thus parallel to the line BC. As a consequence, SI is parallel to another angle bisector
of ]SKD′. Hence, ]KIS = 90◦ = ]KHS as desired.

From the third lemma we may conclude that

]KHI = ]KSI = ]ISH,

as desired.

Remark. For basic properties about Tebault circles contains the relevant facts (regrettably,
it is in Russian only): https://geometry.ru/articles/protasovtebo.pdf.

¶ Solution by Nikolai Beluhov.
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I

A∗

K

L

Q

P

S
H

MA

IA

V

U

O′

X

Y

90◦

Let A∗ be the antipodal point of A on (ABC).

Lemma 3.3.1
]AHI = ]A∗IA.

Proof. Let IA be the excenter opposite A. Since ABH ∼ AA∗C and ACH ∼ AA∗B,
we get that AA∗ · AH = AB · AC. Since ABI ∼ AIAC and ACI ∼ AIAB, similarly
AI ·AIA = AB ·AC. But also ]A∗AI = ]HAI, and we conclude that AIH ∼ AA∗IA.
So ]AHI = ]AIAA

∗ Let MA be the midpoint of IIA. Then as MA is on (ABC), we
know that AMA ⊥ MAA

∗, and so A∗ is on the perpendicular bisector of IIA. Thus
]AIAA∗ = ]A∗IA,as desired.

Note that AIH ∼ AA∗IA can be seen simply by taking the
√
AB ·AC-inversion at A

as well.

From now on, we will be proving ]A∗IA = ](SI,BC).
Let K, L be the second intersections of PI,QI and (ABC), respectively. Then the

angle condition is equivalent to that KL is the perpendicular bisector of AA∗.

Lemma 3.3.2
SI passes through the circumcenter O′ of triangle AIA∗.

Proof. Let U and V be the midpoints of the arcs AB and AC of (ABC). Then as U, V
are both on the perpendicular bisector of AI, we know that O′ = UV ∩ KL. It thus
suffices to show that UV,KL, SI are concurrent.

13
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Let IS intersect (ABC) at X,Y . Then

(S, I;X,Y )
C
= (B,U ;X,Y )

V
= (I, UV ∩ SI;X,Y )

and
(S, I;X,Y )

P
= (Q,K;X,Y )

L
= (I,KL ∩ SI;X,Y ).

Thus UV ∩ SI = KL ∩ SI, as desired.

The rest is a straightforward angle chase. We know that

](SI,BC) = ]SO′K + ](KL,BC) = ]IA∗A+ ]A∗AI = ]A∗IA,

as desired.

¶ Solution by Hans Yu. Let IA be the A-excenter. Now let X be the second intersection
of (PIQ) and (BIC). Since S is the radical center of the circles (PIQ), (BIC) and
(ABC), we see that SXI are collinear.

I

Q

P

S H

IA

X

D

Claim 3.3.3 — It suffices to show that IAHX are collinear.

Proof of the claim. Suppose that IAHX are collinear. It is well-known that BC bisects
IAHI (say, by harmonicity of (I, IA;A,BC ∩ AI)). Therefore ]IHA = ]AHX =
90◦ −](XI,AH) = 90◦ −](SI,AH) = ]HSI, as desired. Here we used that ]HXI =
]IAXI = 90◦.

Now let AH intersects (ABC) again at D.

Claim 3.3.4 — It suffices to show that AIAXD are concyclic.

Proof of the claim. Suppose that AIAXD are concyclic, then H = BC ∩ AD is the
radical center of (ABCD), (AIAXD) and (BICIA). Hence H is also on IAX, and we
are done by Claim 3.3.4.

14
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Let PI,QI intersect the circumcircle of ABC again at P ′, Q′, and let A∗ be the
antipodal point of A on the circumcircle of ABC. Then since ∠APP ′ = ∠API = 45◦

and so is ∠AQQ′, we see that AP ′A∗Q′ is a square.
Let MA be the midpoint of IIA. Let O be the circumcenter of ABC. Then we can see

that MA is the midpoint of arc A∗D as well: to see this, note that ]DAA∗ = ]OMAA =
]MAAO = ]MAAA∗.

Let O′ be the circumcenter of AIA∗, and let DI intersects (ABC) again at D′.

I

A∗

P ′

Q′

Q

P

MA

IA

O′

X

D

D′

N

Claim 3.3.5 — It suffices to show that MAD
′ ⊥ O′D′.

Proof of the claim. Suppose that MAD
′ ⊥ O′D′. Let N be the midpoint of AI. Then

MAND′O′ are concyclic.
Consider the inversion at I sending A to MA. This inversion fixes the circumcircle

of ABC. It sends D′ to D and N to IA as IAI = 2MAI. Now to see where X is sent
to, note that (PQI) is sent to the line P ′Q′, which is the perpendicular bisector of AA∗.
Moreover, (BIAC) is sent to the line through N perpendicular to AI, which is just the
perpendicular bisector of AI. Thus X is sent to the circumcenter of AIA∗, which is
O′. As a consequence, O′ is sent to X, and so the circle MAND′O′ is sent to the circle
AIADX, and we are done by Claim 2.

I

A∗

MA

O′

D

D′

Z

15
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To finish off, we will show that MAD
′ ⊥ O′D′. Let Z be on ID′ such that A∗Z ‖ D′MA.

Then ]IZA∗ = ]ID′MA = ]DD′MA = ]MAD
′A∗ = ]MAAA∗ = ]IAA∗, showing

that Z is on the circumcircle of AIA∗. As a consequence, O′ is on the perpendicular
bisector of A∗Z. However, since ]D′ZA∗ = ]DZA∗ = ]DD′MA = ]MAD

′A∗ =
]ZA∗D′, we have that D′ is on the perpendicular bisector of A∗Z as well. This shows
that O′D′ ⊥ A∗Z ‖ MAD

′, as desired.

§3.3b Marking scheme
For all solutions, the following are not awarded marks:

• Rephrasing the angle condition in terms of PI ∩ (ABC) and QI ∩ (ABC).

• Swapping ]AHI with some other angles, even if they are used in the official
solutions.

For solutions not using Tebault circles, the following items are not additive:

• 2 points Showing that SI passes through the circumcenter of AIA∗. Alternatively,
show that SI, the perpendicular bisector of AI and the perpendicular bisector of
AA∗ are concurrent.
Note: Points are still awarded if SI is replaced by some other two points that clearly
lie on S, I, the perpendicular bisector of AI is replaced by the line connecting two
points that are clearly on the perpendicular bisector, or the perpendicular bisector
of AA∗ is similarly replaced.

• 2 points Show that if SI passes through the circumcenter of AIA∗, then the
statement holds true.

• 7 points Complete solution.

For solutions using Tebault circles, the following items are additive.

• +1 point Show that P,Q are tangency points of the Tebault circles to the circum-
circle.

• +1 point Show that S is the center of homothety of the two Tebault circles.

• +3 points Construct K and show that SHIK are concyclic.

• +2 points Finishing the solution.
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§3.4 USEMO 4 — proposed by Kornpholkrit Weraarchakul

Problem statement

Find all sequences a1, a2, . . . of nonnegative integers such that for all positive integers
n, the polynomial

1 + xa1 + xa2 + · · ·+ xan

has at least one integer root. (Here x0 = 1.)

§3.4a Solution
The only answer is a1 = 1 and a2 = a3 = · · · = 0.

It’s clear that this works because for each n, the requested integer root is x = −n. We
now prove this is the only solution.

In general, let
Fn(x) := 1 + xa1 + · · ·+ xan .

Claim — Let p be any prime. Then

Fp−1 (−(p− 1)) = 0.

Proof. Let −r be the integer root of Fp−1, for r > 0. From

Fp−1(1) = p and Fp−1(−r) = 0 =⇒ 1 + r | p

we conclude that r = p− 1 (since p is prime), as needed.

We continue to focus on Fp−1(−(p− 1)) = 0 for any prime p, that is,

1 +

p−1∑
i=1

(−1)ai(p− 1)ai = 0.

The idea is that the big terms are way too big. Indeed, set M := max(a1, . . . , ap−1) and
assume that M occurs for k ≥ 1 indices among {a1, . . . , ap−1}. Hence in the displayed
sum, there are k terms equal to (−1)M (p− 1)M . Hence

k · (p− 1)M =

∣∣∣∣∣∣1 +
∑

i:ai<M

(−1)ai(p− 1)ai

∣∣∣∣∣∣
≤ 1 + (p− 1− k) · (p− 1)M−1

which gives

1 ≥ (p− 1)M−1 [k · (p− 1)− (p− 1− k)] = (p− 1)M−1 [(k − 1)(p− 1) + k] .

This could only happen if k = 1 and M = 1. In other words, for any prime p, the terms
(a1, . . . , ap−1) consist of a single 1 and all other 0’s.

In particular, for p = 2 we have a1 = 1. Hence a2 = a3 = · · · = 0 as desired.
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§3.4b Marking scheme
For all solutions, the following are not awarded marks:

• Getting the correct answer with no explanation.

• Showing that all roots are negative.

For correct solutions:

• 7 points for a complete solution that shows a1 = 1 and ai>1 = 0 is the only
possible solution.

Solutions that are not complete will get the maximum points any item for partial
credit may award them, and these points are not additive:

• +2 points for noting that if n is one less than a prime, 1− p must be the integer
root.

• +4 points for using Extremal Principle and taking the largest value of ai into
account.

• +4 points for showing that Pp−1(0) = rQp−1(0) so p− 1 | Pp−1(0).

• +5 points for setting the absolute value equation up in either of the two previous
cases.

• +5 points for showing that
∑p−1

i=0 xai = x+ (p− 1).

For all solutions which are incomplete with errors, the following deductions apply and
are all additive. An incomplete solution can only get a deduction if it applies for the
complete portion:

• -1 point for not checking that a1 = 1 and ai>1 = 0 is indeed valid.

• -1 point for not indicating in any way that we check all primes p.
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§3.5 USEMO 5 — proposed by Kornpholkrit Weraarchakul

Problem statement

Let ABC be a scalene triangle whose incircle is tangent to BC, CA, AB at D, E,
F respectively. Lines BE and CF meet at G. Prove that there exists a point X on
the circumcircle of triangle EFG such that the circumcircles of triangles BCX and
EFG are tangent, and

∠BGC = ∠BXC + ∠EDF.

§3.5a Solution
We give two solutions.

¶ First solution. Let (BDE) and (CDF ) intersect at X. We will show that this is the
desired point.

A

B CD

E

F

G

X

Claim — X is on (EFG).

Proof. This is evident by Miquel’s theorem on the triangle BGC with the points D, E,
F on sides BC, BG and CG. Alternatively, angle chasing suffices:

]EXF = ]EXD + ]DXF = ]EBD + ]DCF = ]EGF.

Claim — ]BGC = ]BXC + ]EDF .

Proof. Compute

]BXC = ]BXD + ]DXC
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= ]BED + ]DFC

= ](BE,DE) + ](DF,FC)

= ](BE,FC)− ](DE,DF )

= ]BGC − ]EDF.

Claim — (BXC) is tangent to (EFX) at X.

Proof. It suffices to prove ]BCX −]FEX = ]BXF . We do this by chasing the angles
as follows.

]BCX = ]DCX

= ]DFX

= ]DFE + ]EFX

= ]BDE + ]EFX

= ]EGF − (]EGF − ]BDE) + ]EFX

= ]EGF − (]EXF − ]BDE) + ]EFX

= ]EGF + (]BXE − ]EXF ) + ]EFX

= ]EGF + ]BXE + ]FEX

= ]EXF + ]BXE + ]FEX

= ]FEX + ]BXF.

¶ Second solution. Here we give an alternative solution after showing the first two
claims. Take the inversion with respect to the incircle. We denote the inverse of a point
by −∗. Then D = D∗, E = E∗ and F = F ∗. Moreover, B∗ is the midpoint of DF and
C∗ is the midpoint of DE.
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A

B CD

E

F

G

X

B∗

C∗

X∗

Since X = (BDE) ∩ (CDF ), we have X∗ = (B∗DE) ∩ (C∗DF ). Note that since
(B∗DE) and (C∗DF ) intersect at D,X∗ and also B∗F , C∗E pass through D, we have

4X∗C∗E ∼ 4X∗FB∗.

Thus, as B∗C∗ ‖ EF , we have

]B∗C∗X∗ = ]FEX∗ + ]EX∗C∗ = ]FEX∗ + ]B∗X∗F.

showing that (B∗C∗X∗) and (EFX∗) are tangent at X∗. Inverting back, we get (BCX)
and (EFX) are tangent at X, as desired.

§3.5b Marking scheme
For all solutions, the following items are additive:

• +1 point for a correct description of X that allows a ruler-compass con-
struction determining a unique X. Most common examples are (1) X =
(BDE)∩(CDF ), and (2) Y = DF ∩(EFG), Z = DE∩(EFG) and X = BY ∩CZ.

• +1 point for showing that (BDE), (CDF ), (EFG) are concurrent either by angle
chasing or stating Miquel’s theorem.

• +1 points for proving that X satisfies the angle condition.

• +2 points for proving that X satisfies that (BCX) is tangent to (EFX).

• +2 points for getting all of the above items.

No partial points are awarded to non-synthetic solutions unless a synthetic statement
clearly equivalent to one of the items above is stated and proved explicitly in the solution.

No deductions are made for configuration issues.
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§3.6 USEMO 6 — proposed by Nikolai Beluhov

Problem statement

Let n be an odd positive integer and consider an n×n chessboard of n2 unit squares.
In some of the cells of the chessboard, we place a knight. A knight in a cell c is said
to attack a cell c′ if the distance between the centers of c and c′ is exactly

√
5 (in

particular, a knight does not attack the cell which it occupies).
Suppose each cell of the board is attacked by an even number of knights (possibly

zero). Show that the configuration of knights is symmetric with respect to all four
axes of symmetry of the board (i.e. the configuration of knights is both horizontally
and vertically symmetric, and also unchanged by reflection along either diagonal of
the chessboard).

§3.6a Solution
Let n = 2k + 1, and coordinatise the cells of the board by (x, y) with 0 ≤ x, y ≤ 2k.

Consider the width-two outer frame F of the board formed by all cells (x, y) which
satisfy at least one of the four conditions x ≤ 1, x ≥ 2k − 1, y ≤ 1, and y ≥ 2k − 1.

Observe that, if two valid configurations agree on F , then they agree everywhere.
Indeed, suppose not, and consider the earliest cell (x, y) where they disagree, going
from left to right and from top to bottom. The number of knights which attack cell
(x− 1, y − 2) will then differ by one between the two configurations, and we arrive at a
contradiction.

Thus it suffices to show that F is fully symmetric.
Let f(x, y) = 0 when cell (x, y) is empty and f(x, y) = 1 when it is occupied by a

knight. We treat the values of f as remainders modulo two, with 1 + 1 = 0. We also set
f(x, y) = 0 for all x and y which are not the coordinates of a cell.

Consider any set of cells S (these must all be valid cells), and let T be the set of all
cells with an odd number of knight neighbours in S. Then, in a valid configuration, the
sum of f over T will always be zero. (A)

For convenience, given a cell (x, y), let fp,q(x, y) be the sum of all eight expressions of
the form either f(x± p, y ± q) or f(x± q, y ± p). (Notice that some of these expressions
might coincide, and the coinciding ones will cancel out.)

For some m ≥ 1, consider any subboard M of our board of size (2m+ 1)× (2m+ 1)
centered at (x, y) (such that m ≤ x, y ≤ 2k−m). By (A) applied to the set of all cells in M
with the same checkerboard colour as (x, y), we get that fm−1,m(x, y)+fm+1,m+2(x, y) = 0
(see Figure 3.1(i)).

Let us add together these identities over m, m− 2, m− 4, . . ., all the way down to the
remainder of m modulo two. Then all corresponding expressions of the form f`,`+1(x, y)
with ` < m will cancel out, and in the end we will arrive at fm+1,m+2(x, y) = 0, for all
m ≤ x, y ≤ 2k −m. (B)

By (B) with (x, y) = (k, k + 1) and m = k − 1, we get that f(0, 0) = f(2k, 0). (C)
By (A) with S = {(0, y), (2, y), (4, y), . . . , (2k, y)}, we get that f(0, y−1)+f(2k, y−1) =

f(0, y + 1) + f(2k, y + 1) for all y with 0 ≤ y ≤ 2k (see Figure 3.1(ii)). (D)
By induction on y, with (C) for the base case and (D) for the induction step, we

conclude that f(0, y) = f(2k, y) for all y. (E)
By (B) with (x, y) = (k + 1, k + 1) and m = k − 1, we get that f(0, 1) = f(1, 0). (F)
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(i) (ii)

Figure 3.1: Visual demonstration of (B) and (D)

Similarly to (F), also f(2k−1, 0) = f(2k, 1). By (E) with y = 1, (F), and the previous
identity, we arrive at f(1, 0) = f(2k − 1, 0). (G)

By (A) with S = {(1, y), (3, y), (5, y), . . . , (2k− 1, y)}, we get that f(1, y− 1)+ f(2k−
1, y − 1) + f(1, y + 1) + f(2k − 1, y + 1) + f(0, y − 2) + f(2k, y − 2) + f(0, y + 2) +
f(2k, y + 2) = 0. Using (E) where y is substituted with y ± 2, the latter simplifies to
f(1, y − 1) + f(2k − 1, y − 1) = f(1, y + 1) + f(2k − 1, y + 1) for all y with 0 ≤ y ≤ 2k.
(H)

By induction on y, with (G) for the base case and (H) for the induction step, we
conclude that f(1, y) = f(2k − 1, y) for all y. (I)

Similarly to (E) and (I), also f(x, 0) = f(x, 2k) and f(x, 1) = f(x, 2k − 1) for all x.
(J)

By (A) with S = {(x, 0), (x − 1, 1), (x − 2, 2), . . . , (0, x)}, we get that f(x − 1, 0) +
f(x, 1) + f(x + 1, 0) + f(x + 2, 1) = f(0, x − 1) + f(1, x) + f(0, x + 1) + f(1, x + 2) for
all x with 0 ≤ x ≤ 2k. (K)

Similarly to (K), also f(x− 2, 2k − 1) + f(x− 1, 2k) + f(x, 2k − 1) + f(x+ 1, 2k) =
f(2k−1, x−2)+f(2k, x−1)+f(2k−1, x)+f(2k, x+1). By (E), (I), and (J), it follows that
f(x−2, 1)+f(x−1, 0)+f(x, 1)+f(x+1, 0) = f(1, x−2)+f(0, x−1)+f(1, x)+f(0, x+1)
for all x with 0 ≤ x ≤ 2k. (L)

By induction on x, with (F) for the base case and (K) and (L) for the induction step,
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we conclude that f(x, 0) = f(0, x) and f(x, 1) = f(1, x) for all x. (M)
Similarly to (M), also f(x, 2k) = f(2k, x) and f(x, 2k − 1) = f(2k − 1, x) for all x.

(N)
By (M) and (N), we get that F is symmetric with respect to the unit-slope main

diagonal of the board. By the same reasoning, F is symmetric with respect to the other
main diagonal of the board as well.

Consider any cell (x, y) of F . When either x ≤ 1 or x ≥ 2k − 1, we get that
f(x, y) = f(2k − x, y) by (E) and (I). Otherwise, when either y ≤ 1 or y ≥ 2k − 1, we
get that f(x, y) = f(y, x) by diagonal symmetry, f(y, x) = f(2k − y, x) by (E) and (I),
and f(2k − y, x) = f(2k − x, y) by diagonal symmetry once again.

Therefore, F is symmetric with respect to the vertical midline of the board. By the
same reasoning, F is symmetric with respect to the horizontal midline of the board as
well. The solution is complete.

Remark. The number of knight configurations which satisfy the conditions of the problem
is 2n.

This can be verified as follows. Let F` be the set of all cells (x, y) with min{x, 2k −
x, y, 2k− y} = `. Thus F0, F1, . . ., Fk form a partitioning of the board into pairwise disjoint
concentric frames, with F = F0 ∪ F1.

First we place some knights on the cells of F so that F is fully symmetric. There are 2n

ways to do that.
It is straightforward to see that we can now fill in F2 uniquely so that every cell of F0 is

attacked by an even number of knights. Thus F2 will be fully symmetric as well. After that,
we can similarly fill in F3 so that every cell of F1 is attacked by an even number of knights,
and so on and so forth. Therefore, every fully symmetric arrangement of knights within F
can be extended to a valid configuration over the complete board in a unique manner.

Remark. When n is even, the number of knight configurations which satisfy the conditions
of the problem is 22n. Here follows a quick sketch of the proof.

First we place some knights on rows 0 and 1 in an arbitrary manner. There are 22n ways
to do that.

It is straightforward to see that we can now fill in row 2 uniquely so that every cell of
row 0 is attacked by an even number of knights. After that, we can similarly fill in row 3
uniquely so that every cell of row 1 is attacked by an even number of knights, and so on
and so forth.

It turns out that, at the end of this process, every cell of rows n− 2 and n− 1 will be
attacked by an even number of knights as well. One proof relies on a series of applications
of (A) to certain sets of cells S within rows 0, 1, . . ., n− 3. Therefore, every arrangement of
knights within the lowermost couple of rows can be extended to a valid configuration over
the complete board in a unique manner.

§3.6b Marking scheme
We will give partial credit on an ad hoc basis, since we expect that the number of solutions
worth partial credit will be very small. We give points for the following, though any other
significant progress may be awarded partial credit, as we will decide when it comes up.

• 2 points for proving symmetry by 180 degree rotation about the cell (k, k) (using
the notation of the solution). This may be done on the entire board, only on F , or
on any other set that determines the rest of the knight positions (without proof,
unless it is not reasonably easy to see).
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• 3 points for proving any other type of symmetry, i.e., horizontal or vertical
symmetry, symmetry across a main diagonal, or symmetry under 90 degree rotation.

• 7 points for a complete solution.

Point deductions may be given for minor flaws, but we will be especially lenient with
omitted details, since it’s somewhat unreasonable to expect every step to be justified in
detail.
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4 Statistics

§4.1 Summary of scores for USEMO 2024
N 59
µ 9.95
σ 8.25

1st Q 4
Median 7

3rd Q 16

Max 32
Top 3 28

Top 12 17

§4.2 Problem statistics for USEMO 2024

P1 P2 P3 P4 P5 P6
0 12 36 55 44 44 58

1 1 0 0 1 6 0

2 0 5 1 0 0 1

3 1 0 0 0 1 0

4 15 0 0 0 1 0

5 1 1 0 1 0 0

6 0 0 0 3 0 0

7 29 17 3 10 7 0

Avg 4.61 2.27 0.39 1.59 1.05 0.03

QM 5.36 3.86 1.60 3.25 2.52 0.26
#5+ 30 18 3 14 7 0
%5+ %50.8 %30.5 %5.1 %23.7 %11.9 %0.0

§4.3 Rankings for USEMO 2024
Sc Num Cu Per
42 0 0 0.00%
41 0 0 0.00%
40 0 0 0.00%
39 0 0 0.00%
38 0 0 0.00%
37 0 0 0.00%
36 0 0 0.00%
35 0 0 0.00%
34 0 0 0.00%
33 0 0 0.00%
32 1 1 1.69%
31 0 1 1.69%
30 0 1 1.69%
29 1 2 3.39%

Sc Num Cu Per
28 1 3 5.08%
27 0 3 5.08%
26 0 3 5.08%
25 0 3 5.08%
24 0 3 5.08%
23 1 4 6.78%
22 1 5 8.47%
21 5 10 16.95%
20 1 11 18.64%
19 0 11 18.64%
18 0 11 18.64%
17 1 12 20.34%
16 3 15 25.42%
15 2 17 28.81%

Sc Num Cu Per
14 5 22 37.29%
13 0 22 37.29%
12 1 23 38.98%
11 1 24 40.68%
10 0 24 40.68%
9 1 25 42.37%
8 1 26 44.07%
7 9 35 59.32%
6 1 36 61.02%
5 0 36 61.02%
4 13 49 83.05%
3 0 49 83.05%
2 0 49 83.05%
1 2 51 86.44%
0 8 59 100.00%
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§4.4 Histogram for USEMO 2024

8

0

2

1 2 3

13

4 5

1

6

9

7

1

8

1

9 0

1

1

1

2 3

5

14

2

5

3

6

1

7 8 9

1

0

5

21

1

2

1

3 4 5 6 7

1

28

1

9 0 1

1

2 3 4
35

6 7 8 9 0 1
42

27


	Summary
	News and commentary
	Expansion of USEMO to non-US students
	We finally got burned by a config issue

	Thanks
	Sponsors
	Proposers of problems
	Reviewers
	Graders
	Other supporters


	Results
	Top Scores
	Special awards
	Honorable mentions
	Distinction

	Solutions and marking schemes
	USEMO 1 — proposed by Galin Totev
	Solution
	Marking scheme
	Lower bound
	Upper bound

	USEMO 2 — proposed by Andrei Chirita
	Solution
	Marking scheme

	USEMO 3 — proposed by Matsvei Zorka
	Solution
	Marking scheme

	USEMO 4 — proposed by Kornpholkrit Weraarchakul
	Solution
	Marking scheme

	USEMO 5 — proposed by Kornpholkrit Weraarchakul
	Solution
	Marking scheme

	USEMO 6 — proposed by Nikolai Beluhov
	Solution
	Marking scheme


	Statistics
	Summary of scores for USEMO 2024
	Problem statistics for USEMO 2024
	Rankings for USEMO 2024
	Histogram for USEMO 2024


